1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2014 Facebook. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/device-mapper.h>
9
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/blkdev.h>
13#include <linux/bio.h>
14#include <linux/dax.h>
15#include <linux/slab.h>
16#include <linux/kthread.h>
17#include <linux/freezer.h>
18#include <linux/uio.h>
19
20#define DM_MSG_PREFIX "log-writes"
21
22/*
23 * This target will sequentially log all writes to the target device onto the
24 * log device.  This is helpful for replaying writes to check for fs consistency
25 * at all times.  This target provides a mechanism to mark specific events to
26 * check data at a later time.  So for example you would:
27 *
28 * write data
29 * fsync
30 * dmsetup message /dev/whatever mark mymark
31 * unmount /mnt/test
32 *
33 * Then replay the log up to mymark and check the contents of the replay to
34 * verify it matches what was written.
35 *
36 * We log writes only after they have been flushed, this makes the log describe
37 * close to the order in which the data hits the actual disk, not its cache.  So
38 * for example the following sequence (W means write, C means complete)
39 *
40 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
41 *
42 * Would result in the log looking like this:
43 *
44 * c,a,b,flush,fuad,<other writes>,<next flush>
45 *
46 * This is meant to help expose problems where file systems do not properly wait
47 * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
48 * completes it is added to the log as it should be on disk.
49 *
50 * We treat DISCARDs as if they don't bypass cache so that they are logged in
51 * order of completion along with the normal writes.  If we didn't do it this
52 * way we would process all the discards first and then write all the data, when
53 * in fact we want to do the data and the discard in the order that they
54 * completed.
55 */
56#define LOG_FLUSH_FLAG		(1 << 0)
57#define LOG_FUA_FLAG		(1 << 1)
58#define LOG_DISCARD_FLAG	(1 << 2)
59#define LOG_MARK_FLAG		(1 << 3)
60#define LOG_METADATA_FLAG	(1 << 4)
61
62#define WRITE_LOG_VERSION 1ULL
63#define WRITE_LOG_MAGIC 0x6a736677736872ULL
64#define WRITE_LOG_SUPER_SECTOR 0
65
66/*
67 * The disk format for this is braindead simple.
68 *
69 * At byte 0 we have our super, followed by the following sequence for
70 * nr_entries:
71 *
72 * [   1 sector    ][  entry->nr_sectors ]
73 * [log_write_entry][    data written    ]
74 *
75 * The log_write_entry takes up a full sector so we can have arbitrary length
76 * marks and it leaves us room for extra content in the future.
77 */
78
79/*
80 * Basic info about the log for userspace.
81 */
82struct log_write_super {
83	__le64 magic;
84	__le64 version;
85	__le64 nr_entries;
86	__le32 sectorsize;
87};
88
89/*
90 * sector - the sector we wrote.
91 * nr_sectors - the number of sectors we wrote.
92 * flags - flags for this log entry.
93 * data_len - the size of the data in this log entry, this is for private log
94 * entry stuff, the MARK data provided by userspace for example.
