1// SPDX-License-Identifier: GPL-2.0
2/*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "extents.h"
14#include "request.h"
15#include "writeback.h"
16#include "features.h"
17
18#include <linux/blkdev.h>
19#include <linux/pagemap.h>
20#include <linux/debugfs.h>
21#include <linux/idr.h>
22#include <linux/kthread.h>
23#include <linux/workqueue.h>
24#include <linux/module.h>
25#include <linux/random.h>
26#include <linux/reboot.h>
27#include <linux/sysfs.h>
28
29unsigned int bch_cutoff_writeback;
30unsigned int bch_cutoff_writeback_sync;
31
32static const char bcache_magic[] = {
33	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35};
36
37static const char invalid_uuid[] = {
38	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40};
41
42static struct kobject *bcache_kobj;
43struct mutex bch_register_lock;
44bool bcache_is_reboot;
45LIST_HEAD(bch_cache_sets);
46static LIST_HEAD(uncached_devices);
47
48static int bcache_major;
49static DEFINE_IDA(bcache_device_idx);
50static wait_queue_head_t unregister_wait;
51struct workqueue_struct *bcache_wq;
52struct workqueue_struct *bch_flush_wq;
53struct workqueue_struct *bch_journal_wq;
54
55
56#define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
57/* limitation of partitions number on single bcache device */
58#define BCACHE_MINORS		128
59/* limitation of bcache devices number on single system */
60#define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
61
62/* Superblock */
63
64static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65{
66	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69		if (bch_has_feature_large_bucket(sb)) {
70			unsigned int max, order;
71
72			max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73			order = le16_to_cpu(s->bucket_size);
74			/*
75			 * bcache tool will make sure the overflow won't
76			 * happen, an error message here is enough.
77			 */
78			if (order > max)
79				pr_err("Bucket size (1 << %u) overflows\n",
80					order);
81			bucket_size = 1 << order;
82		} else if (bch_has_feature_obso_large_bucket(sb)) {
83			bucket_size +=
84				le16_to_cpu(s->obso_bucket_size_hi) << 16;
85		}
86	}
87
88	return bucket_size;
89}
90
91static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92				     struct cache_sb_disk *s)
93{
94	const char *err;
95	unsigned int i;
96
97	sb->first_bucket= le16_to_cpu(s->first_bucket);
98	sb->nbuckets	= le64_to_cpu(s->nbuckets);
99	sb->bucket_size	= get_bucket_size(sb, s);
100
101	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
102	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
103
104	err = "Too many journal buckets";
105	if (sb->keys > SB_JOURNAL_BUCKETS)
106		goto err;
107
108	err = "Too many buckets";
109	if (sb->nbuckets > LONG_MAX)
110		goto err;
111
112	err = "Not enough buckets";
113	if (sb->nbuckets < 1 << 7)
114		goto err;
115
116	err = "Bad block size (not power of 2)";
117	if (!is_power_of_2(sb->block_size))
118		goto err;
119
120	err = "Bad block size (larger than page size)";
121	if (sb->block_size > PAGE_SECTORS)
122		goto err;
123
124	err = "Bad bucket size (not power of 2)";
125	if (!is_power_of_2(sb->bucket_size))
126		goto err;
127
128	err = "Bad bucket size (smaller than page size)";
129	if (sb->bucket_size < PAGE_SECTORS)
130		goto err;
131
132	err = "Invalid superblock: device too small";
133	if (get_capacity(bdev->bd_disk) <
134	    sb->bucket_size * sb->nbuckets)
135		goto err;
136
137	err = "Bad UUID";
138	if (bch_is_zero(sb->set_uuid, 16))
139		goto err;
140
141	err = "Bad cache device number in set";
142	if (!sb->nr_in_set ||
143	    sb->nr_in_set <= sb->nr_this_dev ||
144	    sb->nr_in_set > MAX_CACHES_PER_SET)
145		goto err;
146
147	err = "Journal buckets not sequential";
148	for (i = 0; i < sb->keys; i++)
149		if (sb->d[i] != sb->first_bucket + i)
150			goto err;
151
152	err = "Too many journal buckets";
153	if (sb->first_bucket + sb->keys > sb->nbuckets)
154		goto err;
155
156	err = "Invalid superblock: first bucket comes before end of super";
157	if (sb->first_bucket * sb->bucket_size < 16)
158		goto err;
159
160	err = NULL;
161err:
162	return err;
163}
164
165
166static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167			      struct cache_sb_disk **res)
168{
169	const char *err;
170	struct cache_sb_disk *s;
171	struct page *page;
172	unsigned int i;
173
174	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176	if (IS_ERR(page))
177		return "IO error";
178	s = page_address(page) + offset_in_page(SB_OFFSET);
179
180	sb->offset		= le64_to_cpu(s->offset);
181	sb->version		= le64_to_cpu(s->version);
182
183	memcpy(sb->magic,	s->magic, 16);
184	memcpy(sb->uuid,	s->uuid, 16);
185	memcpy(sb->set_uuid,	s->set_uuid, 16);
186	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
187
188	sb->flags		= le64_to_cpu(s->flags);
189	sb->seq			= le64_to_cpu(s->seq);
190	sb->last_mount		= le32_to_cpu(s->last_mount);
191	sb->keys		= le16_to_cpu(s->keys);
192
193	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194		sb->d[i] = le64_to_cpu(s->d[i]);
195
196	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197		 sb->version, sb->flags, sb->seq, sb->keys);
198
199	err = "Not a bcache superblock (bad offset)";
200	if (sb->offset != SB_SECTOR)
201		goto err;
202
203	err = "Not a bcache superblock (bad magic)";
204	if (memcmp(sb->magic, bcache_magic, 16))
205		goto err;
206
207	err = "Bad checksum";
208	if (s->csum != csum_set(s))
209		goto err;
210
211	err = "Bad UUID";
212	if (bch_is_zero(sb->uuid, 16))
213		goto err;
214
215	sb->block_size	= le16_to_cpu(s->block_size);
216
217	err = "Superblock block size smaller than device block size";
218	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219		goto err;
220
221	switch (sb->version) {
222	case BCACHE_SB_VERSION_BDEV:
223		sb->data_offset	= BDEV_DATA_START_DEFAULT;
224		break;
225	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227		sb->data_offset	= le64_to_cpu(s->data_offset);
228
229		err = "Bad data offset";
230		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231			goto err;
232
233		break;
234	case BCACHE_SB_VERSION_CDEV:
235	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236		err = read_super_common(sb, bdev, s);
237		if (err)
238			goto err;
239		break;
240	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241		/*
242		 * Feature bits are needed in read_super_common(),
243		 * convert them firstly.
