1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11#include <linux/completion.h>
12#include <linux/err.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/key.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-integrity.h>
20#include <linux/mempool.h>
21#include <linux/slab.h>
22#include <linux/crypto.h>
23#include <linux/workqueue.h>
24#include <linux/kthread.h>
25#include <linux/backing-dev.h>
26#include <linux/atomic.h>
27#include <linux/scatterlist.h>
28#include <linux/rbtree.h>
29#include <linux/ctype.h>
30#include <asm/page.h>
31#include <asm/unaligned.h>
32#include <crypto/hash.h>
33#include <crypto/md5.h>
34#include <crypto/skcipher.h>
35#include <crypto/aead.h>
36#include <crypto/authenc.h>
37#include <crypto/utils.h>
38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39#include <linux/key-type.h>
40#include <keys/user-type.h>
41#include <keys/encrypted-type.h>
42#include <keys/trusted-type.h>
43
44#include <linux/device-mapper.h>
45
46#include "dm-audit.h"
47
48#define DM_MSG_PREFIX "crypt"
49
50/*
51 * context holding the current state of a multi-part conversion
52 */
53struct convert_context {
54	struct completion restart;
55	struct bio *bio_in;
56	struct bvec_iter iter_in;
57	struct bio *bio_out;
58	struct bvec_iter iter_out;
59	atomic_t cc_pending;
60	u64 cc_sector;
61	union {
62		struct skcipher_request *req;
63		struct aead_request *req_aead;
64	} r;
65	bool aead_recheck;
66	bool aead_failed;
67
68};
69
70/*
71 * per bio private data
72 */
73struct dm_crypt_io {
74	struct crypt_config *cc;
75	struct bio *base_bio;
76	u8 *integrity_metadata;
77	bool integrity_metadata_from_pool:1;
78
79	struct work_struct work;
80
81	struct convert_context ctx;
82
83	atomic_t io_pending;
84	blk_status_t error;
85	sector_t sector;
86
87	struct bvec_iter saved_bi_iter;
88
89	struct rb_node rb_node;
90} CRYPTO_MINALIGN_ATTR;
91
92struct dm_crypt_request {
93	struct convert_context *ctx;
94	struct scatterlist sg_in[4];
95	struct scatterlist sg_out[4];
96	u64 iv_sector;
97};
98
99struct crypt_config;
100
101struct crypt_iv_operations {
102	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
103		   const char *opts);
104	void (*dtr)(struct crypt_config *cc);
105	int (*init)(struct crypt_config *cc);
106	int (*wipe)(struct crypt_config *cc);
107	int (*generator)(struct crypt_config *cc, u8 *iv,
108			 struct dm_crypt_request *dmreq);
109	int (*post)(struct crypt_config *cc, u8 *iv,
110		    struct dm_crypt_request *dmreq);
111};
112
113struct iv_benbi_private {
114	int shift;
115};
116
117#define LMK_SEED_SIZE 64 /* hash + 0 */
118struct iv_lmk_private {
119	struct crypto_shash *hash_tfm;
120	u8 *seed;
121};
122
123#define TCW_WHITENING_SIZE 16
124struct iv_tcw_private {
125	struct crypto_shash *crc32_tfm;
126	u8 *iv_seed;
127	u8 *whitening;
128};
129
130#define ELEPHANT_MAX_KEY_SIZE 32
131struct iv_elephant_private {
132	struct crypto_skcipher *tfm;
133};
134
135/*
136 * Crypt: maps a linear range of a block device
137 * and encrypts / decrypts at the same time.
138 */
139enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
140	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
141	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
142	     DM_CRYPT_WRITE_INLINE };
143
144enum cipher_flags {
145	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
146	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
147	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
148};
149
150/*
151 * The fields in here must be read only after initialization.
152 */
153struct crypt_config {
154	struct dm_dev *dev;
155	sector_t start;
156
157	struct percpu_counter n_allocated_pages;
158
159	struct workqueue_struct *io_queue;
160	struct workqueue_struct *crypt_queue;
161
162	spinlock_t write_thread_lock;
163	struct task_struct *write_thread;
164	struct rb_root write_tree;
165
166	char *cipher_string;
167	char *cipher_auth;
168	char *key_string;
169
170	const struct crypt_iv_operations *iv_gen_ops;
171	union {
172		struct iv_benbi_private benbi;
173		struct iv_lmk_private lmk;
174		struct iv_tcw_private tcw;
175		struct iv_elephant_private elephant;
176	} iv_gen_private;
177	u64 iv_offset;
178	unsigned int iv_size;
179	unsigned short sector_size;
180	unsigned char sector_shift;
181
182	union {
183		struct crypto_skcipher **tfms;
184		struct crypto_aead **tfms_aead;
185	} cipher_tfm;
186	unsigned int tfms_count;
187	unsigned long cipher_flags;
188
189	/*
190	 * Layout of each crypto request:
191	 *
192	 *   struct skcipher_request
193	 *      context
194	 *      padding
195	 *   struct dm_crypt_request
196	 *      padding
197	 *   IV
198	 *
199	 * The padding is added so that dm_crypt_request and the IV are
200	 * correctly aligned.
201	 */
202	unsigned int dmreq_start;
203
204	unsigned int per_bio_data_size;
205
206	unsigned long flags;
207	unsigned int key_size;
208	unsigned int key_parts;      /* independent parts in key buffer */
209	unsigned int key_extra_size; /* additional keys length */
210	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
211
212	unsigned int integrity_tag_size;
213	unsigned int integrity_iv_size;
214	unsigned int on_disk_tag_size;
215
216	/*
217	 * pool for per bio private data, crypto requests,
218	 * encryption requeusts/buffer pages and integrity tags
219	 */
220	unsigned int tag_pool_max_sectors;
221	mempool_t tag_pool;
222	mempool_t req_pool;
223	mempool_t page_pool;
224
225	struct bio_set bs;
226	struct mutex bio_alloc_lock;
227
228	u8 *authenc_key; /* space for keys in authenc() format (if used) */
229	u8 key[] __counted_by(key_size);
230};
231
232#define MIN_IOS		64
233#define MAX_TAG_SIZE	480
234#define POOL_ENTRY_SIZE	512
235
236static DEFINE_SPINLOCK(dm_crypt_clients_lock);
237static unsigned int dm_crypt_clients_n;
238static volatile unsigned long dm_crypt_pages_per_client;
239#define DM_CRYPT_MEMORY_PERCENT			2
240#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
241
242static void crypt_endio(struct bio *clone);
243static void kcryptd_queue_crypt(struct dm_crypt_io *io);
244static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
245					     struct scatterlist *sg);
246
247static bool crypt_integrity_aead(struct crypt_config *cc);
248
249/*
250 * Use this to access cipher attributes that are independent of the key.
251 */
252static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
253{
254	return cc->cipher_tfm.tfms[0];
255}
256
257static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
258{
259	return cc->cipher_tfm.tfms_aead[0];
260}
261
262/*
263 * Different IV generation algorithms:
264 *
265 * plain: the initial vector is the 32-bit little-endian version of the sector
266 *        number, padded with zeros if necessary.
267 *
268 * plain64: the initial vector is the 64-bit little-endian version of the sector
269 *        number, padded with zeros if necessary.
270 *
271 * plain64be: the initial vector is the 64-bit big-endian version of the sector
272 *        number, padded with zeros if necessary.
273 *
274 * essiv: "encrypted sector|salt initial vector", the sector number is
275 *        encrypted with the bulk cipher using a salt as key. The salt
276 *        should be derived from the bulk cipher's key via hashing.
277 *
278 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
279 *        (needed for LRW-32-AES and possible other narrow block modes)
280 *
281 * null: the initial vector is always zero.  Provides compatibility with
282 *       obsolete loop_fish2 devices.  Do not use for new devices.
283 *
284 * lmk:  Compatible implementation of the block chaining mode used
285 *       by the Loop-AES block device encryption system
286 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
287 *       It operates on full 512 byte sectors and uses CBC
288 *       with an IV derived from the sector number, the data and
289 *       optionally extra IV seed.
290 *       This means that after decryption the first block
291 *       of sector must be tweaked according to decrypted data.
292 *       Loop-AES can use three encryption schemes:
293 *         version 1: is plain aes-cbc mode
294 *         version 2: uses 64 multikey scheme with lmk IV generator
295 *         version 3: the same as version 2 with additional IV seed
296 *                   (it uses 65 keys, last key is used as IV seed)
297 *
298 * tcw:  Compatible implementation of the block chaining mode used
299 *       by the TrueCrypt device encryption system (prior to version 4.1).
300 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
301 *       It operates on full 512 byte sectors and uses CBC
302 *       with an IV derived from initial key and the sector number.
303 *       In addition, whitening value is applied on every sector, whitening
304 *       is calculated from initial key, sector number and mixed using CRC32.
305 *       Note that this encryption scheme is vulnerable to watermarking attacks
306 *       and should be used for old compatible containers access only.
307 *
308 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
309 *        The IV is encrypted little-endian byte-offset (with the same key
310 *        and cipher as the volume).
311 *
312 * elephant: The extended version of eboiv with additional Elephant diffuser
313 *           used with Bitlocker CBC mode.
314 *           This mode was used in older Windows systems
315 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
316 */
317
318static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
319			      struct dm_crypt_request *dmreq)
320{
321	memset(iv, 0, cc->iv_size);
322	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
323
324	return 0;
325}
326
327static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
328				struct dm_crypt_request *dmreq)
329{
330	memset(iv, 0, cc->iv_size);
331	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
332
333	return 0;
334}
335
336static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
337				  struct dm_crypt_request *dmreq)
338{
339	memset(iv, 0, cc->iv_size);
340	/* iv_size is at least of size u64; usually it is 16 bytes */
341	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
342
343	return 0;
344}
345
346static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
347			      struct dm_crypt_request *dmreq)
348{
349	/*
350	 * ESSIV encryption of the IV is now handled by the crypto API,
351	 * so just pass the plain sector number here.
352	 */
353	memset(iv, 0, cc->iv_size);
354	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
355
356	return 0;
357}
358
359static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
360			      const char *opts)
361{
362	unsigned int bs;
363	int log;
364
365	if (crypt_integrity_aead(cc))
366		bs = crypto_aead_blocksize(any_tfm_aead(cc));
367	else
368		bs = crypto_skcipher_blocksize(any_tfm(cc));
369	log = ilog2(bs);
370
371	/*
372	 * We need to calculate how far we must shift the sector count
373	 * to get the cipher block count, we use this shift in _gen.
