1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-bio-prison-v2.h"
10#include "dm-bio-record.h"
11#include "dm-cache-metadata.h"
12#include "dm-io-tracker.h"
13
14#include <linux/dm-io.h>
15#include <linux/dm-kcopyd.h>
16#include <linux/jiffies.h>
17#include <linux/init.h>
18#include <linux/mempool.h>
19#include <linux/module.h>
20#include <linux/rwsem.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23
24#define DM_MSG_PREFIX "cache"
25
26DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
27	"A percentage of time allocated for copying to and/or from cache");
28
29/*----------------------------------------------------------------*/
30
31/*
32 * Glossary:
33 *
34 * oblock: index of an origin block
35 * cblock: index of a cache block
36 * promotion: movement of a block from origin to cache
37 * demotion: movement of a block from cache to origin
38 * migration: movement of a block between the origin and cache device,
39 *	      either direction
40 */
41
42/*----------------------------------------------------------------*/
43
44/*
45 * Represents a chunk of future work.  'input' allows continuations to pass
46 * values between themselves, typically error values.
47 */
48struct continuation {
49	struct work_struct ws;
50	blk_status_t input;
51};
52
53static inline void init_continuation(struct continuation *k,
54				     void (*fn)(struct work_struct *))
55{
56	INIT_WORK(&k->ws, fn);
57	k->input = 0;
58}
59
60static inline void queue_continuation(struct workqueue_struct *wq,
61				      struct continuation *k)
62{
63	queue_work(wq, &k->ws);
64}
65
66/*----------------------------------------------------------------*/
67
68/*
69 * The batcher collects together pieces of work that need a particular
70 * operation to occur before they can proceed (typically a commit).
71 */
72struct batcher {
73	/*
74	 * The operation that everyone is waiting for.
75	 */
76	blk_status_t (*commit_op)(void *context);
77	void *commit_context;
78
79	/*
80	 * This is how bios should be issued once the commit op is complete
81	 * (accounted_request).
82	 */
83	void (*issue_op)(struct bio *bio, void *context);
84	void *issue_context;
85
86	/*
87	 * Queued work gets put on here after commit.
88	 */
89	struct workqueue_struct *wq;
90
91	spinlock_t lock;
92	struct list_head work_items;
93	struct bio_list bios;
94	struct work_struct commit_work;
95
96	bool commit_scheduled;
97};
98
99static void __commit(struct work_struct *_ws)
100{
101	struct batcher *b = container_of(_ws, struct batcher, commit_work);
102	blk_status_t r;
103	struct list_head work_items;
104	struct work_struct *ws, *tmp;
105	struct continuation *k;
106	struct bio *bio;
107	struct bio_list bios;
108
109	INIT_LIST_HEAD(&work_items);
110	bio_list_init(&bios);
111
112	/*
113	 * We have to grab these before the commit_op to avoid a race
114	 * condition.
115	 */
116	spin_lock_irq(&b->lock);
117	list_splice_init(&b->work_items, &work_items);
118	bio_list_merge(&bios, &b->bios);
119	bio_list_init(&b->bios);
120	b->commit_scheduled = false;
121	spin_unlock_irq(&b->lock);
122
123	r = b->commit_op(b->commit_context);
124
125	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
126		k = container_of(ws, struct continuation, ws);
127		k->input = r;
128		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
129		queue_work(b->wq, ws);
130	}
131
132	while ((bio = bio_list_pop(&bios))) {
133		if (r) {
134			bio->bi_status = r;
135			bio_endio(bio);
136		} else
137			b->issue_op(bio, b->issue_context);
138	}
139}
140
141static void batcher_init(struct batcher *b,
142			 blk_status_t (*commit_op)(void *),
143			 void *commit_context,
144			 void (*issue_op)(struct bio *bio, void *),
145			 void *issue_context,
146			 struct workqueue_struct *wq)
147{
148	b->commit_op = commit_op;
149	b->commit_context = commit_context;
150	b->issue_op = issue_op;
151	b->issue_context = issue_context;
152	b->wq = wq;
153
154	spin_lock_init(&b->lock);
155	INIT_LIST_HEAD(&b->work_items);
156	bio_list_init(&b->bios);
157	INIT_WORK(&b->commit_work, __commit);
158	b->commit_scheduled = false;
159}
160
161static void async_commit(struct batcher *b)
162{
163	queue_work(b->wq, &b->commit_work);
164}
165
166static void continue_after_commit(struct batcher *b, struct continuation *k)
167{
168	bool commit_scheduled;
169
170	spin_lock_irq(&b->lock);
171	commit_scheduled = b->commit_scheduled;
172	list_add_tail(&k->ws.entry, &b->work_items);
173	spin_unlock_irq(&b->lock);
174
175	if (commit_scheduled)
176		async_commit(b);
177}
178
179/*
180 * Bios are errored if commit failed.
181 */
182static void issue_after_commit(struct batcher *b, struct bio *bio)
183{
184	bool commit_scheduled;
185
186	spin_lock_irq(&b->lock);
187	commit_scheduled = b->commit_scheduled;
188	bio_list_add(&b->bios, bio);
189	spin_unlock_irq(&b->lock);
190
191	if (commit_scheduled)
192		async_commit(b);
193}
194
195/*
196 * Call this if some urgent work is waiting for the commit to complete.
197 */
198static void schedule_commit(struct batcher *b)
199{
200	bool immediate;
201
202	spin_lock_irq(&b->lock);
203	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
204	b->commit_scheduled = true;
205	spin_unlock_irq(&b->lock);
206
207	if (immediate)
208		async_commit(b);
209}
210
211/*
212 * There are a couple of places where we let a bio run, but want to do some
213 * work before calling its endio function.  We do this by temporarily
214 * changing the endio fn.
215 */
216struct dm_hook_info {
217	bio_end_io_t *bi_end_io;
218};
219
220static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
221			bio_end_io_t *bi_end_io, void *bi_private)
222{
223	h->bi_end_io = bio->bi_end_io;
224
225	bio->bi_end_io = bi_end_io;
226	bio->bi_private = bi_private;
227}
228
229static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
230{
231	bio->bi_end_io = h->bi_end_io;
232}
233
234/*----------------------------------------------------------------*/
235
236#define MIGRATION_POOL_SIZE 128
237#define COMMIT_PERIOD HZ
238#define MIGRATION_COUNT_WINDOW 10
239
240/*
241 * The block size of the device holding cache data must be
242 * between 32KB and 1GB.
243 */
244#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
245#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
246
247enum cache_metadata_mode {
248	CM_WRITE,		/* metadata may be changed */
249	CM_READ_ONLY,		/* metadata may not be changed */
250	CM_FAIL
251};
252
253enum cache_io_mode {
254	/*
255	 * Data is written to cached blocks only.  These blocks are marked
256	 * dirty.  If you lose the cache device you will lose data.
257	 * Potential performance increase for both reads and writes.
258	 */
259	CM_IO_WRITEBACK,
260
261	/*
262	 * Data is written to both cache and origin.  Blocks are never
263	 * dirty.  Potential performance benfit for reads only.
264	 */
265	CM_IO_WRITETHROUGH,
266
267	/*
268	 * A degraded mode useful for various cache coherency situations
269	 * (eg, rolling back snapshots).  Reads and writes always go to the
270	 * origin.  If a write goes to a cached oblock, then the cache
271	 * block is invalidated.
272	 */
273	CM_IO_PASSTHROUGH
274};
275
276struct cache_features {
277	enum cache_metadata_mode mode;
278	enum cache_io_mode io_mode;
279	unsigned int metadata_version;
280	bool discard_passdown:1;
281};
282
283struct cache_stats {
284	atomic_t read_hit;
285	atomic_t read_miss;
286	atomic_t write_hit;
287	atomic_t write_miss;
288	atomic_t demotion;
289	atomic_t promotion;
290	atomic_t writeback;
291	atomic_t copies_avoided;
292	atomic_t cache_cell_clash;
293	atomic_t commit_count;
294	atomic_t discard_count;
295};
296
297struct cache {
298	struct dm_target *ti;
299	spinlock_t lock;
300
301	/*
302	 * Fields for converting from sectors to blocks.
303	 */
304	int sectors_per_block_shift;
305	sector_t sectors_per_block;
306
307	struct dm_cache_metadata *cmd;
308
309	/*
310	 * Metadata is written to this device.
311	 */
312	struct dm_dev *metadata_dev;
313
314	/*
315	 * The slower of the two data devices.  Typically a spindle.
316	 */
317	struct dm_dev *origin_dev;
318
319	/*
320	 * The faster of the two data devices.  Typically an SSD.
321	 */
322	struct dm_dev *cache_dev;
323
324	/*
325	 * Size of the origin device in _complete_ blocks and native sectors.
326	 */
327	dm_oblock_t origin_blocks;
328	sector_t origin_sectors;
329
330	/*
331	 * Size of the cache device in blocks.
332	 */
333	dm_cblock_t cache_size;
334
335	/*
336	 * Invalidation fields.
337	 */
338	spinlock_t invalidation_lock;
339	struct list_head invalidation_requests;
340
341	sector_t migration_threshold;
342	wait_queue_head_t migration_wait;
343	atomic_t nr_allocated_migrations;
344
345	/*
346	 * The number of in flight migrations that are performing
347	 * background io. eg, promotion, writeback.
348	 */
349	atomic_t nr_io_migrations;
350
351	struct bio_list deferred_bios;
352
353	struct rw_semaphore quiesce_lock;
354
355	/*
356	 * origin_blocks entries, discarded if set.
357	 */
358	dm_dblock_t discard_nr_blocks;
359	unsigned long *discard_bitset;
360	uint32_t discard_block_size; /* a power of 2 times sectors per block */
361
362	/*
363	 * Rather than reconstructing the table line for the status we just
364	 * save it and regurgitate.
365	 */
366	unsigned int nr_ctr_args;
367	const char **ctr_args;
368
369	struct dm_kcopyd_client *copier;
370	struct work_struct deferred_bio_worker;
371	struct work_struct migration_worker;
372	struct workqueue_struct *wq;
373	struct delayed_work waker;
374	struct dm_bio_prison_v2 *prison;
375
376	/*
377	 * cache_size entries, dirty if set
378	 */
379	unsigned long *dirty_bitset;
380	atomic_t nr_dirty;
381
382	unsigned int policy_nr_args;
383	struct dm_cache_policy *policy;
384
385	/*
386	 * Cache features such as write-through.
387	 */
388	struct cache_features features;
389
390	struct cache_stats stats;
391
392	bool need_tick_bio:1;
393	bool sized:1;
394	bool invalidate:1;
395	bool commit_requested:1;
396	bool loaded_mappings:1;
397	bool loaded_discards:1;
398
399	struct rw_semaphore background_work_lock;
400
401	struct batcher committer;
402	struct work_struct commit_ws;
403
404	struct dm_io_tracker tracker;
405
406	mempool_t migration_pool;
407
408	struct bio_set bs;
409};
410
411struct per_bio_data {
412	bool tick:1;
413	unsigned int req_nr:2;
414	struct dm_bio_prison_cell_v2 *cell;
415	struct dm_hook_info hook_info;
416	sector_t len;
417};
418
419struct dm_cache_migration {
420	struct continuation k;
421	struct cache *cache;
422
423	struct policy_work *op;
424	struct bio *overwrite_bio;
425	struct dm_bio_prison_cell_v2 *cell;
426
427	dm_cblock_t invalidate_cblock;
428	dm_oblock_t invalidate_oblock;
429};
430
431/*----------------------------------------------------------------*/
432
433static bool writethrough_mode(struct cache *cache)
434{
435	return cache->features.io_mode == CM_IO_WRITETHROUGH;
436}
437
438static bool writeback_mode(struct cache *cache)
439{
440	return cache->features.io_mode == CM_IO_WRITEBACK;
441}
442
443static inline bool passthrough_mode(struct cache *cache)
444{
445	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
446}
447
448/*----------------------------------------------------------------*/
449
450static void wake_deferred_bio_worker(struct cache *cache)
451{
452	queue_work(cache->wq, &cache->deferred_bio_worker);
453}
454
455static void wake_migration_worker(struct cache *cache)
456{
457	if (passthrough_mode(cache))
458		return;
459
460	queue_work(cache->wq, &cache->migration_worker);
461}
462
463/*----------------------------------------------------------------*/
464
465static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
466{
467	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
468}
469
470static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
471{
472	dm_bio_prison_free_cell_v2(cache->prison, cell);
473}
474
475static struct dm_cache_migration *alloc_migration(struct cache *cache)
476{
477	struct dm_cache_migration *mg;
478
479	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
480
481	memset(mg, 0, sizeof(*mg));
482
483	mg->cache = cache;
484	atomic_inc(&cache->nr_allocated_migrations);
485
486	return mg;
487}
488
489static void free_migration(struct dm_cache_migration *mg)
490{
491	struct cache *cache = mg->cache;
492
493	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
494		wake_up(&cache->migration_wait);
495
496	mempool_free(mg, &cache->migration_pool);
497}
498
499/*----------------------------------------------------------------*/
500
501static inline dm_oblock_t oblock_succ(dm_oblock_t b)
502{
503	return to_oblock(from_oblock(b) + 1ull);
504}
505
506static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
507{
508	key->virtual = 0;
509	key->dev = 0;
510	key->block_begin = from_oblock(begin);
511	key->block_end = from_oblock(end);
512}
513
514/*
515 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
516 * level 1 which prevents *both* READs and WRITEs.