244		 */
245		sb->feature_compat = le64_to_cpu(s->feature_compat);
246		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249		/* Check incompatible features */
250		err = "Unsupported compatible feature found";
251		if (bch_has_unknown_compat_features(sb))
252			goto err;
253
254		err = "Unsupported read-only compatible feature found";
255		if (bch_has_unknown_ro_compat_features(sb))
256			goto err;
257
258		err = "Unsupported incompatible feature found";
259		if (bch_has_unknown_incompat_features(sb))
260			goto err;
261
262		err = read_super_common(sb, bdev, s);
263		if (err)
264			goto err;
265		break;
266	default:
267		err = "Unsupported superblock version";
268		goto err;
269	}
270
271	sb->last_mount = (u32)ktime_get_real_seconds();
272	*res = s;
273	return NULL;
274err:
275	put_page(page);
276	return err;
277}
278
279static void write_bdev_super_endio(struct bio *bio)
280{
281	struct cached_dev *dc = bio->bi_private;
282
283	if (bio->bi_status)
284		bch_count_backing_io_errors(dc, bio);
285
286	closure_put(&dc->sb_write);
287}
288
289static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290		struct bio *bio)
291{
292	unsigned int i;
293
294	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295	bio->bi_iter.bi_sector	= SB_SECTOR;
296	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
297			offset_in_page(out));
298
299	out->offset		= cpu_to_le64(sb->offset);
300
301	memcpy(out->uuid,	sb->uuid, 16);
302	memcpy(out->set_uuid,	sb->set_uuid, 16);
303	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
304
305	out->flags		= cpu_to_le64(sb->flags);
306	out->seq		= cpu_to_le64(sb->seq);
307
308	out->last_mount		= cpu_to_le32(sb->last_mount);
309	out->first_bucket	= cpu_to_le16(sb->first_bucket);
310	out->keys		= cpu_to_le16(sb->keys);
311
312	for (i = 0; i < sb->keys; i++)
313		out->d[i] = cpu_to_le64(sb->d[i]);
314
315	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316		out->feature_compat    = cpu_to_le64(sb->feature_compat);
317		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319	}
320
321	out->version		= cpu_to_le64(sb->version);
322	out->csum = csum_set(out);
323
324	pr_debug("ver %llu, flags %llu, seq %llu\n",
325		 sb->version, sb->flags, sb->seq);
326
327	submit_bio(bio);
328}
329
330static CLOSURE_CALLBACK(bch_write_bdev_super_unlock)
331{
332	closure_type(dc, struct cached_dev, sb_write);
333
334	up(&dc->sb_write_mutex);
335}
336
337void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338{
339	struct closure *cl = &dc->sb_write;
340	struct bio *bio = &dc->sb_bio;
341
342	down(&dc->sb_write_mutex);
343	closure_init(cl, parent);
344
345	bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
346	bio->bi_end_io	= write_bdev_super_endio;
347	bio->bi_private = dc;
348
349	closure_get(cl);
350	/* I/O request sent to backing device */
351	__write_super(&dc->sb, dc->sb_disk, bio);
352
353	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354}
355
356static void write_super_endio(struct bio *bio)
357{
358	struct cache *ca = bio->bi_private;
359
360	/* is_read = 0 */
361	bch_count_io_errors(ca, bio->bi_status, 0,
362			    "writing superblock");
363	closure_put(&ca->set->sb_write);
364}
365
366static CLOSURE_CALLBACK(bcache_write_super_unlock)
367{
368	closure_type(c, struct cache_set, sb_write);
369
370	up(&c->sb_write_mutex);
371}
372
373void bcache_write_super(struct cache_set *c)
374{
375	struct closure *cl = &c->sb_write;
376	struct cache *ca = c->cache;
377	struct bio *bio = &ca->sb_bio;
378	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379
380	down(&c->sb_write_mutex);
381	closure_init(cl, &c->cl);
382
383	ca->sb.seq++;
384
385	if (ca->sb.version < version)
386		ca->sb.version = version;
387
388	bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
389	bio->bi_end_io	= write_super_endio;
390	bio->bi_private = ca;
391
392	closure_get(cl);
393	__write_super(&ca->sb, ca->sb_disk, bio);
394
395	closure_return_with_destructor(cl, bcache_write_super_unlock);
396}
397
398/* UUID io */
399
400static void uuid_endio(struct bio *bio)
401{
402	struct closure *cl = bio->bi_private;
403	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
404
405	cache_set_err_on(bio->bi_status, c, "accessing uuids");
406	bch_bbio_free(bio, c);
407	closure_put(cl);
408}
409
410static CLOSURE_CALLBACK(uuid_io_unlock)
411{
412	closure_type(c, struct cache_set, uuid_write);
413
414	up(&c->uuid_write_mutex);
415}
416
417static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
418		    struct closure *parent)
419{
420	struct closure *cl = &c->uuid_write;
421	struct uuid_entry *u;
422	unsigned int i;
423	char buf[80];
424
425	BUG_ON(!parent);
426	down(&c->uuid_write_mutex);
427	closure_init(cl, parent);
428
429	for (i = 0; i < KEY_PTRS(k); i++) {
430		struct bio *bio = bch_bbio_alloc(c);
431
432		bio->bi_opf = opf | REQ_SYNC | REQ_META;
433		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
434
435		bio->bi_end_io	= uuid_endio;
436		bio->bi_private = cl;
437		bch_bio_map(bio, c->uuids);
438
439		bch_submit_bbio(bio, c, k, i);
440
441		if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
442			break;
443	}
444
445	bch_extent_to_text(buf, sizeof(buf), k);