95 */
96struct log_write_entry {
97	__le64 sector;
98	__le64 nr_sectors;
99	__le64 flags;
100	__le64 data_len;
101};
102
103struct log_writes_c {
104	struct dm_dev *dev;
105	struct dm_dev *logdev;
106	u64 logged_entries;
107	u32 sectorsize;
108	u32 sectorshift;
109	atomic_t io_blocks;
110	atomic_t pending_blocks;
111	sector_t next_sector;
112	sector_t end_sector;
113	bool logging_enabled;
114	bool device_supports_discard;
115	spinlock_t blocks_lock;
116	struct list_head unflushed_blocks;
117	struct list_head logging_blocks;
118	wait_queue_head_t wait;
119	struct task_struct *log_kthread;
120	struct completion super_done;
121};
122
123struct pending_block {
124	int vec_cnt;
125	u64 flags;
126	sector_t sector;
127	sector_t nr_sectors;
128	char *data;
129	u32 datalen;
130	struct list_head list;
131	struct bio_vec vecs[];
132};
133
134struct per_bio_data {
135	struct pending_block *block;
136};
137
138static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
139					  sector_t sectors)
140{
141	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
142}
143
144static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
145					  sector_t sectors)
146{
147	return sectors << (lc->sectorshift - SECTOR_SHIFT);
148}
149
150static void put_pending_block(struct log_writes_c *lc)
151{
152	if (atomic_dec_and_test(&lc->pending_blocks)) {
153		smp_mb__after_atomic();
154		if (waitqueue_active(&lc->wait))
155			wake_up(&lc->wait);
156	}
157}
158
159static void put_io_block(struct log_writes_c *lc)
160{
161	if (atomic_dec_and_test(&lc->io_blocks)) {
162		smp_mb__after_atomic();
163		if (waitqueue_active(&lc->wait))
164			wake_up(&lc->wait);
165	}
166}
167
168static void log_end_io(struct bio *bio)
169{
170	struct log_writes_c *lc = bio->bi_private;
171
172	if (bio->bi_status) {
173		unsigned long flags;
174
175		DMERR("Error writing log block, error=%d", bio->bi_status);
176		spin_lock_irqsave(&lc->blocks_lock, flags);
177		lc->logging_enabled = false;
178		spin_unlock_irqrestore(&lc->blocks_lock, flags);
179	}
180
181	bio_free_pages(bio);
182	put_io_block(lc);
183	bio_put(bio);
184}
185
186static void log_end_super(struct bio *bio)
187{
188	struct log_writes_c *lc = bio->bi_private;
189
190	complete(&lc->super_done);
191	log_end_io(bio);
192}
193
194/*
195 * Meant to be called if there is an error, it will free all the pages
196 * associated with the block.
197 */
198static void free_pending_block(struct log_writes_c *lc,
199			       struct pending_block *block)
200{
201	int i;
202
203	for (i = 0; i < block->vec_cnt; i++) {
204		if (block->vecs[i].bv_page)
205			__free_page(block->vecs[i].bv_page);
206	}
207	kfree(block->data);
208	kfree(block);
209	put_pending_block(lc);
210}
211
212static int write_metadata(struct log_writes_c *lc, void *entry,
213			  size_t entrylen, void *data, size_t datalen,
214			  sector_t sector)
215{
216	struct bio *bio;
217	struct page *page;
218	void *ptr;
219	size_t ret;
220
221	bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL);
222	bio->bi_iter.bi_size = 0;
223	bio->bi_iter.bi_sector = sector;
224	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
225			  log_end_super : log_end_io;
226	bio->bi_private = lc;
227
228	page = alloc_page(GFP_KERNEL);
229	if (!page) {
230		DMERR("Couldn't alloc log page");
231		bio_put(bio);
232		goto error;
233	}
234
235	ptr = kmap_local_page(page);
236	memcpy(ptr, entry, entrylen);
237	if (datalen)
238		memcpy(ptr + entrylen, data, datalen);
239	memset(ptr + entrylen + datalen, 0,
240	       lc->sectorsize - entrylen - datalen);
241	kunmap_local(ptr);
242
243	ret = bio_add_page(bio, page, lc->sectorsize, 0);
244	if (ret != lc->sectorsize) {
245		DMERR("Couldn't add page to the log block");
246		goto error_bio;
247	}
248	submit_bio(bio);
249	return 0;
250error_bio:
251	bio_put(bio);
252	__free_page(page);
253error:
254	put_io_block(lc);
255	return -1;
256}
257
258static int write_inline_data(struct log_writes_c *lc, void *entry,
259			     size_t entrylen, void *data, size_t datalen,
260			     sector_t sector)
261{
262	int bio_pages, pg_datalen, pg_sectorlen, i;
263	struct page *page;
264	struct bio *bio;
265	size_t ret;
266	void *ptr;
267
268	while (datalen) {
269		bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