517 */
518#define WRITE_LOCK_LEVEL 0
519#define READ_WRITE_LOCK_LEVEL 1
520
521static unsigned int lock_level(struct bio *bio)
522{
523	return bio_data_dir(bio) == WRITE ?
524		WRITE_LOCK_LEVEL :
525		READ_WRITE_LOCK_LEVEL;
526}
527
528/*
529 *--------------------------------------------------------------
530 * Per bio data
531 *--------------------------------------------------------------
532 */
533
534static struct per_bio_data *get_per_bio_data(struct bio *bio)
535{
536	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
537
538	BUG_ON(!pb);
539	return pb;
540}
541
542static struct per_bio_data *init_per_bio_data(struct bio *bio)
543{
544	struct per_bio_data *pb = get_per_bio_data(bio);
545
546	pb->tick = false;
547	pb->req_nr = dm_bio_get_target_bio_nr(bio);
548	pb->cell = NULL;
549	pb->len = 0;
550
551	return pb;
552}
553
554/*----------------------------------------------------------------*/
555
556static void defer_bio(struct cache *cache, struct bio *bio)
557{
558	spin_lock_irq(&cache->lock);
559	bio_list_add(&cache->deferred_bios, bio);
560	spin_unlock_irq(&cache->lock);
561
562	wake_deferred_bio_worker(cache);
563}
564
565static void defer_bios(struct cache *cache, struct bio_list *bios)
566{
567	spin_lock_irq(&cache->lock);
568	bio_list_merge(&cache->deferred_bios, bios);
569	bio_list_init(bios);
570	spin_unlock_irq(&cache->lock);
571
572	wake_deferred_bio_worker(cache);
573}
574
575/*----------------------------------------------------------------*/
576
577static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
578{
579	bool r;
580	struct per_bio_data *pb;
581	struct dm_cell_key_v2 key;
582	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
583	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
584
585	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
586
587	build_key(oblock, end, &key);
588	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
589	if (!r) {
590		/*
591		 * Failed to get the lock.
592		 */
593		free_prison_cell(cache, cell_prealloc);
594		return r;
595	}
596
597	if (cell != cell_prealloc)
598		free_prison_cell(cache, cell_prealloc);
599
600	pb = get_per_bio_data(bio);
601	pb->cell = cell;
602
603	return r;
604}
605
606/*----------------------------------------------------------------*/
607
608static bool is_dirty(struct cache *cache, dm_cblock_t b)
609{
610	return test_bit(from_cblock(b), cache->dirty_bitset);
611}
612
613static void set_dirty(struct cache *cache, dm_cblock_t cblock)
614{
615	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
616		atomic_inc(&cache->nr_dirty);
617		policy_set_dirty(cache->policy, cblock);
618	}
619}
620
621/*
622 * These two are called when setting after migrations to force the policy
623 * and dirty bitset to be in sync.
624 */
625static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
626{
627	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
628		atomic_inc(&cache->nr_dirty);
629	policy_set_dirty(cache->policy, cblock);
630}
631
632static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
633{
634	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
635		if (atomic_dec_return(&cache->nr_dirty) == 0)
636			dm_table_event(cache->ti->table);
637	}
638
639	policy_clear_dirty(cache->policy, cblock);
640}
641
642/*----------------------------------------------------------------*/
643
644static bool block_size_is_power_of_two(struct cache *cache)
645{
646	return cache->sectors_per_block_shift >= 0;
647}
648
649static dm_block_t block_div(dm_block_t b, uint32_t n)
650{
651	do_div(b, n);
652
653	return b;
654}
655
656static dm_block_t oblocks_per_dblock(struct cache *cache)
657{
658	dm_block_t oblocks = cache->discard_block_size;
659
660	if (block_size_is_power_of_two(cache))
661		oblocks >>= cache->sectors_per_block_shift;
662	else
663		oblocks = block_div(oblocks, cache->sectors_per_block);
664
665	return oblocks;
666}
667
668static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
669{
670	return to_dblock(block_div(from_oblock(oblock),
671				   oblocks_per_dblock(cache)));
672}
673
674static void set_discard(struct cache *cache, dm_dblock_t b)
675{
676	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
677	atomic_inc(&cache->stats.discard_count);
678
679	spin_lock_irq(&cache->lock);
680	set_bit(from_dblock(b), cache->discard_bitset);
681	spin_unlock_irq(&cache->lock);
682}
683
684static void clear_discard(struct cache *cache, dm_dblock_t b)
685{
686	spin_lock_irq(&cache->lock);
687	clear_bit(from_dblock(b), cache->discard_bitset);
688	spin_unlock_irq(&cache->lock);
689}
690
691static bool is_discarded(struct cache *cache, dm_dblock_t b)
692{
693	int r;
694
695	spin_lock_irq(&cache->lock);
696	r = test_bit(from_dblock(b), cache->discard_bitset);
697	spin_unlock_irq(&cache->lock);
698
699	return r;
700}
701
702static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
703{
704	int r;
705
706	spin_lock_irq(&cache->lock);
707	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
708		     cache->discard_bitset);
709	spin_unlock_irq(&cache->lock);
710
711	return r;
712}
713
714/*
715 * -------------------------------------------------------------
716 * Remapping
717 *--------------------------------------------------------------
718 */
719static void remap_to_origin(struct cache *cache, struct bio *bio)
720{
721	bio_set_dev(bio, cache->origin_dev->bdev);
722}
723
724static void remap_to_cache(struct cache *cache, struct bio *bio,
725			   dm_cblock_t cblock)
726{
727	sector_t bi_sector = bio->bi_iter.bi_sector;
728	sector_t block = from_cblock(cblock);
729
730	bio_set_dev(bio, cache->cache_dev->bdev);
731	if (!block_size_is_power_of_two(cache))
732		bio->bi_iter.bi_sector =
733			(block * cache->sectors_per_block) +
734			sector_div(bi_sector, cache->sectors_per_block);
735	else
736		bio->bi_iter.bi_sector =
737			(block << cache->sectors_per_block_shift) |
738			(bi_sector & (cache->sectors_per_block - 1));
739}
740
741static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
742{
743	struct per_bio_data *pb;
744
745	spin_lock_irq(&cache->lock);
746	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
747	    bio_op(bio) != REQ_OP_DISCARD) {
748		pb = get_per_bio_data(bio);
749		pb->tick = true;
750		cache->need_tick_bio = false;
751	}
752	spin_unlock_irq(&cache->lock);
753}
754
755static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
756					  dm_oblock_t oblock)
757{
758	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
759	check_if_tick_bio_needed(cache, bio);
760	remap_to_origin(cache, bio);
761	if (bio_data_dir(bio) == WRITE)
762		clear_discard(cache, oblock_to_dblock(cache, oblock));
763}
764
765static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
766				 dm_oblock_t oblock, dm_cblock_t cblock)
767{
768	check_if_tick_bio_needed(cache, bio);
769	remap_to_cache(cache, bio, cblock);
770	if (bio_data_dir(bio) == WRITE) {
771		set_dirty(cache, cblock);
772		clear_discard(cache, oblock_to_dblock(cache, oblock));
773	}
774}
775
776static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
777{
778	sector_t block_nr = bio->bi_iter.bi_sector;
779
780	if (!block_size_is_power_of_two(cache))
781		(void) sector_div(block_nr, cache->sectors_per_block);
782	else
783		block_nr >>= cache->sectors_per_block_shift;
784
785	return to_oblock(block_nr);
786}
787
788static bool accountable_bio(struct cache *cache, struct bio *bio)
789{
790	return bio_op(bio) != REQ_OP_DISCARD;
791}
792
793static void accounted_begin(struct cache *cache, struct bio *bio)
794{
795	struct per_bio_data *pb;
796
797	if (accountable_bio(cache, bio)) {
798		pb = get_per_bio_data(bio);
799		pb->len = bio_sectors(bio);
800		dm_iot_io_begin(&cache->tracker, pb->len);
801	}
802}
803
804static void accounted_complete(struct cache *cache, struct bio *bio)
805{
806	struct per_bio_data *pb = get_per_bio_data(bio);
807
808	dm_iot_io_end(&cache->tracker, pb->len);
809}
810
811static void accounted_request(struct cache *cache, struct bio *bio)
812{
813	accounted_begin(cache, bio);
814	dm_submit_bio_remap(bio, NULL);
815}
816
817static void issue_op(struct bio *bio, void *context)
818{
819	struct cache *cache = context;
820
821	accounted_request(cache, bio);
822}
823
824/*
825 * When running in writethrough mode we need to send writes to clean blocks
826 * to both the cache and origin devices.  Clone the bio and send them in parallel.