446	pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
447		 "wrote" : "read", buf);
448
449	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
450		if (!bch_is_zero(u->uuid, 16))
451			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452				 u - c->uuids, u->uuid, u->label,
453				 u->first_reg, u->last_reg, u->invalidated);
454
455	closure_return_with_destructor(cl, uuid_io_unlock);
456}
457
458static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
459{
460	struct bkey *k = &j->uuid_bucket;
461
462	if (__bch_btree_ptr_invalid(c, k))
463		return "bad uuid pointer";
464
465	bkey_copy(&c->uuid_bucket, k);
466	uuid_io(c, REQ_OP_READ, k, cl);
467
468	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
469		struct uuid_entry_v0	*u0 = (void *) c->uuids;
470		struct uuid_entry	*u1 = (void *) c->uuids;
471		int i;
472
473		closure_sync(cl);
474
475		/*
476		 * Since the new uuid entry is bigger than the old, we have to
477		 * convert starting at the highest memory address and work down
478		 * in order to do it in place
479		 */
480
481		for (i = c->nr_uuids - 1;
482		     i >= 0;
483		     --i) {
484			memcpy(u1[i].uuid,	u0[i].uuid, 16);
485			memcpy(u1[i].label,	u0[i].label, 32);
486
487			u1[i].first_reg		= u0[i].first_reg;
488			u1[i].last_reg		= u0[i].last_reg;
489			u1[i].invalidated	= u0[i].invalidated;
490
491			u1[i].flags	= 0;
492			u1[i].sectors	= 0;
493		}
494	}
495
496	return NULL;
497}
498
499static int __uuid_write(struct cache_set *c)
500{
501	BKEY_PADDED(key) k;
502	struct closure cl;
503	struct cache *ca = c->cache;
504	unsigned int size;
505
506	closure_init_stack(&cl);
507	lockdep_assert_held(&bch_register_lock);
508
509	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
510		return 1;
511
512	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
513	SET_KEY_SIZE(&k.key, size);
514	uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
515	closure_sync(&cl);
516
517	/* Only one bucket used for uuid write */
518	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
519
520	bkey_copy(&c->uuid_bucket, &k.key);
521	bkey_put(c, &k.key);
522	return 0;
523}
524
525int bch_uuid_write(struct cache_set *c)
526{
527	int ret = __uuid_write(c);
528
529	if (!ret)
530		bch_journal_meta(c, NULL);
531
532	return ret;
533}
534
535static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
536{
537	struct uuid_entry *u;
538
539	for (u = c->uuids;
540	     u < c->uuids + c->nr_uuids; u++)
541		if (!memcmp(u->uuid, uuid, 16))
542			return u;
543
544	return NULL;
545}
546
547static struct uuid_entry *uuid_find_empty(struct cache_set *c)
548{
549	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
550
551	return uuid_find(c, zero_uuid);
552}
553
554/*
555 * Bucket priorities/gens:
556 *
557 * For each bucket, we store on disk its
558 *   8 bit gen
559 *  16 bit priority
560 *
561 * See alloc.c for an explanation of the gen. The priority is used to implement
562 * lru (and in the future other) cache replacement policies; for most purposes
563 * it's just an opaque integer.
564 *
565 * The gens and the priorities don't have a whole lot to do with each other, and
566 * it's actually the gens that must be written out at specific times - it's no
567 * big deal if the priorities don't get written, if we lose them we just reuse
568 * buckets in suboptimal order.
569 *
570 * On disk they're stored in a packed array, and in as many buckets are required
571 * to fit them all. The buckets we use to store them form a list; the journal
572 * header points to the first bucket, the first bucket points to the second
573 * bucket, et cetera.
574 *
575 * This code is used by the allocation code; periodically (whenever it runs out
576 * of buckets to allocate from) the allocation code will invalidate some
577 * buckets, but it can't use those buckets until their new gens are safely on
578 * disk.
579 */
580
581static void prio_endio(struct bio *bio)
582{
583	struct cache *ca = bio->bi_private;
584
585	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586	bch_bbio_free(bio, ca->set);
587	closure_put(&ca->prio);
588}
589
590static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591{
592	struct closure *cl = &ca->prio;
593	struct bio *bio = bch_bbio_alloc(ca->set);
594
595	closure_init_stack(cl);
596
597	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
598	bio_set_dev(bio, ca->bdev);
599	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
600
601	bio->bi_end_io	= prio_endio;
602	bio->bi_private = ca;
603	bio->bi_opf = opf | REQ_SYNC | REQ_META;
604	bch_bio_map(bio, ca->disk_buckets);
605
606	closure_bio_submit(ca->set, bio, &ca->prio);
607	closure_sync(cl);
608}
609
610int bch_prio_write(struct cache *ca, bool wait)
611{
612	int i;
613	struct bucket *b;
614	struct closure cl;
615
616	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617		 fifo_used(&ca->free[RESERVE_PRIO]),
618		 fifo_used(&ca->free[RESERVE_NONE]),
619		 fifo_used(&ca->free_inc));
620
621	/*
622	 * Pre-check if there are enough free buckets. In the non-blocking
623	 * scenario it's better to fail early rather than starting to allocate
624	 * buckets and do a cleanup later in case of failure.
