1// SPDX-License-Identifier: GPL-2.0
2/*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "writeback.h"
14
15#include <linux/delay.h>
16#include <linux/kthread.h>
17#include <linux/sched/clock.h>
18#include <trace/events/bcache.h>
19
20static void update_gc_after_writeback(struct cache_set *c)
21{
22	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24		return;
25
26	c->gc_after_writeback |= BCH_DO_AUTO_GC;
27}
28
29/* Rate limiting */
30static uint64_t __calc_target_rate(struct cached_dev *dc)
31{
32	struct cache_set *c = dc->disk.c;
33
34	/*
35	 * This is the size of the cache, minus the amount used for
36	 * flash-only devices
37	 */
38	uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39				atomic_long_read(&c->flash_dev_dirty_sectors);
40
41	/*
42	 * Unfortunately there is no control of global dirty data.  If the
43	 * user states that they want 10% dirty data in the cache, and has,
44	 * e.g., 5 backing volumes of equal size, we try and ensure each
45	 * backing volume uses about 2% of the cache for dirty data.
46	 */
47	uint32_t bdev_share =
48		div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49				c->cached_dev_sectors);
50
51	uint64_t cache_dirty_target =
52		div_u64(cache_sectors * dc->writeback_percent, 100);
53
54	/* Ensure each backing dev gets at least one dirty share */
55	if (bdev_share < 1)
56		bdev_share = 1;
57
58	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59}
60
61static void __update_writeback_rate(struct cached_dev *dc)
62{
63	/*
64	 * PI controller:
65	 * Figures out the amount that should be written per second.
66	 *
67	 * First, the error (number of sectors that are dirty beyond our
68	 * target) is calculated.  The error is accumulated (numerically
69	 * integrated).
70	 *
71	 * Then, the proportional value and integral value are scaled
72	 * based on configured values.  These are stored as inverses to
73	 * avoid fixed point math and to make configuration easy-- e.g.
74	 * the default value of 40 for writeback_rate_p_term_inverse
75	 * attempts to write at a rate that would retire all the dirty
76	 * blocks in 40 seconds.
77	 *
78	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79	 * of the error is accumulated in the integral term per second.
80	 * This acts as a slow, long-term average that is not subject to
81	 * variations in usage like the p term.
82	 */
83	int64_t target = __calc_target_rate(dc);
84	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85	int64_t error = dirty - target;
86	int64_t proportional_scaled =
87		div_s64(error, dc->writeback_rate_p_term_inverse);
88	int64_t integral_scaled;
89	uint32_t new_rate;
90
91	/*
92	 * We need to consider the number of dirty buckets as well
93	 * when calculating the proportional_scaled, Otherwise we might
94	 * have an unreasonable small writeback rate at a highly fragmented situation
95	 * when very few dirty sectors consumed a lot dirty buckets, the
96	 * worst case is when dirty buckets reached cutoff_writeback_sync and
97	 * dirty data is still not even reached to writeback percent, so the rate
98	 * still will be at the minimum value, which will cause the write
99	 * stuck at a non-writeback mode.
100	 */
101	struct cache_set *c = dc->disk.c;
102
103	int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
104
105	if (dc->writeback_consider_fragment &&
106		c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
107		int64_t fragment =
108			div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
109		int64_t fp_term;
110		int64_t fps;
111
112		if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113			fp_term = (int64_t)dc->writeback_rate_fp_term_low *
114			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
115		} else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116			fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
117			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
118		} else {
119			fp_term = (int64_t)dc->writeback_rate_fp_term_high *
120			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
121		}
122		fps = div_s64(dirty, dirty_buckets) * fp_term;
123		if (fragment > 3 && fps > proportional_scaled) {
124			/* Only overrite the p when fragment > 3 */
125			proportional_scaled = fps;
126		}
127	}
128
129	if ((error < 0 && dc->writeback_rate_integral > 0) ||
130	    (error > 0 && time_before64(local_clock(),
131			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
132		/*
133		 * Only decrease the integral term if it's more than
134		 * zero.  Only increase the integral term if the device
135		 * is keeping up.  (Don't wind up the integral
136		 * ineffectively in either case).