827 */
828static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
829				      dm_oblock_t oblock, dm_cblock_t cblock)
830{
831	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
832						 GFP_NOIO, &cache->bs);
833
834	BUG_ON(!origin_bio);
835
836	bio_chain(origin_bio, bio);
837
838	if (bio_data_dir(origin_bio) == WRITE)
839		clear_discard(cache, oblock_to_dblock(cache, oblock));
840	submit_bio(origin_bio);
841
842	remap_to_cache(cache, bio, cblock);
843}
844
845/*
846 *--------------------------------------------------------------
847 * Failure modes
848 *--------------------------------------------------------------
849 */
850static enum cache_metadata_mode get_cache_mode(struct cache *cache)
851{
852	return cache->features.mode;
853}
854
855static const char *cache_device_name(struct cache *cache)
856{
857	return dm_table_device_name(cache->ti->table);
858}
859
860static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
861{
862	static const char *descs[] = {
863		"write",
864		"read-only",
865		"fail"
866	};
867
868	dm_table_event(cache->ti->table);
869	DMINFO("%s: switching cache to %s mode",
870	       cache_device_name(cache), descs[(int)mode]);
871}
872
873static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
874{
875	bool needs_check;
876	enum cache_metadata_mode old_mode = get_cache_mode(cache);
877
878	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
879		DMERR("%s: unable to read needs_check flag, setting failure mode.",
880		      cache_device_name(cache));
881		new_mode = CM_FAIL;
882	}
883
884	if (new_mode == CM_WRITE && needs_check) {
885		DMERR("%s: unable to switch cache to write mode until repaired.",
886		      cache_device_name(cache));
887		if (old_mode != new_mode)
888			new_mode = old_mode;
889		else
890			new_mode = CM_READ_ONLY;
891	}
892
893	/* Never move out of fail mode */
894	if (old_mode == CM_FAIL)
895		new_mode = CM_FAIL;
896
897	switch (new_mode) {
898	case CM_FAIL:
899	case CM_READ_ONLY:
900		dm_cache_metadata_set_read_only(cache->cmd);
901		break;
902
903	case CM_WRITE:
904		dm_cache_metadata_set_read_write(cache->cmd);
905		break;
906	}
907
908	cache->features.mode = new_mode;
909
910	if (new_mode != old_mode)
911		notify_mode_switch(cache, new_mode);
912}
913
914static void abort_transaction(struct cache *cache)
915{
916	const char *dev_name = cache_device_name(cache);
917
918	if (get_cache_mode(cache) >= CM_READ_ONLY)
919		return;
920
921	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
922	if (dm_cache_metadata_abort(cache->cmd)) {
923		DMERR("%s: failed to abort metadata transaction", dev_name);
924		set_cache_mode(cache, CM_FAIL);
925	}
926
927	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
928		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
929		set_cache_mode(cache, CM_FAIL);
930	}
931}
932
933static void metadata_operation_failed(struct cache *cache, const char *op, int r)
934{
935	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
936		    cache_device_name(cache), op, r);
937	abort_transaction(cache);
938	set_cache_mode(cache, CM_READ_ONLY);
939}
940
941/*----------------------------------------------------------------*/
942
943static void load_stats(struct cache *cache)
944{
945	struct dm_cache_statistics stats;
946
947	dm_cache_metadata_get_stats(cache->cmd, &stats);
948	atomic_set(&cache->stats.read_hit, stats.read_hits);
949	atomic_set(&cache->stats.read_miss, stats.read_misses);
950	atomic_set(&cache->stats.write_hit, stats.write_hits);
951	atomic_set(&cache->stats.write_miss, stats.write_misses);
952}
953
954static void save_stats(struct cache *cache)
955{
956	struct dm_cache_statistics stats;
957
958	if (get_cache_mode(cache) >= CM_READ_ONLY)
959		return;
960
961	stats.read_hits = atomic_read(&cache->stats.read_hit);
962	stats.read_misses = atomic_read(&cache->stats.read_miss);
963	stats.write_hits = atomic_read(&cache->stats.write_hit);
964	stats.write_misses = atomic_read(&cache->stats.write_miss);
965
966	dm_cache_metadata_set_stats(cache->cmd, &stats);
967}
968
969static void update_stats(struct cache_stats *stats, enum policy_operation op)
970{
971	switch (op) {
972	case POLICY_PROMOTE:
973		atomic_inc(&stats->promotion);
974		break;
975
976	case POLICY_DEMOTE:
977		atomic_inc(&stats->demotion);
978		break;
979
980	case POLICY_WRITEBACK:
981		atomic_inc(&stats->writeback);
982		break;
983	}
984}
985
986/*
987 *---------------------------------------------------------------------
988 * Migration processing
989 *
990 * Migration covers moving data from the origin device to the cache, or
991 * vice versa.
992 *---------------------------------------------------------------------
993 */
994static void inc_io_migrations(struct cache *cache)
995{
996	atomic_inc(&cache->nr_io_migrations);
997}
998
999static void dec_io_migrations(struct cache *cache)
1000{
1001	atomic_dec(&cache->nr_io_migrations);
1002}
1003
1004static bool discard_or_flush(struct bio *bio)
1005{
1006	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1007}
1008
1009static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1010				     dm_dblock_t *b, dm_dblock_t *e)
1011{
1012	sector_t sb = bio->bi_iter.bi_sector;
1013	sector_t se = bio_end_sector(bio);
1014
1015	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1016
1017	if (se - sb < cache->discard_block_size)
1018		*e = *b;
1019	else
1020		*e = to_dblock(block_div(se, cache->discard_block_size));
1021}
1022
1023/*----------------------------------------------------------------*/
1024
1025static void prevent_background_work(struct cache *cache)
1026{
1027	lockdep_off();
1028	down_write(&cache->background_work_lock);
1029	lockdep_on();
1030}
1031
1032static void allow_background_work(struct cache *cache)
1033{
1034	lockdep_off();
1035	up_write(&cache->background_work_lock);
1036	lockdep_on();
1037}
1038
1039static bool background_work_begin(struct cache *cache)
1040{
1041	bool r;
1042
1043	lockdep_off();
1044	r = down_read_trylock(&cache->background_work_lock);
1045	lockdep_on();
1046
1047	return r;
1048}
1049
1050static void background_work_end(struct cache *cache)
1051{
1052	lockdep_off();
1053	up_read(&cache->background_work_lock);
1054	lockdep_on();
1055}
1056
1057/*----------------------------------------------------------------*/
1058
1059static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1060{
1061	return (bio_data_dir(bio) == WRITE) &&
1062		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1063}
1064
1065static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1066{
1067	return writeback_mode(cache) &&
1068		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1069}
1070
1071static void quiesce(struct dm_cache_migration *mg,
1072		    void (*continuation)(struct work_struct *))
1073{
1074	init_continuation(&mg->k, continuation);
1075	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1076}
1077
1078static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1079{
1080	struct continuation *k = container_of(ws, struct continuation, ws);
1081
1082	return container_of(k, struct dm_cache_migration, k);
1083}
1084
1085static void copy_complete(int read_err, unsigned long write_err, void *context)
1086{
1087	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1088
1089	if (read_err || write_err)
1090		mg->k.input = BLK_STS_IOERR;
1091
1092	queue_continuation(mg->cache->wq, &mg->k);
1093}
1094
1095static void copy(struct dm_cache_migration *mg, bool promote)
1096{
1097	struct dm_io_region o_region, c_region;
1098	struct cache *cache = mg->cache;
1099
1100	o_region.bdev = cache->origin_dev->bdev;
1101	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1102	o_region.count = cache->sectors_per_block;
1103
1104	c_region.bdev = cache->cache_dev->bdev;
1105	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1106	c_region.count = cache->sectors_per_block;
1107
1108	if (promote)
1109		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1110	else
1111		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1112}
1113
1114static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1115{
1116	struct per_bio_data *pb = get_per_bio_data(bio);
1117
1118	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1119		free_prison_cell(cache, pb->cell);
1120	pb->cell = NULL;
1121}
1122
1123static void overwrite_endio(struct bio *bio)
1124{
1125	struct dm_cache_migration *mg = bio->bi_private;
1126	struct cache *cache = mg->cache;
1127	struct per_bio_data *pb = get_per_bio_data(bio);
1128
1129	dm_unhook_bio(&pb->hook_info, bio);
1130
1131	if (bio->bi_status)
1132		mg->k.input = bio->bi_status;
1133
1134	queue_continuation(cache->wq, &mg->k);
1135}
1136
1137static void overwrite(struct dm_cache_migration *mg,
1138		      void (*continuation)(struct work_struct *))
1139{
1140	struct bio *bio = mg->overwrite_bio;
1141	struct per_bio_data *pb = get_per_bio_data(bio);
1142
1143	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1144
1145	/*
1146	 * The overwrite bio is part of the copy operation, as such it does
1147	 * not set/clear discard or dirty flags.
1148	 */
1149	if (mg->op->op == POLICY_PROMOTE)
1150		remap_to_cache(mg->cache, bio, mg->op->cblock);
1151	else
1152		remap_to_origin(mg->cache, bio);
1153
1154	init_continuation(&mg->k, continuation);
1155	accounted_request(mg->cache, bio);
1156}
1157
1158/*
1159 * Migration steps:
1160 *
1161 * 1) exclusive lock preventing WRITEs
1162 * 2) quiesce
1163 * 3) copy or issue overwrite bio
1164 * 4) upgrade to exclusive lock preventing READs and WRITEs
1165 * 5) quiesce
1166 * 6) update metadata and commit
1167 * 7) unlock
1168 */
1169static void mg_complete(struct dm_cache_migration *mg, bool success)
1170{
1171	struct bio_list bios;
1172	struct cache *cache = mg->cache;
1173	struct policy_work *op = mg->op;
1174	dm_cblock_t cblock = op->cblock;
1175
1176	if (success)
1177		update_stats(&cache->stats, op->op);
1178
1179	switch (op->op) {
1180	case POLICY_PROMOTE:
1181		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1182		policy_complete_background_work(cache->policy, op, success);
1183
1184		if (mg->overwrite_bio) {
1185			if (success)
1186				force_set_dirty(cache, cblock);
1187			else if (mg->k.input)
1188				mg->overwrite_bio->bi_status = mg->k.input;
1189			else
1190				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1191			bio_endio(mg->overwrite_bio);
1192		} else {
1193			if (success)
1194				force_clear_dirty(cache, cblock);
1195			dec_io_migrations(cache);
1196		}
1197		break;
1198
1199	case POLICY_DEMOTE:
1200		/*
1201		 * We clear dirty here to update the nr_dirty counter.
1202		 */
1203		if (success)
1204			force_clear_dirty(cache, cblock);
1205		policy_complete_background_work(cache->policy, op, success);
1206		dec_io_migrations(cache);
1207		break;
1208
1209	case POLICY_WRITEBACK:
1210		if (success)
1211			force_clear_dirty(cache, cblock);
1212		policy_complete_background_work(cache->policy, op, success);
1213		dec_io_migrations(cache);
1214		break;
1215	}
1216
1217	bio_list_init(&bios);
1218	if (mg->cell) {
1219		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1220			free_prison_cell(cache, mg->cell);
1221	}
1222
1223	free_migration(mg);
1224	defer_bios(cache, &bios);
1225	wake_migration_worker(cache);
1226
1227	background_work_end(cache);
1228}
1229
1230static void mg_success(struct work_struct *ws)
1231{
1232	struct dm_cache_migration *mg = ws_to_mg(ws);
1233
1234	mg_complete(mg, mg->k.input == 0);
1235}
1236
1237static void mg_update_metadata(struct work_struct *ws)
1238{
1239	int r;
1240	struct dm_cache_migration *mg = ws_to_mg(ws);
1241	struct cache *cache = mg->cache;
1242	struct policy_work *op = mg->op;
1243
1244	switch (op->op) {
1245	case POLICY_PROMOTE:
1246		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1247		if (r) {
1248			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1249				    cache_device_name(cache));
1250			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1251
1252			mg_complete(mg, false);
1253			return;
1254		}
1255		mg_complete(mg, true);
1256		break;
1257
1258	case POLICY_DEMOTE:
1259		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1260		if (r) {
1261			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1262				    cache_device_name(cache));
1263			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1264
1265			mg_complete(mg, false);
1266			return;
1267		}
1268
1269		/*
1270		 * It would be nice if we only had to commit when a REQ_FLUSH
1271		 * comes through.  But there's one scenario that we have to
1272		 * look out for:
1273		 *
1274		 * - vblock x in a cache block
1275		 * - domotion occurs
1276		 * - cache block gets reallocated and over written
1277		 * - crash
1278		 *
1279		 * When we recover, because there was no commit the cache will
1280		 * rollback to having the data for vblock x in the cache block.
1281		 * But the cache block has since been overwritten, so it'll end
1282		 * up pointing to data that was never in 'x' during the history
1283		 * of the device.
1284		 *
1285		 * To avoid this issue we require a commit as part of the
1286		 * demotion operation.
1287		 */
1288		init_continuation(&mg->k, mg_success);
1289		continue_after_commit(&cache->committer, &mg->k);
1290		schedule_commit(&cache->committer);
1291		break;
1292
1293	case POLICY_WRITEBACK:
1294		mg_complete(mg, true);
1295		break;
1296	}
1297}
1298
1299static void mg_update_metadata_after_copy(struct work_struct *ws)
1300{
1301	struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303	/*
1304	 * Did the copy succeed?
1305	 */
1306	if (mg->k.input)
1307		mg_complete(mg, false);
1308	else
1309		mg_update_metadata(ws);
1310}
1311
1312static void mg_upgrade_lock(struct work_struct *ws)
1313{
1314	int r;
1315	struct dm_cache_migration *mg = ws_to_mg(ws);
1316
1317	/*
1318	 * Did the copy succeed?
1319	 */
1320	if (mg->k.input)
1321		mg_complete(mg, false);
1322
1323	else {
1324		/*
1325		 * Now we want the lock to prevent both reads and writes.
