1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39	int result = 0;
40
41	while (n > 1) {
42		n = dm_div_up(n, base);
43		result++;
44	}
45
46	return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54	return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61				 unsigned int l, unsigned int n)
62{
63	return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72	for (; l < t->depth - 1; l++)
73		n = get_child(n, CHILDREN_PER_NODE - 1);
74
75	if (n >= t->counts[l])
76		return (sector_t) -1;
77
78	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87	unsigned int n, k;
88	sector_t *node;
89
90	for (n = 0U; n < t->counts[l]; n++) {
91		node = get_node(t, l, n);
92
93		for (k = 0U; k < KEYS_PER_NODE; k++)
94			node[k] = high(t, l + 1, get_child(n, k));
95	}
96
97	return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106	sector_t *n_highs;
107	struct dm_target *n_targets;
108
109	/*
110	 * Allocate both the target array and offset array at once.
111	 */
112	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113			   GFP_KERNEL);
114	if (!n_highs)
115		return -ENOMEM;
116
117	n_targets = (struct dm_target *) (n_highs + num);
118
119	memset(n_highs, -1, sizeof(*n_highs) * num);
120	kvfree(t->highs);
121
122	t->num_allocated = num;
123	t->highs = n_highs;
124	t->targets = n_targets;
125
126	return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130		    unsigned int num_targets, struct mapped_device *md)
131{
132	struct dm_table *t;
133
134	if (num_targets > DM_MAX_TARGETS)
135		return -EOVERFLOW;
136
137	t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139	if (!t)
140		return -ENOMEM;
141
142	INIT_LIST_HEAD(&t->devices);
143	init_rwsem(&t->devices_lock);
144
145	if (!num_targets)
146		num_targets = KEYS_PER_NODE;
147
148	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150	if (!num_targets) {
151		kfree(t);
152		return -EOVERFLOW;
153	}
154
155	if (alloc_targets(t, num_targets)) {
156		kfree(t);
157		return -ENOMEM;
158	}
159
160	t->type = DM_TYPE_NONE;
161	t->mode = mode;
162	t->md = md;
163	*result = t;
164	return 0;
165}
166
167static void free_devices(struct list_head *devices, struct mapped_device *md)
168{
169	struct list_head *tmp, *next;
170
171	list_for_each_safe(tmp, next, devices) {
172		struct dm_dev_internal *dd =
173		    list_entry(tmp, struct dm_dev_internal, list);
174		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175		       dm_device_name(md), dd->dm_dev->name);
176		dm_put_table_device(md, dd->dm_dev);
177		kfree(dd);
178	}
179}
180
181static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
183void dm_table_destroy(struct dm_table *t)
184{
185	if (!t)
186		return;
187
188	/* free the indexes */
189	if (t->depth >= 2)
190		kvfree(t->index[t->depth - 2]);
191
192	/* free the targets */
193	for (unsigned int i = 0; i < t->num_targets; i++) {
194		struct dm_target *ti = dm_table_get_target(t, i);
195
196		if (ti->type->dtr)
197			ti->type->dtr(ti);
198
199		dm_put_target_type(ti->type);
200	}
201
202	kvfree(t->highs);
203
204	/* free the device list */
205	free_devices(&t->devices, t->md);
206
207	dm_free_md_mempools(t->mempools);
208
209	dm_table_destroy_crypto_profile(t);
210
211	kfree(t);
212}
213
214/*
215 * See if we've already got a device in the list.
216 */
217static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218{
219	struct dm_dev_internal *dd;
220
221	list_for_each_entry(dd, l, list)
222		if (dd->dm_dev->bdev->bd_dev == dev)
223			return dd;
224
225	return NULL;
226}
227
228/*
229 * If possible, this checks an area of a destination device is invalid.
230 */
231static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232				  sector_t start, sector_t len, void *data)
233{
234	struct queue_limits *limits = data;
235	struct block_device *bdev = dev->bdev;
236	sector_t dev_size = bdev_nr_sectors(bdev);
237	unsigned short logical_block_size_sectors =
238		limits->logical_block_size >> SECTOR_SHIFT;
239
240	if (!dev_size)
241		return 0;
242
243	if ((start >= dev_size) || (start + len > dev_size)) {
244		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245		      dm_device_name(ti->table->md), bdev,
246		      (unsigned long long)start,
247		      (unsigned long long)len,
248		      (unsigned long long)dev_size);
249		return 1;
250	}
251
252	/*
253	 * If the target is mapped to zoned block device(s), check
254	 * that the zones are not partially mapped.
255	 */
256	if (bdev_is_zoned(bdev)) {
257		unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259		if (start & (zone_sectors - 1)) {
260			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261			      dm_device_name(ti->table->md),
262			      (unsigned long long)start,
263			      zone_sectors, bdev);
264			return 1;
265		}
266
267		/*
268		 * Note: The last zone of a zoned block device may be smaller
269		 * than other zones. So for a target mapping the end of a
270		 * zoned block device with such a zone, len would not be zone
271		 * aligned. We do not allow such last smaller zone to be part
272		 * of the mapping here to ensure that mappings with multiple
273		 * devices do not end up with a smaller zone in the middle of
274		 * the sector range.
275		 */
276		if (len & (zone_sectors - 1)) {
277			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278			      dm_device_name(ti->table->md),
279			      (unsigned long long)len,
280			      zone_sectors, bdev);
281			return 1;
282		}
283	}
284
285	if (logical_block_size_sectors <= 1)
286		return 0;
287
288	if (start & (logical_block_size_sectors - 1)) {
289		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290		      dm_device_name(ti->table->md),
291		      (unsigned long long)start,
292		      limits->logical_block_size, bdev);
293		return 1;
294	}
295
296	if (len & (logical_block_size_sectors - 1)) {
297		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298		      dm_device_name(ti->table->md),
299		      (unsigned long long)len,
300		      limits->logical_block_size, bdev);
301		return 1;
302	}
303
304	return 0;
305}
306
307/*
308 * This upgrades the mode on an already open dm_dev, being
309 * careful to leave things as they were if we fail to reopen the
310 * device and not to touch the existing bdev field in case
311 * it is accessed concurrently.
312 */
313static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314			struct mapped_device *md)
315{
316	int r;
317	struct dm_dev *old_dev, *new_dev;
318
319	old_dev = dd->dm_dev;
320
321	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322				dd->dm_dev->mode | new_mode, &new_dev);
323	if (r)
324		return r;
325
326	dd->dm_dev = new_dev;
327	dm_put_table_device(md, old_dev);
328
329	return 0;
330}
331
332/*
333 * Add a device to the list, or just increment the usage count if
334 * it's already present.