625	 */
626	if (!wait) {
627		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628			       fifo_used(&ca->free[RESERVE_NONE]);
629		if (prio_buckets(ca) > avail)
630			return -ENOMEM;
631	}
632
633	closure_init_stack(&cl);
634
635	lockdep_assert_held(&ca->set->bucket_lock);
636
637	ca->disk_buckets->seq++;
638
639	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
640			&ca->meta_sectors_written);
641
642	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643		long bucket;
644		struct prio_set *p = ca->disk_buckets;
645		struct bucket_disk *d = p->data;
646		struct bucket_disk *end = d + prios_per_bucket(ca);
647
648		for (b = ca->buckets + i * prios_per_bucket(ca);
649		     b < ca->buckets + ca->sb.nbuckets && d < end;
650		     b++, d++) {
651			d->prio = cpu_to_le16(b->prio);
652			d->gen = b->gen;
653		}
654
655		p->next_bucket	= ca->prio_buckets[i + 1];
656		p->magic	= pset_magic(&ca->sb);
657		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
658
659		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
660		BUG_ON(bucket == -1);
661
662		mutex_unlock(&ca->set->bucket_lock);
663		prio_io(ca, bucket, REQ_OP_WRITE);
664		mutex_lock(&ca->set->bucket_lock);
665
666		ca->prio_buckets[i] = bucket;
667		atomic_dec_bug(&ca->buckets[bucket].pin);
668	}
669
670	mutex_unlock(&ca->set->bucket_lock);
671
672	bch_journal_meta(ca->set, &cl);
673	closure_sync(&cl);
674
675	mutex_lock(&ca->set->bucket_lock);
676
677	/*
678	 * Don't want the old priorities to get garbage collected until after we
679	 * finish writing the new ones, and they're journalled
680	 */
681	for (i = 0; i < prio_buckets(ca); i++) {
682		if (ca->prio_last_buckets[i])
683			__bch_bucket_free(ca,
684				&ca->buckets[ca->prio_last_buckets[i]]);
685
686		ca->prio_last_buckets[i] = ca->prio_buckets[i];
687	}
688	return 0;
689}
690
691static int prio_read(struct cache *ca, uint64_t bucket)
692{
693	struct prio_set *p = ca->disk_buckets;
694	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695	struct bucket *b;
696	unsigned int bucket_nr = 0;
697	int ret = -EIO;
698
699	for (b = ca->buckets;
700	     b < ca->buckets + ca->sb.nbuckets;
701	     b++, d++) {
702		if (d == end) {
703			ca->prio_buckets[bucket_nr] = bucket;
704			ca->prio_last_buckets[bucket_nr] = bucket;
705			bucket_nr++;
706
707			prio_io(ca, bucket, REQ_OP_READ);
708
709			if (p->csum !=
710			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
711				pr_warn("bad csum reading priorities\n");
712				goto out;
713			}
714
715			if (p->magic != pset_magic(&ca->sb)) {
716				pr_warn("bad magic reading priorities\n");
717				goto out;
718			}
719
720			bucket = p->next_bucket;
721			d = p->data;
722		}
723
724		b->prio = le16_to_cpu(d->prio);
725		b->gen = b->last_gc = d->gen;
726	}
727
728	ret = 0;
729out:
730	return ret;
731}
732
733/* Bcache device */
734
735static int open_dev(struct gendisk *disk, blk_mode_t mode)
736{
737	struct bcache_device *d = disk->private_data;
738
739	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740		return -ENXIO;
741
742	closure_get(&d->cl);
743	return 0;
744}
745
746static void release_dev(struct gendisk *b)
747{
748	struct bcache_device *d = b->private_data;
749
750	closure_put(&d->cl);
751}
752
753static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754		     unsigned int cmd, unsigned long arg)
755{
756	struct bcache_device *d = b->bd_disk->private_data;
757
758	return d->ioctl(d, mode, cmd, arg);
759}
760
761static const struct block_device_operations bcache_cached_ops = {
762	.submit_bio	= cached_dev_submit_bio,
763	.open		= open_dev,
764	.release	= release_dev,
765	.ioctl		= ioctl_dev,
766	.owner		= THIS_MODULE,
767};
768
769static const struct block_device_operations bcache_flash_ops = {
770	.submit_bio	= flash_dev_submit_bio,
771	.open		= open_dev,
772	.release	= release_dev,
773	.ioctl		= ioctl_dev,
774	.owner		= THIS_MODULE,
775};
776
777void bcache_device_stop(struct bcache_device *d)
778{
779	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
780		/*
781		 * closure_fn set to
782		 * - cached device: cached_dev_flush()
783		 * - flash dev: flash_dev_flush()
784		 */
785		closure_queue(&d->cl);
786}
787
788static void bcache_device_unlink(struct bcache_device *d)
789{
790	lockdep_assert_held(&bch_register_lock);
791
792	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
793		struct cache *ca = d->c->cache;
794
795		sysfs_remove_link(&d->c->kobj, d->name);
796		sysfs_remove_link(&d->kobj, "cache");
797
798		bd_unlink_disk_holder(ca->bdev, d->disk);
799	}
800}
801
802static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803			       const char *name)
804{
805	struct cache *ca = c->cache;
806	int ret;
807
808	bd_link_disk_holder(ca->bdev, d->disk);
809
810	snprintf(d->name, BCACHEDEVNAME_SIZE,
811		 "%s%u", name, d->id);
812
813	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
814	if (ret < 0)
815		pr_err("Couldn't create device -> cache set symlink\n");
816
817	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
818	if (ret < 0)
819		pr_err("Couldn't create cache set -> device symlink\n");
820
821	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
822}
823
824static void bcache_device_detach(struct bcache_device *d)
825{
826	lockdep_assert_held(&bch_register_lock);
827
828	atomic_dec(&d->c->attached_dev_nr);
829