270
271		atomic_inc(&lc->io_blocks);
272
273		bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE,
274				GFP_KERNEL);
275		bio->bi_iter.bi_size = 0;
276		bio->bi_iter.bi_sector = sector;
277		bio->bi_end_io = log_end_io;
278		bio->bi_private = lc;
279
280		for (i = 0; i < bio_pages; i++) {
281			pg_datalen = min_t(int, datalen, PAGE_SIZE);
282			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
283
284			page = alloc_page(GFP_KERNEL);
285			if (!page) {
286				DMERR("Couldn't alloc inline data page");
287				goto error_bio;
288			}
289
290			ptr = kmap_local_page(page);
291			memcpy(ptr, data, pg_datalen);
292			if (pg_sectorlen > pg_datalen)
293				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
294			kunmap_local(ptr);
295
296			ret = bio_add_page(bio, page, pg_sectorlen, 0);
297			if (ret != pg_sectorlen) {
298				DMERR("Couldn't add page of inline data");
299				__free_page(page);
300				goto error_bio;
301			}
302
303			datalen -= pg_datalen;
304			data	+= pg_datalen;
305		}
306		submit_bio(bio);
307
308		sector += bio_pages * PAGE_SECTORS;
309	}
310	return 0;
311error_bio:
312	bio_free_pages(bio);
313	bio_put(bio);
314	put_io_block(lc);
315	return -1;
316}
317
318static int log_one_block(struct log_writes_c *lc,
319			 struct pending_block *block, sector_t sector)
320{
321	struct bio *bio;
322	struct log_write_entry entry;
323	size_t metadatalen, ret;
324	int i;
325
326	entry.sector = cpu_to_le64(block->sector);
327	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
328	entry.flags = cpu_to_le64(block->flags);
329	entry.data_len = cpu_to_le64(block->datalen);
330
331	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
332	if (write_metadata(lc, &entry, sizeof(entry), block->data,
333			   metadatalen, sector)) {
334		free_pending_block(lc, block);
335		return -1;
336	}
337
338	sector += dev_to_bio_sectors(lc, 1);
339
340	if (block->datalen && metadatalen == 0) {
341		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
342				      block->datalen, sector)) {
343			free_pending_block(lc, block);
344			return -1;
345		}
346		/* we don't support both inline data & bio data */
347		goto out;
348	}
349
350	if (!block->vec_cnt)
351		goto out;
352
353	atomic_inc(&lc->io_blocks);
354	bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt),
355			REQ_OP_WRITE, GFP_KERNEL);
356	bio->bi_iter.bi_size = 0;
357	bio->bi_iter.bi_sector = sector;
358	bio->bi_end_io = log_end_io;
359	bio->bi_private = lc;
360
361	for (i = 0; i < block->vec_cnt; i++) {
362		/*
363		 * The page offset is always 0 because we allocate a new page
364		 * for every bvec in the original bio for simplicity sake.
365		 */
366		ret = bio_add_page(bio, block->vecs[i].bv_page,
367				   block->vecs[i].bv_len, 0);
368		if (ret != block->vecs[i].bv_len) {
369			atomic_inc(&lc->io_blocks);
370			submit_bio(bio);
371			bio = bio_alloc(lc->logdev->bdev,
372					bio_max_segs(block->vec_cnt - i),
373					REQ_OP_WRITE, GFP_KERNEL);
374			bio->bi_iter.bi_size = 0;
375			bio->bi_iter.bi_sector = sector;
376			bio->bi_end_io = log_end_io;
377			bio->bi_private = lc;
378
379			ret = bio_add_page(bio, block->vecs[i].bv_page,
380					   block->vecs[i].bv_len, 0);
381			if (ret != block->vecs[i].bv_len) {
382				DMERR("Couldn't add page on new bio?");
383				bio_put(bio);
384				goto error;
385			}
386		}
387		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
388	}
389	submit_bio(bio);
390out:
391	kfree(block->data);
392	kfree(block);
393	put_pending_block(lc);
394	return 0;
395error:
396	free_pending_block(lc, block);
397	put_io_block(lc);
398	return -1;
399}
400
401static int log_super(struct log_writes_c *lc)
402{
403	struct log_write_super super;
404
405	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
406	super.version = cpu_to_le64(WRITE_LOG_VERSION);
407	super.nr_entries = cpu_to_le64(lc->logged_entries);
408	super.sectorsize = cpu_to_le32(lc->sectorsize);
409
410	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
411			   WRITE_LOG_SUPER_SECTOR)) {
412		DMERR("Couldn't write super");
413		return -1;
414	}
415
416	/*
417	 * Super sector should be writen in-order, otherwise the
418	 * nr_entries could be rewritten incorrectly by an old bio.