374	 */
375	if (1 << log != bs) {
376		ti->error = "cypher blocksize is not a power of 2";
377		return -EINVAL;
378	}
379
380	if (log > 9) {
381		ti->error = "cypher blocksize is > 512";
382		return -EINVAL;
383	}
384
385	cc->iv_gen_private.benbi.shift = 9 - log;
386
387	return 0;
388}
389
390static void crypt_iv_benbi_dtr(struct crypt_config *cc)
391{
392}
393
394static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
395			      struct dm_crypt_request *dmreq)
396{
397	__be64 val;
398
399	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
400
401	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
402	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
403
404	return 0;
405}
406
407static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
408			     struct dm_crypt_request *dmreq)
409{
410	memset(iv, 0, cc->iv_size);
411
412	return 0;
413}
414
415static void crypt_iv_lmk_dtr(struct crypt_config *cc)
416{
417	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
418
419	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
420		crypto_free_shash(lmk->hash_tfm);
421	lmk->hash_tfm = NULL;
422
423	kfree_sensitive(lmk->seed);
424	lmk->seed = NULL;
425}
426
427static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
428			    const char *opts)
429{
430	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
431
432	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
433		ti->error = "Unsupported sector size for LMK";
434		return -EINVAL;
435	}
436
437	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
438					   CRYPTO_ALG_ALLOCATES_MEMORY);
439	if (IS_ERR(lmk->hash_tfm)) {
440		ti->error = "Error initializing LMK hash";
441		return PTR_ERR(lmk->hash_tfm);
442	}
443
444	/* No seed in LMK version 2 */
445	if (cc->key_parts == cc->tfms_count) {
446		lmk->seed = NULL;
447		return 0;
448	}
449
450	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
451	if (!lmk->seed) {
452		crypt_iv_lmk_dtr(cc);
453		ti->error = "Error kmallocing seed storage in LMK";
454		return -ENOMEM;
455	}
456
457	return 0;
458}
459
460static int crypt_iv_lmk_init(struct crypt_config *cc)
461{
462	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463	int subkey_size = cc->key_size / cc->key_parts;
464
465	/* LMK seed is on the position of LMK_KEYS + 1 key */
466	if (lmk->seed)
467		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
468		       crypto_shash_digestsize(lmk->hash_tfm));
469
470	return 0;
471}
472
473static int crypt_iv_lmk_wipe(struct crypt_config *cc)
474{
475	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476
477	if (lmk->seed)
478		memset(lmk->seed, 0, LMK_SEED_SIZE);
479
480	return 0;
481}
482
483static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
484			    struct dm_crypt_request *dmreq,
485			    u8 *data)
486{
487	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
489	struct md5_state md5state;
490	__le32 buf[4];
491	int i, r;
492
493	desc->tfm = lmk->hash_tfm;
494
495	r = crypto_shash_init(desc);
496	if (r)
497		return r;
498
499	if (lmk->seed) {
500		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
501		if (r)
502			return r;
503	}
504
505	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
506	r = crypto_shash_update(desc, data + 16, 16 * 31);
507	if (r)
508		return r;
509
510	/* Sector is cropped to 56 bits here */
511	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
512	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
513	buf[2] = cpu_to_le32(4024);
514	buf[3] = 0;
515	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
516	if (r)
517		return r;
518
519	/* No MD5 padding here */
520	r = crypto_shash_export(desc, &md5state);
521	if (r)
522		return r;
523
524	for (i = 0; i < MD5_HASH_WORDS; i++)
525		__cpu_to_le32s(&md5state.hash[i]);
526	memcpy(iv, &md5state.hash, cc->iv_size);
527
528	return 0;
529}
530
531static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
532			    struct dm_crypt_request *dmreq)
533{
534	struct scatterlist *sg;
535	u8 *src;
536	int r = 0;
537
538	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
539		sg = crypt_get_sg_data(cc, dmreq->sg_in);
540		src = kmap_local_page(sg_page(sg));
541		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
542		kunmap_local(src);
543	} else
544		memset(iv, 0, cc->iv_size);
545
546	return r;
547}
548
549static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
550			     struct dm_crypt_request *dmreq)
551{
552	struct scatterlist *sg;
553	u8 *dst;
554	int r;
555
556	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
557		return 0;
558
559	sg = crypt_get_sg_data(cc, dmreq->sg_out);
560	dst = kmap_local_page(sg_page(sg));
561	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
562
563	/* Tweak the first block of plaintext sector */
564	if (!r)
565		crypto_xor(dst + sg->offset, iv, cc->iv_size);
566
567	kunmap_local(dst);
568	return r;
569}
570
571static void crypt_iv_tcw_dtr(struct crypt_config *cc)
572{
573	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
574
575	kfree_sensitive(tcw->iv_seed);
576	tcw->iv_seed = NULL;
577	kfree_sensitive(tcw->whitening);
578	tcw->whitening = NULL;
579
580	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
581		crypto_free_shash(tcw->crc32_tfm);
582	tcw->crc32_tfm = NULL;
583}
584
585static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
586			    const char *opts)
587{
588	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
589
590	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
591		ti->error = "Unsupported sector size for TCW";
592		return -EINVAL;
593	}
594
595	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
596		ti->error = "Wrong key size for TCW";
597		return -EINVAL;
598	}
599
600	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
601					    CRYPTO_ALG_ALLOCATES_MEMORY);
602	if (IS_ERR(tcw->crc32_tfm)) {
603		ti->error = "Error initializing CRC32 in TCW";
604		return PTR_ERR(tcw->crc32_tfm);
605	}
606
607	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
608	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
609	if (!tcw->iv_seed || !tcw->whitening) {
610		crypt_iv_tcw_dtr(cc);
611		ti->error = "Error allocating seed storage in TCW";
612		return -ENOMEM;
613	}
614
615	return 0;
616}
617
618static int crypt_iv_tcw_init(struct crypt_config *cc)
619{
620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
622
623	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
624	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
625	       TCW_WHITENING_SIZE);
626
627	return 0;
628}
629
630static int crypt_iv_tcw_wipe(struct crypt_config *cc)
631{
632	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633
634	memset(tcw->iv_seed, 0, cc->iv_size);
635	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
636
637	return 0;
638}
639
640static int crypt_iv_tcw_whitening(struct crypt_config *cc,
641				  struct dm_crypt_request *dmreq,
642				  u8 *data)
643{
644	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
645	__le64 sector = cpu_to_le64(dmreq->iv_sector);
646	u8 buf[TCW_WHITENING_SIZE];
647	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
648	int i, r;
649
650	/* xor whitening with sector number */
651	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
652	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
653
654	/* calculate crc32 for every 32bit part and xor it */
655	desc->tfm = tcw->crc32_tfm;
656	for (i = 0; i < 4; i++) {
657		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
658		if (r)
659			goto out;
660	}
661	crypto_xor(&buf[0], &buf[12], 4);
662	crypto_xor(&buf[4], &buf[8], 4);
663
664	/* apply whitening (8 bytes) to whole sector */
665	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
666		crypto_xor(data + i * 8, buf, 8);
667out:
668	memzero_explicit(buf, sizeof(buf));
669	return r;
670}
671
672static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
673			    struct dm_crypt_request *dmreq)
674{
675	struct scatterlist *sg;
676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677	__le64 sector = cpu_to_le64(dmreq->iv_sector);
678	u8 *src;
679	int r = 0;
680
681	/* Remove whitening from ciphertext */
682	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
683		sg = crypt_get_sg_data(cc, dmreq->sg_in);
684		src = kmap_local_page(sg_page(sg));
685		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
686		kunmap_local(src);
687	}
688
689	/* Calculate IV */
690	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
691	if (cc->iv_size > 8)
692		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
693			       cc->iv_size - 8);
694
695	return r;
696}
697
698static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
699			     struct dm_crypt_request *dmreq)
700{
701	struct scatterlist *sg;
702	u8 *dst;
703	int r;
704
705	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
706		return 0;
707
708	/* Apply whitening on ciphertext */
709	sg = crypt_get_sg_data(cc, dmreq->sg_out);
710	dst = kmap_local_page(sg_page(sg));
711	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
712	kunmap_local(dst);
713
714	return r;
715}
716
717static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
718				struct dm_crypt_request *dmreq)
719{
720	/* Used only for writes, there must be an additional space to store IV */
721	get_random_bytes(iv, cc->iv_size);
722	return 0;
723}
724
725static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
726			    const char *opts)
727{
728	if (crypt_integrity_aead(cc)) {
729		ti->error = "AEAD transforms not supported for EBOIV";
730		return -EINVAL;
731	}
732
733	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
734		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
735		return -EINVAL;
736	}
737
738	return 0;
739}
740
741static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
742			    struct dm_crypt_request *dmreq)
743{
744	struct crypto_skcipher *tfm = any_tfm(cc);
745	struct skcipher_request *req;
746	struct scatterlist src, dst;
747	DECLARE_CRYPTO_WAIT(wait);
748	unsigned int reqsize;
749	int err;
750	u8 *buf;
751
752	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
753	reqsize = ALIGN(reqsize, __alignof__(__le64));
754
755	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
756	if (!req)
757		return -ENOMEM;
758
759	skcipher_request_set_tfm(req, tfm);
760
761	buf = (u8 *)req + reqsize;
762	memset(buf, 0, cc->iv_size);
763	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
764
765	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
766	sg_init_one(&dst, iv, cc->iv_size);
767	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
768	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
769	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
770	kfree_sensitive(req);
771
772	return err;
773}
774
775static void crypt_iv_elephant_dtr(struct crypt_config *cc)
776{
777	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
778
779	crypto_free_skcipher(elephant->tfm);
780	elephant->tfm = NULL;
781}
782
783static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
784			    const char *opts)
785{
786	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
787	int r;
788
789	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
790					      CRYPTO_ALG_ALLOCATES_MEMORY);
791	if (IS_ERR(elephant->tfm)) {
792		r = PTR_ERR(elephant->tfm);
793		elephant->tfm = NULL;
794		return r;
795	}
796
797	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
798	if (r)
799		crypt_iv_elephant_dtr(cc);
800	return r;
801}
802
803static void diffuser_disk_to_cpu(u32 *d, size_t n)
804{
805#ifndef __LITTLE_ENDIAN
806	int i;
807
808	for (i = 0; i < n; i++)
809		d[i] = le32_to_cpu((__le32)d[i]);
810#endif
811}
812
813static void diffuser_cpu_to_disk(__le32 *d, size_t n)
814{
815#ifndef __LITTLE_ENDIAN
816	int i;
817
818	for (i = 0; i < n; i++)
819		d[i] = cpu_to_le32((u32)d[i]);
820#endif
821}
822
823static void diffuser_a_decrypt(u32 *d, size_t n)
824{
825	int i, i1, i2, i3;
826
827	for (i = 0; i < 5; i++) {
828		i1 = 0;
829		i2 = n - 2;
830		i3 = n - 5;
831
832		while (i1 < (n - 1)) {
833			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
834			i1++; i2++; i3++;
835
836			if (i3 >= n)
837				i3 -= n;
838
839			d[i1] += d[i2] ^ d[i3];
840			i1++; i2++; i3++;
841
842			if (i2 >= n)
843				i2 -= n;
844
845			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
846			i1++; i2++; i3++;
847
848			d[i1] += d[i2] ^ d[i3];
849			i1++; i2++; i3++;
850		}
851	}
852}
853
854static void diffuser_a_encrypt(u32 *d, size_t n)
855{
856	int i, i1, i2, i3;
857
858	for (i = 0; i < 5; i++) {
859		i1 = n - 1;
860		i2 = n - 2 - 1;
861		i3 = n - 5 - 1;
862
863		while (i1 > 0) {
864			d[i1] -= d[i2] ^ d[i3];
865			i1--; i2--; i3--;
866
867			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
868			i1--; i2--; i3--;
869
870			if (i2 < 0)
871				i2 += n;
872
873			d[i1] -= d[i2] ^ d[i3];
874			i1--; i2--; i3--;
875
876			if (i3 < 0)
877				i3 += n;
878
879			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
880			i1--; i2--; i3--;
881		}
882	}
883}
884
885static void diffuser_b_decrypt(u32 *d, size_t n)
886{
887	int i, i1, i2, i3;
888
889	for (i = 0; i < 3; i++) {
890		i1 = 0;
891		i2 = 2;
892		i3 = 5;
893
894		while (i1 < (n - 1)) {
895			d[i1] += d[i2] ^ d[i3];
896			i1++; i2++; i3++;
897
898			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
899			i1++; i2++; i3++;
900
901			if (i2 >= n)
902				i2 -= n;
903
904			d[i1] += d[i2] ^ d[i3];
905			i1++; i2++; i3++;
906
907			if (i3 >= n)
908				i3 -= n;
909
910			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
911			i1++; i2++; i3++;
912		}
913	}
914}
915
916static void diffuser_b_encrypt(u32 *d, size_t n)
917{
918	int i, i1, i2, i3;
919
920	for (i = 0; i < 3; i++) {
921		i1 = n - 1;
922		i2 = 2 - 1;
923		i3 = 5 - 1;
924
925		while (i1 > 0) {
926			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
927			i1--; i2--; i3--;
928
929			if (i3 < 0)
930				i3 += n;
931
932			d[i1] -= d[i2] ^ d[i3];
933			i1--; i2--; i3--;
934
935			if (i2 < 0)
936				i2 += n;
937
938			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
939			i1--; i2--; i3--;
940
941			d[i1] -= d[i2] ^ d[i3];
942			i1--; i2--; i3--;
943		}
944	}
945}
946
947static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
948{
949	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
950	u8 *es, *ks, *data, *data2, *data_offset;
951	struct skcipher_request *req;
952	struct scatterlist *sg, *sg2, src, dst;
953	DECLARE_CRYPTO_WAIT(wait);
954	int i, r;
955
956	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
957	es = kzalloc(16, GFP_NOIO); /* Key for AES */
958	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
959
960	if (!req || !es || !ks) {
961		r = -ENOMEM;
962		goto out;
963	}
964
965	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
966
967	/* E(Ks, e(s)) */
968	sg_init_one(&src, es, 16);
969	sg_init_one(&dst, ks, 16);
970	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
971	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
972	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
973	if (r)
974		goto out;
975
976	/* E(Ks, e'(s)) */
977	es[15] = 0x80;
978	sg_init_one(&dst, &ks[16], 16);
979	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
980	if (r)
981		goto out;
982
983	sg = crypt_get_sg_data(cc, dmreq->sg_out);
984	data = kmap_local_page(sg_page(sg));