335 *
336 * Note: the __ref annotation is because this function can call the __init
337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
338 */
339int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340		  struct dm_dev **result)
341{
342	int r;
343	dev_t dev;
344	unsigned int major, minor;
345	char dummy;
346	struct dm_dev_internal *dd;
347	struct dm_table *t = ti->table;
348
349	BUG_ON(!t);
350
351	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352		/* Extract the major/minor numbers */
353		dev = MKDEV(major, minor);
354		if (MAJOR(dev) != major || MINOR(dev) != minor)
355			return -EOVERFLOW;
356	} else {
357		r = lookup_bdev(path, &dev);
358#ifndef MODULE
359		if (r && system_state < SYSTEM_RUNNING)
360			r = early_lookup_bdev(path, &dev);
361#endif
362		if (r)
363			return r;
364	}
365	if (dev == disk_devt(t->md->disk))
366		return -EINVAL;
367
368	down_write(&t->devices_lock);
369
370	dd = find_device(&t->devices, dev);
371	if (!dd) {
372		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373		if (!dd) {
374			r = -ENOMEM;
375			goto unlock_ret_r;
376		}
377
378		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379		if (r) {
380			kfree(dd);
381			goto unlock_ret_r;
382		}
383
384		refcount_set(&dd->count, 1);
385		list_add(&dd->list, &t->devices);
386		goto out;
387
388	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389		r = upgrade_mode(dd, mode, t->md);
390		if (r)
391			goto unlock_ret_r;
392	}
393	refcount_inc(&dd->count);
394out:
395	up_write(&t->devices_lock);
396	*result = dd->dm_dev;
397	return 0;
398
399unlock_ret_r:
400	up_write(&t->devices_lock);
401	return r;
402}
403EXPORT_SYMBOL(dm_get_device);
404
405static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406				sector_t start, sector_t len, void *data)
407{
408	struct queue_limits *limits = data;
409	struct block_device *bdev = dev->bdev;
410	struct request_queue *q = bdev_get_queue(bdev);
411
412	if (unlikely(!q)) {
413		DMWARN("%s: Cannot set limits for nonexistent device %pg",
414		       dm_device_name(ti->table->md), bdev);
415		return 0;
416	}
417
418	if (blk_stack_limits(limits, &q->limits,
419			get_start_sect(bdev) + start) < 0)
420		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421		       "physical_block_size=%u, logical_block_size=%u, "
422		       "alignment_offset=%u, start=%llu",
423		       dm_device_name(ti->table->md), bdev,
424		       q->limits.physical_block_size,
425		       q->limits.logical_block_size,
426		       q->limits.alignment_offset,
427		       (unsigned long long) start << SECTOR_SHIFT);
428	return 0;
429}
430
431/*
432 * Decrement a device's use count and remove it if necessary.
433 */
434void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435{
436	int found = 0;
437	struct dm_table *t = ti->table;
438	struct list_head *devices = &t->devices;
439	struct dm_dev_internal *dd;
440
441	down_write(&t->devices_lock);
442
443	list_for_each_entry(dd, devices, list) {
444		if (dd->dm_dev == d) {
445			found = 1;
446			break;
447		}
448	}
449	if (!found) {
450		DMERR("%s: device %s not in table devices list",
451		      dm_device_name(t->md), d->name);
452		goto unlock_ret;
453	}
454	if (refcount_dec_and_test(&dd->count)) {
455		dm_put_table_device(t->md, d);
456		list_del(&dd->list);
457		kfree(dd);
458	}
459
460unlock_ret:
461	up_write(&t->devices_lock);
462}
463EXPORT_SYMBOL(dm_put_device);
464
465/*
466 * Checks to see if the target joins onto the end of the table.
467 */
468static int adjoin(struct dm_table *t, struct dm_target *ti)
469{
470	struct dm_target *prev;
471
472	if (!t->num_targets)
473		return !ti->begin;
474
475	prev = &t->targets[t->num_targets - 1];
476	return (ti->begin == (prev->begin + prev->len));
477}
478
479/*
480 * Used to dynamically allocate the arg array.
481 *
482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483 * process messages even if some device is suspended. These messages have a
484 * small fixed number of arguments.
485 *
486 * On the other hand, dm-switch needs to process bulk data using messages and
487 * excessive use of GFP_NOIO could cause trouble.
488 */
489static char **realloc_argv(unsigned int *size, char **old_argv)
490{
491	char **argv;
492	unsigned int new_size;
493	gfp_t gfp;
494
495	if (*size) {
496		new_size = *size * 2;
497		gfp = GFP_KERNEL;
498	} else {
499		new_size = 8;
500		gfp = GFP_NOIO;
501	}
502	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503	if (argv && old_argv) {
504		memcpy(argv, old_argv, *size * sizeof(*argv));
505		*size = new_size;
506	}
507
508	kfree(old_argv);
509	return argv;
510}
511
512/*
513 * Destructively splits up the argument list to pass to ctr.
514 */
515int dm_split_args(int *argc, char ***argvp, char *input)
516{
517	char *start, *end = input, *out, **argv = NULL;
518	unsigned int array_size = 0;
519
520	*argc = 0;
521
522	if (!input) {
523		*argvp = NULL;
524		return 0;
525	}
526
527	argv = realloc_argv(&array_size, argv);
528	if (!argv)
529		return -ENOMEM;
530
531	while (1) {
532		/* Skip whitespace */
533		start = skip_spaces(end);
534
535		if (!*start)
536			break;	/* success, we hit the end */
537
538		/* 'out' is used to remove any back-quotes */
539		end = out = start;
540		while (*end) {
541			/* Everything apart from '\0' can be quoted */
542			if (*end == '\\' && *(end + 1)) {
543				*out++ = *(end + 1);
544				end += 2;
545				continue;
546			}
547
548			if (isspace(*end))
549				break;	/* end of token */
550
551			*out++ = *end++;
552		}
553
554		/* have we already filled the array ? */
555		if ((*argc + 1) > array_size) {
556			argv = realloc_argv(&array_size, argv);
557			if (!argv)
558				return -ENOMEM;
559		}
560
561		/* we know this is whitespace */
562		if (*end)
563			end++;
564
565		/* terminate the string and put it in the array */
566		*out = '\0';
567		argv[*argc] = start;
568		(*argc)++;
569	}
570
571	*argvp = argv;
572	return 0;
573}
574
575/*
576 * Impose necessary and sufficient conditions on a devices's table such
577 * that any incoming bio which respects its logical_block_size can be
578 * processed successfully.  If it falls across the boundary between
579 * two or more targets, the size of each piece it gets split into must
580 * be compatible with the logical_block_size of the target processing it.
581 */
582static int validate_hardware_logical_block_alignment(struct dm_table *t,
583						     struct queue_limits *limits)
584{
585	/*
586	 * This function uses arithmetic modulo the logical_block_size
587	 * (in units of 512-byte sectors).
588	 */
589	unsigned short device_logical_block_size_sects =
590		limits->logical_block_size >> SECTOR_SHIFT;
591
592	/*
593	 * Offset of the start of the next table entry, mod logical_block_size.
594	 */
595	unsigned short next_target_start = 0;
596
597	/*
598	 * Given an aligned bio that extends beyond the end of a
599	 * target, how many sectors must the next target handle?
600	 */
601	unsigned short remaining = 0;
602
603	struct dm_target *ti;
604	struct queue_limits ti_limits;
605	unsigned int i;
606
607	/*
608	 * Check each entry in the table in turn.
609	 */
610	for (i = 0; i < t->num_targets; i++) {
611		ti = dm_table_get_target(t, i);
612
613		blk_set_stacking_limits(&ti_limits);
614
615		/* combine all target devices' limits */
616		if (ti->type->iterate_devices)
617			ti->type->iterate_devices(ti, dm_set_device_limits,
618						  &ti_limits);
619
620		/*
621		 * If the remaining sectors fall entirely within this
622		 * table entry are they compatible with its logical_block_size?