419	 */
420	wait_for_completion_io(&lc->super_done);
421
422	return 0;
423}
424
425static inline sector_t logdev_last_sector(struct log_writes_c *lc)
426{
427	return bdev_nr_sectors(lc->logdev->bdev);
428}
429
430static int log_writes_kthread(void *arg)
431{
432	struct log_writes_c *lc = arg;
433	sector_t sector = 0;
434
435	while (!kthread_should_stop()) {
436		bool super = false;
437		bool logging_enabled;
438		struct pending_block *block = NULL;
439		int ret;
440
441		spin_lock_irq(&lc->blocks_lock);
442		if (!list_empty(&lc->logging_blocks)) {
443			block = list_first_entry(&lc->logging_blocks,
444						 struct pending_block, list);
445			list_del_init(&block->list);
446			if (!lc->logging_enabled)
447				goto next;
448
449			sector = lc->next_sector;
450			if (!(block->flags & LOG_DISCARD_FLAG))
451				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
452			lc->next_sector += dev_to_bio_sectors(lc, 1);
453
454			/*
455			 * Apparently the size of the device may not be known
456			 * right away, so handle this properly.
457			 */
458			if (!lc->end_sector)
459				lc->end_sector = logdev_last_sector(lc);
460			if (lc->end_sector &&
461			    lc->next_sector >= lc->end_sector) {
462				DMERR("Ran out of space on the logdev");
463				lc->logging_enabled = false;
464				goto next;
465			}
466			lc->logged_entries++;
467			atomic_inc(&lc->io_blocks);
468
469			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
470			if (super)
471				atomic_inc(&lc->io_blocks);
472		}
473next:
474		logging_enabled = lc->logging_enabled;
475		spin_unlock_irq(&lc->blocks_lock);
476		if (block) {
477			if (logging_enabled) {
478				ret = log_one_block(lc, block, sector);
479				if (!ret && super)
480					ret = log_super(lc);
481				if (ret) {
482					spin_lock_irq(&lc->blocks_lock);
483					lc->logging_enabled = false;
484					spin_unlock_irq(&lc->blocks_lock);
485				}
486			} else
487				free_pending_block(lc, block);
488			continue;
489		}
490
491		if (!try_to_freeze()) {
492			set_current_state(TASK_INTERRUPTIBLE);
493			if (!kthread_should_stop() &&
494			    list_empty(&lc->logging_blocks))
495				schedule();
496			__set_current_state(TASK_RUNNING);
497		}
498	}
499	return 0;
500}
501
502/*
503 * Construct a log-writes mapping:
504 * log-writes <dev_path> <log_dev_path>
505 */
506static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
507{
508	struct log_writes_c *lc;
509	struct dm_arg_set as;
510	const char *devname, *logdevname;
511	int ret;
512
513	as.argc = argc;
514	as.argv = argv;
515
516	if (argc < 2) {
517		ti->error = "Invalid argument count";
518		return -EINVAL;
519	}
520
521	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
522	if (!lc) {
523		ti->error = "Cannot allocate context";
524		return -ENOMEM;
525	}
526	spin_lock_init(&lc->blocks_lock);
527	INIT_LIST_HEAD(&lc->unflushed_blocks);
528	INIT_LIST_HEAD(&lc->logging_blocks);
529	init_waitqueue_head(&lc->wait);
530	init_completion(&lc->super_done);
531	atomic_set(&lc->io_blocks, 0);
532	atomic_set(&lc->pending_blocks, 0);
533
534	devname = dm_shift_arg(&as);
535	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
536	if (ret) {
537		ti->error = "Device lookup failed";
538		goto bad;
539	}
540
541	logdevname = dm_shift_arg(&as);
542	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
543			    &lc->logdev);
544	if (ret) {
545		ti->error = "Log device lookup failed";
546		dm_put_device(ti, lc->dev);
547		goto bad;
548	}
549
550	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
551	lc->sectorshift = ilog2(lc->sectorsize);
552	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
553	if (IS_ERR(lc->log_kthread)) {
554		ret = PTR_ERR(lc->log_kthread);
555		ti->error = "Couldn't alloc kthread";
556		dm_put_device(ti, lc->dev);
557		dm_put_device(ti, lc->logdev);
558		goto bad;
559	}
560
561	/*
562	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
563	 * The super starts at sector 0, and the next_sector is the next logical
564	 * one based on the sectorsize of the device.