137		 *
138		 * It's necessary to scale this by
139		 * writeback_rate_update_seconds to keep the integral
140		 * term dimensioned properly.
141		 */
142		dc->writeback_rate_integral += error *
143			dc->writeback_rate_update_seconds;
144	}
145
146	integral_scaled = div_s64(dc->writeback_rate_integral,
147			dc->writeback_rate_i_term_inverse);
148
149	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
150			dc->writeback_rate_minimum, NSEC_PER_SEC);
151
152	dc->writeback_rate_proportional = proportional_scaled;
153	dc->writeback_rate_integral_scaled = integral_scaled;
154	dc->writeback_rate_change = new_rate -
155			atomic_long_read(&dc->writeback_rate.rate);
156	atomic_long_set(&dc->writeback_rate.rate, new_rate);
157	dc->writeback_rate_target = target;
158}
159
160static bool idle_counter_exceeded(struct cache_set *c)
161{
162	int counter, dev_nr;
163
164	/*
165	 * If c->idle_counter is overflow (idel for really long time),
166	 * reset as 0 and not set maximum rate this time for code
167	 * simplicity.
168	 */
169	counter = atomic_inc_return(&c->idle_counter);
170	if (counter <= 0) {
171		atomic_set(&c->idle_counter, 0);
172		return false;
173	}
174
175	dev_nr = atomic_read(&c->attached_dev_nr);
176	if (dev_nr == 0)
177		return false;
178
179	/*
180	 * c->idle_counter is increased by writeback thread of all
181	 * attached backing devices, in order to represent a rough
182	 * time period, counter should be divided by dev_nr.
183	 * Otherwise the idle time cannot be larger with more backing
184	 * device attached.
185	 * The following calculation equals to checking
186	 *	(counter / dev_nr) < (dev_nr * 6)
187	 */
188	if (counter < (dev_nr * dev_nr * 6))
189		return false;
190
191	return true;
192}
193
194/*
195 * Idle_counter is increased every time when update_writeback_rate() is
196 * called. If all backing devices attached to the same cache set have
197 * identical dc->writeback_rate_update_seconds values, it is about 6
198 * rounds of update_writeback_rate() on each backing device before
199 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
200 * to each dc->writeback_rate.rate.
201 * In order to avoid extra locking cost for counting exact dirty cached
202 * devices number, c->attached_dev_nr is used to calculate the idle
203 * throushold. It might be bigger if not all cached device are in write-
204 * back mode, but it still works well with limited extra rounds of
205 * update_writeback_rate().
206 */
207static bool set_at_max_writeback_rate(struct cache_set *c,
208				       struct cached_dev *dc)
209{
210	/* Don't sst max writeback rate if it is disabled */
211	if (!c->idle_max_writeback_rate_enabled)
212		return false;
213
214	/* Don't set max writeback rate if gc is running */
215	if (!c->gc_mark_valid)
216		return false;
217
218	if (!idle_counter_exceeded(c))
219		return false;
220
221	if (atomic_read(&c->at_max_writeback_rate) != 1)
222		atomic_set(&c->at_max_writeback_rate, 1);
223
224	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
225
226	/* keep writeback_rate_target as existing value */
227	dc->writeback_rate_proportional = 0;
228	dc->writeback_rate_integral_scaled = 0;
229	dc->writeback_rate_change = 0;
230
231	/*
232	 * In case new I/O arrives during before
233	 * set_at_max_writeback_rate() returns.
234	 */
235	if (!idle_counter_exceeded(c) ||
236	    !atomic_read(&c->at_max_writeback_rate))
237		return false;
238
239	return true;
240}
241
242static void update_writeback_rate(struct work_struct *work)
243{
244	struct cached_dev *dc = container_of(to_delayed_work(work),
245					     struct cached_dev,
246					     writeback_rate_update);
247	struct cache_set *c = dc->disk.c;
248
249	/*
250	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
251	 * cancel_delayed_work_sync().