623		 */
624		if (remaining < ti->len &&
625		    remaining & ((ti_limits.logical_block_size >>
626				  SECTOR_SHIFT) - 1))
627			break;	/* Error */
628
629		next_target_start =
630		    (unsigned short) ((next_target_start + ti->len) &
631				      (device_logical_block_size_sects - 1));
632		remaining = next_target_start ?
633		    device_logical_block_size_sects - next_target_start : 0;
634	}
635
636	if (remaining) {
637		DMERR("%s: table line %u (start sect %llu len %llu) "
638		      "not aligned to h/w logical block size %u",
639		      dm_device_name(t->md), i,
640		      (unsigned long long) ti->begin,
641		      (unsigned long long) ti->len,
642		      limits->logical_block_size);
643		return -EINVAL;
644	}
645
646	return 0;
647}
648
649int dm_table_add_target(struct dm_table *t, const char *type,
650			sector_t start, sector_t len, char *params)
651{
652	int r = -EINVAL, argc;
653	char **argv;
654	struct dm_target *ti;
655
656	if (t->singleton) {
657		DMERR("%s: target type %s must appear alone in table",
658		      dm_device_name(t->md), t->targets->type->name);
659		return -EINVAL;
660	}
661
662	BUG_ON(t->num_targets >= t->num_allocated);
663
664	ti = t->targets + t->num_targets;
665	memset(ti, 0, sizeof(*ti));
666
667	if (!len) {
668		DMERR("%s: zero-length target", dm_device_name(t->md));
669		return -EINVAL;
670	}
671
672	ti->type = dm_get_target_type(type);
673	if (!ti->type) {
674		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675		return -EINVAL;
676	}
677
678	if (dm_target_needs_singleton(ti->type)) {
679		if (t->num_targets) {
680			ti->error = "singleton target type must appear alone in table";
681			goto bad;
682		}
683		t->singleton = true;
684	}
685
686	if (dm_target_always_writeable(ti->type) &&
687	    !(t->mode & BLK_OPEN_WRITE)) {
688		ti->error = "target type may not be included in a read-only table";
689		goto bad;
690	}
691
692	if (t->immutable_target_type) {
693		if (t->immutable_target_type != ti->type) {
694			ti->error = "immutable target type cannot be mixed with other target types";
695			goto bad;
696		}
697	} else if (dm_target_is_immutable(ti->type)) {
698		if (t->num_targets) {
699			ti->error = "immutable target type cannot be mixed with other target types";
700			goto bad;
701		}
702		t->immutable_target_type = ti->type;
703	}
704
705	if (dm_target_has_integrity(ti->type))
706		t->integrity_added = 1;
707
708	ti->table = t;
709	ti->begin = start;
710	ti->len = len;
711	ti->error = "Unknown error";
712
713	/*
714	 * Does this target adjoin the previous one ?
715	 */
716	if (!adjoin(t, ti)) {
717		ti->error = "Gap in table";
718		goto bad;
719	}
720
721	r = dm_split_args(&argc, &argv, params);
722	if (r) {
723		ti->error = "couldn't split parameters";
724		goto bad;
725	}
726
727	r = ti->type->ctr(ti, argc, argv);
728	kfree(argv);
729	if (r)
730		goto bad;
731
732	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733
734	if (!ti->num_discard_bios && ti->discards_supported)
735		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736		       dm_device_name(t->md), type);
737
738	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739		static_branch_enable(&swap_bios_enabled);
740
741	return 0;
742
743 bad:
744	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745	dm_put_target_type(ti->type);
746	return r;
747}
748
749/*
750 * Target argument parsing helpers.
751 */
752static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753			     unsigned int *value, char **error, unsigned int grouped)
754{
755	const char *arg_str = dm_shift_arg(arg_set);
756	char dummy;
757
758	if (!arg_str ||
759	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760	    (*value < arg->min) ||
761	    (*value > arg->max) ||
762	    (grouped && arg_set->argc < *value)) {
763		*error = arg->error;
764		return -EINVAL;
765	}
766
767	return 0;
768}
769
770int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771		unsigned int *value, char **error)
772{
773	return validate_next_arg(arg, arg_set, value, error, 0);
774}
775EXPORT_SYMBOL(dm_read_arg);
776
777int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778		      unsigned int *value, char **error)
779{
780	return validate_next_arg(arg, arg_set, value, error, 1);
781}
782EXPORT_SYMBOL(dm_read_arg_group);
783
784const char *dm_shift_arg(struct dm_arg_set *as)
785{
786	char *r;
787
788	if (as->argc) {
789		as->argc--;
790		r = *as->argv;
791		as->argv++;
792		return r;
793	}
794
795	return NULL;
796}
797EXPORT_SYMBOL(dm_shift_arg);
798
799void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800{
801	BUG_ON(as->argc < num_args);
802	as->argc -= num_args;
803	as->argv += num_args;
804}
805EXPORT_SYMBOL(dm_consume_args);
806
807static bool __table_type_bio_based(enum dm_queue_mode table_type)
808{
809	return (table_type == DM_TYPE_BIO_BASED ||
810		table_type == DM_TYPE_DAX_BIO_BASED);
811}
812
813static bool __table_type_request_based(enum dm_queue_mode table_type)
814{
815	return table_type == DM_TYPE_REQUEST_BASED;
816}
817
818void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819{
820	t->type = type;
821}
822EXPORT_SYMBOL_GPL(dm_table_set_type);
823
824/* validate the dax capability of the target device span */
825static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826			sector_t start, sector_t len, void *data)
827{
828	if (dev->dax_dev)
829		return false;
830
831	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832	return true;
833}
834
835/* Check devices support synchronous DAX */
836static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837					      sector_t start, sector_t len, void *data)
838{
839	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840}
841
842static bool dm_table_supports_dax(struct dm_table *t,
843				  iterate_devices_callout_fn iterate_fn)
844{
845	/* Ensure that all targets support DAX. */
846	for (unsigned int i = 0; i < t->num_targets; i++) {
847		struct dm_target *ti = dm_table_get_target(t, i);
848
849		if (!ti->type->direct_access)
850			return false;
851
852		if (dm_target_is_wildcard(ti->type) ||
853		    !ti->type->iterate_devices ||
854		    ti->type->iterate_devices(ti, iterate_fn, NULL))
855			return false;
856	}
857
858	return true;
859}
860
861static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862				  sector_t start, sector_t len, void *data)
863{
864	struct block_device *bdev = dev->bdev;
865	struct request_queue *q = bdev_get_queue(bdev);
866
867	/* request-based cannot stack on partitions! */
868	if (bdev_is_partition(bdev))
869		return false;
870
871	return queue_is_mq(q);
872}
873
874static int dm_table_determine_type(struct dm_table *t)
875{
876	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877	struct dm_target *ti;
878	struct list_head *devices = dm_table_get_devices(t);
879	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880
881	if (t->type != DM_TYPE_NONE) {
882		/* target already set the table's type */
883		if (t->type == DM_TYPE_BIO_BASED) {
884			/* possibly upgrade to a variant of bio-based */
885			goto verify_bio_based;
886		}
887		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888		goto verify_rq_based;
889	}
890
891	for (unsigned int i = 0; i < t->num_targets; i++) {
892		ti = dm_table_get_target(t, i);
893		if (dm_target_hybrid(ti))
894			hybrid = 1;
895		else if (dm_target_request_based(ti))
896			request_based = 1;
897		else
898			bio_based = 1;
899
900		if (bio_based && request_based) {
901			DMERR("Inconsistent table: different target types can't be mixed up");
902			return -EINVAL;
903		}
904	}
905
906	if (hybrid && !bio_based && !request_based) {
907		/*
908		 * The targets can work either way.