830	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831		struct uuid_entry *u = d->c->uuids + d->id;
832
833		SET_UUID_FLASH_ONLY(u, 0);
834		memcpy(u->uuid, invalid_uuid, 16);
835		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836		bch_uuid_write(d->c);
837	}
838
839	bcache_device_unlink(d);
840
841	d->c->devices[d->id] = NULL;
842	closure_put(&d->c->caching);
843	d->c = NULL;
844}
845
846static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847				 unsigned int id)
848{
849	d->id = id;
850	d->c = c;
851	c->devices[id] = d;
852
853	if (id >= c->devices_max_used)
854		c->devices_max_used = id + 1;
855
856	closure_get(&c->caching);
857}
858
859static inline int first_minor_to_idx(int first_minor)
860{
861	return (first_minor/BCACHE_MINORS);
862}
863
864static inline int idx_to_first_minor(int idx)
865{
866	return (idx * BCACHE_MINORS);
867}
868
869static void bcache_device_free(struct bcache_device *d)
870{
871	struct gendisk *disk = d->disk;
872
873	lockdep_assert_held(&bch_register_lock);
874
875	if (disk)
876		pr_info("%s stopped\n", disk->disk_name);
877	else
878		pr_err("bcache device (NULL gendisk) stopped\n");
879
880	if (d->c)
881		bcache_device_detach(d);
882
883	if (disk) {
884		ida_simple_remove(&bcache_device_idx,
885				  first_minor_to_idx(disk->first_minor));
886		put_disk(disk);
887	}
888
889	bioset_exit(&d->bio_split);
890	kvfree(d->full_dirty_stripes);
891	kvfree(d->stripe_sectors_dirty);
892
893	closure_debug_destroy(&d->cl);
894}
895
896static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
897		sector_t sectors, struct block_device *cached_bdev,
898		const struct block_device_operations *ops)
899{
900	struct request_queue *q;
901	const size_t max_stripes = min_t(size_t, INT_MAX,
902					 SIZE_MAX / sizeof(atomic_t));
903	struct queue_limits lim = {
904		.max_hw_sectors		= UINT_MAX,
905		.max_sectors		= UINT_MAX,
906		.max_segment_size	= UINT_MAX,
907		.max_segments		= BIO_MAX_VECS,
908		.max_hw_discard_sectors	= UINT_MAX,
909		.io_min			= block_size,
910		.logical_block_size	= block_size,
911		.physical_block_size	= block_size,
912	};
913	uint64_t n;
914	int idx;
915
916	if (cached_bdev) {
917		d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT;
918		lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev));
919	}
920	if (!d->stripe_size)
921		d->stripe_size = 1 << 31;
922	else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
923		d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
924
925	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
926	if (!n || n > max_stripes) {
927		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
928			n);
929		return -ENOMEM;
930	}
931	d->nr_stripes = n;
932
933	n = d->nr_stripes * sizeof(atomic_t);
934	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
935	if (!d->stripe_sectors_dirty)
936		return -ENOMEM;
937
938	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
939	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
940	if (!d->full_dirty_stripes)
941		goto out_free_stripe_sectors_dirty;
942
943	idx = ida_simple_get(&bcache_device_idx, 0,
944				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
945	if (idx < 0)
946		goto out_free_full_dirty_stripes;
947
948	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
949			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
950		goto out_ida_remove;
951
952	if (lim.logical_block_size > PAGE_SIZE && cached_bdev) {
953		/*
954		 * This should only happen with BCACHE_SB_VERSION_BDEV.
955		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
956		 */
957		pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
958			idx, lim.logical_block_size,
959			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
960
961		/* This also adjusts physical block size/min io size if needed */
962		lim.logical_block_size = bdev_logical_block_size(cached_bdev);
963	}
964
965	d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
966	if (IS_ERR(d->disk))
967		goto out_bioset_exit;
968
969	set_capacity(d->disk, sectors);
970	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
971
972	d->disk->major		= bcache_major;
973	d->disk->first_minor	= idx_to_first_minor(idx);
974	d->disk->minors		= BCACHE_MINORS;
975	d->disk->fops		= ops;
976	d->disk->private_data	= d;
977
978	q = d->disk->queue;
979
980	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
981
982	blk_queue_write_cache(q, true, true);
983
984	return 0;
985
986out_bioset_exit:
987	bioset_exit(&d->bio_split);
988out_ida_remove:
989	ida_simple_remove(&bcache_device_idx, idx);
990out_free_full_dirty_stripes:
991	kvfree(d->full_dirty_stripes);
992out_free_stripe_sectors_dirty:
993	kvfree(d->stripe_sectors_dirty);
994	return -ENOMEM;
995
996}
997
998/* Cached device */
999
1000static void calc_cached_dev_sectors(struct cache_set *c)
1001{
1002	uint64_t sectors = 0;
1003	struct cached_dev *dc;
1004
1005	list_for_each_entry(dc, &c->cached_devs, list)
1006		sectors += bdev_nr_sectors(dc->bdev);
1007
1008	c->cached_dev_sectors = sectors;
1009}
1010
1011#define BACKING_DEV_OFFLINE_TIMEOUT 5
1012static int cached_dev_status_update(void *arg)
1013{
1014	struct cached_dev *dc = arg;
1015	struct request_queue *q;
1016
1017	/*
1018	 * If this delayed worker is stopping outside, directly quit here.
1019	 * dc->io_disable might be set via sysfs interface, so check it
1020	 * here too.