252	 */
253	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
254	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
255	smp_mb__after_atomic();
256
257	/*
258	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
259	 * check it here too.
260	 */
261	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
262	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
263		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
264		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
265		smp_mb__after_atomic();
266		return;
267	}
268
269	/*
270	 * If the whole cache set is idle, set_at_max_writeback_rate()
271	 * will set writeback rate to a max number. Then it is
272	 * unncessary to update writeback rate for an idle cache set
273	 * in maximum writeback rate number(s).
274	 */
275	if (atomic_read(&dc->has_dirty) && dc->writeback_percent &&
276	    !set_at_max_writeback_rate(c, dc)) {
277		do {
278			if (!down_read_trylock((&dc->writeback_lock))) {
279				dc->rate_update_retry++;
280				if (dc->rate_update_retry <=
281				    BCH_WBRATE_UPDATE_MAX_SKIPS)
282					break;
283				down_read(&dc->writeback_lock);
284				dc->rate_update_retry = 0;
285			}
286			__update_writeback_rate(dc);
287			update_gc_after_writeback(c);
288			up_read(&dc->writeback_lock);
289		} while (0);
290	}
291
292
293	/*
294	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
295	 * check it here too.
296	 */
297	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
298	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
299		schedule_delayed_work(&dc->writeback_rate_update,
300			      dc->writeback_rate_update_seconds * HZ);
301	}
302
303	/*
304	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
305	 * cancel_delayed_work_sync().
306	 */
307	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
308	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
309	smp_mb__after_atomic();
310}
311
312static unsigned int writeback_delay(struct cached_dev *dc,
313				    unsigned int sectors)
314{
315	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
316	    !dc->writeback_percent)
317		return 0;
318
319	return bch_next_delay(&dc->writeback_rate, sectors);
320}
321
322struct dirty_io {
323	struct closure		cl;
324	struct cached_dev	*dc;
325	uint16_t		sequence;
326	struct bio		bio;
327};
328
329static void dirty_init(struct keybuf_key *w)
330{
331	struct dirty_io *io = w->private;
332	struct bio *bio = &io->bio;
333
334	bio_init(bio, NULL, bio->bi_inline_vecs,
335		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
336	if (!io->dc->writeback_percent)
337		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
338
339	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
340	bio->bi_private		= w;
341	bch_bio_map(bio, NULL);
342}
343
344static CLOSURE_CALLBACK(dirty_io_destructor)
345{
346	closure_type(io, struct dirty_io, cl);
347
348	kfree(io);
349}
350
351static CLOSURE_CALLBACK(write_dirty_finish)
352{
353	closure_type(io, struct dirty_io, cl);
354	struct keybuf_key *w = io->bio.bi_private;
355	struct cached_dev *dc = io->dc;
356
357	bio_free_pages(&io->bio);
358
359	/* This is kind of a dumb way of signalling errors. */
360	if (KEY_DIRTY(&w->key)) {
361		int ret;
362		unsigned int i;
363		struct keylist keys;
364
365		bch_keylist_init(&keys);
366
367		bkey_copy(keys.top, &w->key);
368		SET_KEY_DIRTY(keys.top, false);
369		bch_keylist_push(&keys);
370
371		for (i = 0; i < KEY_PTRS(&w->key); i++)
372			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
373
374		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
375
376		if (ret)
377			trace_bcache_writeback_collision(&w->key);
378
379		atomic_long_inc(ret
380				? &dc->disk.c->writeback_keys_failed
381				: &dc->disk.c->writeback_keys_done);
382	}
383
384	bch_keybuf_del(&dc->writeback_keys, w);
385	up(&dc->in_flight);
386
387	closure_return_with_destructor(cl, dirty_io_destructor);
388}
389
390static void dirty_endio(struct bio *bio)
391{
392	struct keybuf_key *w = bio->bi_private;
393	struct dirty_io *io = w->private;
394
395	if (bio->bi_status) {
396		SET_KEY_DIRTY(&w->key, false);
397		bch_count_backing_io_errors(io->dc, bio);
398	}
399
400	closure_put(&io->cl);
401}
402
403static CLOSURE_CALLBACK(write_dirty)
404{
405	closure_type(io, struct dirty_io, cl);
406	struct keybuf_key *w = io->bio.bi_private;
407	struct cached_dev *dc = io->dc;
408
409	uint16_t next_sequence;
410
411	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
412		/* Not our turn to write; wait for a write to complete */
413		closure_wait(&dc->writeback_ordering_wait, cl);
414
415		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
416			/*
417			 * Edge case-- it happened in indeterminate order
418			 * relative to when we were added to wait list..