909		 * Determine the type from the live device.
910		 * Default to bio-based if device is new.
911		 */
912		if (__table_type_request_based(live_md_type))
913			request_based = 1;
914		else
915			bio_based = 1;
916	}
917
918	if (bio_based) {
919verify_bio_based:
920		/* We must use this table as bio-based */
921		t->type = DM_TYPE_BIO_BASED;
922		if (dm_table_supports_dax(t, device_not_dax_capable) ||
923		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924			t->type = DM_TYPE_DAX_BIO_BASED;
925		}
926		return 0;
927	}
928
929	BUG_ON(!request_based); /* No targets in this table */
930
931	t->type = DM_TYPE_REQUEST_BASED;
932
933verify_rq_based:
934	/*
935	 * Request-based dm supports only tables that have a single target now.
936	 * To support multiple targets, request splitting support is needed,
937	 * and that needs lots of changes in the block-layer.
938	 * (e.g. request completion process for partial completion.)
939	 */
940	if (t->num_targets > 1) {
941		DMERR("request-based DM doesn't support multiple targets");
942		return -EINVAL;
943	}
944
945	if (list_empty(devices)) {
946		int srcu_idx;
947		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949		/* inherit live table's type */
950		if (live_table)
951			t->type = live_table->type;
952		dm_put_live_table(t->md, srcu_idx);
953		return 0;
954	}
955
956	ti = dm_table_get_immutable_target(t);
957	if (!ti) {
958		DMERR("table load rejected: immutable target is required");
959		return -EINVAL;
960	} else if (ti->max_io_len) {
961		DMERR("table load rejected: immutable target that splits IO is not supported");
962		return -EINVAL;
963	}
964
965	/* Non-request-stackable devices can't be used for request-based dm */
966	if (!ti->type->iterate_devices ||
967	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968		DMERR("table load rejected: including non-request-stackable devices");
969		return -EINVAL;
970	}
971
972	return 0;
973}
974
975enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976{
977	return t->type;
978}
979
980struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981{
982	return t->immutable_target_type;
983}
984
985struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986{
987	/* Immutable target is implicitly a singleton */
988	if (t->num_targets > 1 ||
989	    !dm_target_is_immutable(t->targets[0].type))
990		return NULL;
991
992	return t->targets;
993}
994
995struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996{
997	for (unsigned int i = 0; i < t->num_targets; i++) {
998		struct dm_target *ti = dm_table_get_target(t, i);
999
1000		if (dm_target_is_wildcard(ti->type))
1001			return ti;
1002	}
1003
1004	return NULL;
1005}
1006
1007bool dm_table_bio_based(struct dm_table *t)
1008{
1009	return __table_type_bio_based(dm_table_get_type(t));
1010}
1011
1012bool dm_table_request_based(struct dm_table *t)
1013{
1014	return __table_type_request_based(dm_table_get_type(t));
1015}
1016
1017static bool dm_table_supports_poll(struct dm_table *t);
1018
1019static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020{
1021	enum dm_queue_mode type = dm_table_get_type(t);
1022	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023	unsigned int min_pool_size = 0, pool_size;
1024	struct dm_md_mempools *pools;
1025
1026	if (unlikely(type == DM_TYPE_NONE)) {
1027		DMERR("no table type is set, can't allocate mempools");
1028		return -EINVAL;
1029	}
1030
1031	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032	if (!pools)
1033		return -ENOMEM;
1034
1035	if (type == DM_TYPE_REQUEST_BASED) {
1036		pool_size = dm_get_reserved_rq_based_ios();
1037		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038		goto init_bs;
1039	}
1040
1041	for (unsigned int i = 0; i < t->num_targets; i++) {
1042		struct dm_target *ti = dm_table_get_target(t, i);
1043
1044		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046	}
1047	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048	front_pad = roundup(per_io_data_size,
1049		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051	io_front_pad = roundup(per_io_data_size,
1052		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055		goto out_free_pools;
1056	if (t->integrity_supported &&
1057	    bioset_integrity_create(&pools->io_bs, pool_size))
1058		goto out_free_pools;
1059init_bs:
1060	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061		goto out_free_pools;
1062	if (t->integrity_supported &&
1063	    bioset_integrity_create(&pools->bs, pool_size))
1064		goto out_free_pools;
1065
1066	t->mempools = pools;
1067	return 0;
1068
1069out_free_pools:
1070	dm_free_md_mempools(pools);
1071	return -ENOMEM;
1072}
1073
1074static int setup_indexes(struct dm_table *t)
1075{
1076	int i;
1077	unsigned int total = 0;
1078	sector_t *indexes;
1079
1080	/* allocate the space for *all* the indexes */
1081	for (i = t->depth - 2; i >= 0; i--) {
1082		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083		total += t->counts[i];
1084	}
1085
1086	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087	if (!indexes)
1088		return -ENOMEM;
1089
1090	/* set up internal nodes, bottom-up */
1091	for (i = t->depth - 2; i >= 0; i--) {
1092		t->index[i] = indexes;
1093		indexes += (KEYS_PER_NODE * t->counts[i]);
1094		setup_btree_index(i, t);
1095	}
1096
1097	return 0;
1098}
1099
1100/*
1101 * Builds the btree to index the map.
1102 */
1103static int dm_table_build_index(struct dm_table *t)
1104{
1105	int r = 0;
1106	unsigned int leaf_nodes;
1107
1108	/* how many indexes will the btree have ? */
1109	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112	/* leaf layer has already been set up */
1113	t->counts[t->depth - 1] = leaf_nodes;
1114	t->index[t->depth - 1] = t->highs;
1115
1116	if (t->depth >= 2)
1117		r = setup_indexes(t);
1118
1119	return r;
1120}
1121
1122static bool integrity_profile_exists(struct gendisk *disk)
1123{
1124	return !!blk_get_integrity(disk);
1125}
1126
1127/*
1128 * Get a disk whose integrity profile reflects the table's profile.
1129 * Returns NULL if integrity support was inconsistent or unavailable.
1130 */
1131static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132{
1133	struct list_head *devices = dm_table_get_devices(t);
1134	struct dm_dev_internal *dd = NULL;
1135	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136
1137	for (unsigned int i = 0; i < t->num_targets; i++) {
1138		struct dm_target *ti = dm_table_get_target(t, i);
1139
1140		if (!dm_target_passes_integrity(ti->type))
1141			goto no_integrity;
1142	}
1143
1144	list_for_each_entry(dd, devices, list) {
1145		template_disk = dd->dm_dev->bdev->bd_disk;
1146		if (!integrity_profile_exists(template_disk))
1147			goto no_integrity;
1148		else if (prev_disk &&
1149			 blk_integrity_compare(prev_disk, template_disk) < 0)
1150			goto no_integrity;
1151		prev_disk = template_disk;
1152	}
1153
1154	return template_disk;
1155
1156no_integrity:
1157	if (prev_disk)
1158		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159		       dm_device_name(t->md),
1160		       prev_disk->disk_name,
1161		       template_disk->disk_name);
1162	return NULL;
1163}
1164
1165/*
1166 * Register the mapped device for blk_integrity support if the
1167 * underlying devices have an integrity profile.  But all devices may
1168 * not have matching profiles (checking all devices isn't reliable
1169 * during table load because this table may use other DM device(s) which
1170 * must be resumed before they will have an initialized integity
1171 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1172 * profile validation: First pass during table load, final pass during
1173 * resume.