1021	 */
1022	while (!kthread_should_stop() && !dc->io_disable) {
1023		q = bdev_get_queue(dc->bdev);
1024		if (blk_queue_dying(q))
1025			dc->offline_seconds++;
1026		else
1027			dc->offline_seconds = 0;
1028
1029		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1030			pr_err("%pg: device offline for %d seconds\n",
1031			       dc->bdev,
1032			       BACKING_DEV_OFFLINE_TIMEOUT);
1033			pr_err("%s: disable I/O request due to backing device offline\n",
1034			       dc->disk.name);
1035			dc->io_disable = true;
1036			/* let others know earlier that io_disable is true */
1037			smp_mb();
1038			bcache_device_stop(&dc->disk);
1039			break;
1040		}
1041		schedule_timeout_interruptible(HZ);
1042	}
1043
1044	wait_for_kthread_stop();
1045	return 0;
1046}
1047
1048
1049int bch_cached_dev_run(struct cached_dev *dc)
1050{
1051	int ret = 0;
1052	struct bcache_device *d = &dc->disk;
1053	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1054	char *env[] = {
1055		"DRIVER=bcache",
1056		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1057		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1058		NULL,
1059	};
1060
1061	if (dc->io_disable) {
1062		pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1063		ret = -EIO;
1064		goto out;
1065	}
1066
1067	if (atomic_xchg(&dc->running, 1)) {
1068		pr_info("cached dev %pg is running already\n", dc->bdev);
1069		ret = -EBUSY;
1070		goto out;
1071	}
1072
1073	if (!d->c &&
1074	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1075		struct closure cl;
1076
1077		closure_init_stack(&cl);
1078
1079		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1080		bch_write_bdev_super(dc, &cl);
1081		closure_sync(&cl);
1082	}
1083
1084	ret = add_disk(d->disk);
1085	if (ret)
1086		goto out;
1087	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1088	/*
1089	 * won't show up in the uevent file, use udevadm monitor -e instead
1090	 * only class / kset properties are persistent
1091	 */
1092	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1093
1094	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1095	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1096			      &d->kobj, "bcache")) {
1097		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1098		ret = -ENOMEM;
1099		goto out;
1100	}
1101
1102	dc->status_update_thread = kthread_run(cached_dev_status_update,
1103					       dc, "bcache_status_update");
1104	if (IS_ERR(dc->status_update_thread)) {
1105		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1106	}
1107
1108out:
1109	kfree(env[1]);
1110	kfree(env[2]);
1111	kfree(buf);
1112	return ret;
1113}
1114
1115/*
1116 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1117 * work dc->writeback_rate_update is running. Wait until the routine
1118 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1119 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1120 * seconds, give up waiting here and continue to cancel it too.
1121 */
1122static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1123{
1124	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1125
1126	do {
1127		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1128			      &dc->disk.flags))
1129			break;
1130		time_out--;
1131		schedule_timeout_interruptible(1);
1132	} while (time_out > 0);
1133
1134	if (time_out == 0)
1135		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1136
1137	cancel_delayed_work_sync(&dc->writeback_rate_update);
1138}
1139
1140static void cached_dev_detach_finish(struct work_struct *w)
1141{
1142	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1143	struct cache_set *c = dc->disk.c;
1144
1145	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1146	BUG_ON(refcount_read(&dc->count));
1147
1148
1149	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1150		cancel_writeback_rate_update_dwork(dc);
1151
1152	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1153		kthread_stop(dc->writeback_thread);
1154		dc->writeback_thread = NULL;
1155	}
1156
1157	mutex_lock(&bch_register_lock);
1158
1159	bcache_device_detach(&dc->disk);
1160	list_move(&dc->list, &uncached_devices);
1161	calc_cached_dev_sectors(c);
1162
1163	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1164	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1165
1166	mutex_unlock(&bch_register_lock);
1167
1168	pr_info("Caching disabled for %pg\n", dc->bdev);
1169
1170	/* Drop ref we took in cached_dev_detach() */
1171	closure_put(&dc->disk.cl);
1172}
1173
1174void bch_cached_dev_detach(struct cached_dev *dc)
1175{
1176	lockdep_assert_held(&bch_register_lock);
1177
1178	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1179		return;
1180
1181	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1182		return;
1183
1184	/*
1185	 * Block the device from being closed and freed until we're finished
1186	 * detaching
1187	 */
1188	closure_get(&dc->disk.cl);
1189
1190	bch_writeback_queue(dc);
1191
1192	cached_dev_put(dc);
1193}
1194
1195int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1196			  uint8_t *set_uuid)
1197{
1198	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1199	struct uuid_entry *u;
1200	struct cached_dev *exist_dc, *t;
1201	int ret = 0;
1202
1203	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1204	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1205		return -ENOENT;
1206
1207	if (dc->disk.c) {
1208		pr_err("Can't attach %pg: already attached\n", dc->bdev);
1209		return -EINVAL;
1210	}
1211
1212	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1213		pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1214		return -EINVAL;
1215	}
1216
1217	if (dc->sb.block_size < c->cache->sb.block_size) {
1218		/* Will die */
1219		pr_err("Couldn't attach %pg: block size less than set's block size\n",
1220		       dc->bdev);
1221		return -EINVAL;
1222	}
1223
1224	/* Check whether already attached */
1225	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1226		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1227			pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1228				dc->bdev);
1229
1230			return -EINVAL;
1231		}
1232	}
1233
1234	u = uuid_find(c, dc->sb.uuid);
1235
1236	if (u &&
1237	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1238	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1239		memcpy(u->uuid, invalid_uuid, 16);
1240		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1241		u = NULL;
1242	}
1243
1244	if (!u) {
1245		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1246			pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1247			return -ENOENT;
1248		}
1249
1250		u = uuid_find_empty(c);
1251		if (!u) {
1252			pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1253			return -EINVAL;
1254		}
1255	}
1256
1257	/*
1258	 * Deadlocks since we're called via sysfs...
1259	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1260	 */
1261
1262	if (bch_is_zero(u->uuid, 16)) {
1263		struct closure cl;
1264
1265		closure_init_stack(&cl);
1266
1267		memcpy(u->uuid, dc->sb.uuid, 16);
1268		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1269		u->first_reg = u->last_reg = rtime;
1270		bch_uuid_write(c);
1271
1272		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1273		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1274
1275		bch_write_bdev_super(dc, &cl);
1276		closure_sync(&cl);
1277	} else {
1278		u->last_reg = rtime;
1279		bch_uuid_write(c);
1280	}
1281
1282	bcache_device_attach(&dc->disk, c, u - c->uuids);
1283	list_move(&dc->list, &c->cached_devs);
1284	calc_cached_dev_sectors(c);
1285
1286	/*
1287	 * dc->c must be set before dc->count != 0 - paired with the mb in
1288	 * cached_dev_get()
1289	 */
1290	smp_wmb();
1291	refcount_set(&dc->count, 1);
1292
1293	/* Block writeback thread, but spawn it */
1294	down_write(&dc->writeback_lock);
1295	if (bch_cached_dev_writeback_start(dc)) {
1296		up_write(&dc->writeback_lock);
1297		pr_err("Couldn't start writeback facilities for %s\n",
1298		       dc->disk.disk->disk_name);
1299		return -ENOMEM;
1300	}
1301
1302	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1303		atomic_set(&dc->has_dirty, 1);
1304		bch_writeback_queue(dc);
1305	}
1306
1307	bch_sectors_dirty_init(&dc->disk);
1308
1309	ret = bch_cached_dev_run(dc);
1310	if (ret && (ret != -EBUSY)) {
1311		up_write(&dc->writeback_lock);
1312		/*
1313		 * bch_register_lock is held, bcache_device_stop() is not
1314		 * able to be directly called. The kthread and kworker
1315		 * created previously in bch_cached_dev_writeback_start()
1316		 * have to be stopped manually here.