565	 */
566	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
567	lc->logging_enabled = true;
568	lc->end_sector = logdev_last_sector(lc);
569	lc->device_supports_discard = true;
570
571	ti->num_flush_bios = 1;
572	ti->flush_supported = true;
573	ti->num_discard_bios = 1;
574	ti->discards_supported = true;
575	ti->per_io_data_size = sizeof(struct per_bio_data);
576	ti->private = lc;
577	return 0;
578
579bad:
580	kfree(lc);
581	return ret;
582}
583
584static int log_mark(struct log_writes_c *lc, char *data)
585{
586	struct pending_block *block;
587	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
588
589	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
590	if (!block) {
591		DMERR("Error allocating pending block");
592		return -ENOMEM;
593	}
594
595	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
596	if (!block->data) {
597		DMERR("Error copying mark data");
598		kfree(block);
599		return -ENOMEM;
600	}
601	atomic_inc(&lc->pending_blocks);
602	block->datalen = strlen(block->data);
603	block->flags |= LOG_MARK_FLAG;
604	spin_lock_irq(&lc->blocks_lock);
605	list_add_tail(&block->list, &lc->logging_blocks);
606	spin_unlock_irq(&lc->blocks_lock);
607	wake_up_process(lc->log_kthread);
608	return 0;
609}
610
611static void log_writes_dtr(struct dm_target *ti)
612{
613	struct log_writes_c *lc = ti->private;
614
615	spin_lock_irq(&lc->blocks_lock);
616	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
617	spin_unlock_irq(&lc->blocks_lock);
618
619	/*
620	 * This is just nice to have since it'll update the super to include the
621	 * unflushed blocks, if it fails we don't really care.
622	 */
623	log_mark(lc, "dm-log-writes-end");
624	wake_up_process(lc->log_kthread);
625	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
626		   !atomic_read(&lc->pending_blocks));
627	kthread_stop(lc->log_kthread);
628
629	WARN_ON(!list_empty(&lc->logging_blocks));
630	WARN_ON(!list_empty(&lc->unflushed_blocks));
631	dm_put_device(ti, lc->dev);
632	dm_put_device(ti, lc->logdev);
633	kfree(lc);
634}
635
636static void normal_map_bio(struct dm_target *ti, struct bio *bio)
637{
638	struct log_writes_c *lc = ti->private;
639
640	bio_set_dev(bio, lc->dev->bdev);
641}
642
643static int log_writes_map(struct dm_target *ti, struct bio *bio)
644{
645	struct log_writes_c *lc = ti->private;
646	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
647	struct pending_block *block;
648	struct bvec_iter iter;
649	struct bio_vec bv;
650	size_t alloc_size;
651	int i = 0;
652	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
653	bool fua_bio = (bio->bi_opf & REQ_FUA);
654	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
655	bool meta_bio = (bio->bi_opf & REQ_META);
656
657	pb->block = NULL;
658
659	/* Don't bother doing anything if logging has been disabled */
660	if (!lc->logging_enabled)
661		goto map_bio;
662
663	/*
664	 * Map reads as normal.
665	 */
666	if (bio_data_dir(bio) == READ)
667		goto map_bio;
668
669	/* No sectors and not a flush?  Don't care */
670	if (!bio_sectors(bio) && !flush_bio)
671		goto map_bio;
672
673	/*
674	 * Discards will have bi_size set but there's no actual data, so just
675	 * allocate the size of the pending block.