419			 */
420			closure_wake_up(&dc->writeback_ordering_wait);
421		}
422
423		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
424		return;
425	}
426
427	next_sequence = io->sequence + 1;
428
429	/*
430	 * IO errors are signalled using the dirty bit on the key.
431	 * If we failed to read, we should not attempt to write to the
432	 * backing device.  Instead, immediately go to write_dirty_finish
433	 * to clean up.
434	 */
435	if (KEY_DIRTY(&w->key)) {
436		dirty_init(w);
437		io->bio.bi_opf = REQ_OP_WRITE;
438		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
439		bio_set_dev(&io->bio, io->dc->bdev);
440		io->bio.bi_end_io	= dirty_endio;
441
442		/* I/O request sent to backing device */
443		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
444	}
445
446	atomic_set(&dc->writeback_sequence_next, next_sequence);
447	closure_wake_up(&dc->writeback_ordering_wait);
448
449	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
450}
451
452static void read_dirty_endio(struct bio *bio)
453{
454	struct keybuf_key *w = bio->bi_private;
455	struct dirty_io *io = w->private;
456
457	/* is_read = 1 */
458	bch_count_io_errors(io->dc->disk.c->cache,
459			    bio->bi_status, 1,
460			    "reading dirty data from cache");
461
462	dirty_endio(bio);
463}
464
465static CLOSURE_CALLBACK(read_dirty_submit)
466{
467	closure_type(io, struct dirty_io, cl);
468
469	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
470
471	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
472}
473
474static void read_dirty(struct cached_dev *dc)
475{
476	unsigned int delay = 0;
477	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
478	size_t size;
479	int nk, i;
480	struct dirty_io *io;
481	struct closure cl;
482	uint16_t sequence = 0;
483
484	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
485	atomic_set(&dc->writeback_sequence_next, sequence);
486	closure_init_stack(&cl);
487
488	/*
489	 * XXX: if we error, background writeback just spins. Should use some
490	 * mempools.
491	 */
492
493	next = bch_keybuf_next(&dc->writeback_keys);
494
495	while (!kthread_should_stop() &&
496	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
497	       next) {
498		size = 0;
499		nk = 0;
500
501		do {
502			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
503
504			/*
505			 * Don't combine too many operations, even if they
506			 * are all small.
507			 */
508			if (nk >= MAX_WRITEBACKS_IN_PASS)
509				break;
510
511			/*
512			 * If the current operation is very large, don't
513			 * further combine operations.
514			 */
515			if (size >= MAX_WRITESIZE_IN_PASS)
516				break;
517
518			/*
519			 * Operations are only eligible to be combined
520			 * if they are contiguous.
521			 *
522			 * TODO: add a heuristic willing to fire a
523			 * certain amount of non-contiguous IO per pass,
524			 * so that we can benefit from backing device
525			 * command queueing.
526			 */
527			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
528						&START_KEY(&next->key)))
529				break;
530
531			size += KEY_SIZE(&next->key);
532			keys[nk++] = next;
533		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
534
535		/* Now we have gathered a set of 1..5 keys to write back. */
536		for (i = 0; i < nk; i++) {
537			w = keys[i];
538
539			io = kzalloc(struct_size(io, bio.bi_inline_vecs,
540						DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
541				     GFP_KERNEL);
542			if (!io)
543				goto err;
544
545			w->private	= io;
546			io->dc		= dc;
547			io->sequence    = sequence++;
548
549			dirty_init(w);
550			io->bio.bi_opf = REQ_OP_READ;
551			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
552			bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
553			io->bio.bi_end_io	= read_dirty_endio;
554
555			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
556				goto err_free;
557
558			trace_bcache_writeback(&w->key);
559
560			down(&dc->in_flight);
561
562			/*
563			 * We've acquired a semaphore for the maximum
564			 * simultaneous number of writebacks; from here
565			 * everything happens asynchronously.