985	data_offset = data + sg->offset;
986
987	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
988	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
989		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
990		data2 = kmap_local_page(sg_page(sg2));
991		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
992		kunmap_local(data2);
993	}
994
995	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
996		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
997		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
998		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
999		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1000	}
1001
1002	for (i = 0; i < (cc->sector_size / 32); i++)
1003		crypto_xor(data_offset + i * 32, ks, 32);
1004
1005	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010	}
1011
1012	kunmap_local(data);
1013out:
1014	kfree_sensitive(ks);
1015	kfree_sensitive(es);
1016	skcipher_request_free(req);
1017	return r;
1018}
1019
1020static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021			    struct dm_crypt_request *dmreq)
1022{
1023	int r;
1024
1025	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026		r = crypt_iv_elephant(cc, dmreq);
1027		if (r)
1028			return r;
1029	}
1030
1031	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032}
1033
1034static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035				  struct dm_crypt_request *dmreq)
1036{
1037	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038		return crypt_iv_elephant(cc, dmreq);
1039
1040	return 0;
1041}
1042
1043static int crypt_iv_elephant_init(struct crypt_config *cc)
1044{
1045	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046	int key_offset = cc->key_size - cc->key_extra_size;
1047
1048	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1049}
1050
1051static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052{
1053	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054	u8 key[ELEPHANT_MAX_KEY_SIZE];
1055
1056	memset(key, 0, cc->key_extra_size);
1057	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1058}
1059
1060static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061	.generator = crypt_iv_plain_gen
1062};
1063
1064static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065	.generator = crypt_iv_plain64_gen
1066};
1067
1068static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069	.generator = crypt_iv_plain64be_gen
1070};
1071
1072static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073	.generator = crypt_iv_essiv_gen
1074};
1075
1076static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077	.ctr	   = crypt_iv_benbi_ctr,
1078	.dtr	   = crypt_iv_benbi_dtr,
1079	.generator = crypt_iv_benbi_gen
1080};
1081
1082static const struct crypt_iv_operations crypt_iv_null_ops = {
1083	.generator = crypt_iv_null_gen
1084};
1085
1086static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087	.ctr	   = crypt_iv_lmk_ctr,
1088	.dtr	   = crypt_iv_lmk_dtr,
1089	.init	   = crypt_iv_lmk_init,
1090	.wipe	   = crypt_iv_lmk_wipe,
1091	.generator = crypt_iv_lmk_gen,
1092	.post	   = crypt_iv_lmk_post
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096	.ctr	   = crypt_iv_tcw_ctr,
1097	.dtr	   = crypt_iv_tcw_dtr,
1098	.init	   = crypt_iv_tcw_init,
1099	.wipe	   = crypt_iv_tcw_wipe,
1100	.generator = crypt_iv_tcw_gen,
1101	.post	   = crypt_iv_tcw_post
1102};
1103
1104static const struct crypt_iv_operations crypt_iv_random_ops = {
1105	.generator = crypt_iv_random_gen
1106};
1107
1108static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109	.ctr	   = crypt_iv_eboiv_ctr,
1110	.generator = crypt_iv_eboiv_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114	.ctr	   = crypt_iv_elephant_ctr,
1115	.dtr	   = crypt_iv_elephant_dtr,
1116	.init	   = crypt_iv_elephant_init,
1117	.wipe	   = crypt_iv_elephant_wipe,
1118	.generator = crypt_iv_elephant_gen,
1119	.post	   = crypt_iv_elephant_post
1120};
1121
1122/*
1123 * Integrity extensions
1124 */
1125static bool crypt_integrity_aead(struct crypt_config *cc)
1126{
1127	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128}
1129
1130static bool crypt_integrity_hmac(struct crypt_config *cc)
1131{
1132	return crypt_integrity_aead(cc) && cc->key_mac_size;
1133}
1134
1135/* Get sg containing data */
1136static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137					     struct scatterlist *sg)
1138{
1139	if (unlikely(crypt_integrity_aead(cc)))
1140		return &sg[2];
1141
1142	return sg;
1143}
1144
1145static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146{
1147	struct bio_integrity_payload *bip;
1148	unsigned int tag_len;
1149	int ret;
1150
1151	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152		return 0;
1153
1154	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155	if (IS_ERR(bip))
1156		return PTR_ERR(bip);
1157
1158	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159
1160	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161
1162	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163				     tag_len, offset_in_page(io->integrity_metadata));
1164	if (unlikely(ret != tag_len))
1165		return -ENOMEM;
1166
1167	return 0;
1168}
1169
1170static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171{
1172#ifdef CONFIG_BLK_DEV_INTEGRITY
1173	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1174	struct mapped_device *md = dm_table_get_md(ti->table);
1175
1176	/* From now we require underlying device with our integrity profile */
1177	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1178		ti->error = "Integrity profile not supported.";
1179		return -EINVAL;
1180	}
1181
1182	if (bi->tag_size != cc->on_disk_tag_size ||
1183	    bi->tuple_size != cc->on_disk_tag_size) {
1184		ti->error = "Integrity profile tag size mismatch.";
1185		return -EINVAL;
1186	}
1187	if (1 << bi->interval_exp != cc->sector_size) {
1188		ti->error = "Integrity profile sector size mismatch.";
1189		return -EINVAL;
1190	}
1191
1192	if (crypt_integrity_aead(cc)) {
1193		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195		       cc->integrity_tag_size, cc->integrity_iv_size);
1196
1197		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1198			ti->error = "Integrity AEAD auth tag size is not supported.";
1199			return -EINVAL;
1200		}
1201	} else if (cc->integrity_iv_size)
1202		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203		       cc->integrity_iv_size);
1204
1205	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206		ti->error = "Not enough space for integrity tag in the profile.";
1207		return -EINVAL;
1208	}
1209
1210	return 0;
1211#else
1212	ti->error = "Integrity profile not supported.";
1213	return -EINVAL;
1214#endif
1215}
1216
1217static void crypt_convert_init(struct crypt_config *cc,
1218			       struct convert_context *ctx,
1219			       struct bio *bio_out, struct bio *bio_in,
1220			       sector_t sector)
1221{
1222	ctx->bio_in = bio_in;
1223	ctx->bio_out = bio_out;
1224	if (bio_in)
1225		ctx->iter_in = bio_in->bi_iter;
1226	if (bio_out)
1227		ctx->iter_out = bio_out->bi_iter;
1228	ctx->cc_sector = sector + cc->iv_offset;
1229	init_completion(&ctx->restart);
1230}
1231
1232static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233					     void *req)
1234{
1235	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236}
1237
1238static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1239{
1240	return (void *)((char *)dmreq - cc->dmreq_start);
1241}
1242
1243static u8 *iv_of_dmreq(struct crypt_config *cc,
1244		       struct dm_crypt_request *dmreq)
1245{
1246	if (crypt_integrity_aead(cc))
1247		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249	else
1250		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252}
1253
1254static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255		       struct dm_crypt_request *dmreq)
1256{
1257	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258}
1259
1260static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261		       struct dm_crypt_request *dmreq)
1262{
1263	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264
1265	return (__le64 *) ptr;
1266}
1267
1268static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269		       struct dm_crypt_request *dmreq)
1270{
1271	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272		  cc->iv_size + sizeof(uint64_t);
1273
1274	return (unsigned int *)ptr;
1275}
1276
1277static void *tag_from_dmreq(struct crypt_config *cc,
1278				struct dm_crypt_request *dmreq)
1279{
1280	struct convert_context *ctx = dmreq->ctx;
1281	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282
1283	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284		cc->on_disk_tag_size];
1285}
1286
1287static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288			       struct dm_crypt_request *dmreq)
1289{
1290	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291}
1292
1293static int crypt_convert_block_aead(struct crypt_config *cc,
1294				     struct convert_context *ctx,
1295				     struct aead_request *req,
1296				     unsigned int tag_offset)
1297{
1298	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300	struct dm_crypt_request *dmreq;
1301	u8 *iv, *org_iv, *tag_iv, *tag;
1302	__le64 *sector;
1303	int r = 0;
1304
1305	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306
1307	/* Reject unexpected unaligned bio. */
1308	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309		return -EIO;
1310
1311	dmreq = dmreq_of_req(cc, req);
1312	dmreq->iv_sector = ctx->cc_sector;
1313	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314		dmreq->iv_sector >>= cc->sector_shift;
1315	dmreq->ctx = ctx;
1316
1317	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318
1319	sector = org_sector_of_dmreq(cc, dmreq);
1320	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321
1322	iv = iv_of_dmreq(cc, dmreq);
1323	org_iv = org_iv_of_dmreq(cc, dmreq);
1324	tag = tag_from_dmreq(cc, dmreq);
1325	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326
1327	/* AEAD request:
1328	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329	 *  | (authenticated) | (auth+encryption) |              |
1330	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1331	 */
1332	sg_init_table(dmreq->sg_in, 4);
1333	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1334	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1335	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1336	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1337
1338	sg_init_table(dmreq->sg_out, 4);
1339	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1340	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1341	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1342	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1343
1344	if (cc->iv_gen_ops) {
1345		/* For READs use IV stored in integrity metadata */
1346		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347			memcpy(org_iv, tag_iv, cc->iv_size);
1348		} else {
1349			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350			if (r < 0)
1351				return r;
1352			/* Store generated IV in integrity metadata */
1353			if (cc->integrity_iv_size)
1354				memcpy(tag_iv, org_iv, cc->iv_size);
1355		}
1356		/* Working copy of IV, to be modified in crypto API */
1357		memcpy(iv, org_iv, cc->iv_size);
1358	}
1359
1360	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1361	if (bio_data_dir(ctx->bio_in) == WRITE) {
1362		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1363				       cc->sector_size, iv);
1364		r = crypto_aead_encrypt(req);
1365		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368	} else {
1369		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1370				       cc->sector_size + cc->integrity_tag_size, iv);
1371		r = crypto_aead_decrypt(req);
1372	}
1373
1374	if (r == -EBADMSG) {
1375		sector_t s = le64_to_cpu(*sector);
1376
1377		ctx->aead_failed = true;
1378		if (ctx->aead_recheck) {
1379			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380				    ctx->bio_in->bi_bdev, s);
1381			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382					 ctx->bio_in, s, 0);
1383		}
1384	}
1385
1386	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388
1389	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1390	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1391
1392	return r;
1393}
1394
1395static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396					struct convert_context *ctx,
1397					struct skcipher_request *req,
1398					unsigned int tag_offset)
1399{
1400	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402	struct scatterlist *sg_in, *sg_out;
1403	struct dm_crypt_request *dmreq;
1404	u8 *iv, *org_iv, *tag_iv;
1405	__le64 *sector;
1406	int r = 0;
1407
1408	/* Reject unexpected unaligned bio. */
1409	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410		return -EIO;
1411
1412	dmreq = dmreq_of_req(cc, req);
1413	dmreq->iv_sector = ctx->cc_sector;
1414	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415		dmreq->iv_sector >>= cc->sector_shift;
1416	dmreq->ctx = ctx;
1417
1418	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419
1420	iv = iv_of_dmreq(cc, dmreq);
1421	org_iv = org_iv_of_dmreq(cc, dmreq);
1422	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423
1424	sector = org_sector_of_dmreq(cc, dmreq);
1425	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426
1427	/* For skcipher we use only the first sg item */
1428	sg_in  = &dmreq->sg_in[0];
1429	sg_out = &dmreq->sg_out[0];
1430
1431	sg_init_table(sg_in, 1);
1432	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1433
1434	sg_init_table(sg_out, 1);
1435	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1436
1437	if (cc->iv_gen_ops) {
1438		/* For READs use IV stored in integrity metadata */
1439		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441		} else {
1442			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443			if (r < 0)
1444				return r;
1445			/* Data can be already preprocessed in generator */
1446			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447				sg_in = sg_out;
1448			/* Store generated IV in integrity metadata */
1449			if (cc->integrity_iv_size)
1450				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451		}
1452		/* Working copy of IV, to be modified in crypto API */
1453		memcpy(iv, org_iv, cc->iv_size);
1454	}
1455
1456	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1457
1458	if (bio_data_dir(ctx->bio_in) == WRITE)
1459		r = crypto_skcipher_encrypt(req);
1460	else
1461		r = crypto_skcipher_decrypt(req);
1462
1463	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465
1466	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1467	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1468
1469	return r;
1470}
1471
1472static void kcryptd_async_done(void *async_req, int error);
1473
1474static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475				     struct convert_context *ctx)
1476{
1477	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478
1479	if (!ctx->r.req) {
1480		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481		if (!ctx->r.req)
1482			return -ENOMEM;
1483	}
1484
1485	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1486
1487	/*
1488	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489	 * requests if driver request queue is full.