1326		 */
1327		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1328					    READ_WRITE_LOCK_LEVEL);
1329		if (r < 0)
1330			mg_complete(mg, false);
1331
1332		else if (r)
1333			quiesce(mg, mg_update_metadata);
1334
1335		else
1336			mg_update_metadata(ws);
1337	}
1338}
1339
1340static void mg_full_copy(struct work_struct *ws)
1341{
1342	struct dm_cache_migration *mg = ws_to_mg(ws);
1343	struct cache *cache = mg->cache;
1344	struct policy_work *op = mg->op;
1345	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1346
1347	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1348	    is_discarded_oblock(cache, op->oblock)) {
1349		mg_upgrade_lock(ws);
1350		return;
1351	}
1352
1353	init_continuation(&mg->k, mg_upgrade_lock);
1354	copy(mg, is_policy_promote);
1355}
1356
1357static void mg_copy(struct work_struct *ws)
1358{
1359	struct dm_cache_migration *mg = ws_to_mg(ws);
1360
1361	if (mg->overwrite_bio) {
1362		/*
1363		 * No exclusive lock was held when we last checked if the bio
1364		 * was optimisable.  So we have to check again in case things
1365		 * have changed (eg, the block may no longer be discarded).
1366		 */
1367		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1368			/*
1369			 * Fallback to a real full copy after doing some tidying up.
1370			 */
1371			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1372
1373			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1374			mg->overwrite_bio = NULL;
1375			inc_io_migrations(mg->cache);
1376			mg_full_copy(ws);
1377			return;
1378		}
1379
1380		/*
1381		 * It's safe to do this here, even though it's new data
1382		 * because all IO has been locked out of the block.
1383		 *
1384		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1385		 * so _not_ using mg_upgrade_lock() as continutation.
1386		 */
1387		overwrite(mg, mg_update_metadata_after_copy);
1388
1389	} else
1390		mg_full_copy(ws);
1391}
1392
1393static int mg_lock_writes(struct dm_cache_migration *mg)
1394{
1395	int r;
1396	struct dm_cell_key_v2 key;
1397	struct cache *cache = mg->cache;
1398	struct dm_bio_prison_cell_v2 *prealloc;
1399
1400	prealloc = alloc_prison_cell(cache);
1401
1402	/*
1403	 * Prevent writes to the block, but allow reads to continue.
1404	 * Unless we're using an overwrite bio, in which case we lock
1405	 * everything.
1406	 */
1407	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1408	r = dm_cell_lock_v2(cache->prison, &key,
1409			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1410			    prealloc, &mg->cell);
1411	if (r < 0) {
1412		free_prison_cell(cache, prealloc);
1413		mg_complete(mg, false);
1414		return r;
1415	}
1416
1417	if (mg->cell != prealloc)
1418		free_prison_cell(cache, prealloc);
1419
1420	if (r == 0)
1421		mg_copy(&mg->k.ws);
1422	else
1423		quiesce(mg, mg_copy);
1424
1425	return 0;
1426}
1427
1428static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1429{
1430	struct dm_cache_migration *mg;
1431
1432	if (!background_work_begin(cache)) {
1433		policy_complete_background_work(cache->policy, op, false);
1434		return -EPERM;
1435	}
1436
1437	mg = alloc_migration(cache);
1438
1439	mg->op = op;
1440	mg->overwrite_bio = bio;
1441
1442	if (!bio)
1443		inc_io_migrations(cache);
1444
1445	return mg_lock_writes(mg);
1446}
1447
1448/*
1449 *--------------------------------------------------------------
1450 * invalidation processing
1451 *--------------------------------------------------------------
1452 */
1453
1454static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1455{
1456	struct bio_list bios;
1457	struct cache *cache = mg->cache;
1458
1459	bio_list_init(&bios);
1460	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1461		free_prison_cell(cache, mg->cell);
1462
1463	if (!success && mg->overwrite_bio)
1464		bio_io_error(mg->overwrite_bio);
1465
1466	free_migration(mg);
1467	defer_bios(cache, &bios);
1468
1469	background_work_end(cache);
1470}
1471
1472static void invalidate_completed(struct work_struct *ws)
1473{
1474	struct dm_cache_migration *mg = ws_to_mg(ws);
1475
1476	invalidate_complete(mg, !mg->k.input);
1477}
1478
1479static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1480{
1481	int r;
1482
1483	r = policy_invalidate_mapping(cache->policy, cblock);
1484	if (!r) {
1485		r = dm_cache_remove_mapping(cache->cmd, cblock);
1486		if (r) {
1487			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1488				    cache_device_name(cache));
1489			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1490		}
1491
1492	} else if (r == -ENODATA) {
1493		/*
1494		 * Harmless, already unmapped.
1495		 */
1496		r = 0;
1497
1498	} else
1499		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1500
1501	return r;
1502}
1503
1504static void invalidate_remove(struct work_struct *ws)
1505{
1506	int r;
1507	struct dm_cache_migration *mg = ws_to_mg(ws);
1508	struct cache *cache = mg->cache;
1509
1510	r = invalidate_cblock(cache, mg->invalidate_cblock);
1511	if (r) {
1512		invalidate_complete(mg, false);
1513		return;
1514	}
1515
1516	init_continuation(&mg->k, invalidate_completed);
1517	continue_after_commit(&cache->committer, &mg->k);
1518	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1519	mg->overwrite_bio = NULL;
1520	schedule_commit(&cache->committer);
1521}
1522
1523static int invalidate_lock(struct dm_cache_migration *mg)
1524{
1525	int r;
1526	struct dm_cell_key_v2 key;
1527	struct cache *cache = mg->cache;
1528	struct dm_bio_prison_cell_v2 *prealloc;
1529
1530	prealloc = alloc_prison_cell(cache);
1531
1532	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1533	r = dm_cell_lock_v2(cache->prison, &key,
1534			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1535	if (r < 0) {
1536		free_prison_cell(cache, prealloc);
1537		invalidate_complete(mg, false);
1538		return r;
1539	}
1540
1541	if (mg->cell != prealloc)
1542		free_prison_cell(cache, prealloc);
1543
1544	if (r)
1545		quiesce(mg, invalidate_remove);
1546
1547	else {
1548		/*
1549		 * We can't call invalidate_remove() directly here because we
1550		 * might still be in request context.
1551		 */
1552		init_continuation(&mg->k, invalidate_remove);
1553		queue_work(cache->wq, &mg->k.ws);
1554	}
1555
1556	return 0;
1557}
1558
1559static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1560			    dm_oblock_t oblock, struct bio *bio)
1561{
1562	struct dm_cache_migration *mg;
1563
1564	if (!background_work_begin(cache))
1565		return -EPERM;
1566
1567	mg = alloc_migration(cache);
1568
1569	mg->overwrite_bio = bio;
1570	mg->invalidate_cblock = cblock;
1571	mg->invalidate_oblock = oblock;
1572
1573	return invalidate_lock(mg);
1574}
1575
1576/*
1577 *--------------------------------------------------------------
1578 * bio processing
1579 *--------------------------------------------------------------
1580 */
1581
1582enum busy {
1583	IDLE,
1584	BUSY
1585};
1586
1587static enum busy spare_migration_bandwidth(struct cache *cache)
1588{
1589	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1590	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1591		cache->sectors_per_block;
1592
1593	if (idle && current_volume <= cache->migration_threshold)
1594		return IDLE;
1595	else
1596		return BUSY;
1597}
1598
1599static void inc_hit_counter(struct cache *cache, struct bio *bio)
1600{
1601	atomic_inc(bio_data_dir(bio) == READ ?
1602		   &cache->stats.read_hit : &cache->stats.write_hit);
1603}
1604
1605static void inc_miss_counter(struct cache *cache, struct bio *bio)
1606{
1607	atomic_inc(bio_data_dir(bio) == READ ?
1608		   &cache->stats.read_miss : &cache->stats.write_miss);
1609}
1610
1611/*----------------------------------------------------------------*/
1612
1613static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1614		   bool *commit_needed)
1615{
1616	int r, data_dir;
1617	bool rb, background_queued;
1618	dm_cblock_t cblock;
1619
1620	*commit_needed = false;
1621
1622	rb = bio_detain_shared(cache, block, bio);
1623	if (!rb) {
1624		/*
1625		 * An exclusive lock is held for this block, so we have to
1626		 * wait.  We set the commit_needed flag so the current
1627		 * transaction will be committed asap, allowing this lock
1628		 * to be dropped.
1629		 */
1630		*commit_needed = true;
1631		return DM_MAPIO_SUBMITTED;
1632	}
1633
1634	data_dir = bio_data_dir(bio);
1635
1636	if (optimisable_bio(cache, bio, block)) {
1637		struct policy_work *op = NULL;
1638
1639		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1640		if (unlikely(r && r != -ENOENT)) {
1641			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1642				    cache_device_name(cache), r);
1643			bio_io_error(bio);
1644			return DM_MAPIO_SUBMITTED;
1645		}
1646
1647		if (r == -ENOENT && op) {
1648			bio_drop_shared_lock(cache, bio);
1649			BUG_ON(op->op != POLICY_PROMOTE);
1650			mg_start(cache, op, bio);
1651			return DM_MAPIO_SUBMITTED;
1652		}
1653	} else {
1654		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1655		if (unlikely(r && r != -ENOENT)) {
1656			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1657				    cache_device_name(cache), r);
1658			bio_io_error(bio);
1659			return DM_MAPIO_SUBMITTED;
1660		}
1661
1662		if (background_queued)
1663			wake_migration_worker(cache);
1664	}
1665
1666	if (r == -ENOENT) {
1667		struct per_bio_data *pb = get_per_bio_data(bio);
1668
1669		/*
1670		 * Miss.
1671		 */
1672		inc_miss_counter(cache, bio);
1673		if (pb->req_nr == 0) {
1674			accounted_begin(cache, bio);
1675			remap_to_origin_clear_discard(cache, bio, block);
1676		} else {
1677			/*
1678			 * This is a duplicate writethrough io that is no
1679			 * longer needed because the block has been demoted.
1680			 */
1681			bio_endio(bio);
1682			return DM_MAPIO_SUBMITTED;
1683		}
1684	} else {
1685		/*
1686		 * Hit.
1687		 */
1688		inc_hit_counter(cache, bio);
1689
1690		/*
1691		 * Passthrough always maps to the origin, invalidating any
1692		 * cache blocks that are written to.
1693		 */
1694		if (passthrough_mode(cache)) {
1695			if (bio_data_dir(bio) == WRITE) {
1696				bio_drop_shared_lock(cache, bio);
1697				atomic_inc(&cache->stats.demotion);
1698				invalidate_start(cache, cblock, block, bio);
1699			} else
1700				remap_to_origin_clear_discard(cache, bio, block);
1701		} else {
1702			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1703			    !is_dirty(cache, cblock)) {
1704				remap_to_origin_and_cache(cache, bio, block, cblock);
1705				accounted_begin(cache, bio);
1706			} else
1707				remap_to_cache_dirty(cache, bio, block, cblock);
1708		}
1709	}
1710
1711	/*
1712	 * dm core turns FUA requests into a separate payload and FLUSH req.
1713	 */
1714	if (bio->bi_opf & REQ_FUA) {
1715		/*
1716		 * issue_after_commit will call accounted_begin a second time.  So
1717		 * we call accounted_complete() to avoid double accounting.
1718		 */
1719		accounted_complete(cache, bio);
1720		issue_after_commit(&cache->committer, bio);
1721		*commit_needed = true;
1722		return DM_MAPIO_SUBMITTED;
1723	}
1724
1725	return DM_MAPIO_REMAPPED;
1726}
1727
1728static bool process_bio(struct cache *cache, struct bio *bio)
1729{
1730	bool commit_needed;
1731
1732	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1733		dm_submit_bio_remap(bio, NULL);
1734
1735	return commit_needed;
1736}
1737
1738/*
1739 * A non-zero return indicates read_only or fail_io mode.