676	 */
677	if (discard_bio)
678		alloc_size = sizeof(struct pending_block);
679	else
680		alloc_size = struct_size(block, vecs, bio_segments(bio));
681
682	block = kzalloc(alloc_size, GFP_NOIO);
683	if (!block) {
684		DMERR("Error allocating pending block");
685		spin_lock_irq(&lc->blocks_lock);
686		lc->logging_enabled = false;
687		spin_unlock_irq(&lc->blocks_lock);
688		return DM_MAPIO_KILL;
689	}
690	INIT_LIST_HEAD(&block->list);
691	pb->block = block;
692	atomic_inc(&lc->pending_blocks);
693
694	if (flush_bio)
695		block->flags |= LOG_FLUSH_FLAG;
696	if (fua_bio)
697		block->flags |= LOG_FUA_FLAG;
698	if (discard_bio)
699		block->flags |= LOG_DISCARD_FLAG;
700	if (meta_bio)
701		block->flags |= LOG_METADATA_FLAG;
702
703	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
704	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
705
706	/* We don't need the data, just submit */
707	if (discard_bio) {
708		WARN_ON(flush_bio || fua_bio);
709		if (lc->device_supports_discard)
710			goto map_bio;
711		bio_endio(bio);
712		return DM_MAPIO_SUBMITTED;
713	}
714
715	/* Flush bio, splice the unflushed blocks onto this list and submit */
716	if (flush_bio && !bio_sectors(bio)) {
717		spin_lock_irq(&lc->blocks_lock);
718		list_splice_init(&lc->unflushed_blocks, &block->list);
719		spin_unlock_irq(&lc->blocks_lock);
720		goto map_bio;
721	}
722
723	/*
724	 * We will write this bio somewhere else way later so we need to copy
725	 * the actual contents into new pages so we know the data will always be
726	 * there.
727	 *
728	 * We do this because this could be a bio from O_DIRECT in which case we
729	 * can't just hold onto the page until some later point, we have to
730	 * manually copy the contents.
731	 */
732	bio_for_each_segment(bv, bio, iter) {
733		struct page *page;
734		void *dst;
735
736		page = alloc_page(GFP_NOIO);
737		if (!page) {
738			DMERR("Error allocing page");
739			free_pending_block(lc, block);
740			spin_lock_irq(&lc->blocks_lock);
741			lc->logging_enabled = false;
742			spin_unlock_irq(&lc->blocks_lock);
743			return DM_MAPIO_KILL;
744		}
745
746		dst = kmap_local_page(page);
747		memcpy_from_bvec(dst, &bv);
748		kunmap_local(dst);
749		block->vecs[i].bv_page = page;
750		block->vecs[i].bv_len = bv.bv_len;
751		block->vec_cnt++;
752		i++;
753	}
754
755	/* Had a flush with data in it, weird */
756	if (flush_bio) {
757		spin_lock_irq(&lc->blocks_lock);
758		list_splice_init(&lc->unflushed_blocks, &block->list);
759		spin_unlock_irq(&lc->blocks_lock);
760	}
761map_bio:
762	normal_map_bio(ti, bio);
763	return DM_MAPIO_REMAPPED;
764}
765
766static int normal_end_io(struct dm_target *ti, struct bio *bio,
767		blk_status_t *error)
768{
769	struct log_writes_c *lc = ti->private;
770	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
771
772	if (bio_data_dir(bio) == WRITE && pb->block) {
773		struct pending_block *block = pb->block;
774		unsigned long flags;
775
776		spin_lock_irqsave(&lc->blocks_lock, flags);
777		if (block->flags & LOG_FLUSH_FLAG) {
778			list_splice_tail_init(&block->list, &lc->logging_blocks);
779			list_add_tail(&block->list, &lc->logging_blocks);
780			wake_up_process(lc->log_kthread);
781		} else if (block->flags & LOG_FUA_FLAG) {
782			list_add_tail(&block->list, &lc->logging_blocks);
783			wake_up_process(lc->log_kthread);
784		} else
785			list_add_tail(&block->list, &lc->unflushed_blocks);
786		spin_unlock_irqrestore(&lc->blocks_lock, flags);
787	}
788
789	return DM_ENDIO_DONE;
790}
791
792/*
793 * INFO format: <logged entries> <highest allocated sector>
794 */
795static void log_writes_status(struct dm_target *ti, status_type_t type,
796			      unsigned int status_flags, char *result,
797			      unsigned int maxlen)
798{
799	unsigned int sz = 0;
800	struct log_writes_c *lc = ti->private;
801
802	switch (type) {
803	case STATUSTYPE_INFO:
804		DMEMIT("%llu %llu", lc->logged_entries,
805		       (unsigned long long)lc->next_sector - 1);
806		if (!lc->logging_enabled)
807			DMEMIT(" logging_disabled");
808		break;
809
810	case STATUSTYPE_TABLE:
811		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
812		break;
813
814	case STATUSTYPE_IMA:
815		*result = '\0';
816		break;
817	}
818}
819
820static int log_writes_prepare_ioctl(struct dm_target *ti,
821				    struct block_device **bdev)
822{
823	struct log_writes_c *lc = ti->private;
824	struct dm_dev *dev = lc->dev;
825
826	*bdev = dev->bdev;
827	/*
828	 * Only pass ioctls through if the device sizes match exactly.