1490	 */
1491	skcipher_request_set_callback(ctx->r.req,
1492	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1493	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1494
1495	return 0;
1496}
1497
1498static int crypt_alloc_req_aead(struct crypt_config *cc,
1499				 struct convert_context *ctx)
1500{
1501	if (!ctx->r.req_aead) {
1502		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503		if (!ctx->r.req_aead)
1504			return -ENOMEM;
1505	}
1506
1507	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1508
1509	/*
1510	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511	 * requests if driver request queue is full.
1512	 */
1513	aead_request_set_callback(ctx->r.req_aead,
1514	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1515	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1516
1517	return 0;
1518}
1519
1520static int crypt_alloc_req(struct crypt_config *cc,
1521			    struct convert_context *ctx)
1522{
1523	if (crypt_integrity_aead(cc))
1524		return crypt_alloc_req_aead(cc, ctx);
1525	else
1526		return crypt_alloc_req_skcipher(cc, ctx);
1527}
1528
1529static void crypt_free_req_skcipher(struct crypt_config *cc,
1530				    struct skcipher_request *req, struct bio *base_bio)
1531{
1532	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1533
1534	if ((struct skcipher_request *)(io + 1) != req)
1535		mempool_free(req, &cc->req_pool);
1536}
1537
1538static void crypt_free_req_aead(struct crypt_config *cc,
1539				struct aead_request *req, struct bio *base_bio)
1540{
1541	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1542
1543	if ((struct aead_request *)(io + 1) != req)
1544		mempool_free(req, &cc->req_pool);
1545}
1546
1547static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548{
1549	if (crypt_integrity_aead(cc))
1550		crypt_free_req_aead(cc, req, base_bio);
1551	else
1552		crypt_free_req_skcipher(cc, req, base_bio);
1553}
1554
1555/*
1556 * Encrypt / decrypt data from one bio to another one (can be the same one)
1557 */
1558static blk_status_t crypt_convert(struct crypt_config *cc,
1559			 struct convert_context *ctx, bool atomic, bool reset_pending)
1560{
1561	unsigned int tag_offset = 0;
1562	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563	int r;
1564
1565	/*
1566	 * if reset_pending is set we are dealing with the bio for the first time,
1567	 * else we're continuing to work on the previous bio, so don't mess with
1568	 * the cc_pending counter
1569	 */
1570	if (reset_pending)
1571		atomic_set(&ctx->cc_pending, 1);
1572
1573	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1574
1575		r = crypt_alloc_req(cc, ctx);
1576		if (r) {
1577			complete(&ctx->restart);
1578			return BLK_STS_DEV_RESOURCE;
1579		}
1580
1581		atomic_inc(&ctx->cc_pending);
1582
1583		if (crypt_integrity_aead(cc))
1584			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1585		else
1586			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1587
1588		switch (r) {
1589		/*
1590		 * The request was queued by a crypto driver
1591		 * but the driver request queue is full, let's wait.
1592		 */
1593		case -EBUSY:
1594			if (in_interrupt()) {
1595				if (try_wait_for_completion(&ctx->restart)) {
1596					/*
1597					 * we don't have to block to wait for completion,
1598					 * so proceed
1599					 */
1600				} else {
1601					/*
1602					 * we can't wait for completion without blocking
1603					 * exit and continue processing in a workqueue
1604					 */
1605					ctx->r.req = NULL;
1606					ctx->cc_sector += sector_step;
1607					tag_offset++;
1608					return BLK_STS_DEV_RESOURCE;
1609				}
1610			} else {
1611				wait_for_completion(&ctx->restart);
1612			}
1613			reinit_completion(&ctx->restart);
1614			fallthrough;
1615		/*
1616		 * The request is queued and processed asynchronously,
1617		 * completion function kcryptd_async_done() will be called.
1618		 */
1619		case -EINPROGRESS:
1620			ctx->r.req = NULL;
1621			ctx->cc_sector += sector_step;
1622			tag_offset++;
1623			continue;
1624		/*
1625		 * The request was already processed (synchronously).
1626		 */
1627		case 0:
1628			atomic_dec(&ctx->cc_pending);
1629			ctx->cc_sector += sector_step;
1630			tag_offset++;
1631			if (!atomic)
1632				cond_resched();
1633			continue;
1634		/*
1635		 * There was a data integrity error.
1636		 */
1637		case -EBADMSG:
1638			atomic_dec(&ctx->cc_pending);
1639			return BLK_STS_PROTECTION;
1640		/*
1641		 * There was an error while processing the request.
1642		 */
1643		default:
1644			atomic_dec(&ctx->cc_pending);
1645			return BLK_STS_IOERR;
1646		}
1647	}
1648
1649	return 0;
1650}
1651
1652static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1653
1654/*
1655 * Generate a new unfragmented bio with the given size
1656 * This should never violate the device limitations (but only because
1657 * max_segment_size is being constrained to PAGE_SIZE).
1658 *
1659 * This function may be called concurrently. If we allocate from the mempool
1660 * concurrently, there is a possibility of deadlock. For example, if we have
1661 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662 * the mempool concurrently, it may deadlock in a situation where both processes
1663 * have allocated 128 pages and the mempool is exhausted.
1664 *
1665 * In order to avoid this scenario we allocate the pages under a mutex.
1666 *
1667 * In order to not degrade performance with excessive locking, we try
1668 * non-blocking allocations without a mutex first but on failure we fallback
1669 * to blocking allocations with a mutex.
1670 *
1671 * In order to reduce allocation overhead, we try to allocate compound pages in
1672 * the first pass. If they are not available, we fall back to the mempool.
1673 */
1674static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1675{
1676	struct crypt_config *cc = io->cc;
1677	struct bio *clone;
1678	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680	unsigned int remaining_size;
1681	unsigned int order = MAX_PAGE_ORDER;
1682
1683retry:
1684	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685		mutex_lock(&cc->bio_alloc_lock);
1686
1687	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1688				 GFP_NOIO, &cc->bs);
1689	clone->bi_private = io;
1690	clone->bi_end_io = crypt_endio;
1691	clone->bi_ioprio = io->base_bio->bi_ioprio;
1692
1693	remaining_size = size;
1694
1695	while (remaining_size) {
1696		struct page *pages;
1697		unsigned size_to_add;
1698		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1699		order = min(order, remaining_order);
1700
1701		while (order > 0) {
1702			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1703					(1 << order) > dm_crypt_pages_per_client))
1704				goto decrease_order;
1705			pages = alloc_pages(gfp_mask
1706				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1707				order);
1708			if (likely(pages != NULL)) {
1709				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1710				goto have_pages;
1711			}
1712decrease_order:
1713			order--;
1714		}
1715
1716		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1717		if (!pages) {
1718			crypt_free_buffer_pages(cc, clone);
1719			bio_put(clone);
1720			gfp_mask |= __GFP_DIRECT_RECLAIM;
1721			order = 0;
1722			goto retry;
1723		}
1724
1725have_pages:
1726		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1727		__bio_add_page(clone, pages, size_to_add, 0);
1728		remaining_size -= size_to_add;
1729	}
1730
1731	/* Allocate space for integrity tags */
1732	if (dm_crypt_integrity_io_alloc(io, clone)) {
1733		crypt_free_buffer_pages(cc, clone);
1734		bio_put(clone);
1735		clone = NULL;
1736	}
1737
1738	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1739		mutex_unlock(&cc->bio_alloc_lock);
1740
1741	return clone;
1742}
1743
1744static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1745{
1746	struct folio_iter fi;
1747
1748	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1749		bio_for_each_folio_all(fi, clone) {
1750			if (folio_test_large(fi.folio)) {
1751				percpu_counter_sub(&cc->n_allocated_pages,
1752						1 << folio_order(fi.folio));
1753				folio_put(fi.folio);
1754			} else {
1755				mempool_free(&fi.folio->page, &cc->page_pool);
1756			}
1757		}
1758	}
1759}
1760
1761static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1762			  struct bio *bio, sector_t sector)
1763{
1764	io->cc = cc;
1765	io->base_bio = bio;
1766	io->sector = sector;
1767	io->error = 0;
1768	io->ctx.aead_recheck = false;
1769	io->ctx.aead_failed = false;
1770	io->ctx.r.req = NULL;
1771	io->integrity_metadata = NULL;
1772	io->integrity_metadata_from_pool = false;
1773	atomic_set(&io->io_pending, 0);
1774}
1775
1776static void crypt_inc_pending(struct dm_crypt_io *io)
1777{
1778	atomic_inc(&io->io_pending);
1779}
1780
1781static void kcryptd_queue_read(struct dm_crypt_io *io);
1782
1783/*
1784 * One of the bios was finished. Check for completion of
1785 * the whole request and correctly clean up the buffer.
1786 */
1787static void crypt_dec_pending(struct dm_crypt_io *io)
1788{
1789	struct crypt_config *cc = io->cc;
1790	struct bio *base_bio = io->base_bio;
1791	blk_status_t error = io->error;
1792
1793	if (!atomic_dec_and_test(&io->io_pending))
1794		return;
1795
1796	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1797	    cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1798		io->ctx.aead_recheck = true;
1799		io->ctx.aead_failed = false;
1800		io->error = 0;
1801		kcryptd_queue_read(io);
1802		return;
1803	}
1804
1805	if (io->ctx.r.req)
1806		crypt_free_req(cc, io->ctx.r.req, base_bio);
1807
1808	if (unlikely(io->integrity_metadata_from_pool))
1809		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1810	else
1811		kfree(io->integrity_metadata);
1812
1813	base_bio->bi_status = error;
1814
1815	bio_endio(base_bio);
1816}
1817
1818/*
1819 * kcryptd/kcryptd_io:
1820 *
1821 * Needed because it would be very unwise to do decryption in an
1822 * interrupt context.
1823 *
1824 * kcryptd performs the actual encryption or decryption.
1825 *
1826 * kcryptd_io performs the IO submission.
1827 *
1828 * They must be separated as otherwise the final stages could be
1829 * starved by new requests which can block in the first stages due
1830 * to memory allocation.
1831 *
1832 * The work is done per CPU global for all dm-crypt instances.
1833 * They should not depend on each other and do not block.
1834 */
1835static void crypt_endio(struct bio *clone)
1836{
1837	struct dm_crypt_io *io = clone->bi_private;
1838	struct crypt_config *cc = io->cc;
1839	unsigned int rw = bio_data_dir(clone);
1840	blk_status_t error = clone->bi_status;
1841
1842	if (io->ctx.aead_recheck && !error) {
1843		kcryptd_queue_crypt(io);
1844		return;
1845	}
1846
1847	/*
1848	 * free the processed pages
1849	 */
1850	if (rw == WRITE || io->ctx.aead_recheck)
1851		crypt_free_buffer_pages(cc, clone);
1852
1853	bio_put(clone);
1854
1855	if (rw == READ && !error) {
1856		kcryptd_queue_crypt(io);
1857		return;
1858	}
1859
1860	if (unlikely(error))
1861		io->error = error;
1862
1863	crypt_dec_pending(io);
1864}
1865
1866#define CRYPT_MAP_READ_GFP GFP_NOWAIT
1867
1868static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1869{
1870	struct crypt_config *cc = io->cc;
1871	struct bio *clone;
1872
1873	if (io->ctx.aead_recheck) {
1874		if (!(gfp & __GFP_DIRECT_RECLAIM))
1875			return 1;
1876		crypt_inc_pending(io);
1877		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1878		if (unlikely(!clone)) {
1879			crypt_dec_pending(io);
1880			return 1;
1881		}
1882		clone->bi_iter.bi_sector = cc->start + io->sector;
1883		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1884		io->saved_bi_iter = clone->bi_iter;
1885		dm_submit_bio_remap(io->base_bio, clone);
1886		return 0;
1887	}
1888
1889	/*
1890	 * We need the original biovec array in order to decrypt the whole bio
1891	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1892	 * worry about the block layer modifying the biovec array; so leverage
1893	 * bio_alloc_clone().