1174 */
1175static int dm_table_register_integrity(struct dm_table *t)
1176{
1177	struct mapped_device *md = t->md;
1178	struct gendisk *template_disk = NULL;
1179
1180	/* If target handles integrity itself do not register it here. */
1181	if (t->integrity_added)
1182		return 0;
1183
1184	template_disk = dm_table_get_integrity_disk(t);
1185	if (!template_disk)
1186		return 0;
1187
1188	if (!integrity_profile_exists(dm_disk(md))) {
1189		t->integrity_supported = true;
1190		/*
1191		 * Register integrity profile during table load; we can do
1192		 * this because the final profile must match during resume.
1193		 */
1194		blk_integrity_register(dm_disk(md),
1195				       blk_get_integrity(template_disk));
1196		return 0;
1197	}
1198
1199	/*
1200	 * If DM device already has an initialized integrity
1201	 * profile the new profile should not conflict.
1202	 */
1203	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205		      dm_device_name(t->md),
1206		      template_disk->disk_name);
1207		return 1;
1208	}
1209
1210	/* Preserve existing integrity profile */
1211	t->integrity_supported = true;
1212	return 0;
1213}
1214
1215#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217struct dm_crypto_profile {
1218	struct blk_crypto_profile profile;
1219	struct mapped_device *md;
1220};
1221
1222static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223				     sector_t start, sector_t len, void *data)
1224{
1225	const struct blk_crypto_key *key = data;
1226
1227	blk_crypto_evict_key(dev->bdev, key);
1228	return 0;
1229}
1230
1231/*
1232 * When an inline encryption key is evicted from a device-mapper device, evict
1233 * it from all the underlying devices.
1234 */
1235static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236			    const struct blk_crypto_key *key, unsigned int slot)
1237{
1238	struct mapped_device *md =
1239		container_of(profile, struct dm_crypto_profile, profile)->md;
1240	struct dm_table *t;
1241	int srcu_idx;
1242
1243	t = dm_get_live_table(md, &srcu_idx);
1244	if (!t)
1245		return 0;
1246
1247	for (unsigned int i = 0; i < t->num_targets; i++) {
1248		struct dm_target *ti = dm_table_get_target(t, i);
1249
1250		if (!ti->type->iterate_devices)
1251			continue;
1252		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253					  (void *)key);
1254	}
1255
1256	dm_put_live_table(md, srcu_idx);
1257	return 0;
1258}
1259
1260static int
1261device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262				     sector_t start, sector_t len, void *data)
1263{
1264	struct blk_crypto_profile *parent = data;
1265	struct blk_crypto_profile *child =
1266		bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268	blk_crypto_intersect_capabilities(parent, child);
1269	return 0;
1270}
1271
1272void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273{
1274	struct dm_crypto_profile *dmcp = container_of(profile,
1275						      struct dm_crypto_profile,
1276						      profile);
1277
1278	if (!profile)
1279		return;
1280
1281	blk_crypto_profile_destroy(profile);
1282	kfree(dmcp);
1283}
1284
1285static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286{
1287	dm_destroy_crypto_profile(t->crypto_profile);
1288	t->crypto_profile = NULL;
1289}
1290
1291/*
1292 * Constructs and initializes t->crypto_profile with a crypto profile that
1293 * represents the common set of crypto capabilities of the devices described by
1294 * the dm_table.  However, if the constructed crypto profile doesn't support all
1295 * crypto capabilities that are supported by the current mapped_device, it
1296 * returns an error instead, since we don't support removing crypto capabilities
1297 * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299 */
1300static int dm_table_construct_crypto_profile(struct dm_table *t)
1301{
1302	struct dm_crypto_profile *dmcp;
1303	struct blk_crypto_profile *profile;
1304	unsigned int i;
1305	bool empty_profile = true;
1306
1307	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308	if (!dmcp)
1309		return -ENOMEM;
1310	dmcp->md = t->md;
1311
1312	profile = &dmcp->profile;
1313	blk_crypto_profile_init(profile, 0);
1314	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315	profile->max_dun_bytes_supported = UINT_MAX;
1316	memset(profile->modes_supported, 0xFF,
1317	       sizeof(profile->modes_supported));
1318
1319	for (i = 0; i < t->num_targets; i++) {
1320		struct dm_target *ti = dm_table_get_target(t, i);
1321
1322		if (!dm_target_passes_crypto(ti->type)) {
1323			blk_crypto_intersect_capabilities(profile, NULL);
1324			break;
1325		}
1326		if (!ti->type->iterate_devices)
1327			continue;
1328		ti->type->iterate_devices(ti,
1329					  device_intersect_crypto_capabilities,
1330					  profile);
1331	}
1332
1333	if (t->md->queue &&
1334	    !blk_crypto_has_capabilities(profile,
1335					 t->md->queue->crypto_profile)) {
1336		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337		dm_destroy_crypto_profile(profile);
1338		return -EINVAL;
1339	}
1340
1341	/*
1342	 * If the new profile doesn't actually support any crypto capabilities,
1343	 * we may as well represent it with a NULL profile.
1344	 */
1345	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346		if (profile->modes_supported[i]) {
1347			empty_profile = false;
1348			break;
1349		}
1350	}
1351
1352	if (empty_profile) {
1353		dm_destroy_crypto_profile(profile);
1354		profile = NULL;
1355	}
1356
1357	/*
1358	 * t->crypto_profile is only set temporarily while the table is being
1359	 * set up, and it gets set to NULL after the profile has been
1360	 * transferred to the request_queue.
1361	 */
1362	t->crypto_profile = profile;
1363
1364	return 0;
1365}
1366
1367static void dm_update_crypto_profile(struct request_queue *q,
1368				     struct dm_table *t)
1369{
1370	if (!t->crypto_profile)
1371		return;
1372
1373	/* Make the crypto profile less restrictive. */
1374	if (!q->crypto_profile) {
1375		blk_crypto_register(t->crypto_profile, q);
1376	} else {
1377		blk_crypto_update_capabilities(q->crypto_profile,
1378					       t->crypto_profile);
1379		dm_destroy_crypto_profile(t->crypto_profile);
1380	}
1381	t->crypto_profile = NULL;
1382}
1383
1384#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386static int dm_table_construct_crypto_profile(struct dm_table *t)
1387{
1388	return 0;
1389}
1390
1391void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392{
1393}
1394
1395static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396{
1397}
1398
1399static void dm_update_crypto_profile(struct request_queue *q,
1400				     struct dm_table *t)
1401{
1402}
1403
1404#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406/*
1407 * Prepares the table for use by building the indices,
1408 * setting the type, and allocating mempools.