1740 */
1741static int commit(struct cache *cache, bool clean_shutdown)
1742{
1743	int r;
1744
1745	if (get_cache_mode(cache) >= CM_READ_ONLY)
1746		return -EINVAL;
1747
1748	atomic_inc(&cache->stats.commit_count);
1749	r = dm_cache_commit(cache->cmd, clean_shutdown);
1750	if (r)
1751		metadata_operation_failed(cache, "dm_cache_commit", r);
1752
1753	return r;
1754}
1755
1756/*
1757 * Used by the batcher.
1758 */
1759static blk_status_t commit_op(void *context)
1760{
1761	struct cache *cache = context;
1762
1763	if (dm_cache_changed_this_transaction(cache->cmd))
1764		return errno_to_blk_status(commit(cache, false));
1765
1766	return 0;
1767}
1768
1769/*----------------------------------------------------------------*/
1770
1771static bool process_flush_bio(struct cache *cache, struct bio *bio)
1772{
1773	struct per_bio_data *pb = get_per_bio_data(bio);
1774
1775	if (!pb->req_nr)
1776		remap_to_origin(cache, bio);
1777	else
1778		remap_to_cache(cache, bio, 0);
1779
1780	issue_after_commit(&cache->committer, bio);
1781	return true;
1782}
1783
1784static bool process_discard_bio(struct cache *cache, struct bio *bio)
1785{
1786	dm_dblock_t b, e;
1787
1788	/*
1789	 * FIXME: do we need to lock the region?  Or can we just assume the
1790	 * user wont be so foolish as to issue discard concurrently with
1791	 * other IO?
1792	 */
1793	calc_discard_block_range(cache, bio, &b, &e);
1794	while (b != e) {
1795		set_discard(cache, b);
1796		b = to_dblock(from_dblock(b) + 1);
1797	}
1798
1799	if (cache->features.discard_passdown) {
1800		remap_to_origin(cache, bio);
1801		dm_submit_bio_remap(bio, NULL);
1802	} else
1803		bio_endio(bio);
1804
1805	return false;
1806}
1807
1808static void process_deferred_bios(struct work_struct *ws)
1809{
1810	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1811
1812	bool commit_needed = false;
1813	struct bio_list bios;
1814	struct bio *bio;
1815
1816	bio_list_init(&bios);
1817
1818	spin_lock_irq(&cache->lock);
1819	bio_list_merge(&bios, &cache->deferred_bios);
1820	bio_list_init(&cache->deferred_bios);
1821	spin_unlock_irq(&cache->lock);
1822
1823	while ((bio = bio_list_pop(&bios))) {
1824		if (bio->bi_opf & REQ_PREFLUSH)
1825			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1826
1827		else if (bio_op(bio) == REQ_OP_DISCARD)
1828			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1829
1830		else
1831			commit_needed = process_bio(cache, bio) || commit_needed;
1832		cond_resched();
1833	}
1834
1835	if (commit_needed)
1836		schedule_commit(&cache->committer);
1837}
1838
1839/*
1840 *--------------------------------------------------------------
1841 * Main worker loop
1842 *--------------------------------------------------------------
1843 */
1844static void requeue_deferred_bios(struct cache *cache)
1845{
1846	struct bio *bio;
1847	struct bio_list bios;
1848
1849	bio_list_init(&bios);
1850	bio_list_merge(&bios, &cache->deferred_bios);
1851	bio_list_init(&cache->deferred_bios);
1852
1853	while ((bio = bio_list_pop(&bios))) {
1854		bio->bi_status = BLK_STS_DM_REQUEUE;
1855		bio_endio(bio);
1856		cond_resched();
1857	}
1858}
1859
1860/*
1861 * We want to commit periodically so that not too much
1862 * unwritten metadata builds up.
1863 */
1864static void do_waker(struct work_struct *ws)
1865{
1866	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1867
1868	policy_tick(cache->policy, true);
1869	wake_migration_worker(cache);
1870	schedule_commit(&cache->committer);
1871	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1872}
1873
1874static void check_migrations(struct work_struct *ws)
1875{
1876	int r;
1877	struct policy_work *op;
1878	struct cache *cache = container_of(ws, struct cache, migration_worker);
1879	enum busy b;
1880
1881	for (;;) {
1882		b = spare_migration_bandwidth(cache);
1883
1884		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1885		if (r == -ENODATA)
1886			break;
1887
1888		if (r) {
1889			DMERR_LIMIT("%s: policy_background_work failed",
1890				    cache_device_name(cache));
1891			break;
1892		}
1893
1894		r = mg_start(cache, op, NULL);
1895		if (r)
1896			break;
1897
1898		cond_resched();
1899	}
1900}
1901
1902/*
1903 *--------------------------------------------------------------
1904 * Target methods
1905 *--------------------------------------------------------------
1906 */
1907
1908/*
1909 * This function gets called on the error paths of the constructor, so we
1910 * have to cope with a partially initialised struct.
1911 */
1912static void destroy(struct cache *cache)
1913{
1914	unsigned int i;
1915
1916	mempool_exit(&cache->migration_pool);
1917
1918	if (cache->prison)
1919		dm_bio_prison_destroy_v2(cache->prison);
1920
1921	cancel_delayed_work_sync(&cache->waker);
1922	if (cache->wq)
1923		destroy_workqueue(cache->wq);
1924
1925	if (cache->dirty_bitset)
1926		free_bitset(cache->dirty_bitset);
1927
1928	if (cache->discard_bitset)
1929		free_bitset(cache->discard_bitset);
1930
1931	if (cache->copier)
1932		dm_kcopyd_client_destroy(cache->copier);
1933
1934	if (cache->cmd)
1935		dm_cache_metadata_close(cache->cmd);
1936
1937	if (cache->metadata_dev)
1938		dm_put_device(cache->ti, cache->metadata_dev);
1939
1940	if (cache->origin_dev)
1941		dm_put_device(cache->ti, cache->origin_dev);
1942
1943	if (cache->cache_dev)
1944		dm_put_device(cache->ti, cache->cache_dev);
1945
1946	if (cache->policy)
1947		dm_cache_policy_destroy(cache->policy);
1948
1949	for (i = 0; i < cache->nr_ctr_args ; i++)
1950		kfree(cache->ctr_args[i]);
1951	kfree(cache->ctr_args);
1952
1953	bioset_exit(&cache->bs);
1954
1955	kfree(cache);
1956}
1957
1958static void cache_dtr(struct dm_target *ti)
1959{
1960	struct cache *cache = ti->private;
1961
1962	destroy(cache);
1963}
1964
1965static sector_t get_dev_size(struct dm_dev *dev)
1966{
1967	return bdev_nr_sectors(dev->bdev);
1968}
1969
1970/*----------------------------------------------------------------*/
1971
1972/*
1973 * Construct a cache device mapping.
1974 *
1975 * cache <metadata dev> <cache dev> <origin dev> <block size>
1976 *       <#feature args> [<feature arg>]*
1977 *       <policy> <#policy args> [<policy arg>]*
1978 *
1979 * metadata dev    : fast device holding the persistent metadata
1980 * cache dev	   : fast device holding cached data blocks
1981 * origin dev	   : slow device holding original data blocks
1982 * block size	   : cache unit size in sectors
1983 *
1984 * #feature args   : number of feature arguments passed
1985 * feature args    : writethrough.  (The default is writeback.)
1986 *
1987 * policy	   : the replacement policy to use
1988 * #policy args    : an even number of policy arguments corresponding
1989 *		     to key/value pairs passed to the policy
1990 * policy args	   : key/value pairs passed to the policy
1991 *		     E.g. 'sequential_threshold 1024'
1992 *		     See cache-policies.txt for details.
1993 *
1994 * Optional feature arguments are:
1995 *   writethrough  : write through caching that prohibits cache block
1996 *		     content from being different from origin block content.
1997 *		     Without this argument, the default behaviour is to write
1998 *		     back cache block contents later for performance reasons,
1999 *		     so they may differ from the corresponding origin blocks.
2000 */
2001struct cache_args {
2002	struct dm_target *ti;
2003
2004	struct dm_dev *metadata_dev;
2005
2006	struct dm_dev *cache_dev;
2007	sector_t cache_sectors;
2008
2009	struct dm_dev *origin_dev;
2010	sector_t origin_sectors;
2011
2012	uint32_t block_size;
2013
2014	const char *policy_name;
2015	int policy_argc;
2016	const char **policy_argv;
2017
2018	struct cache_features features;
2019};
2020
2021static void destroy_cache_args(struct cache_args *ca)
2022{
2023	if (ca->metadata_dev)
2024		dm_put_device(ca->ti, ca->metadata_dev);
2025
2026	if (ca->cache_dev)
2027		dm_put_device(ca->ti, ca->cache_dev);
2028
2029	if (ca->origin_dev)
2030		dm_put_device(ca->ti, ca->origin_dev);
2031
2032	kfree(ca);
2033}
2034
2035static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2036{
2037	if (!as->argc) {
2038		*error = "Insufficient args";
2039		return false;
2040	}
2041
2042	return true;
2043}
2044
2045static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2046			      char **error)
2047{
2048	int r;
2049	sector_t metadata_dev_size;
2050
2051	if (!at_least_one_arg(as, error))
2052		return -EINVAL;
2053
2054	r = dm_get_device(ca->ti, dm_shift_arg(as),
2055			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2056	if (r) {
2057		*error = "Error opening metadata device";
2058		return r;
2059	}
2060
2061	metadata_dev_size = get_dev_size(ca->metadata_dev);
2062	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2063		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2064		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2065
2066	return 0;
2067}
2068
2069static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2070			   char **error)
2071{
2072	int r;
2073
2074	if (!at_least_one_arg(as, error))
2075		return -EINVAL;
2076
2077	r = dm_get_device(ca->ti, dm_shift_arg(as),
2078			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2079	if (r) {
2080		*error = "Error opening cache device";
2081		return r;
2082	}
2083	ca->cache_sectors = get_dev_size(ca->cache_dev);
2084
2085	return 0;
2086}
2087
2088static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2089			    char **error)
2090{
2091	int r;
2092
2093	if (!at_least_one_arg(as, error))
2094		return -EINVAL;
2095
2096	r = dm_get_device(ca->ti, dm_shift_arg(as),
2097			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2098	if (r) {
2099		*error = "Error opening origin device";
2100		return r;
2101	}
2102
2103	ca->origin_sectors = get_dev_size(ca->origin_dev);
2104	if (ca->ti->len > ca->origin_sectors) {
2105		*error = "Device size larger than cached device";
2106		return -EINVAL;
2107	}
2108
2109	return 0;
2110}
2111
2112static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2113			    char **error)
2114{
2115	unsigned long block_size;
2116
2117	if (!at_least_one_arg(as, error))
2118		return -EINVAL;
2119
2120	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2121	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2122	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2123	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2124		*error = "Invalid data block size";
2125		return -EINVAL;
2126	}
2127
2128	if (block_size > ca->cache_sectors) {
2129		*error = "Data block size is larger than the cache device";
2130		return -EINVAL;
2131	}
2132
2133	ca->block_size = block_size;
2134
2135	return 0;
2136}
2137
2138static void init_features(struct cache_features *cf)
2139{
2140	cf->mode = CM_WRITE;
2141	cf->io_mode = CM_IO_WRITEBACK;
2142	cf->metadata_version = 1;
2143	cf->discard_passdown = true;
2144}
2145
2146static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2147			  char **error)
2148{
2149	static const struct dm_arg _args[] = {
2150		{0, 3, "Invalid number of cache feature arguments"},
2151	};
2152
2153	int r, mode_ctr = 0;
2154	unsigned int argc;
2155	const char *arg;
2156	struct cache_features *cf = &ca->features;
2157
2158	init_features(cf);
2159
2160	r = dm_read_arg_group(_args, as, &argc, error);
2161	if (r)
2162		return -EINVAL;
2163
2164	while (argc--) {
2165		arg = dm_shift_arg(as);
2166
2167		if (!strcasecmp(arg, "writeback")) {
2168			cf->io_mode = CM_IO_WRITEBACK;
2169			mode_ctr++;
2170		}
2171
2172		else if (!strcasecmp(arg, "writethrough")) {
2173			cf->io_mode = CM_IO_WRITETHROUGH;
2174			mode_ctr++;
2175		}
2176
2177		else if (!strcasecmp(arg, "passthrough")) {
2178			cf->io_mode = CM_IO_PASSTHROUGH;
2179			mode_ctr++;
2180		}
2181
2182		else if (!strcasecmp(arg, "metadata2"))
2183			cf->metadata_version = 2;
2184
2185		else if (!strcasecmp(arg, "no_discard_passdown"))
2186			cf->discard_passdown = false;
2187
2188		else {
2189			*error = "Unrecognised cache feature requested";
2190			return -EINVAL;
2191		}
2192	}
2193
2194	if (mode_ctr > 1) {
2195		*error = "Duplicate cache io_mode features requested";
2196		return -EINVAL;
2197	}