566			 */
567			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
568		}
569
570		delay = writeback_delay(dc, size);
571
572		while (!kthread_should_stop() &&
573		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
574		       delay) {
575			schedule_timeout_interruptible(delay);
576			delay = writeback_delay(dc, 0);
577		}
578	}
579
580	if (0) {
581err_free:
582		kfree(w->private);
583err:
584		bch_keybuf_del(&dc->writeback_keys, w);
585	}
586
587	/*
588	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
589	 * freed) before refilling again
590	 */
591	closure_sync(&cl);
592}
593
594/* Scan for dirty data */
595
596void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
597				  uint64_t offset, int nr_sectors)
598{
599	struct bcache_device *d = c->devices[inode];
600	unsigned int stripe_offset, sectors_dirty;
601	int stripe;
602
603	if (!d)
604		return;
605
606	stripe = offset_to_stripe(d, offset);
607	if (stripe < 0)
608		return;
609
610	if (UUID_FLASH_ONLY(&c->uuids[inode]))
611		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
612
613	stripe_offset = offset & (d->stripe_size - 1);
614
615	while (nr_sectors) {
616		int s = min_t(unsigned int, abs(nr_sectors),
617			      d->stripe_size - stripe_offset);
618
619		if (nr_sectors < 0)
620			s = -s;
621
622		if (stripe >= d->nr_stripes)
623			return;
624
625		sectors_dirty = atomic_add_return(s,
626					d->stripe_sectors_dirty + stripe);
627		if (sectors_dirty == d->stripe_size) {
628			if (!test_bit(stripe, d->full_dirty_stripes))
629				set_bit(stripe, d->full_dirty_stripes);
630		} else {
631			if (test_bit(stripe, d->full_dirty_stripes))
632				clear_bit(stripe, d->full_dirty_stripes);
633		}
634
635		nr_sectors -= s;
636		stripe_offset = 0;
637		stripe++;
638	}
639}
640
641static bool dirty_pred(struct keybuf *buf, struct bkey *k)
642{
643	struct cached_dev *dc = container_of(buf,
644					     struct cached_dev,
645					     writeback_keys);
646
647	BUG_ON(KEY_INODE(k) != dc->disk.id);
648
649	return KEY_DIRTY(k);
650}
651
652static void refill_full_stripes(struct cached_dev *dc)
653{
654	struct keybuf *buf = &dc->writeback_keys;
655	unsigned int start_stripe, next_stripe;
656	int stripe;
657	bool wrapped = false;
658
659	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
660	if (stripe < 0)
661		stripe = 0;
662
663	start_stripe = stripe;
664
665	while (1) {
666		stripe = find_next_bit(dc->disk.full_dirty_stripes,
667				       dc->disk.nr_stripes, stripe);
668
669		if (stripe == dc->disk.nr_stripes)
670			goto next;
671
672		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
673						 dc->disk.nr_stripes, stripe);
674
675		buf->last_scanned = KEY(dc->disk.id,
676					stripe * dc->disk.stripe_size, 0);
677
678		bch_refill_keybuf(dc->disk.c, buf,
679				  &KEY(dc->disk.id,
680				       next_stripe * dc->disk.stripe_size, 0),
681				  dirty_pred);
682
683		if (array_freelist_empty(&buf->freelist))
684			return;
685
686		stripe = next_stripe;
687next:
688		if (wrapped && stripe > start_stripe)
689			return;
690
691		if (stripe == dc->disk.nr_stripes) {
692			stripe = 0;
693			wrapped = true;
694		}
695	}
696}
697
698/*
699 * Returns true if we scanned the entire disk
700 */
701static bool refill_dirty(struct cached_dev *dc)
702{
703	struct keybuf *buf = &dc->writeback_keys;
704	struct bkey start = KEY(dc->disk.id, 0, 0);
705	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
706	struct bkey start_pos;
707