1409 */
1410int dm_table_complete(struct dm_table *t)
1411{
1412	int r;
1413
1414	r = dm_table_determine_type(t);
1415	if (r) {
1416		DMERR("unable to determine table type");
1417		return r;
1418	}
1419
1420	r = dm_table_build_index(t);
1421	if (r) {
1422		DMERR("unable to build btrees");
1423		return r;
1424	}
1425
1426	r = dm_table_register_integrity(t);
1427	if (r) {
1428		DMERR("could not register integrity profile.");
1429		return r;
1430	}
1431
1432	r = dm_table_construct_crypto_profile(t);
1433	if (r) {
1434		DMERR("could not construct crypto profile.");
1435		return r;
1436	}
1437
1438	r = dm_table_alloc_md_mempools(t, t->md);
1439	if (r)
1440		DMERR("unable to allocate mempools");
1441
1442	return r;
1443}
1444
1445static DEFINE_MUTEX(_event_lock);
1446void dm_table_event_callback(struct dm_table *t,
1447			     void (*fn)(void *), void *context)
1448{
1449	mutex_lock(&_event_lock);
1450	t->event_fn = fn;
1451	t->event_context = context;
1452	mutex_unlock(&_event_lock);
1453}
1454
1455void dm_table_event(struct dm_table *t)
1456{
1457	mutex_lock(&_event_lock);
1458	if (t->event_fn)
1459		t->event_fn(t->event_context);
1460	mutex_unlock(&_event_lock);
1461}
1462EXPORT_SYMBOL(dm_table_event);
1463
1464inline sector_t dm_table_get_size(struct dm_table *t)
1465{
1466	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467}
1468EXPORT_SYMBOL(dm_table_get_size);
1469
1470/*
1471 * Search the btree for the correct target.
1472 *
1473 * Caller should check returned pointer for NULL
1474 * to trap I/O beyond end of device.
1475 */
1476struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477{
1478	unsigned int l, n = 0, k = 0;
1479	sector_t *node;
1480
1481	if (unlikely(sector >= dm_table_get_size(t)))
1482		return NULL;
1483
1484	for (l = 0; l < t->depth; l++) {
1485		n = get_child(n, k);
1486		node = get_node(t, l, n);
1487
1488		for (k = 0; k < KEYS_PER_NODE; k++)
1489			if (node[k] >= sector)
1490				break;
1491	}
1492
1493	return &t->targets[(KEYS_PER_NODE * n) + k];
1494}
1495
1496static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497				   sector_t start, sector_t len, void *data)
1498{
1499	struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502}
1503
1504/*
1505 * type->iterate_devices() should be called when the sanity check needs to
1506 * iterate and check all underlying data devices. iterate_devices() will
1507 * iterate all underlying data devices until it encounters a non-zero return
1508 * code, returned by whether the input iterate_devices_callout_fn, or
1509 * iterate_devices() itself internally.
1510 *
1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512 * iterate multiple underlying devices internally, in which case a non-zero
1513 * return code returned by iterate_devices_callout_fn will stop the iteration
1514 * in advance.
1515 *
1516 * Cases requiring _any_ underlying device supporting some kind of attribute,
1517 * should use the iteration structure like dm_table_any_dev_attr(), or call
1518 * it directly. @func should handle semantics of positive examples, e.g.
1519 * capable of something.
1520 *
1521 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_supports_nowait() or
1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524 * uses an @anti_func that handle semantics of counter examples, e.g. not
1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526 */
1527static bool dm_table_any_dev_attr(struct dm_table *t,
1528				  iterate_devices_callout_fn func, void *data)
1529{
1530	for (unsigned int i = 0; i < t->num_targets; i++) {
1531		struct dm_target *ti = dm_table_get_target(t, i);
1532
1533		if (ti->type->iterate_devices &&
1534		    ti->type->iterate_devices(ti, func, data))
1535			return true;
1536	}
1537
1538	return false;
1539}
1540
1541static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542			sector_t start, sector_t len, void *data)
1543{
1544	unsigned int *num_devices = data;
1545
1546	(*num_devices)++;
1547
1548	return 0;
1549}
1550
1551static bool dm_table_supports_poll(struct dm_table *t)
1552{
1553	for (unsigned int i = 0; i < t->num_targets; i++) {
1554		struct dm_target *ti = dm_table_get_target(t, i);
1555
1556		if (!ti->type->iterate_devices ||
1557		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558			return false;
1559	}
1560
1561	return true;
1562}
1563
1564/*
1565 * Check whether a table has no data devices attached using each
1566 * target's iterate_devices method.
1567 * Returns false if the result is unknown because a target doesn't
1568 * support iterate_devices.
1569 */
1570bool dm_table_has_no_data_devices(struct dm_table *t)
1571{
1572	for (unsigned int i = 0; i < t->num_targets; i++) {
1573		struct dm_target *ti = dm_table_get_target(t, i);
1574		unsigned int num_devices = 0;
1575
1576		if (!ti->type->iterate_devices)
1577			return false;
1578
1579		ti->type->iterate_devices(ti, count_device, &num_devices);
1580		if (num_devices)
1581			return false;
1582	}
1583
1584	return true;
1585}
1586
1587static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588			    sector_t start, sector_t len, void *data)
1589{
1590	bool *zoned = data;
1591
1592	return bdev_is_zoned(dev->bdev) != *zoned;
1593}
1594
1595static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596				 sector_t start, sector_t len, void *data)
1597{
1598	return bdev_is_zoned(dev->bdev);
1599}
1600
1601/*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
1608static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609{
1610	for (unsigned int i = 0; i < t->num_targets; i++) {
1611		struct dm_target *ti = dm_table_get_target(t, i);
1612
1613		/*
1614		 * For the wildcard target (dm-error), if we do not have a
1615		 * backing device, we must always return false. If we have a
1616		 * backing device, the result must depend on checking zoned
1617		 * model, like for any other target. So for this, check directly
1618		 * if the target backing device is zoned as we get "false" when
1619		 * dm-error was set without a backing device.
1620		 */
1621		if (dm_target_is_wildcard(ti->type) &&
1622		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623			return false;
1624
1625		if (dm_target_supports_zoned_hm(ti->type)) {
1626			if (!ti->type->iterate_devices ||
1627			    ti->type->iterate_devices(ti, device_not_zoned,
1628						      &zoned))
1629				return false;
1630		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631			if (zoned)
1632				return false;
1633		}
1634	}
1635
1636	return true;
1637}
1638
1639static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640					   sector_t start, sector_t len, void *data)
1641{
1642	unsigned int *zone_sectors = data;
1643
1644	if (!bdev_is_zoned(dev->bdev))
1645		return 0;
1646	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647}
1648
1649/*
1650 * Check consistency of zoned model and zone sectors across all targets. For
1651 * zone sectors, if the destination device is a zoned block device, it shall
1652 * have the specified zone_sectors.
1653 */
1654static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655				   unsigned int zone_sectors)
1656{
1657	if (!zoned)
1658		return 0;
1659
1660	if (!dm_table_supports_zoned(t, zoned)) {
1661		DMERR("%s: zoned model is not consistent across all devices",
1662		      dm_device_name(t->md));
1663		return -EINVAL;
1664	}
1665
1666	/* Check zone size validity and compatibility */
1667	if (!zone_sectors || !is_power_of_2(zone_sectors))
1668		return -EINVAL;
1669
1670	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671		DMERR("%s: zone sectors is not consistent across all zoned devices",
1672		      dm_device_name(t->md));
1673		return -EINVAL;
1674	}
1675
1676	return 0;
1677}
1678
1679/*
1680 * Establish the new table's queue_limits and validate them.