2198
2199	return 0;
2200}
2201
2202static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2203			char **error)
2204{
2205	static const struct dm_arg _args[] = {
2206		{0, 1024, "Invalid number of policy arguments"},
2207	};
2208
2209	int r;
2210
2211	if (!at_least_one_arg(as, error))
2212		return -EINVAL;
2213
2214	ca->policy_name = dm_shift_arg(as);
2215
2216	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2217	if (r)
2218		return -EINVAL;
2219
2220	ca->policy_argv = (const char **)as->argv;
2221	dm_consume_args(as, ca->policy_argc);
2222
2223	return 0;
2224}
2225
2226static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2227			    char **error)
2228{
2229	int r;
2230	struct dm_arg_set as;
2231
2232	as.argc = argc;
2233	as.argv = argv;
2234
2235	r = parse_metadata_dev(ca, &as, error);
2236	if (r)
2237		return r;
2238
2239	r = parse_cache_dev(ca, &as, error);
2240	if (r)
2241		return r;
2242
2243	r = parse_origin_dev(ca, &as, error);
2244	if (r)
2245		return r;
2246
2247	r = parse_block_size(ca, &as, error);
2248	if (r)
2249		return r;
2250
2251	r = parse_features(ca, &as, error);
2252	if (r)
2253		return r;
2254
2255	r = parse_policy(ca, &as, error);
2256	if (r)
2257		return r;
2258
2259	return 0;
2260}
2261
2262/*----------------------------------------------------------------*/
2263
2264static struct kmem_cache *migration_cache;
2265
2266#define NOT_CORE_OPTION 1
2267
2268static int process_config_option(struct cache *cache, const char *key, const char *value)
2269{
2270	unsigned long tmp;
2271
2272	if (!strcasecmp(key, "migration_threshold")) {
2273		if (kstrtoul(value, 10, &tmp))
2274			return -EINVAL;
2275
2276		cache->migration_threshold = tmp;
2277		return 0;
2278	}
2279
2280	return NOT_CORE_OPTION;
2281}
2282
2283static int set_config_value(struct cache *cache, const char *key, const char *value)
2284{
2285	int r = process_config_option(cache, key, value);
2286
2287	if (r == NOT_CORE_OPTION)
2288		r = policy_set_config_value(cache->policy, key, value);
2289
2290	if (r)
2291		DMWARN("bad config value for %s: %s", key, value);
2292
2293	return r;
2294}
2295
2296static int set_config_values(struct cache *cache, int argc, const char **argv)
2297{
2298	int r = 0;
2299
2300	if (argc & 1) {
2301		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2302		return -EINVAL;
2303	}
2304
2305	while (argc) {
2306		r = set_config_value(cache, argv[0], argv[1]);
2307		if (r)
2308			break;
2309
2310		argc -= 2;
2311		argv += 2;
2312	}
2313
2314	return r;
2315}
2316
2317static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2318			       char **error)
2319{
2320	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2321							   cache->cache_size,
2322							   cache->origin_sectors,
2323							   cache->sectors_per_block);
2324	if (IS_ERR(p)) {
2325		*error = "Error creating cache's policy";
2326		return PTR_ERR(p);
2327	}
2328	cache->policy = p;
2329	BUG_ON(!cache->policy);
2330
2331	return 0;
2332}
2333
2334/*
2335 * We want the discard block size to be at least the size of the cache
2336 * block size and have no more than 2^14 discard blocks across the origin.
2337 */
2338#define MAX_DISCARD_BLOCKS (1 << 14)
2339
2340static bool too_many_discard_blocks(sector_t discard_block_size,
2341				    sector_t origin_size)
2342{
2343	(void) sector_div(origin_size, discard_block_size);
2344
2345	return origin_size > MAX_DISCARD_BLOCKS;
2346}
2347
2348static sector_t calculate_discard_block_size(sector_t cache_block_size,
2349					     sector_t origin_size)
2350{
2351	sector_t discard_block_size = cache_block_size;
2352
2353	if (origin_size)
2354		while (too_many_discard_blocks(discard_block_size, origin_size))
2355			discard_block_size *= 2;
2356
2357	return discard_block_size;
2358}
2359
2360static void set_cache_size(struct cache *cache, dm_cblock_t size)
2361{
2362	dm_block_t nr_blocks = from_cblock(size);
2363
2364	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2365		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2366			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2367			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2368			     (unsigned long long) nr_blocks);
2369
2370	cache->cache_size = size;
2371}
2372
2373#define DEFAULT_MIGRATION_THRESHOLD 2048
2374
2375static int cache_create(struct cache_args *ca, struct cache **result)
2376{
2377	int r = 0;
2378	char **error = &ca->ti->error;
2379	struct cache *cache;
2380	struct dm_target *ti = ca->ti;
2381	dm_block_t origin_blocks;
2382	struct dm_cache_metadata *cmd;
2383	bool may_format = ca->features.mode == CM_WRITE;
2384
2385	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2386	if (!cache)
2387		return -ENOMEM;
2388
2389	cache->ti = ca->ti;
2390	ti->private = cache;
2391	ti->accounts_remapped_io = true;
2392	ti->num_flush_bios = 2;
2393	ti->flush_supported = true;
2394
2395	ti->num_discard_bios = 1;
2396	ti->discards_supported = true;
2397
2398	ti->per_io_data_size = sizeof(struct per_bio_data);
2399
2400	cache->features = ca->features;
2401	if (writethrough_mode(cache)) {
2402		/* Create bioset for writethrough bios issued to origin */
2403		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2404		if (r)
2405			goto bad;
2406	}
2407
2408	cache->metadata_dev = ca->metadata_dev;
2409	cache->origin_dev = ca->origin_dev;
2410	cache->cache_dev = ca->cache_dev;
2411
2412	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2413
2414	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2415	origin_blocks = block_div(origin_blocks, ca->block_size);
2416	cache->origin_blocks = to_oblock(origin_blocks);
2417
2418	cache->sectors_per_block = ca->block_size;
2419	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2420		r = -EINVAL;
2421		goto bad;
2422	}
2423
2424	if (ca->block_size & (ca->block_size - 1)) {
2425		dm_block_t cache_size = ca->cache_sectors;
2426
2427		cache->sectors_per_block_shift = -1;
2428		cache_size = block_div(cache_size, ca->block_size);
2429		set_cache_size(cache, to_cblock(cache_size));
2430	} else {
2431		cache->sectors_per_block_shift = __ffs(ca->block_size);
2432		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2433	}
2434
2435	r = create_cache_policy(cache, ca, error);
2436	if (r)
2437		goto bad;
2438
2439	cache->policy_nr_args = ca->policy_argc;
2440	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2441
2442	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2443	if (r) {
2444		*error = "Error setting cache policy's config values";
2445		goto bad;
2446	}
2447
2448	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2449				     ca->block_size, may_format,
2450				     dm_cache_policy_get_hint_size(cache->policy),
2451				     ca->features.metadata_version);
2452	if (IS_ERR(cmd)) {
2453		*error = "Error creating metadata object";
2454		r = PTR_ERR(cmd);
2455		goto bad;
2456	}
2457	cache->cmd = cmd;
2458	set_cache_mode(cache, CM_WRITE);
2459	if (get_cache_mode(cache) != CM_WRITE) {
2460		*error = "Unable to get write access to metadata, please check/repair metadata.";
2461		r = -EINVAL;
2462		goto bad;
2463	}
2464
2465	if (passthrough_mode(cache)) {
2466		bool all_clean;
2467
2468		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2469		if (r) {
2470			*error = "dm_cache_metadata_all_clean() failed";
2471			goto bad;
2472		}
2473
2474		if (!all_clean) {
2475			*error = "Cannot enter passthrough mode unless all blocks are clean";
2476			r = -EINVAL;
2477			goto bad;
2478		}
2479
2480		policy_allow_migrations(cache->policy, false);
2481	}
2482
2483	spin_lock_init(&cache->lock);
2484	bio_list_init(&cache->deferred_bios);
2485	atomic_set(&cache->nr_allocated_migrations, 0);
2486	atomic_set(&cache->nr_io_migrations, 0);
2487	init_waitqueue_head(&cache->migration_wait);
2488
2489	r = -ENOMEM;
2490	atomic_set(&cache->nr_dirty, 0);
2491	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2492	if (!cache->dirty_bitset) {
2493		*error = "could not allocate dirty bitset";
2494		goto bad;
2495	}
2496	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2497
2498	cache->discard_block_size =
2499		calculate_discard_block_size(cache->sectors_per_block,
2500					     cache->origin_sectors);
2501	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2502							      cache->discard_block_size));
2503	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2504	if (!cache->discard_bitset) {
2505		*error = "could not allocate discard bitset";
2506		goto bad;
2507	}
2508	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2509
2510	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2511	if (IS_ERR(cache->copier)) {
2512		*error = "could not create kcopyd client";
2513		r = PTR_ERR(cache->copier);
2514		goto bad;
2515	}
2516
2517	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2518	if (!cache->wq) {
2519		*error = "could not create workqueue for metadata object";
2520		goto bad;
2521	}
2522	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2523	INIT_WORK(&cache->migration_worker, check_migrations);
2524	INIT_DELAYED_WORK(&cache->waker, do_waker);
2525
2526	cache->prison = dm_bio_prison_create_v2(cache->wq);
2527	if (!cache->prison) {
2528		*error = "could not create bio prison";
2529		goto bad;
2530	}
2531
2532	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2533				   migration_cache);
2534	if (r) {
2535		*error = "Error creating cache's migration mempool";
2536		goto bad;
2537	}
2538
2539	cache->need_tick_bio = true;
2540	cache->sized = false;
2541	cache->invalidate = false;
2542	cache->commit_requested = false;
2543	cache->loaded_mappings = false;
2544	cache->loaded_discards = false;
2545
2546	load_stats(cache);
2547
2548	atomic_set(&cache->stats.demotion, 0);
2549	atomic_set(&cache->stats.promotion, 0);
2550	atomic_set(&cache->stats.copies_avoided, 0);
2551	atomic_set(&cache->stats.cache_cell_clash, 0);
2552	atomic_set(&cache->stats.commit_count, 0);
2553	atomic_set(&cache->stats.discard_count, 0);
2554
2555	spin_lock_init(&cache->invalidation_lock);
2556	INIT_LIST_HEAD(&cache->invalidation_requests);
2557
2558	batcher_init(&cache->committer, commit_op, cache,
2559		     issue_op, cache, cache->wq);
2560	dm_iot_init(&cache->tracker);
2561
2562	init_rwsem(&cache->background_work_lock);
2563	prevent_background_work(cache);
2564
2565	*result = cache;
2566	return 0;
2567bad:
2568	destroy(cache);
2569	return r;
2570}
2571
2572static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2573{
2574	unsigned int i;
2575	const char **copy;
2576
2577	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2578	if (!copy)
2579		return -ENOMEM;
2580	for (i = 0; i < argc; i++) {
2581		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2582		if (!copy[i]) {
2583			while (i--)
2584				kfree(copy[i]);
2585			kfree(copy);
2586			return -ENOMEM;
2587		}
2588	}
2589
2590	cache->nr_ctr_args = argc;
2591	cache->ctr_args = copy;
2592
2593	return 0;
2594}
2595
2596static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2597{
2598	int r = -EINVAL;
2599	struct cache_args *ca;
2600	struct cache *cache = NULL;
2601
2602	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2603	if (!ca) {
2604		ti->error = "Error allocating memory for cache";
2605		return -ENOMEM;
2606	}
2607	ca->ti = ti;
2608
2609	r = parse_cache_args(ca, argc, argv, &ti->error);
2610	if (r)
2611		goto out;
2612
2613	r = cache_create(ca, &cache);
2614	if (r)
2615		goto out;
2616
2617	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2618	if (r) {
2619		destroy(cache);
2620		goto out;
2621	}
2622
2623	ti->private = cache;
2624out:
2625	destroy_cache_args(ca);
2626	return r;
2627}
2628
2629/*----------------------------------------------------------------*/
2630
2631static int cache_map(struct dm_target *ti, struct bio *bio)
2632{
2633	struct cache *cache = ti->private;
2634
2635	int r;
2636	bool commit_needed;
2637	dm_oblock_t block = get_bio_block(cache, bio);
2638
2639	init_per_bio_data(bio);
2640	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2641		/*
2642		 * This can only occur if the io goes to a partial block at
2643		 * the end of the origin device.  We don't cache these.