708	/*
709	 * make sure keybuf pos is inside the range for this disk - at bringup
710	 * we might not be attached yet so this disk's inode nr isn't
711	 * initialized then
712	 */
713	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
714	    bkey_cmp(&buf->last_scanned, &end) > 0)
715		buf->last_scanned = start;
716
717	if (dc->partial_stripes_expensive) {
718		refill_full_stripes(dc);
719		if (array_freelist_empty(&buf->freelist))
720			return false;
721	}
722
723	start_pos = buf->last_scanned;
724	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
725
726	if (bkey_cmp(&buf->last_scanned, &end) < 0)
727		return false;
728
729	/*
730	 * If we get to the end start scanning again from the beginning, and
731	 * only scan up to where we initially started scanning from:
732	 */
733	buf->last_scanned = start;
734	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
735
736	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
737}
738
739static int bch_writeback_thread(void *arg)
740{
741	struct cached_dev *dc = arg;
742	struct cache_set *c = dc->disk.c;
743	bool searched_full_index;
744
745	bch_ratelimit_reset(&dc->writeback_rate);
746
747	while (!kthread_should_stop() &&
748	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
749		down_write(&dc->writeback_lock);
750		set_current_state(TASK_INTERRUPTIBLE);
751		/*
752		 * If the bache device is detaching, skip here and continue
753		 * to perform writeback. Otherwise, if no dirty data on cache,
754		 * or there is dirty data on cache but writeback is disabled,
755		 * the writeback thread should sleep here and wait for others
756		 * to wake up it.
757		 */
758		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
759		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
760			up_write(&dc->writeback_lock);
761
762			if (kthread_should_stop() ||
763			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
764				set_current_state(TASK_RUNNING);
765				break;
766			}
767
768			schedule();
769			continue;
770		}
771		set_current_state(TASK_RUNNING);
772
773		searched_full_index = refill_dirty(dc);
774
775		if (searched_full_index &&
776		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
777			atomic_set(&dc->has_dirty, 0);
778			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
779			bch_write_bdev_super(dc, NULL);
780			/*
781			 * If bcache device is detaching via sysfs interface,
782			 * writeback thread should stop after there is no dirty
783			 * data on cache. BCACHE_DEV_DETACHING flag is set in
784			 * bch_cached_dev_detach().
785			 */
786			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
787				struct closure cl;
788
789				closure_init_stack(&cl);
790				memset(&dc->sb.set_uuid, 0, 16);
791				SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
792
793				bch_write_bdev_super(dc, &cl);
794				closure_sync(&cl);
795
796				up_write(&dc->writeback_lock);
797				break;
798			}
799
800			/*
801			 * When dirty data rate is high (e.g. 50%+), there might
802			 * be heavy buckets fragmentation after writeback
803			 * finished, which hurts following write performance.
804			 * If users really care about write performance they
805			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
806			 * BCH_DO_AUTO_GC is set, garbage collection thread
807			 * will be wake up here. After moving gc, the shrunk
808			 * btree and discarded free buckets SSD space may be
809			 * helpful for following write requests.