829	 */
830	if (ti->len != bdev_nr_sectors(dev->bdev))
831		return 1;
832	return 0;
833}
834
835static int log_writes_iterate_devices(struct dm_target *ti,
836				      iterate_devices_callout_fn fn,
837				      void *data)
838{
839	struct log_writes_c *lc = ti->private;
840
841	return fn(ti, lc->dev, 0, ti->len, data);
842}
843
844/*
845 * Messages supported:
846 *   mark <mark data> - specify the marked data.
847 */
848static int log_writes_message(struct dm_target *ti, unsigned int argc, char **argv,
849			      char *result, unsigned int maxlen)
850{
851	int r = -EINVAL;
852	struct log_writes_c *lc = ti->private;
853
854	if (argc != 2) {
855		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
856		return r;
857	}
858
859	if (!strcasecmp(argv[0], "mark"))
860		r = log_mark(lc, argv[1]);
861	else
862		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
863
864	return r;
865}
866
867static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
868{
869	struct log_writes_c *lc = ti->private;
870
871	if (!bdev_max_discard_sectors(lc->dev->bdev)) {
872		lc->device_supports_discard = false;
873		limits->discard_granularity = lc->sectorsize;
874		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
875	}
876	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
877	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
878	limits->io_min = limits->physical_block_size;
879	limits->dma_alignment = limits->logical_block_size - 1;
880}
881
882#if IS_ENABLED(CONFIG_FS_DAX)
883static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
884		pgoff_t *pgoff)
885{
886	struct log_writes_c *lc = ti->private;
887
888	*pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
889	return lc->dev->dax_dev;
890}
891
892static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
893		long nr_pages, enum dax_access_mode mode, void **kaddr,
894		pfn_t *pfn)
895{
896	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
897
898	return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
899}
900
901static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
902					  size_t nr_pages)
903{
904	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
905
906	return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
907}
908
909static size_t log_writes_dax_recovery_write(struct dm_target *ti,
910		pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i)
911{
912	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
913
914	return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
915}
916
917#else
918#define log_writes_dax_direct_access NULL
919#define log_writes_dax_zero_page_range NULL
920#define log_writes_dax_recovery_write NULL
921#endif
922
923static struct target_type log_writes_target = {
924	.name   = "log-writes",
925	.version = {1, 1, 0},
926	.module = THIS_MODULE,
927	.ctr    = log_writes_ctr,
928	.dtr    = log_writes_dtr,
929	.map    = log_writes_map,
930	.end_io = normal_end_io,
931	.status = log_writes_status,
932	.prepare_ioctl = log_writes_prepare_ioctl,
933	.message = log_writes_message,
934	.iterate_devices = log_writes_iterate_devices,
935	.io_hints = log_writes_io_hints,
936	.direct_access = log_writes_dax_direct_access,
937	.dax_zero_page_range = log_writes_dax_zero_page_range,
938	.dax_recovery_write = log_writes_dax_recovery_write,
939};
940module_dm(log_writes);
941
942MODULE_DESCRIPTION(DM_NAME " log writes target");
943MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
944MODULE_LICENSE("GPL");
945