2644		 * Just remap to the origin and carry on.
2645		 */
2646		remap_to_origin(cache, bio);
2647		accounted_begin(cache, bio);
2648		return DM_MAPIO_REMAPPED;
2649	}
2650
2651	if (discard_or_flush(bio)) {
2652		defer_bio(cache, bio);
2653		return DM_MAPIO_SUBMITTED;
2654	}
2655
2656	r = map_bio(cache, bio, block, &commit_needed);
2657	if (commit_needed)
2658		schedule_commit(&cache->committer);
2659
2660	return r;
2661}
2662
2663static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2664{
2665	struct cache *cache = ti->private;
2666	unsigned long flags;
2667	struct per_bio_data *pb = get_per_bio_data(bio);
2668
2669	if (pb->tick) {
2670		policy_tick(cache->policy, false);
2671
2672		spin_lock_irqsave(&cache->lock, flags);
2673		cache->need_tick_bio = true;
2674		spin_unlock_irqrestore(&cache->lock, flags);
2675	}
2676
2677	bio_drop_shared_lock(cache, bio);
2678	accounted_complete(cache, bio);
2679
2680	return DM_ENDIO_DONE;
2681}
2682
2683static int write_dirty_bitset(struct cache *cache)
2684{
2685	int r;
2686
2687	if (get_cache_mode(cache) >= CM_READ_ONLY)
2688		return -EINVAL;
2689
2690	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2691	if (r)
2692		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2693
2694	return r;
2695}
2696
2697static int write_discard_bitset(struct cache *cache)
2698{
2699	unsigned int i, r;
2700
2701	if (get_cache_mode(cache) >= CM_READ_ONLY)
2702		return -EINVAL;
2703
2704	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2705					   cache->discard_nr_blocks);
2706	if (r) {
2707		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2708		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2709		return r;
2710	}
2711
2712	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2713		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2714					 is_discarded(cache, to_dblock(i)));
2715		if (r) {
2716			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2717			return r;
2718		}
2719	}
2720
2721	return 0;
2722}
2723
2724static int write_hints(struct cache *cache)
2725{
2726	int r;
2727
2728	if (get_cache_mode(cache) >= CM_READ_ONLY)
2729		return -EINVAL;
2730
2731	r = dm_cache_write_hints(cache->cmd, cache->policy);
2732	if (r) {
2733		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2734		return r;
2735	}
2736
2737	return 0;
2738}
2739
2740/*
2741 * returns true on success
2742 */
2743static bool sync_metadata(struct cache *cache)
2744{
2745	int r1, r2, r3, r4;
2746
2747	r1 = write_dirty_bitset(cache);
2748	if (r1)
2749		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2750
2751	r2 = write_discard_bitset(cache);
2752	if (r2)
2753		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2754
2755	save_stats(cache);
2756
2757	r3 = write_hints(cache);
2758	if (r3)
2759		DMERR("%s: could not write hints", cache_device_name(cache));
2760
2761	/*
2762	 * If writing the above metadata failed, we still commit, but don't
2763	 * set the clean shutdown flag.  This will effectively force every
2764	 * dirty bit to be set on reload.
2765	 */
2766	r4 = commit(cache, !r1 && !r2 && !r3);
2767	if (r4)
2768		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2769
2770	return !r1 && !r2 && !r3 && !r4;
2771}
2772
2773static void cache_postsuspend(struct dm_target *ti)
2774{
2775	struct cache *cache = ti->private;
2776
2777	prevent_background_work(cache);
2778	BUG_ON(atomic_read(&cache->nr_io_migrations));
2779
2780	cancel_delayed_work_sync(&cache->waker);
2781	drain_workqueue(cache->wq);
2782	WARN_ON(cache->tracker.in_flight);
2783
2784	/*
2785	 * If it's a flush suspend there won't be any deferred bios, so this
2786	 * call is harmless.
2787	 */
2788	requeue_deferred_bios(cache);
2789
2790	if (get_cache_mode(cache) == CM_WRITE)
2791		(void) sync_metadata(cache);
2792}
2793
2794static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2795			bool dirty, uint32_t hint, bool hint_valid)
2796{
2797	struct cache *cache = context;
2798
2799	if (dirty) {
2800		set_bit(from_cblock(cblock), cache->dirty_bitset);
2801		atomic_inc(&cache->nr_dirty);
2802	} else
2803		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2804
2805	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2806}
2807
2808/*
2809 * The discard block size in the on disk metadata is not
2810 * necessarily the same as we're currently using.  So we have to
2811 * be careful to only set the discarded attribute if we know it
2812 * covers a complete block of the new size.
2813 */
2814struct discard_load_info {
2815	struct cache *cache;
2816
2817	/*
2818	 * These blocks are sized using the on disk dblock size, rather
2819	 * than the current one.
2820	 */
2821	dm_block_t block_size;
2822	dm_block_t discard_begin, discard_end;
2823};
2824
2825static void discard_load_info_init(struct cache *cache,
2826				   struct discard_load_info *li)
2827{
2828	li->cache = cache;
2829	li->discard_begin = li->discard_end = 0;
2830}
2831
2832static void set_discard_range(struct discard_load_info *li)
2833{
2834	sector_t b, e;
2835
2836	if (li->discard_begin == li->discard_end)
2837		return;
2838
2839	/*
2840	 * Convert to sectors.
2841	 */
2842	b = li->discard_begin * li->block_size;
2843	e = li->discard_end * li->block_size;
2844
2845	/*
2846	 * Then convert back to the current dblock size.
2847	 */
2848	b = dm_sector_div_up(b, li->cache->discard_block_size);
2849	sector_div(e, li->cache->discard_block_size);
2850
2851	/*
2852	 * The origin may have shrunk, so we need to check we're still in
2853	 * bounds.
2854	 */
2855	if (e > from_dblock(li->cache->discard_nr_blocks))
2856		e = from_dblock(li->cache->discard_nr_blocks);
2857
2858	for (; b < e; b++)
2859		set_discard(li->cache, to_dblock(b));
2860}
2861
2862static int load_discard(void *context, sector_t discard_block_size,
2863			dm_dblock_t dblock, bool discard)
2864{
2865	struct discard_load_info *li = context;
2866
2867	li->block_size = discard_block_size;
2868
2869	if (discard) {
2870		if (from_dblock(dblock) == li->discard_end)
2871			/*
2872			 * We're already in a discard range, just extend it.
2873			 */
2874			li->discard_end = li->discard_end + 1ULL;
2875
2876		else {
2877			/*
2878			 * Emit the old range and start a new one.
2879			 */
2880			set_discard_range(li);
2881			li->discard_begin = from_dblock(dblock);
2882			li->discard_end = li->discard_begin + 1ULL;
2883		}
2884	} else {
2885		set_discard_range(li);
2886		li->discard_begin = li->discard_end = 0;
2887	}
2888
2889	return 0;
2890}
2891
2892static dm_cblock_t get_cache_dev_size(struct cache *cache)
2893{
2894	sector_t size = get_dev_size(cache->cache_dev);
2895	(void) sector_div(size, cache->sectors_per_block);
2896	return to_cblock(size);
2897}
2898
2899static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2900{
2901	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2902		if (cache->sized) {
2903			DMERR("%s: unable to extend cache due to missing cache table reload",
2904			      cache_device_name(cache));
2905			return false;
2906		}
2907	}
2908
2909	/*
2910	 * We can't drop a dirty block when shrinking the cache.
2911	 */
2912	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2913		new_size = to_cblock(from_cblock(new_size) + 1);
2914		if (is_dirty(cache, new_size)) {
2915			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2916			      cache_device_name(cache),
2917			      (unsigned long long) from_cblock(new_size));
2918			return false;
2919		}
2920	}
2921
2922	return true;
2923}
2924
2925static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2926{
2927	int r;
2928
2929	r = dm_cache_resize(cache->cmd, new_size);
2930	if (r) {
2931		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2932		metadata_operation_failed(cache, "dm_cache_resize", r);
2933		return r;
2934	}
2935
2936	set_cache_size(cache, new_size);
2937
2938	return 0;
2939}
2940
2941static int cache_preresume(struct dm_target *ti)
2942{
2943	int r = 0;
2944	struct cache *cache = ti->private;
2945	dm_cblock_t csize = get_cache_dev_size(cache);
2946
2947	/*
2948	 * Check to see if the cache has resized.
2949	 */
2950	if (!cache->sized) {
2951		r = resize_cache_dev(cache, csize);
2952		if (r)
2953			return r;
2954
2955		cache->sized = true;
2956
2957	} else if (csize != cache->cache_size) {
2958		if (!can_resize(cache, csize))
2959			return -EINVAL;
2960
2961		r = resize_cache_dev(cache, csize);
2962		if (r)
2963			return r;
2964	}
2965
2966	if (!cache->loaded_mappings) {
2967		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2968					   load_mapping, cache);
2969		if (r) {
2970			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2971			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2972			return r;
2973		}
2974
2975		cache->loaded_mappings = true;
2976	}
2977
2978	if (!cache->loaded_discards) {
2979		struct discard_load_info li;
2980
2981		/*
2982		 * The discard bitset could have been resized, or the
2983		 * discard block size changed.  To be safe we start by
2984		 * setting every dblock to not discarded.