1894	 */
1895	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1896	if (!clone)
1897		return 1;
1898	clone->bi_private = io;
1899	clone->bi_end_io = crypt_endio;
1900
1901	crypt_inc_pending(io);
1902
1903	clone->bi_iter.bi_sector = cc->start + io->sector;
1904
1905	if (dm_crypt_integrity_io_alloc(io, clone)) {
1906		crypt_dec_pending(io);
1907		bio_put(clone);
1908		return 1;
1909	}
1910
1911	dm_submit_bio_remap(io->base_bio, clone);
1912	return 0;
1913}
1914
1915static void kcryptd_io_read_work(struct work_struct *work)
1916{
1917	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1918
1919	crypt_inc_pending(io);
1920	if (kcryptd_io_read(io, GFP_NOIO))
1921		io->error = BLK_STS_RESOURCE;
1922	crypt_dec_pending(io);
1923}
1924
1925static void kcryptd_queue_read(struct dm_crypt_io *io)
1926{
1927	struct crypt_config *cc = io->cc;
1928
1929	INIT_WORK(&io->work, kcryptd_io_read_work);
1930	queue_work(cc->io_queue, &io->work);
1931}
1932
1933static void kcryptd_io_write(struct dm_crypt_io *io)
1934{
1935	struct bio *clone = io->ctx.bio_out;
1936
1937	dm_submit_bio_remap(io->base_bio, clone);
1938}
1939
1940#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1941
1942static int dmcrypt_write(void *data)
1943{
1944	struct crypt_config *cc = data;
1945	struct dm_crypt_io *io;
1946
1947	while (1) {
1948		struct rb_root write_tree;
1949		struct blk_plug plug;
1950
1951		spin_lock_irq(&cc->write_thread_lock);
1952continue_locked:
1953
1954		if (!RB_EMPTY_ROOT(&cc->write_tree))
1955			goto pop_from_list;
1956
1957		set_current_state(TASK_INTERRUPTIBLE);
1958
1959		spin_unlock_irq(&cc->write_thread_lock);
1960
1961		if (unlikely(kthread_should_stop())) {
1962			set_current_state(TASK_RUNNING);
1963			break;
1964		}
1965
1966		schedule();
1967
1968		spin_lock_irq(&cc->write_thread_lock);
1969		goto continue_locked;
1970
1971pop_from_list:
1972		write_tree = cc->write_tree;
1973		cc->write_tree = RB_ROOT;
1974		spin_unlock_irq(&cc->write_thread_lock);
1975
1976		BUG_ON(rb_parent(write_tree.rb_node));
1977
1978		/*
1979		 * Note: we cannot walk the tree here with rb_next because
1980		 * the structures may be freed when kcryptd_io_write is called.
1981		 */
1982		blk_start_plug(&plug);
1983		do {
1984			io = crypt_io_from_node(rb_first(&write_tree));
1985			rb_erase(&io->rb_node, &write_tree);
1986			kcryptd_io_write(io);
1987			cond_resched();
1988		} while (!RB_EMPTY_ROOT(&write_tree));
1989		blk_finish_plug(&plug);
1990	}
1991	return 0;
1992}
1993
1994static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995{
1996	struct bio *clone = io->ctx.bio_out;
1997	struct crypt_config *cc = io->cc;
1998	unsigned long flags;
1999	sector_t sector;
2000	struct rb_node **rbp, *parent;
2001
2002	if (unlikely(io->error)) {
2003		crypt_free_buffer_pages(cc, clone);
2004		bio_put(clone);
2005		crypt_dec_pending(io);
2006		return;
2007	}
2008
2009	/* crypt_convert should have filled the clone bio */
2010	BUG_ON(io->ctx.iter_out.bi_size);
2011
2012	clone->bi_iter.bi_sector = cc->start + io->sector;
2013
2014	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016		dm_submit_bio_remap(io->base_bio, clone);
2017		return;
2018	}
2019
2020	spin_lock_irqsave(&cc->write_thread_lock, flags);
2021	if (RB_EMPTY_ROOT(&cc->write_tree))
2022		wake_up_process(cc->write_thread);
2023	rbp = &cc->write_tree.rb_node;
2024	parent = NULL;
2025	sector = io->sector;
2026	while (*rbp) {
2027		parent = *rbp;
2028		if (sector < crypt_io_from_node(parent)->sector)
2029			rbp = &(*rbp)->rb_left;
2030		else
2031			rbp = &(*rbp)->rb_right;
2032	}
2033	rb_link_node(&io->rb_node, parent, rbp);
2034	rb_insert_color(&io->rb_node, &cc->write_tree);
2035	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2036}
2037
2038static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039				       struct convert_context *ctx)
2040
2041{
2042	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043		return false;
2044
2045	/*
2046	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047	 * constraints so they do not need to be issued inline by
2048	 * kcryptd_crypt_write_convert().
2049	 */
2050	switch (bio_op(ctx->bio_in)) {
2051	case REQ_OP_WRITE:
2052	case REQ_OP_WRITE_ZEROES:
2053		return true;
2054	default:
2055		return false;
2056	}
2057}
2058
2059static void kcryptd_crypt_write_continue(struct work_struct *work)
2060{
2061	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062	struct crypt_config *cc = io->cc;
2063	struct convert_context *ctx = &io->ctx;
2064	int crypt_finished;
2065	sector_t sector = io->sector;
2066	blk_status_t r;
2067
2068	wait_for_completion(&ctx->restart);
2069	reinit_completion(&ctx->restart);
2070
2071	r = crypt_convert(cc, &io->ctx, true, false);
2072	if (r)
2073		io->error = r;
2074	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2075	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076		/* Wait for completion signaled by kcryptd_async_done() */
2077		wait_for_completion(&ctx->restart);
2078		crypt_finished = 1;
2079	}
2080
2081	/* Encryption was already finished, submit io now */
2082	if (crypt_finished) {
2083		kcryptd_crypt_write_io_submit(io, 0);
2084		io->sector = sector;
2085	}
2086
2087	crypt_dec_pending(io);
2088}
2089
2090static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091{
2092	struct crypt_config *cc = io->cc;
2093	struct convert_context *ctx = &io->ctx;
2094	struct bio *clone;
2095	int crypt_finished;
2096	sector_t sector = io->sector;
2097	blk_status_t r;
2098
2099	/*
2100	 * Prevent io from disappearing until this function completes.
2101	 */
2102	crypt_inc_pending(io);
2103	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2104
2105	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2106	if (unlikely(!clone)) {
2107		io->error = BLK_STS_IOERR;
2108		goto dec;
2109	}
2110
2111	io->ctx.bio_out = clone;
2112	io->ctx.iter_out = clone->bi_iter;
2113
2114	if (crypt_integrity_aead(cc)) {
2115		bio_copy_data(clone, io->base_bio);
2116		io->ctx.bio_in = clone;
2117		io->ctx.iter_in = clone->bi_iter;
2118	}
2119
2120	sector += bio_sectors(clone);
2121
2122	crypt_inc_pending(io);
2123	r = crypt_convert(cc, ctx,
2124			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2125	/*
2126	 * Crypto API backlogged the request, because its queue was full
2127	 * and we're in softirq context, so continue from a workqueue
2128	 * (TODO: is it actually possible to be in softirq in the write path?)
2129	 */
2130	if (r == BLK_STS_DEV_RESOURCE) {
2131		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132		queue_work(cc->crypt_queue, &io->work);
2133		return;
2134	}
2135	if (r)
2136		io->error = r;
2137	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2138	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139		/* Wait for completion signaled by kcryptd_async_done() */
2140		wait_for_completion(&ctx->restart);
2141		crypt_finished = 1;
2142	}
2143
2144	/* Encryption was already finished, submit io now */
2145	if (crypt_finished) {
2146		kcryptd_crypt_write_io_submit(io, 0);
2147		io->sector = sector;
2148	}
2149
2150dec:
2151	crypt_dec_pending(io);
2152}
2153
2154static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155{
2156	if (io->ctx.aead_recheck) {
2157		if (!io->error) {
2158			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159			bio_copy_data(io->base_bio, io->ctx.bio_in);
2160		}
2161		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162		bio_put(io->ctx.bio_in);
2163	}
2164	crypt_dec_pending(io);
2165}
2166
2167static void kcryptd_crypt_read_continue(struct work_struct *work)
2168{
2169	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170	struct crypt_config *cc = io->cc;
2171	blk_status_t r;
2172
2173	wait_for_completion(&io->ctx.restart);
2174	reinit_completion(&io->ctx.restart);
2175
2176	r = crypt_convert(cc, &io->ctx, true, false);
2177	if (r)
2178		io->error = r;
2179
2180	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181		kcryptd_crypt_read_done(io);
2182
2183	crypt_dec_pending(io);
2184}
2185
2186static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187{
2188	struct crypt_config *cc = io->cc;
2189	blk_status_t r;
2190
2191	crypt_inc_pending(io);
2192
2193	if (io->ctx.aead_recheck) {
2194		io->ctx.cc_sector = io->sector + cc->iv_offset;
2195		r = crypt_convert(cc, &io->ctx,
2196				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2197	} else {
2198		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2199				   io->sector);
2200
2201		r = crypt_convert(cc, &io->ctx,
2202				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203	}
2204	/*
2205	 * Crypto API backlogged the request, because its queue was full
2206	 * and we're in softirq context, so continue from a workqueue
2207	 */
2208	if (r == BLK_STS_DEV_RESOURCE) {
2209		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210		queue_work(cc->crypt_queue, &io->work);
2211		return;
2212	}
2213	if (r)
2214		io->error = r;
2215
2216	if (atomic_dec_and_test(&io->ctx.cc_pending))
2217		kcryptd_crypt_read_done(io);
2218
2219	crypt_dec_pending(io);
2220}
2221
2222static void kcryptd_async_done(void *data, int error)
2223{
2224	struct dm_crypt_request *dmreq = data;
2225	struct convert_context *ctx = dmreq->ctx;
2226	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227	struct crypt_config *cc = io->cc;
2228
2229	/*
2230	 * A request from crypto driver backlog is going to be processed now,
2231	 * finish the completion and continue in crypt_convert().
2232	 * (Callback will be called for the second time for this request.)
2233	 */
2234	if (error == -EINPROGRESS) {
2235		complete(&ctx->restart);
2236		return;
2237	}
2238
2239	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241
2242	if (error == -EBADMSG) {
2243		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244
2245		ctx->aead_failed = true;
2246		if (ctx->aead_recheck) {
2247			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248				    ctx->bio_in->bi_bdev, s);
2249			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2250					 ctx->bio_in, s, 0);
2251		}
2252		io->error = BLK_STS_PROTECTION;
2253	} else if (error < 0)
2254		io->error = BLK_STS_IOERR;
2255
2256	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2257
2258	if (!atomic_dec_and_test(&ctx->cc_pending))
2259		return;
2260
2261	/*
2262	 * The request is fully completed: for inline writes, let
2263	 * kcryptd_crypt_write_convert() do the IO submission.
2264	 */
2265	if (bio_data_dir(io->base_bio) == READ) {
2266		kcryptd_crypt_read_done(io);
2267		return;
2268	}
2269
2270	if (kcryptd_crypt_write_inline(cc, ctx)) {
2271		complete(&ctx->restart);
2272		return;
2273	}
2274
2275	kcryptd_crypt_write_io_submit(io, 1);
2276}
2277
2278static void kcryptd_crypt(struct work_struct *work)
2279{
2280	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281
2282	if (bio_data_dir(io->base_bio) == READ)
2283		kcryptd_crypt_read_convert(io);
2284	else
2285		kcryptd_crypt_write_convert(io);
2286}
2287
2288static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289{
2290	struct crypt_config *cc = io->cc;
2291
2292	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294		/*
2295		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297		 * it is being executed with irqs disabled.
2298		 */
2299		if (in_hardirq() || irqs_disabled()) {
2300			INIT_WORK(&io->work, kcryptd_crypt);
2301			queue_work(system_bh_wq, &io->work);
2302			return;
2303		} else {
2304			kcryptd_crypt(&io->work);
2305			return;
2306		}
2307	}
2308
2309	INIT_WORK(&io->work, kcryptd_crypt);
2310	queue_work(cc->crypt_queue, &io->work);
2311}
2312
2313static void crypt_free_tfms_aead(struct crypt_config *cc)
2314{
2315	if (!cc->cipher_tfm.tfms_aead)
2316		return;
2317
2318	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2319		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2320		cc->cipher_tfm.tfms_aead[0] = NULL;
2321	}
2322
2323	kfree(cc->cipher_tfm.tfms_aead);
2324	cc->cipher_tfm.tfms_aead = NULL;
2325}
2326
2327static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2328{
2329	unsigned int i;
2330
2331	if (!cc->cipher_tfm.tfms)
2332		return;
2333
2334	for (i = 0; i < cc->tfms_count; i++)
2335		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2336			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2337			cc->cipher_tfm.tfms[i] = NULL;
2338		}
2339
2340	kfree(cc->cipher_tfm.tfms);
2341	cc->cipher_tfm.tfms = NULL;
2342}
2343
2344static void crypt_free_tfms(struct crypt_config *cc)
2345{
2346	if (crypt_integrity_aead(cc))
2347		crypt_free_tfms_aead(cc);
2348	else
2349		crypt_free_tfms_skcipher(cc);
2350}
2351
2352static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2353{
2354	unsigned int i;
2355	int err;
2356
2357	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2358				      sizeof(struct crypto_skcipher *),
2359				      GFP_KERNEL);
2360	if (!cc->cipher_tfm.tfms)
2361		return -ENOMEM;
2362
2363	for (i = 0; i < cc->tfms_count; i++) {
2364		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2365						CRYPTO_ALG_ALLOCATES_MEMORY);
2366		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2367			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2368			crypt_free_tfms(cc);
2369			return err;
2370		}
2371	}
2372
2373	/*
2374	 * dm-crypt performance can vary greatly depending on which crypto
2375	 * algorithm implementation is used.  Help people debug performance
2376	 * problems by logging the ->cra_driver_name.