1317		 */
1318		kthread_stop(dc->writeback_thread);
1319		cancel_writeback_rate_update_dwork(dc);
1320		pr_err("Couldn't run cached device %pg\n", dc->bdev);
1321		return ret;
1322	}
1323
1324	bcache_device_link(&dc->disk, c, "bdev");
1325	atomic_inc(&c->attached_dev_nr);
1326
1327	if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1328		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1329		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1330		set_disk_ro(dc->disk.disk, 1);
1331	}
1332
1333	/* Allow the writeback thread to proceed */
1334	up_write(&dc->writeback_lock);
1335
1336	pr_info("Caching %pg as %s on set %pU\n",
1337		dc->bdev,
1338		dc->disk.disk->disk_name,
1339		dc->disk.c->set_uuid);
1340	return 0;
1341}
1342
1343/* when dc->disk.kobj released */
1344void bch_cached_dev_release(struct kobject *kobj)
1345{
1346	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1347					     disk.kobj);
1348	kfree(dc);
1349	module_put(THIS_MODULE);
1350}
1351
1352static CLOSURE_CALLBACK(cached_dev_free)
1353{
1354	closure_type(dc, struct cached_dev, disk.cl);
1355
1356	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1357		cancel_writeback_rate_update_dwork(dc);
1358
1359	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1360		kthread_stop(dc->writeback_thread);
1361	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1362		kthread_stop(dc->status_update_thread);
1363
1364	mutex_lock(&bch_register_lock);
1365
1366	if (atomic_read(&dc->running)) {
1367		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1368		del_gendisk(dc->disk.disk);
1369	}
1370	bcache_device_free(&dc->disk);
1371	list_del(&dc->list);
1372
1373	mutex_unlock(&bch_register_lock);
1374
1375	if (dc->sb_disk)
1376		put_page(virt_to_page(dc->sb_disk));
1377
1378	if (dc->bdev_file)
1379		fput(dc->bdev_file);
1380
1381	wake_up(&unregister_wait);
1382
1383	kobject_put(&dc->disk.kobj);
1384}
1385
1386static CLOSURE_CALLBACK(cached_dev_flush)
1387{
1388	closure_type(dc, struct cached_dev, disk.cl);
1389	struct bcache_device *d = &dc->disk;
1390
1391	mutex_lock(&bch_register_lock);
1392	bcache_device_unlink(d);
1393	mutex_unlock(&bch_register_lock);
1394
1395	bch_cache_accounting_destroy(&dc->accounting);
1396	kobject_del(&d->kobj);
1397
1398	continue_at(cl, cached_dev_free, system_wq);
1399}
1400
1401static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1402{
1403	int ret;
1404	struct io *io;
1405	struct request_queue *q = bdev_get_queue(dc->bdev);
1406
1407	__module_get(THIS_MODULE);
1408	INIT_LIST_HEAD(&dc->list);
1409	closure_init(&dc->disk.cl, NULL);
1410	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1411	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1412	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1413	sema_init(&dc->sb_write_mutex, 1);
1414	INIT_LIST_HEAD(&dc->io_lru);
1415	spin_lock_init(&dc->io_lock);
1416	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1417
1418	dc->sequential_cutoff		= 4 << 20;
1419
1420	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1421		list_add(&io->lru, &dc->io_lru);
1422		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1423	}
1424
1425	if (bdev_io_opt(dc->bdev))
1426		dc->partial_stripes_expensive =
1427			q->limits.raid_partial_stripes_expensive;
1428
1429	ret = bcache_device_init(&dc->disk, block_size,
1430			 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1431			 dc->bdev, &bcache_cached_ops);
1432	if (ret)
1433		return ret;
1434
1435	atomic_set(&dc->io_errors, 0);
1436	dc->io_disable = false;
1437	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1438	/* default to auto */
1439	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1440
1441	bch_cached_dev_request_init(dc);
1442	bch_cached_dev_writeback_init(dc);
1443	return 0;
1444}
1445
1446/* Cached device - bcache superblock */
1447
1448static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1449				 struct file *bdev_file,
1450				 struct cached_dev *dc)
1451{
1452	const char *err = "cannot allocate memory";
1453	struct cache_set *c;
1454	int ret = -ENOMEM;
1455
1456	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1457	dc->bdev_file = bdev_file;
1458	dc->bdev = file_bdev(bdev_file);
1459	dc->sb_disk = sb_disk;
1460
1461	if (cached_dev_init(dc, sb->block_size << 9))
1462		goto err;
1463
1464	err = "error creating kobject";
1465	if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache"))
1466		goto err;
1467	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1468		goto err;
1469
1470	pr_info("registered backing device %pg\n", dc->bdev);
1471
1472	list_add(&dc->list, &uncached_devices);
1473	/* attach to a matched cache set if it exists */
1474	list_for_each_entry(c, &bch_cache_sets, list)
1475		bch_cached_dev_attach(dc, c, NULL);
1476
1477	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1478	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1479		err = "failed to run cached device";
1480		ret = bch_cached_dev_run(dc);
1481		if (ret)
1482			goto err;
1483	}
1484
1485	return 0;
1486err:
1487	pr_notice("error %pg: %s\n", dc->bdev, err);
1488	bcache_device_stop(&dc->disk);
1489	return ret;
1490}
1491
1492/* Flash only volumes */