2985		 */
2986		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2987
2988		discard_load_info_init(cache, &li);
2989		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2990		if (r) {
2991			DMERR("%s: could not load origin discards", cache_device_name(cache));
2992			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2993			return r;
2994		}
2995		set_discard_range(&li);
2996
2997		cache->loaded_discards = true;
2998	}
2999
3000	return r;
3001}
3002
3003static void cache_resume(struct dm_target *ti)
3004{
3005	struct cache *cache = ti->private;
3006
3007	cache->need_tick_bio = true;
3008	allow_background_work(cache);
3009	do_waker(&cache->waker.work);
3010}
3011
3012static void emit_flags(struct cache *cache, char *result,
3013		       unsigned int maxlen, ssize_t *sz_ptr)
3014{
3015	ssize_t sz = *sz_ptr;
3016	struct cache_features *cf = &cache->features;
3017	unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3018
3019	DMEMIT("%u ", count);
3020
3021	if (cf->metadata_version == 2)
3022		DMEMIT("metadata2 ");
3023
3024	if (writethrough_mode(cache))
3025		DMEMIT("writethrough ");
3026
3027	else if (passthrough_mode(cache))
3028		DMEMIT("passthrough ");
3029
3030	else if (writeback_mode(cache))
3031		DMEMIT("writeback ");
3032
3033	else {
3034		DMEMIT("unknown ");
3035		DMERR("%s: internal error: unknown io mode: %d",
3036		      cache_device_name(cache), (int) cf->io_mode);
3037	}
3038
3039	if (!cf->discard_passdown)
3040		DMEMIT("no_discard_passdown ");
3041
3042	*sz_ptr = sz;
3043}
3044
3045/*
3046 * Status format:
3047 *
3048 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3049 * <cache block size> <#used cache blocks>/<#total cache blocks>
3050 * <#read hits> <#read misses> <#write hits> <#write misses>
3051 * <#demotions> <#promotions> <#dirty>
3052 * <#features> <features>*
3053 * <#core args> <core args>
3054 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3055 */
3056static void cache_status(struct dm_target *ti, status_type_t type,
3057			 unsigned int status_flags, char *result, unsigned int maxlen)
3058{
3059	int r = 0;
3060	unsigned int i;
3061	ssize_t sz = 0;
3062	dm_block_t nr_free_blocks_metadata = 0;
3063	dm_block_t nr_blocks_metadata = 0;
3064	char buf[BDEVNAME_SIZE];
3065	struct cache *cache = ti->private;
3066	dm_cblock_t residency;
3067	bool needs_check;
3068
3069	switch (type) {
3070	case STATUSTYPE_INFO:
3071		if (get_cache_mode(cache) == CM_FAIL) {
3072			DMEMIT("Fail");
3073			break;
3074		}
3075
3076		/* Commit to ensure statistics aren't out-of-date */
3077		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3078			(void) commit(cache, false);
3079
3080		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3081		if (r) {
3082			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3083			      cache_device_name(cache), r);
3084			goto err;
3085		}
3086
3087		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3088		if (r) {
3089			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3090			      cache_device_name(cache), r);
3091			goto err;
3092		}
3093
3094		residency = policy_residency(cache->policy);
3095
3096		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3097		       (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3098		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3099		       (unsigned long long)nr_blocks_metadata,
3100		       (unsigned long long)cache->sectors_per_block,
3101		       (unsigned long long) from_cblock(residency),
3102		       (unsigned long long) from_cblock(cache->cache_size),
3103		       (unsigned int) atomic_read(&cache->stats.read_hit),
3104		       (unsigned int) atomic_read(&cache->stats.read_miss),
3105		       (unsigned int) atomic_read(&cache->stats.write_hit),
3106		       (unsigned int) atomic_read(&cache->stats.write_miss),
3107		       (unsigned int) atomic_read(&cache->stats.demotion),
3108		       (unsigned int) atomic_read(&cache->stats.promotion),
3109		       (unsigned long) atomic_read(&cache->nr_dirty));
3110
3111		emit_flags(cache, result, maxlen, &sz);
3112
3113		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3114
3115		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3116		if (sz < maxlen) {
3117			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3118			if (r)
3119				DMERR("%s: policy_emit_config_values returned %d",
3120				      cache_device_name(cache), r);
3121		}
3122
3123		if (get_cache_mode(cache) == CM_READ_ONLY)
3124			DMEMIT("ro ");
3125		else
3126			DMEMIT("rw ");
3127
3128		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3129
3130		if (r || needs_check)
3131			DMEMIT("needs_check ");
3132		else
3133			DMEMIT("- ");
3134
3135		break;
3136
3137	case STATUSTYPE_TABLE:
3138		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3139		DMEMIT("%s ", buf);
3140		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3141		DMEMIT("%s ", buf);
3142		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3143		DMEMIT("%s", buf);
3144
3145		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3146			DMEMIT(" %s", cache->ctr_args[i]);
3147		if (cache->nr_ctr_args)
3148			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3149		break;
3150
3151	case STATUSTYPE_IMA:
3152		DMEMIT_TARGET_NAME_VERSION(ti->type);
3153		if (get_cache_mode(cache) == CM_FAIL)
3154			DMEMIT(",metadata_mode=fail");
3155		else if (get_cache_mode(cache) == CM_READ_ONLY)
3156			DMEMIT(",metadata_mode=ro");
3157		else
3158			DMEMIT(",metadata_mode=rw");
3159
3160		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3161		DMEMIT(",cache_metadata_device=%s", buf);
3162		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3163		DMEMIT(",cache_device=%s", buf);
3164		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3165		DMEMIT(",cache_origin_device=%s", buf);
3166		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3167		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3168		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3169		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3170		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3171		DMEMIT(";");
3172		break;
3173	}
3174
3175	return;
3176
3177err:
3178	DMEMIT("Error");
3179}
3180
3181/*
3182 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3183 * the one-past-the-end value.
3184 */
3185struct cblock_range {
3186	dm_cblock_t begin;
3187	dm_cblock_t end;
3188};
3189
3190/*
3191 * A cache block range can take two forms:
3192 *
3193 * i) A single cblock, eg. '3456'
3194 * ii) A begin and end cblock with a dash between, eg. 123-234
3195 */
3196static int parse_cblock_range(struct cache *cache, const char *str,
3197			      struct cblock_range *result)
3198{
3199	char dummy;
3200	uint64_t b, e;
3201	int r;
3202
3203	/*
3204	 * Try and parse form (ii) first.
3205	 */
3206	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3207	if (r < 0)
3208		return r;
3209
3210	if (r == 2) {
3211		result->begin = to_cblock(b);
3212		result->end = to_cblock(e);
3213		return 0;
3214	}
3215
3216	/*
3217	 * That didn't work, try form (i).
3218	 */
3219	r = sscanf(str, "%llu%c", &b, &dummy);
3220	if (r < 0)
3221		return r;
3222
3223	if (r == 1) {
3224		result->begin = to_cblock(b);
3225		result->end = to_cblock(from_cblock(result->begin) + 1u);
3226		return 0;
3227	}
3228
3229	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3230	return -EINVAL;
3231}
3232
3233static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3234{
3235	uint64_t b = from_cblock(range->begin);
3236	uint64_t e = from_cblock(range->end);
3237	uint64_t n = from_cblock(cache->cache_size);
3238
3239	if (b >= n) {
3240		DMERR("%s: begin cblock out of range: %llu >= %llu",
3241		      cache_device_name(cache), b, n);
3242		return -EINVAL;
3243	}
3244
3245	if (e > n) {
3246		DMERR("%s: end cblock out of range: %llu > %llu",
3247		      cache_device_name(cache), e, n);
3248		return -EINVAL;
3249	}
3250
3251	if (b >= e) {
3252		DMERR("%s: invalid cblock range: %llu >= %llu",
3253		      cache_device_name(cache), b, e);
3254		return -EINVAL;
3255	}
3256
3257	return 0;
3258}
3259
3260static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3261{
3262	return to_cblock(from_cblock(b) + 1);
3263}
3264
3265static int request_invalidation(struct cache *cache, struct cblock_range *range)
3266{
3267	int r = 0;
3268
3269	/*
3270	 * We don't need to do any locking here because we know we're in
3271	 * passthrough mode.  There's is potential for a race between an
3272	 * invalidation triggered by an io and an invalidation message.  This
3273	 * is harmless, we must not worry if the policy call fails.
3274	 */
3275	while (range->begin != range->end) {
3276		r = invalidate_cblock(cache, range->begin);
3277		if (r)
3278			return r;
3279
3280		range->begin = cblock_succ(range->begin);
3281	}
3282
3283	cache->commit_requested = true;
3284	return r;
3285}
3286
3287static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3288					      const char **cblock_ranges)
3289{
3290	int r = 0;
3291	unsigned int i;
3292	struct cblock_range range;
3293
3294	if (!passthrough_mode(cache)) {
3295		DMERR("%s: cache has to be in passthrough mode for invalidation",
3296		      cache_device_name(cache));
3297		return -EPERM;
3298	}
3299
3300	for (i = 0; i < count; i++) {
3301		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3302		if (r)
3303			break;
3304
3305		r = validate_cblock_range(cache, &range);
3306		if (r)
3307			break;
3308
3309		/*
3310		 * Pass begin and end origin blocks to the worker and wake it.
3311		 */
3312		r = request_invalidation(cache, &range);
3313		if (r)
3314			break;
3315	}
3316
3317	return r;
3318}
3319
3320/*
3321 * Supports
3322 *	"<key> <value>"
3323 * and
3324 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3325 *
3326 * The key migration_threshold is supported by the cache target core.
3327 */
3328static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3329			 char *result, unsigned int maxlen)
3330{
3331	struct cache *cache = ti->private;
3332
3333	if (!argc)
3334		return -EINVAL;
3335
3336	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3337		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3338		      cache_device_name(cache));
3339		return -EOPNOTSUPP;
3340	}
3341
3342	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3343		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3344
3345	if (argc != 2)
3346		return -EINVAL;
3347
3348	return set_config_value(cache, argv[0], argv[1]);
3349}
3350
3351static int cache_iterate_devices(struct dm_target *ti,
3352				 iterate_devices_callout_fn fn, void *data)
3353{
3354	int r = 0;
3355	struct cache *cache = ti->private;
3356
3357	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3358	if (!r)
3359		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3360
3361	return r;
3362}
3363
3364/*
3365 * If discard_passdown was enabled verify that the origin device
3366 * supports discards.  Disable discard_passdown if not.
3367 */
3368static void disable_passdown_if_not_supported(struct cache *cache)
3369{
3370	struct block_device *origin_bdev = cache->origin_dev->bdev;
3371	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3372	const char *reason = NULL;
3373
3374	if (!cache->features.discard_passdown)
3375		return;
3376
3377	if (!bdev_max_discard_sectors(origin_bdev))
3378		reason = "discard unsupported";
3379
3380	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3381		reason = "max discard sectors smaller than a block";
3382
3383	if (reason) {
3384		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3385		       origin_bdev, reason);
3386		cache->features.discard_passdown = false;
3387	}
3388}
3389
3390static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3391{
3392	struct block_device *origin_bdev = cache->origin_dev->bdev;
3393	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3394
3395	if (!cache->features.discard_passdown) {
3396		/* No passdown is done so setting own virtual limits */
3397		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3398						    cache->origin_sectors);
3399		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3400		return;
3401	}
3402
3403	/*
3404	 * cache_iterate_devices() is stacking both origin and fast device limits
3405	 * but discards aren't passed to fast device, so inherit origin's limits.
3406	 */
3407	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3408	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3409	limits->discard_granularity = origin_limits->discard_granularity;
3410	limits->discard_alignment = origin_limits->discard_alignment;
3411	limits->discard_misaligned = origin_limits->discard_misaligned;
3412}
3413
3414static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3415{
3416	struct cache *cache = ti->private;
3417	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3418
3419	/*
3420	 * If the system-determined stacked limits are compatible with the
3421	 * cache's blocksize (io_opt is a factor) do not override them.
3422	 */
3423	if (io_opt_sectors < cache->sectors_per_block ||
3424	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3425		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3426		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3427	}
3428
3429	disable_passdown_if_not_supported(cache);
3430	set_discard_limits(cache, limits);
3431}
3432
3433/*----------------------------------------------------------------*/
3434
3435static struct target_type cache_target = {
3436	.name = "cache",
3437	.version = {2, 2, 0},
3438	.module = THIS_MODULE,
3439	.ctr = cache_ctr,
3440	.dtr = cache_dtr,
3441	.map = cache_map,
3442	.end_io = cache_end_io,
3443	.postsuspend = cache_postsuspend,
3444	.preresume = cache_preresume,
3445	.resume = cache_resume,
3446	.status = cache_status,
3447	.message = cache_message,
3448	.iterate_devices = cache_iterate_devices,
3449	.io_hints = cache_io_hints,
3450};
3451
3452static int __init dm_cache_init(void)
3453{
3454	int r;
3455
3456	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3457	if (!migration_cache)
3458		return -ENOMEM;
3459
3460	r = dm_register_target(&cache_target);
3461	if (r) {
3462		kmem_cache_destroy(migration_cache);
3463		return r;
3464	}
3465
3466	return 0;
3467}
3468
3469static void __exit dm_cache_exit(void)
3470{
3471	dm_unregister_target(&cache_target);
3472	kmem_cache_destroy(migration_cache);
3473}
3474
3475module_init(dm_cache_init);
3476module_exit(dm_cache_exit);
3477
3478MODULE_DESCRIPTION(DM_NAME " cache target");
3479MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3480MODULE_LICENSE("GPL");
3481