2377	 */
2378	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2379	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2380	return 0;
2381}
2382
2383static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2384{
2385	int err;
2386
2387	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2388	if (!cc->cipher_tfm.tfms)
2389		return -ENOMEM;
2390
2391	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2392						CRYPTO_ALG_ALLOCATES_MEMORY);
2393	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2394		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2395		crypt_free_tfms(cc);
2396		return err;
2397	}
2398
2399	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2400	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2401	return 0;
2402}
2403
2404static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2405{
2406	if (crypt_integrity_aead(cc))
2407		return crypt_alloc_tfms_aead(cc, ciphermode);
2408	else
2409		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2410}
2411
2412static unsigned int crypt_subkey_size(struct crypt_config *cc)
2413{
2414	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2415}
2416
2417static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2418{
2419	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2420}
2421
2422/*
2423 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2424 * the key must be for some reason in special format.
2425 * This funcion converts cc->key to this special format.
2426 */
2427static void crypt_copy_authenckey(char *p, const void *key,
2428				  unsigned int enckeylen, unsigned int authkeylen)
2429{
2430	struct crypto_authenc_key_param *param;
2431	struct rtattr *rta;
2432
2433	rta = (struct rtattr *)p;
2434	param = RTA_DATA(rta);
2435	param->enckeylen = cpu_to_be32(enckeylen);
2436	rta->rta_len = RTA_LENGTH(sizeof(*param));
2437	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2438	p += RTA_SPACE(sizeof(*param));
2439	memcpy(p, key + enckeylen, authkeylen);
2440	p += authkeylen;
2441	memcpy(p, key, enckeylen);
2442}
2443
2444static int crypt_setkey(struct crypt_config *cc)
2445{
2446	unsigned int subkey_size;
2447	int err = 0, i, r;
2448
2449	/* Ignore extra keys (which are used for IV etc) */
2450	subkey_size = crypt_subkey_size(cc);
2451
2452	if (crypt_integrity_hmac(cc)) {
2453		if (subkey_size < cc->key_mac_size)
2454			return -EINVAL;
2455
2456		crypt_copy_authenckey(cc->authenc_key, cc->key,
2457				      subkey_size - cc->key_mac_size,
2458				      cc->key_mac_size);
2459	}
2460
2461	for (i = 0; i < cc->tfms_count; i++) {
2462		if (crypt_integrity_hmac(cc))
2463			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2464				cc->authenc_key, crypt_authenckey_size(cc));
2465		else if (crypt_integrity_aead(cc))
2466			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2467					       cc->key + (i * subkey_size),
2468					       subkey_size);
2469		else
2470			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2471						   cc->key + (i * subkey_size),
2472						   subkey_size);
2473		if (r)
2474			err = r;
2475	}
2476
2477	if (crypt_integrity_hmac(cc))
2478		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2479
2480	return err;
2481}
2482
2483#ifdef CONFIG_KEYS
2484
2485static bool contains_whitespace(const char *str)
2486{
2487	while (*str)
2488		if (isspace(*str++))
2489			return true;
2490	return false;
2491}
2492
2493static int set_key_user(struct crypt_config *cc, struct key *key)
2494{
2495	const struct user_key_payload *ukp;
2496
2497	ukp = user_key_payload_locked(key);
2498	if (!ukp)
2499		return -EKEYREVOKED;
2500
2501	if (cc->key_size != ukp->datalen)
2502		return -EINVAL;
2503
2504	memcpy(cc->key, ukp->data, cc->key_size);
2505
2506	return 0;
2507}
2508
2509static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2510{
2511	const struct encrypted_key_payload *ekp;
2512
2513	ekp = key->payload.data[0];
2514	if (!ekp)
2515		return -EKEYREVOKED;
2516
2517	if (cc->key_size != ekp->decrypted_datalen)
2518		return -EINVAL;
2519
2520	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2521
2522	return 0;
2523}
2524
2525static int set_key_trusted(struct crypt_config *cc, struct key *key)
2526{
2527	const struct trusted_key_payload *tkp;
2528
2529	tkp = key->payload.data[0];
2530	if (!tkp)
2531		return -EKEYREVOKED;
2532
2533	if (cc->key_size != tkp->key_len)
2534		return -EINVAL;
2535
2536	memcpy(cc->key, tkp->key, cc->key_size);
2537
2538	return 0;
2539}
2540
2541static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2542{
2543	char *new_key_string, *key_desc;
2544	int ret;
2545	struct key_type *type;
2546	struct key *key;
2547	int (*set_key)(struct crypt_config *cc, struct key *key);
2548
2549	/*
2550	 * Reject key_string with whitespace. dm core currently lacks code for
2551	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2552	 */
2553	if (contains_whitespace(key_string)) {
2554		DMERR("whitespace chars not allowed in key string");
2555		return -EINVAL;
2556	}
2557
2558	/* look for next ':' separating key_type from key_description */
2559	key_desc = strchr(key_string, ':');
2560	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2561		return -EINVAL;
2562
2563	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2564		type = &key_type_logon;
2565		set_key = set_key_user;
2566	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2567		type = &key_type_user;
2568		set_key = set_key_user;
2569	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2570		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2571		type = &key_type_encrypted;
2572		set_key = set_key_encrypted;
2573	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2574		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2575		type = &key_type_trusted;
2576		set_key = set_key_trusted;
2577	} else {
2578		return -EINVAL;
2579	}
2580
2581	new_key_string = kstrdup(key_string, GFP_KERNEL);
2582	if (!new_key_string)
2583		return -ENOMEM;
2584
2585	key = request_key(type, key_desc + 1, NULL);
2586	if (IS_ERR(key)) {
2587		kfree_sensitive(new_key_string);
2588		return PTR_ERR(key);
2589	}
2590
2591	down_read(&key->sem);
2592
2593	ret = set_key(cc, key);
2594	if (ret < 0) {
2595		up_read(&key->sem);
2596		key_put(key);
2597		kfree_sensitive(new_key_string);
2598		return ret;
2599	}
2600
2601	up_read(&key->sem);
2602	key_put(key);
2603
2604	/* clear the flag since following operations may invalidate previously valid key */
2605	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2606
2607	ret = crypt_setkey(cc);
2608
2609	if (!ret) {
2610		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2611		kfree_sensitive(cc->key_string);
2612		cc->key_string = new_key_string;
2613	} else
2614		kfree_sensitive(new_key_string);
2615
2616	return ret;
2617}
2618
2619static int get_key_size(char **key_string)
2620{
2621	char *colon, dummy;
2622	int ret;
2623
2624	if (*key_string[0] != ':')
2625		return strlen(*key_string) >> 1;
2626
2627	/* look for next ':' in key string */
2628	colon = strpbrk(*key_string + 1, ":");
2629	if (!colon)
2630		return -EINVAL;
2631
2632	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2633		return -EINVAL;
2634
2635	*key_string = colon;
2636
2637	/* remaining key string should be :<logon|user>:<key_desc> */
2638
2639	return ret;
2640}
2641
2642#else
2643
2644static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2645{
2646	return -EINVAL;
2647}
2648
2649static int get_key_size(char **key_string)
2650{
2651	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2652}
2653
2654#endif /* CONFIG_KEYS */
2655
2656static int crypt_set_key(struct crypt_config *cc, char *key)
2657{
2658	int r = -EINVAL;
2659	int key_string_len = strlen(key);
2660
2661	/* Hyphen (which gives a key_size of zero) means there is no key. */
2662	if (!cc->key_size && strcmp(key, "-"))
2663		goto out;
2664
2665	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2666	if (key[0] == ':') {
2667		r = crypt_set_keyring_key(cc, key + 1);
2668		goto out;
2669	}
2670
2671	/* clear the flag since following operations may invalidate previously valid key */
2672	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2673
2674	/* wipe references to any kernel keyring key */
2675	kfree_sensitive(cc->key_string);
2676	cc->key_string = NULL;
2677
2678	/* Decode key from its hex representation. */
2679	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2680		goto out;
2681
2682	r = crypt_setkey(cc);
2683	if (!r)
2684		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2685
2686out:
2687	/* Hex key string not needed after here, so wipe it. */
2688	memset(key, '0', key_string_len);
2689
2690	return r;
2691}
2692
2693static int crypt_wipe_key(struct crypt_config *cc)
2694{
2695	int r;
2696
2697	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2698	get_random_bytes(&cc->key, cc->key_size);
2699
2700	/* Wipe IV private keys */
2701	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2702		r = cc->iv_gen_ops->wipe(cc);
2703		if (r)
2704			return r;
2705	}
2706
2707	kfree_sensitive(cc->key_string);
2708	cc->key_string = NULL;
2709	r = crypt_setkey(cc);
2710	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2711
2712	return r;
2713}
2714
2715static void crypt_calculate_pages_per_client(void)
2716{
2717	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2718
2719	if (!dm_crypt_clients_n)
2720		return;
2721
2722	pages /= dm_crypt_clients_n;
2723	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2724		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2725	dm_crypt_pages_per_client = pages;
2726}
2727
2728static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2729{
2730	struct crypt_config *cc = pool_data;
2731	struct page *page;
2732
2733	/*
2734	 * Note, percpu_counter_read_positive() may over (and under) estimate
2735	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2736	 * but avoids potential spinlock contention of an exact result.
2737	 */
2738	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2739	    likely(gfp_mask & __GFP_NORETRY))
2740		return NULL;
2741
2742	page = alloc_page(gfp_mask);
2743	if (likely(page != NULL))
2744		percpu_counter_add(&cc->n_allocated_pages, 1);
2745
2746	return page;
2747}
2748
2749static void crypt_page_free(void *page, void *pool_data)
2750{
2751	struct crypt_config *cc = pool_data;
2752
2753	__free_page(page);
2754	percpu_counter_sub(&cc->n_allocated_pages, 1);
2755}
2756
2757static void crypt_dtr(struct dm_target *ti)
2758{
2759	struct crypt_config *cc = ti->private;
2760
2761	ti->private = NULL;
2762
2763	if (!cc)
2764		return;
2765
2766	if (cc->write_thread)
2767		kthread_stop(cc->write_thread);
2768
2769	if (cc->io_queue)
2770		destroy_workqueue(cc->io_queue);
2771	if (cc->crypt_queue)
2772		destroy_workqueue(cc->crypt_queue);
2773
2774	crypt_free_tfms(cc);
2775
2776	bioset_exit(&cc->bs);
2777
2778	mempool_exit(&cc->page_pool);
2779	mempool_exit(&cc->req_pool);
2780	mempool_exit(&cc->tag_pool);
2781
2782	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2783	percpu_counter_destroy(&cc->n_allocated_pages);
2784
2785	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2786		cc->iv_gen_ops->dtr(cc);
2787
2788	if (cc->dev)
2789		dm_put_device(ti, cc->dev);
2790
2791	kfree_sensitive(cc->cipher_string);
2792	kfree_sensitive(cc->key_string);
2793	kfree_sensitive(cc->cipher_auth);
2794	kfree_sensitive(cc->authenc_key);
2795
2796	mutex_destroy(&cc->bio_alloc_lock);
2797
2798	/* Must zero key material before freeing */
2799	kfree_sensitive(cc);
2800
2801	spin_lock(&dm_crypt_clients_lock);
2802	WARN_ON(!dm_crypt_clients_n);
2803	dm_crypt_clients_n--;
2804	crypt_calculate_pages_per_client();
2805	spin_unlock(&dm_crypt_clients_lock);
2806
2807	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2808}
2809
2810static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2811{
2812	struct crypt_config *cc = ti->private;
2813
2814	if (crypt_integrity_aead(cc))
2815		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2816	else
2817		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2818
2819	if (cc->iv_size)
2820		/* at least a 64 bit sector number should fit in our buffer */
2821		cc->iv_size = max(cc->iv_size,
2822				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2823	else if (ivmode) {
2824		DMWARN("Selected cipher does not support IVs");
2825		ivmode = NULL;
2826	}
2827
2828	/* Choose ivmode, see comments at iv code. */
2829	if (ivmode == NULL)
2830		cc->iv_gen_ops = NULL;
2831	else if (strcmp(ivmode, "plain") == 0)
2832		cc->iv_gen_ops = &crypt_iv_plain_ops;
2833	else if (strcmp(ivmode, "plain64") == 0)
2834		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2835	else if (strcmp(ivmode, "plain64be") == 0)
2836		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2837	else if (strcmp(ivmode, "essiv") == 0)
2838		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2839	else if (strcmp(ivmode, "benbi") == 0)
2840		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2841	else if (strcmp(ivmode, "null") == 0)
2842		cc->iv_gen_ops = &crypt_iv_null_ops;
2843	else if (strcmp(ivmode, "eboiv") == 0)
2844		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2845	else if (strcmp(ivmode, "elephant") == 0) {
2846		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2847		cc->key_parts = 2;
2848		cc->key_extra_size = cc->key_size / 2;
2849		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2850			return -EINVAL;
2851		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2852	} else if (strcmp(ivmode, "lmk") == 0) {
2853		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2854		/*
2855		 * Version 2 and 3 is recognised according
2856		 * to length of provided multi-key string.