810			 */
811			if (c->gc_after_writeback ==
812			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
813				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
814				force_wake_up_gc(c);
815			}
816		}
817
818		up_write(&dc->writeback_lock);
819
820		read_dirty(dc);
821
822		if (searched_full_index) {
823			unsigned int delay = dc->writeback_delay * HZ;
824
825			while (delay &&
826			       !kthread_should_stop() &&
827			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
828			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
829				delay = schedule_timeout_interruptible(delay);
830
831			bch_ratelimit_reset(&dc->writeback_rate);
832		}
833	}
834
835	if (dc->writeback_write_wq)
836		destroy_workqueue(dc->writeback_write_wq);
837
838	cached_dev_put(dc);
839	wait_for_kthread_stop();
840
841	return 0;
842}
843
844/* Init */
845#define INIT_KEYS_EACH_TIME	500000
846
847struct sectors_dirty_init {
848	struct btree_op	op;
849	unsigned int	inode;
850	size_t		count;
851};
852
853static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
854				 struct bkey *k)
855{
856	struct sectors_dirty_init *op = container_of(_op,
857						struct sectors_dirty_init, op);
858	if (KEY_INODE(k) > op->inode)
859		return MAP_DONE;
860
861	if (KEY_DIRTY(k))
862		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
863					     KEY_START(k), KEY_SIZE(k));
864
865	op->count++;
866	if (!(op->count % INIT_KEYS_EACH_TIME))
867		cond_resched();
868
869	return MAP_CONTINUE;
870}
871
872static int bch_root_node_dirty_init(struct cache_set *c,
873				     struct bcache_device *d,
874				     struct bkey *k)
875{
876	struct sectors_dirty_init op;
877	int ret;
878
879	bch_btree_op_init(&op.op, -1);
880	op.inode = d->id;
881	op.count = 0;
882
883	ret = bcache_btree(map_keys_recurse,
884			   k,
885			   c->root,
886			   &op.op,
887			   &KEY(op.inode, 0, 0),
888			   sectors_dirty_init_fn,
889			   0);
890	if (ret < 0)
891		pr_warn("sectors dirty init failed, ret=%d!\n", ret);
892
893	/*
894	 * The op may be added to cache_set's btree_cache_wait
895	 * in mca_cannibalize(), must ensure it is removed from
896	 * the list and release btree_cache_alloc_lock before
897	 * free op memory.
898	 * Otherwise, the btree_cache_wait will be damaged.
899	 */
900	bch_cannibalize_unlock(c);
901	finish_wait(&c->btree_cache_wait, &(&op.op)->wait);
902
903	return ret;
904}
905
906static int bch_dirty_init_thread(void *arg)
907{
908	struct dirty_init_thrd_info *info = arg;
909	struct bch_dirty_init_state *state = info->state;
910	struct cache_set *c = state->c;
911	struct btree_iter iter;
912	struct bkey *k, *p;
913	int cur_idx, prev_idx, skip_nr;
914
915	k = p = NULL;
916	prev_idx = 0;
917
918	bch_btree_iter_init(&c->root->keys, &iter, NULL);
919	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
920	BUG_ON(!k);
921
922	p = k;
923
924	while (k) {
925		spin_lock(&state->idx_lock);
926		cur_idx = state->key_idx;
927		state->key_idx++;
928		spin_unlock(&state->idx_lock);
929
930		skip_nr = cur_idx - prev_idx;
931
932		while (skip_nr) {
933			k = bch_btree_iter_next_filter(&iter,
934						       &c->root->keys,
935						       bch_ptr_bad);
936			if (k)
937				p = k;
938			else {
939				atomic_set(&state->enough, 1);
940				/* Update state->enough earlier */
941				smp_mb__after_atomic();
942				goto out;
943			}
944			skip_nr--;
945		}
946
947		if (p) {
948			if (bch_root_node_dirty_init(c, state->d, p) < 0)
949				goto out;
950		}
951
952		p = NULL;
953		prev_idx = cur_idx;
954	}
955
956out:
957	/* In order to wake up state->wait in time */
958	smp_mb__before_atomic();
959	if (atomic_dec_and_test(&state->started))
960		wake_up(&state->wait);
961
962	return 0;
963}
964
965static int bch_btre_dirty_init_thread_nr(void)
966{
967	int n = num_online_cpus()/2;
968
969	if (n == 0)