1681 */
1682int dm_calculate_queue_limits(struct dm_table *t,
1683			      struct queue_limits *limits)
1684{
1685	struct queue_limits ti_limits;
1686	unsigned int zone_sectors = 0;
1687	bool zoned = false;
1688
1689	blk_set_stacking_limits(limits);
1690
1691	for (unsigned int i = 0; i < t->num_targets; i++) {
1692		struct dm_target *ti = dm_table_get_target(t, i);
1693
1694		blk_set_stacking_limits(&ti_limits);
1695
1696		if (!ti->type->iterate_devices) {
1697			/* Set I/O hints portion of queue limits */
1698			if (ti->type->io_hints)
1699				ti->type->io_hints(ti, &ti_limits);
1700			goto combine_limits;
1701		}
1702
1703		/*
1704		 * Combine queue limits of all the devices this target uses.
1705		 */
1706		ti->type->iterate_devices(ti, dm_set_device_limits,
1707					  &ti_limits);
1708
1709		if (!zoned && ti_limits.zoned) {
1710			/*
1711			 * After stacking all limits, validate all devices
1712			 * in table support this zoned model and zone sectors.
1713			 */
1714			zoned = ti_limits.zoned;
1715			zone_sectors = ti_limits.chunk_sectors;
1716		}
1717
1718		/* Set I/O hints portion of queue limits */
1719		if (ti->type->io_hints)
1720			ti->type->io_hints(ti, &ti_limits);
1721
1722		/*
1723		 * Check each device area is consistent with the target's
1724		 * overall queue limits.
1725		 */
1726		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727					      &ti_limits))
1728			return -EINVAL;
1729
1730combine_limits:
1731		/*
1732		 * Merge this target's queue limits into the overall limits
1733		 * for the table.
1734		 */
1735		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736			DMWARN("%s: adding target device (start sect %llu len %llu) "
1737			       "caused an alignment inconsistency",
1738			       dm_device_name(t->md),
1739			       (unsigned long long) ti->begin,
1740			       (unsigned long long) ti->len);
1741	}
1742
1743	/*
1744	 * Verify that the zoned model and zone sectors, as determined before
1745	 * any .io_hints override, are the same across all devices in the table.
1746	 * - this is especially relevant if .io_hints is emulating a disk-managed
1747	 *   zoned model on host-managed zoned block devices.
1748	 * BUT...
1749	 */
1750	if (limits->zoned) {
1751		/*
1752		 * ...IF the above limits stacking determined a zoned model
1753		 * validate that all of the table's devices conform to it.
1754		 */
1755		zoned = limits->zoned;
1756		zone_sectors = limits->chunk_sectors;
1757	}
1758	if (validate_hardware_zoned(t, zoned, zone_sectors))
1759		return -EINVAL;
1760
1761	return validate_hardware_logical_block_alignment(t, limits);
1762}
1763
1764/*
1765 * Verify that all devices have an integrity profile that matches the
1766 * DM device's registered integrity profile.  If the profiles don't
1767 * match then unregister the DM device's integrity profile.
1768 */
1769static void dm_table_verify_integrity(struct dm_table *t)
1770{
1771	struct gendisk *template_disk = NULL;
1772
1773	if (t->integrity_added)
1774		return;
1775
1776	if (t->integrity_supported) {
1777		/*
1778		 * Verify that the original integrity profile
1779		 * matches all the devices in this table.
1780		 */
1781		template_disk = dm_table_get_integrity_disk(t);
1782		if (template_disk &&
1783		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784			return;
1785	}
1786
1787	if (integrity_profile_exists(dm_disk(t->md))) {
1788		DMWARN("%s: unable to establish an integrity profile",
1789		       dm_device_name(t->md));
1790		blk_integrity_unregister(dm_disk(t->md));
1791	}
1792}
1793
1794static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795				sector_t start, sector_t len, void *data)
1796{
1797	unsigned long flush = (unsigned long) data;
1798	struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800	return (q->queue_flags & flush);
1801}
1802
1803static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804{
1805	/*
1806	 * Require at least one underlying device to support flushes.
1807	 * t->devices includes internal dm devices such as mirror logs
1808	 * so we need to use iterate_devices here, which targets
1809	 * supporting flushes must provide.
1810	 */
1811	for (unsigned int i = 0; i < t->num_targets; i++) {
1812		struct dm_target *ti = dm_table_get_target(t, i);
1813
1814		if (!ti->num_flush_bios)
1815			continue;
1816
1817		if (ti->flush_supported)
1818			return true;
1819
1820		if (ti->type->iterate_devices &&
1821		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822			return true;
1823	}
1824
1825	return false;
1826}
1827
1828static int device_dax_write_cache_enabled(struct dm_target *ti,
1829					  struct dm_dev *dev, sector_t start,
1830					  sector_t len, void *data)
1831{
1832	struct dax_device *dax_dev = dev->dax_dev;
1833
1834	if (!dax_dev)
1835		return false;
1836
1837	if (dax_write_cache_enabled(dax_dev))
1838		return true;
1839	return false;
1840}
1841
1842static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843				sector_t start, sector_t len, void *data)
1844{
1845	return !bdev_nonrot(dev->bdev);
1846}
1847
1848static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849			     sector_t start, sector_t len, void *data)
1850{
1851	struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853	return !blk_queue_add_random(q);
1854}
1855
1856static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857					   sector_t start, sector_t len, void *data)
1858{
1859	struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861	return !q->limits.max_write_zeroes_sectors;
1862}
1863
1864static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865{
1866	for (unsigned int i = 0; i < t->num_targets; i++) {
1867		struct dm_target *ti = dm_table_get_target(t, i);
1868
1869		if (!ti->num_write_zeroes_bios)
1870			return false;
1871
1872		if (!ti->type->iterate_devices ||
1873		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874			return false;
1875	}
1876
1877	return true;
1878}
1879
1880static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881				     sector_t start, sector_t len, void *data)
1882{
1883	return !bdev_nowait(dev->bdev);
1884}
1885
1886static bool dm_table_supports_nowait(struct dm_table *t)
1887{
1888	for (unsigned int i = 0; i < t->num_targets; i++) {
1889		struct dm_target *ti = dm_table_get_target(t, i);
1890
1891		if (!dm_target_supports_nowait(ti->type))
1892			return false;
1893
1894		if (!ti->type->iterate_devices ||
1895		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896			return false;
1897	}
1898
1899	return true;
1900}
1901
1902static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903				      sector_t start, sector_t len, void *data)
1904{
1905	return !bdev_max_discard_sectors(dev->bdev);
1906}
1907
1908static bool dm_table_supports_discards(struct dm_table *t)
1909{
1910	for (unsigned int i = 0; i < t->num_targets; i++) {
1911		struct dm_target *ti = dm_table_get_target(t, i);
1912
1913		if (!ti->num_discard_bios)
1914			return false;
1915
1916		/*
1917		 * Either the target provides discard support (as implied by setting
1918		 * 'discards_supported') or it relies on _all_ data devices having
1919		 * discard support.