2857		 * If present (version 3), last key is used as IV seed.
2858		 * All keys (including IV seed) are always the same size.
2859		 */
2860		if (cc->key_size % cc->key_parts) {
2861			cc->key_parts++;
2862			cc->key_extra_size = cc->key_size / cc->key_parts;
2863		}
2864	} else if (strcmp(ivmode, "tcw") == 0) {
2865		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2866		cc->key_parts += 2; /* IV + whitening */
2867		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2868	} else if (strcmp(ivmode, "random") == 0) {
2869		cc->iv_gen_ops = &crypt_iv_random_ops;
2870		/* Need storage space in integrity fields. */
2871		cc->integrity_iv_size = cc->iv_size;
2872	} else {
2873		ti->error = "Invalid IV mode";
2874		return -EINVAL;
2875	}
2876
2877	return 0;
2878}
2879
2880/*
2881 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2882 * The HMAC is needed to calculate tag size (HMAC digest size).
2883 * This should be probably done by crypto-api calls (once available...)
2884 */
2885static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2886{
2887	char *start, *end, *mac_alg = NULL;
2888	struct crypto_ahash *mac;
2889
2890	if (!strstarts(cipher_api, "authenc("))
2891		return 0;
2892
2893	start = strchr(cipher_api, '(');
2894	end = strchr(cipher_api, ',');
2895	if (!start || !end || ++start > end)
2896		return -EINVAL;
2897
2898	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2899	if (!mac_alg)
2900		return -ENOMEM;
2901
2902	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2903	kfree(mac_alg);
2904
2905	if (IS_ERR(mac))
2906		return PTR_ERR(mac);
2907
2908	cc->key_mac_size = crypto_ahash_digestsize(mac);
2909	crypto_free_ahash(mac);
2910
2911	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2912	if (!cc->authenc_key)
2913		return -ENOMEM;
2914
2915	return 0;
2916}
2917
2918static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2919				char **ivmode, char **ivopts)
2920{
2921	struct crypt_config *cc = ti->private;
2922	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2923	int ret = -EINVAL;
2924
2925	cc->tfms_count = 1;
2926
2927	/*
2928	 * New format (capi: prefix)
2929	 * capi:cipher_api_spec-iv:ivopts
2930	 */
2931	tmp = &cipher_in[strlen("capi:")];
2932
2933	/* Separate IV options if present, it can contain another '-' in hash name */
2934	*ivopts = strrchr(tmp, ':');
2935	if (*ivopts) {
2936		**ivopts = '\0';
2937		(*ivopts)++;
2938	}
2939	/* Parse IV mode */
2940	*ivmode = strrchr(tmp, '-');
2941	if (*ivmode) {
2942		**ivmode = '\0';
2943		(*ivmode)++;
2944	}
2945	/* The rest is crypto API spec */
2946	cipher_api = tmp;
2947
2948	/* Alloc AEAD, can be used only in new format. */
2949	if (crypt_integrity_aead(cc)) {
2950		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2951		if (ret < 0) {
2952			ti->error = "Invalid AEAD cipher spec";
2953			return ret;
2954		}
2955	}
2956
2957	if (*ivmode && !strcmp(*ivmode, "lmk"))
2958		cc->tfms_count = 64;
2959
2960	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2961		if (!*ivopts) {
2962			ti->error = "Digest algorithm missing for ESSIV mode";
2963			return -EINVAL;
2964		}
2965		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2966			       cipher_api, *ivopts);
2967		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2968			ti->error = "Cannot allocate cipher string";
2969			return -ENOMEM;
2970		}
2971		cipher_api = buf;
2972	}
2973
2974	cc->key_parts = cc->tfms_count;
2975
2976	/* Allocate cipher */
2977	ret = crypt_alloc_tfms(cc, cipher_api);
2978	if (ret < 0) {
2979		ti->error = "Error allocating crypto tfm";
2980		return ret;
2981	}
2982
2983	if (crypt_integrity_aead(cc))
2984		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2985	else
2986		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2987
2988	return 0;
2989}
2990
2991static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2992				char **ivmode, char **ivopts)
2993{
2994	struct crypt_config *cc = ti->private;
2995	char *tmp, *cipher, *chainmode, *keycount;
2996	char *cipher_api = NULL;
2997	int ret = -EINVAL;
2998	char dummy;
2999
3000	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3001		ti->error = "Bad cipher specification";
3002		return -EINVAL;
3003	}
3004
3005	/*
3006	 * Legacy dm-crypt cipher specification
3007	 * cipher[:keycount]-mode-iv:ivopts
3008	 */
3009	tmp = cipher_in;
3010	keycount = strsep(&tmp, "-");
3011	cipher = strsep(&keycount, ":");
3012
3013	if (!keycount)
3014		cc->tfms_count = 1;
3015	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3016		 !is_power_of_2(cc->tfms_count)) {
3017		ti->error = "Bad cipher key count specification";
3018		return -EINVAL;
3019	}
3020	cc->key_parts = cc->tfms_count;
3021
3022	chainmode = strsep(&tmp, "-");
3023	*ivmode = strsep(&tmp, ":");
3024	*ivopts = tmp;
3025
3026	/*
3027	 * For compatibility with the original dm-crypt mapping format, if
3028	 * only the cipher name is supplied, use cbc-plain.
3029	 */
3030	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3031		chainmode = "cbc";
3032		*ivmode = "plain";
3033	}
3034
3035	if (strcmp(chainmode, "ecb") && !*ivmode) {
3036		ti->error = "IV mechanism required";
3037		return -EINVAL;
3038	}
3039
3040	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3041	if (!cipher_api)
3042		goto bad_mem;
3043
3044	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3045		if (!*ivopts) {
3046			ti->error = "Digest algorithm missing for ESSIV mode";
3047			kfree(cipher_api);
3048			return -EINVAL;
3049		}
3050		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3051			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3052	} else {
3053		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3054			       "%s(%s)", chainmode, cipher);
3055	}
3056	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3057		kfree(cipher_api);
3058		goto bad_mem;
3059	}
3060
3061	/* Allocate cipher */
3062	ret = crypt_alloc_tfms(cc, cipher_api);
3063	if (ret < 0) {
3064		ti->error = "Error allocating crypto tfm";
3065		kfree(cipher_api);
3066		return ret;
3067	}
3068	kfree(cipher_api);
3069
3070	return 0;
3071bad_mem:
3072	ti->error = "Cannot allocate cipher strings";
3073	return -ENOMEM;
3074}
3075
3076static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3077{
3078	struct crypt_config *cc = ti->private;
3079	char *ivmode = NULL, *ivopts = NULL;
3080	int ret;
3081
3082	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3083	if (!cc->cipher_string) {
3084		ti->error = "Cannot allocate cipher strings";
3085		return -ENOMEM;
3086	}
3087
3088	if (strstarts(cipher_in, "capi:"))
3089		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3090	else
3091		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3092	if (ret)
3093		return ret;
3094
3095	/* Initialize IV */
3096	ret = crypt_ctr_ivmode(ti, ivmode);
3097	if (ret < 0)
3098		return ret;
3099
3100	/* Initialize and set key */
3101	ret = crypt_set_key(cc, key);
3102	if (ret < 0) {
3103		ti->error = "Error decoding and setting key";
3104		return ret;
3105	}
3106
3107	/* Allocate IV */
3108	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3109		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3110		if (ret < 0) {
3111			ti->error = "Error creating IV";
3112			return ret;
3113		}
3114	}
3115
3116	/* Initialize IV (set keys for ESSIV etc) */
3117	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3118		ret = cc->iv_gen_ops->init(cc);
3119		if (ret < 0) {
3120			ti->error = "Error initialising IV";
3121			return ret;
3122		}
3123	}
3124
3125	/* wipe the kernel key payload copy */
3126	if (cc->key_string)
3127		memset(cc->key, 0, cc->key_size * sizeof(u8));
3128
3129	return ret;
3130}
3131
3132static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3133{
3134	struct crypt_config *cc = ti->private;
3135	struct dm_arg_set as;
3136	static const struct dm_arg _args[] = {
3137		{0, 8, "Invalid number of feature args"},
3138	};
3139	unsigned int opt_params, val;
3140	const char *opt_string, *sval;
3141	char dummy;
3142	int ret;
3143
3144	/* Optional parameters */
3145	as.argc = argc;
3146	as.argv = argv;
3147
3148	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3149	if (ret)
3150		return ret;
3151
3152	while (opt_params--) {
3153		opt_string = dm_shift_arg(&as);
3154		if (!opt_string) {
3155			ti->error = "Not enough feature arguments";
3156			return -EINVAL;
3157		}
3158
3159		if (!strcasecmp(opt_string, "allow_discards"))
3160			ti->num_discard_bios = 1;
3161
3162		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3163			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3164
3165		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3166			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3167		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3168			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3169		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3170			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3171		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3172			if (val == 0 || val > MAX_TAG_SIZE) {
3173				ti->error = "Invalid integrity arguments";
3174				return -EINVAL;
3175			}
3176			cc->on_disk_tag_size = val;
3177			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3178			if (!strcasecmp(sval, "aead")) {
3179				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3180			} else if (strcasecmp(sval, "none")) {
3181				ti->error = "Unknown integrity profile";
3182				return -EINVAL;
3183			}
3184
3185			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3186			if (!cc->cipher_auth)
3187				return -ENOMEM;
3188		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3189			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3190			    cc->sector_size > 4096 ||
3191			    (cc->sector_size & (cc->sector_size - 1))) {
3192				ti->error = "Invalid feature value for sector_size";
3193				return -EINVAL;
3194			}
3195			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3196				ti->error = "Device size is not multiple of sector_size feature";
3197				return -EINVAL;
3198			}
3199			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3200		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3201			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3202		else {
3203			ti->error = "Invalid feature arguments";
3204			return -EINVAL;
3205		}
3206	}
3207
3208	return 0;
3209}
3210
3211#ifdef CONFIG_BLK_DEV_ZONED
3212static int crypt_report_zones(struct dm_target *ti,
3213		struct dm_report_zones_args *args, unsigned int nr_zones)
3214{
3215	struct crypt_config *cc = ti->private;
3216
3217	return dm_report_zones(cc->dev->bdev, cc->start,
3218			cc->start + dm_target_offset(ti, args->next_sector),
3219			args, nr_zones);
3220}
3221#else
3222#define crypt_report_zones NULL
3223#endif
3224
3225/*
3226 * Construct an encryption mapping:
3227 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3228 */
3229static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3230{
3231	struct crypt_config *cc;
3232	const char *devname = dm_table_device_name(ti->table);
3233	int key_size;
3234	unsigned int align_mask;
3235	unsigned long long tmpll;
3236	int ret;
3237	size_t iv_size_padding, additional_req_size;
3238	char dummy;
3239
3240	if (argc < 5) {
3241		ti->error = "Not enough arguments";
3242		return -EINVAL;
3243	}
3244
3245	key_size = get_key_size(&argv[1]);
3246	if (key_size < 0) {
3247		ti->error = "Cannot parse key size";
3248		return -EINVAL;
3249	}
3250
3251	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3252	if (!cc) {
3253		ti->error = "Cannot allocate encryption context";
3254		return -ENOMEM;
3255	}
3256	cc->key_size = key_size;
3257	cc->sector_size = (1 << SECTOR_SHIFT);
3258	cc->sector_shift = 0;
3259
3260	ti->private = cc;
3261
3262	spin_lock(&dm_crypt_clients_lock);
3263	dm_crypt_clients_n++;
3264	crypt_calculate_pages_per_client();
3265	spin_unlock(&dm_crypt_clients_lock);
3266
3267	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3268	if (ret < 0)
3269		goto bad;
3270
3271	/* Optional parameters need to be read before cipher constructor */
3272	if (argc > 5) {
3273		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3274		if (ret)
3275			goto bad;
3276	}
3277
3278	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3279	if (ret < 0)
3280		goto bad;
3281
3282	if (crypt_integrity_aead(cc)) {
3283		cc->dmreq_start = sizeof(struct aead_request);
3284		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3285		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3286	} else {
3287		cc->dmreq_start = sizeof(struct skcipher_request);
3288		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3289		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3290	}
3291	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3292
3293	if (align_mask < CRYPTO_MINALIGN) {
3294		/* Allocate the padding exactly */
3295		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3296				& align_mask;
3297	} else {
3298		/*
3299		 * If the cipher requires greater alignment than kmalloc
3300		 * alignment, we don't know the exact position of the
3301		 * initialization vector. We must assume worst case.