970		n = 1;
971	else if (n > BCH_DIRTY_INIT_THRD_MAX)
972		n = BCH_DIRTY_INIT_THRD_MAX;
973
974	return n;
975}
976
977void bch_sectors_dirty_init(struct bcache_device *d)
978{
979	int i;
980	struct btree *b = NULL;
981	struct bkey *k = NULL;
982	struct btree_iter iter;
983	struct sectors_dirty_init op;
984	struct cache_set *c = d->c;
985	struct bch_dirty_init_state state;
986
987retry_lock:
988	b = c->root;
989	rw_lock(0, b, b->level);
990	if (b != c->root) {
991		rw_unlock(0, b);
992		goto retry_lock;
993	}
994
995	/* Just count root keys if no leaf node */
996	if (c->root->level == 0) {
997		bch_btree_op_init(&op.op, -1);
998		op.inode = d->id;
999		op.count = 0;
1000
1001		for_each_key_filter(&c->root->keys,
1002				    k, &iter, bch_ptr_invalid) {
1003			if (KEY_INODE(k) != op.inode)
1004				continue;
1005			sectors_dirty_init_fn(&op.op, c->root, k);
1006		}
1007
1008		rw_unlock(0, b);
1009		return;
1010	}
1011
1012	memset(&state, 0, sizeof(struct bch_dirty_init_state));
1013	state.c = c;
1014	state.d = d;
1015	state.total_threads = bch_btre_dirty_init_thread_nr();
1016	state.key_idx = 0;
1017	spin_lock_init(&state.idx_lock);
1018	atomic_set(&state.started, 0);
1019	atomic_set(&state.enough, 0);
1020	init_waitqueue_head(&state.wait);
1021
1022	for (i = 0; i < state.total_threads; i++) {
1023		/* Fetch latest state.enough earlier */
1024		smp_mb__before_atomic();
1025		if (atomic_read(&state.enough))
1026			break;
1027
1028		atomic_inc(&state.started);
1029		state.infos[i].state = &state;
1030		state.infos[i].thread =
1031			kthread_run(bch_dirty_init_thread, &state.infos[i],
1032				    "bch_dirtcnt[%d]", i);
1033		if (IS_ERR(state.infos[i].thread)) {
1034			pr_err("fails to run thread bch_dirty_init[%d]\n", i);
1035			atomic_dec(&state.started);
1036			for (--i; i >= 0; i--)
1037				kthread_stop(state.infos[i].thread);
1038			goto out;
1039		}
1040	}
1041
1042out:
1043	/* Must wait for all threads to stop. */
1044	wait_event(state.wait, atomic_read(&state.started) == 0);
1045	rw_unlock(0, b);
1046}
1047
1048void bch_cached_dev_writeback_init(struct cached_dev *dc)
1049{
1050	sema_init(&dc->in_flight, 64);
1051	init_rwsem(&dc->writeback_lock);
1052	bch_keybuf_init(&dc->writeback_keys);
1053
1054	dc->writeback_metadata		= true;
1055	dc->writeback_running		= false;
1056	dc->writeback_consider_fragment = true;
1057	dc->writeback_percent		= 10;
1058	dc->writeback_delay		= 30;
1059	atomic_long_set(&dc->writeback_rate.rate, 1024);
1060	dc->writeback_rate_minimum	= 8;
1061
1062	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1063	dc->writeback_rate_p_term_inverse = 40;
1064	dc->writeback_rate_fp_term_low = 1;
1065	dc->writeback_rate_fp_term_mid = 10;
1066	dc->writeback_rate_fp_term_high = 1000;
1067	dc->writeback_rate_i_term_inverse = 10000;
1068
1069	/* For dc->writeback_lock contention in update_writeback_rate() */
1070	dc->rate_update_retry = 0;
1071
1072	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1073	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1074}
1075
1076int bch_cached_dev_writeback_start(struct cached_dev *dc)
1077{
1078	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1079						WQ_MEM_RECLAIM, 0);
1080	if (!dc->writeback_write_wq)
1081		return -ENOMEM;
1082
1083	cached_dev_get(dc);
1084	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1085					      "bcache_writeback");
1086	if (IS_ERR(dc->writeback_thread)) {
1087		cached_dev_put(dc);
1088		destroy_workqueue(dc->writeback_write_wq);
1089		return PTR_ERR(dc->writeback_thread);
1090	}
1091	dc->writeback_running = true;
1092
1093	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1094	schedule_delayed_work(&dc->writeback_rate_update,
1095			      dc->writeback_rate_update_seconds * HZ);
1096
1097	bch_writeback_queue(dc);
1098
1099	return 0;
1100}
1101