1920		 */
1921		if (!ti->discards_supported &&
1922		    (!ti->type->iterate_devices ||
1923		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924			return false;
1925	}
1926
1927	return true;
1928}
1929
1930static int device_not_secure_erase_capable(struct dm_target *ti,
1931					   struct dm_dev *dev, sector_t start,
1932					   sector_t len, void *data)
1933{
1934	return !bdev_max_secure_erase_sectors(dev->bdev);
1935}
1936
1937static bool dm_table_supports_secure_erase(struct dm_table *t)
1938{
1939	for (unsigned int i = 0; i < t->num_targets; i++) {
1940		struct dm_target *ti = dm_table_get_target(t, i);
1941
1942		if (!ti->num_secure_erase_bios)
1943			return false;
1944
1945		if (!ti->type->iterate_devices ||
1946		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947			return false;
1948	}
1949
1950	return true;
1951}
1952
1953static int device_requires_stable_pages(struct dm_target *ti,
1954					struct dm_dev *dev, sector_t start,
1955					sector_t len, void *data)
1956{
1957	return bdev_stable_writes(dev->bdev);
1958}
1959
1960int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961			      struct queue_limits *limits)
1962{
1963	bool wc = false, fua = false;
1964	int r;
1965
1966	/*
1967	 * Copy table's limits to the DM device's request_queue
1968	 */
1969	q->limits = *limits;
1970
1971	if (dm_table_supports_nowait(t))
1972		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973	else
1974		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976	if (!dm_table_supports_discards(t)) {
1977		q->limits.max_discard_sectors = 0;
1978		q->limits.max_hw_discard_sectors = 0;
1979		q->limits.discard_granularity = 0;
1980		q->limits.discard_alignment = 0;
1981		q->limits.discard_misaligned = 0;
1982	}
1983
1984	if (!dm_table_supports_secure_erase(t))
1985		q->limits.max_secure_erase_sectors = 0;
1986
1987	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988		wc = true;
1989		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990			fua = true;
1991	}
1992	blk_queue_write_cache(q, wc, fua);
1993
1994	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997			set_dax_synchronous(t->md->dax_dev);
1998	} else
1999		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002		dax_write_cache(t->md->dax_dev, true);
2003
2004	/* Ensure that all underlying devices are non-rotational. */
2005	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007	else
2008		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009
2010	if (!dm_table_supports_write_zeroes(t))
2011		q->limits.max_write_zeroes_sectors = 0;
2012
2013	dm_table_verify_integrity(t);
2014
2015	/*
2016	 * Some devices don't use blk_integrity but still want stable pages
2017	 * because they do their own checksumming.
2018	 * If any underlying device requires stable pages, a table must require
2019	 * them as well.  Only targets that support iterate_devices are considered:
2020	 * don't want error, zero, etc to require stable pages.
2021	 */
2022	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024	else
2025		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026
2027	/*
2028	 * Determine whether or not this queue's I/O timings contribute
2029	 * to the entropy pool, Only request-based targets use this.
2030	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031	 * have it set.
2032	 */
2033	if (blk_queue_add_random(q) &&
2034	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037	/*
2038	 * For a zoned target, setup the zones related queue attributes
2039	 * and resources necessary for zone append emulation if necessary.
2040	 */
2041	if (blk_queue_is_zoned(q)) {
2042		r = dm_set_zones_restrictions(t, q);
2043		if (r)
2044			return r;
2045		if (!static_key_enabled(&zoned_enabled.key))
2046			static_branch_enable(&zoned_enabled);
2047	}
2048
2049	dm_update_crypto_profile(q, t);
2050	disk_update_readahead(t->md->disk);
2051
2052	/*
2053	 * Check for request-based device is left to
2054	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055	 *
2056	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057	 * underlying devices supporting polling.
2058	 */
2059	if (__table_type_bio_based(t->type)) {
2060		if (dm_table_supports_poll(t))
2061			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062		else
2063			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064	}
2065
2066	return 0;
2067}
2068
2069struct list_head *dm_table_get_devices(struct dm_table *t)
2070{
2071	return &t->devices;
2072}
2073
2074blk_mode_t dm_table_get_mode(struct dm_table *t)
2075{
2076	return t->mode;
2077}
2078EXPORT_SYMBOL(dm_table_get_mode);
2079
2080enum suspend_mode {
2081	PRESUSPEND,
2082	PRESUSPEND_UNDO,
2083	POSTSUSPEND,
2084};
2085
2086static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087{
2088	lockdep_assert_held(&t->md->suspend_lock);
2089
2090	for (unsigned int i = 0; i < t->num_targets; i++) {
2091		struct dm_target *ti = dm_table_get_target(t, i);
2092
2093		switch (mode) {
2094		case PRESUSPEND:
2095			if (ti->type->presuspend)
2096				ti->type->presuspend(ti);
2097			break;
2098		case PRESUSPEND_UNDO:
2099			if (ti->type->presuspend_undo)
2100				ti->type->presuspend_undo(ti);
2101			break;
2102		case POSTSUSPEND:
2103			if (ti->type->postsuspend)
2104				ti->type->postsuspend(ti);
2105			break;
2106		}
2107	}
2108}
2109
2110void dm_table_presuspend_targets(struct dm_table *t)
2111{
2112	if (!t)
2113		return;
2114
2115	suspend_targets(t, PRESUSPEND);
2116}
2117
2118void dm_table_presuspend_undo_targets(struct dm_table *t)
2119{
2120	if (!t)
2121		return;
2122
2123	suspend_targets(t, PRESUSPEND_UNDO);
2124}
2125
2126void dm_table_postsuspend_targets(struct dm_table *t)
2127{
2128	if (!t)
2129		return;
2130
2131	suspend_targets(t, POSTSUSPEND);
2132}
2133
2134int dm_table_resume_targets(struct dm_table *t)
2135{
2136	unsigned int i;
2137	int r = 0;
2138
2139	lockdep_assert_held(&t->md->suspend_lock);
2140
2141	for (i = 0; i < t->num_targets; i++) {
2142		struct dm_target *ti = dm_table_get_target(t, i);
2143
2144		if (!ti->type->preresume)
2145			continue;
2146
2147		r = ti->type->preresume(ti);
2148		if (r) {
2149			DMERR("%s: %s: preresume failed, error = %d",
2150			      dm_device_name(t->md), ti->type->name, r);
2151			return r;
2152		}
2153	}
2154
2155	for (i = 0; i < t->num_targets; i++) {
2156		struct dm_target *ti = dm_table_get_target(t, i);
2157
2158		if (ti->type->resume)
2159			ti->type->resume(ti);
2160	}
2161
2162	return 0;
2163}
2164
2165struct mapped_device *dm_table_get_md(struct dm_table *t)
2166{
2167	return t->md;
2168}
2169EXPORT_SYMBOL(dm_table_get_md);
2170
2171const char *dm_table_device_name(struct dm_table *t)
2172{
2173	return dm_device_name(t->md);
2174}
2175EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177void dm_table_run_md_queue_async(struct dm_table *t)
2178{
2179	if (!dm_table_request_based(t))
2180		return;
2181
2182	if (t->md->queue)
2183		blk_mq_run_hw_queues(t->md->queue, true);
2184}
2185EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186
2187