3302		 */
3303		iv_size_padding = align_mask;
3304	}
3305
3306	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3307	additional_req_size = sizeof(struct dm_crypt_request) +
3308		iv_size_padding + cc->iv_size +
3309		cc->iv_size +
3310		sizeof(uint64_t) +
3311		sizeof(unsigned int);
3312
3313	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3314	if (ret) {
3315		ti->error = "Cannot allocate crypt request mempool";
3316		goto bad;
3317	}
3318
3319	cc->per_bio_data_size = ti->per_io_data_size =
3320		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3321		      ARCH_DMA_MINALIGN);
3322
3323	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3324	if (ret) {
3325		ti->error = "Cannot allocate page mempool";
3326		goto bad;
3327	}
3328
3329	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3330	if (ret) {
3331		ti->error = "Cannot allocate crypt bioset";
3332		goto bad;
3333	}
3334
3335	mutex_init(&cc->bio_alloc_lock);
3336
3337	ret = -EINVAL;
3338	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3339	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3340		ti->error = "Invalid iv_offset sector";
3341		goto bad;
3342	}
3343	cc->iv_offset = tmpll;
3344
3345	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3346	if (ret) {
3347		ti->error = "Device lookup failed";
3348		goto bad;
3349	}
3350
3351	ret = -EINVAL;
3352	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3353		ti->error = "Invalid device sector";
3354		goto bad;
3355	}
3356	cc->start = tmpll;
3357
3358	if (bdev_is_zoned(cc->dev->bdev)) {
3359		/*
3360		 * For zoned block devices, we need to preserve the issuer write
3361		 * ordering. To do so, disable write workqueues and force inline
3362		 * encryption completion.
3363		 */
3364		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3365		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3366
3367		/*
3368		 * All zone append writes to a zone of a zoned block device will
3369		 * have the same BIO sector, the start of the zone. When the
3370		 * cypher IV mode uses sector values, all data targeting a
3371		 * zone will be encrypted using the first sector numbers of the
3372		 * zone. This will not result in write errors but will
3373		 * cause most reads to fail as reads will use the sector values
3374		 * for the actual data locations, resulting in IV mismatch.
3375		 * To avoid this problem, ask DM core to emulate zone append
3376		 * operations with regular writes.
3377		 */
3378		DMDEBUG("Zone append operations will be emulated");
3379		ti->emulate_zone_append = true;
3380	}
3381
3382	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3383		ret = crypt_integrity_ctr(cc, ti);
3384		if (ret)
3385			goto bad;
3386
3387		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3388		if (!cc->tag_pool_max_sectors)
3389			cc->tag_pool_max_sectors = 1;
3390
3391		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3392			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3393		if (ret) {
3394			ti->error = "Cannot allocate integrity tags mempool";
3395			goto bad;
3396		}
3397
3398		cc->tag_pool_max_sectors <<= cc->sector_shift;
3399	}
3400
3401	ret = -ENOMEM;
3402	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3403	if (!cc->io_queue) {
3404		ti->error = "Couldn't create kcryptd io queue";
3405		goto bad;
3406	}
3407
3408	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3409		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3410						  1, devname);
3411	else
3412		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3413						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3414						  num_online_cpus(), devname);
3415	if (!cc->crypt_queue) {
3416		ti->error = "Couldn't create kcryptd queue";
3417		goto bad;
3418	}
3419
3420	spin_lock_init(&cc->write_thread_lock);
3421	cc->write_tree = RB_ROOT;
3422
3423	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3424	if (IS_ERR(cc->write_thread)) {
3425		ret = PTR_ERR(cc->write_thread);
3426		cc->write_thread = NULL;
3427		ti->error = "Couldn't spawn write thread";
3428		goto bad;
3429	}
3430
3431	ti->num_flush_bios = 1;
3432	ti->limit_swap_bios = true;
3433	ti->accounts_remapped_io = true;
3434
3435	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3436	return 0;
3437
3438bad:
3439	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3440	crypt_dtr(ti);
3441	return ret;
3442}
3443
3444static int crypt_map(struct dm_target *ti, struct bio *bio)
3445{
3446	struct dm_crypt_io *io;
3447	struct crypt_config *cc = ti->private;
3448
3449	/*
3450	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3451	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3452	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3453	 */
3454	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3455	    bio_op(bio) == REQ_OP_DISCARD)) {
3456		bio_set_dev(bio, cc->dev->bdev);
3457		if (bio_sectors(bio))
3458			bio->bi_iter.bi_sector = cc->start +
3459				dm_target_offset(ti, bio->bi_iter.bi_sector);
3460		return DM_MAPIO_REMAPPED;
3461	}
3462
3463	/*
3464	 * Check if bio is too large, split as needed.
3465	 */
3466	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3467	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3468		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3469
3470	/*
3471	 * Ensure that bio is a multiple of internal sector encryption size
3472	 * and is aligned to this size as defined in IO hints.
3473	 */
3474	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3475		return DM_MAPIO_KILL;
3476
3477	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3478		return DM_MAPIO_KILL;
3479
3480	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3481	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3482
3483	if (cc->on_disk_tag_size) {
3484		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3485
3486		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3487			io->integrity_metadata = NULL;
3488		else
3489			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3490
3491		if (unlikely(!io->integrity_metadata)) {
3492			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3493				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3494			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3495			io->integrity_metadata_from_pool = true;
3496		}
3497	}
3498
3499	if (crypt_integrity_aead(cc))
3500		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3501	else
3502		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3503
3504	if (bio_data_dir(io->base_bio) == READ) {
3505		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3506			kcryptd_queue_read(io);
3507	} else
3508		kcryptd_queue_crypt(io);
3509
3510	return DM_MAPIO_SUBMITTED;
3511}
3512
3513static char hex2asc(unsigned char c)
3514{
3515	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3516}
3517
3518static void crypt_status(struct dm_target *ti, status_type_t type,
3519			 unsigned int status_flags, char *result, unsigned int maxlen)
3520{
3521	struct crypt_config *cc = ti->private;
3522	unsigned int i, sz = 0;
3523	int num_feature_args = 0;
3524
3525	switch (type) {
3526	case STATUSTYPE_INFO:
3527		result[0] = '\0';
3528		break;
3529
3530	case STATUSTYPE_TABLE:
3531		DMEMIT("%s ", cc->cipher_string);
3532
3533		if (cc->key_size > 0) {
3534			if (cc->key_string)
3535				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3536			else {
3537				for (i = 0; i < cc->key_size; i++) {
3538					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3539					       hex2asc(cc->key[i] & 0xf));
3540				}
3541			}
3542		} else
3543			DMEMIT("-");
3544
3545		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3546				cc->dev->name, (unsigned long long)cc->start);
3547
3548		num_feature_args += !!ti->num_discard_bios;
3549		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3550		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3551		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3552		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3553		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3554		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3555		if (cc->on_disk_tag_size)
3556			num_feature_args++;
3557		if (num_feature_args) {
3558			DMEMIT(" %d", num_feature_args);
3559			if (ti->num_discard_bios)
3560				DMEMIT(" allow_discards");
3561			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3562				DMEMIT(" same_cpu_crypt");
3563			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3564				DMEMIT(" submit_from_crypt_cpus");
3565			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3566				DMEMIT(" no_read_workqueue");
3567			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3568				DMEMIT(" no_write_workqueue");
3569			if (cc->on_disk_tag_size)
3570				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3571			if (cc->sector_size != (1 << SECTOR_SHIFT))
3572				DMEMIT(" sector_size:%d", cc->sector_size);
3573			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3574				DMEMIT(" iv_large_sectors");
3575		}
3576		break;
3577
3578	case STATUSTYPE_IMA:
3579		DMEMIT_TARGET_NAME_VERSION(ti->type);
3580		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3581		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3582		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3583		       'y' : 'n');
3584		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3585		       'y' : 'n');
3586		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3587		       'y' : 'n');
3588		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3589		       'y' : 'n');
3590
3591		if (cc->on_disk_tag_size)
3592			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3593			       cc->on_disk_tag_size, cc->cipher_auth);
3594		if (cc->sector_size != (1 << SECTOR_SHIFT))
3595			DMEMIT(",sector_size=%d", cc->sector_size);
3596		if (cc->cipher_string)
3597			DMEMIT(",cipher_string=%s", cc->cipher_string);
3598
3599		DMEMIT(",key_size=%u", cc->key_size);
3600		DMEMIT(",key_parts=%u", cc->key_parts);
3601		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3602		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3603		DMEMIT(";");
3604		break;
3605	}
3606}
3607
3608static void crypt_postsuspend(struct dm_target *ti)
3609{
3610	struct crypt_config *cc = ti->private;
3611
3612	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3613}
3614
3615static int crypt_preresume(struct dm_target *ti)
3616{
3617	struct crypt_config *cc = ti->private;
3618
3619	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3620		DMERR("aborting resume - crypt key is not set.");
3621		return -EAGAIN;
3622	}
3623
3624	return 0;
3625}
3626
3627static void crypt_resume(struct dm_target *ti)
3628{
3629	struct crypt_config *cc = ti->private;
3630
3631	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3632}
3633
3634/* Message interface
3635 *	key set <key>
3636 *	key wipe
3637 */
3638static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3639			 char *result, unsigned int maxlen)
3640{
3641	struct crypt_config *cc = ti->private;
3642	int key_size, ret = -EINVAL;
3643
3644	if (argc < 2)
3645		goto error;
3646
3647	if (!strcasecmp(argv[0], "key")) {
3648		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3649			DMWARN("not suspended during key manipulation.");
3650			return -EINVAL;
3651		}
3652		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3653			/* The key size may not be changed. */
3654			key_size = get_key_size(&argv[2]);
3655			if (key_size < 0 || cc->key_size != key_size) {
3656				memset(argv[2], '0', strlen(argv[2]));
3657				return -EINVAL;
3658			}
3659
3660			ret = crypt_set_key(cc, argv[2]);
3661			if (ret)
3662				return ret;
3663			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3664				ret = cc->iv_gen_ops->init(cc);
3665			/* wipe the kernel key payload copy */
3666			if (cc->key_string)
3667				memset(cc->key, 0, cc->key_size * sizeof(u8));
3668			return ret;
3669		}
3670		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3671			return crypt_wipe_key(cc);
3672	}
3673
3674error:
3675	DMWARN("unrecognised message received.");
3676	return -EINVAL;
3677}
3678
3679static int crypt_iterate_devices(struct dm_target *ti,
3680				 iterate_devices_callout_fn fn, void *data)
3681{
3682	struct crypt_config *cc = ti->private;
3683
3684	return fn(ti, cc->dev, cc->start, ti->len, data);
3685}
3686
3687static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3688{
3689	struct crypt_config *cc = ti->private;
3690
3691	/*
3692	 * Unfortunate constraint that is required to avoid the potential
3693	 * for exceeding underlying device's max_segments limits -- due to
3694	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3695	 * bio that are not as physically contiguous as the original bio.
3696	 */
3697	limits->max_segment_size = PAGE_SIZE;
3698
3699	limits->logical_block_size =
3700		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3701	limits->physical_block_size =
3702		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3703	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3704	limits->dma_alignment = limits->logical_block_size - 1;
3705}
3706
3707static struct target_type crypt_target = {
3708	.name   = "crypt",
3709	.version = {1, 25, 0},
3710	.module = THIS_MODULE,
3711	.ctr    = crypt_ctr,
3712	.dtr    = crypt_dtr,
3713	.features = DM_TARGET_ZONED_HM,
3714	.report_zones = crypt_report_zones,
3715	.map    = crypt_map,
3716	.status = crypt_status,
3717	.postsuspend = crypt_postsuspend,
3718	.preresume = crypt_preresume,
3719	.resume = crypt_resume,
3720	.message = crypt_message,
3721	.iterate_devices = crypt_iterate_devices,
3722	.io_hints = crypt_io_hints,
3723};
3724module_dm(crypt);
3725
3726MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3727MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3728MODULE_LICENSE("GPL");
3729