1493
1494/* When d->kobj released */
1495void bch_flash_dev_release(struct kobject *kobj)
1496{
1497	struct bcache_device *d = container_of(kobj, struct bcache_device,
1498					       kobj);
1499	kfree(d);
1500}
1501
1502static CLOSURE_CALLBACK(flash_dev_free)
1503{
1504	closure_type(d, struct bcache_device, cl);
1505
1506	mutex_lock(&bch_register_lock);
1507	atomic_long_sub(bcache_dev_sectors_dirty(d),
1508			&d->c->flash_dev_dirty_sectors);
1509	del_gendisk(d->disk);
1510	bcache_device_free(d);
1511	mutex_unlock(&bch_register_lock);
1512	kobject_put(&d->kobj);
1513}
1514
1515static CLOSURE_CALLBACK(flash_dev_flush)
1516{
1517	closure_type(d, struct bcache_device, cl);
1518
1519	mutex_lock(&bch_register_lock);
1520	bcache_device_unlink(d);
1521	mutex_unlock(&bch_register_lock);
1522	kobject_del(&d->kobj);
1523	continue_at(cl, flash_dev_free, system_wq);
1524}
1525
1526static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1527{
1528	int err = -ENOMEM;
1529	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1530					  GFP_KERNEL);
1531	if (!d)
1532		goto err_ret;
1533
1534	closure_init(&d->cl, NULL);
1535	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1536
1537	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1538
1539	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1540			NULL, &bcache_flash_ops))
1541		goto err;
1542
1543	bcache_device_attach(d, c, u - c->uuids);
1544	bch_sectors_dirty_init(d);
1545	bch_flash_dev_request_init(d);
1546	err = add_disk(d->disk);
1547	if (err)
1548		goto err;
1549
1550	err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1551	if (err)
1552		goto err;
1553
1554	bcache_device_link(d, c, "volume");
1555
1556	if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1557		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1558		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1559		set_disk_ro(d->disk, 1);
1560	}
1561
1562	return 0;
1563err:
1564	kobject_put(&d->kobj);
1565err_ret:
1566	return err;
1567}
1568
1569static int flash_devs_run(struct cache_set *c)
1570{
1571	int ret = 0;
1572	struct uuid_entry *u;
1573
1574	for (u = c->uuids;
1575	     u < c->uuids + c->nr_uuids && !ret;
1576	     u++)
1577		if (UUID_FLASH_ONLY(u))
1578			ret = flash_dev_run(c, u);
1579
1580	return ret;
1581}
1582
1583int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1584{
1585	struct uuid_entry *u;
1586
1587	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1588		return -EINTR;
1589
1590	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1591		return -EPERM;
1592
1593	u = uuid_find_empty(c);
1594	if (!u) {
1595		pr_err("Can't create volume, no room for UUID\n");
1596		return -EINVAL;
1597	}
1598
1599	get_random_bytes(u->uuid, 16);
1600	memset(u->label, 0, 32);
1601	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1602
1603	SET_UUID_FLASH_ONLY(u, 1);
1604	u->sectors = size >> 9;
1605
1606	bch_uuid_write(c);
1607
1608	return flash_dev_run(c, u);
1609}
1610
1611bool bch_cached_dev_error(struct cached_dev *dc)
1612{
1613	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1614		return false;
1615
1616	dc->io_disable = true;
1617	/* make others know io_disable is true earlier */
1618	smp_mb();
1619
1620	pr_err("stop %s: too many IO errors on backing device %pg\n",
1621	       dc->disk.disk->disk_name, dc->bdev);
1622
1623	bcache_device_stop(&dc->disk);
1624	return true;
1625}
1626
1627/* Cache set */
1628
1629__printf(2, 3)
1630bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1631{
1632	struct va_format vaf;
1633	va_list args;
1634
1635	if (c->on_error != ON_ERROR_PANIC &&
1636	    test_bit(CACHE_SET_STOPPING, &c->flags))
1637		return false;
1638
1639	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1640		pr_info("CACHE_SET_IO_DISABLE already set\n");
1641
1642	/*
1643	 * XXX: we can be called from atomic context
1644	 * acquire_console_sem();
1645	 */
1646
1647	va_start(args, fmt);
1648
1649	vaf.fmt = fmt;
1650	vaf.va = &args;
1651
1652	pr_err("error on %pU: %pV, disabling caching\n",
1653	       c->set_uuid, &vaf);
1654
1655	va_end(args);
1656
1657	if (c->on_error == ON_ERROR_PANIC)
1658		panic("panic forced after error\n");
1659
1660	bch_cache_set_unregister(c);
1661	return true;
1662}
1663
1664/* When c->kobj released */
1665void bch_cache_set_release(struct kobject *kobj)
1666{
1667	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1668
1669	kfree(c);
1670	module_put(THIS_MODULE);
1671}
1672
1673static CLOSURE_CALLBACK(cache_set_free)
1674{
1675	closure_type(c, struct cache_set, cl);
1676	struct cache *ca;
1677
1678	debugfs_remove(c->debug);
1679
1680	bch_open_buckets_free(c);
1681	bch_btree_cache_free(c);
1682	bch_journal_free(c);
1683
1684	mutex_lock(&bch_register_lock);
1685	bch_bset_sort_state_free(&c->sort);
1686	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1687
1688	ca = c->cache;
1689	if (ca) {
1690		ca->set = NULL;
1691		c->cache = NULL;
1692		kobject_put(&ca->kobj);
1693	}
1694
1695
1696	if (c->moving_gc_wq)
1697		destroy_workqueue(c->moving_gc_wq);
1698	bioset_exit(&c->bio_split);
1699	mempool_exit(&c->fill_iter);
1700	mempool_exit(&c->bio_meta);
1701	mempool_exit(&c->search);
1702	kfree(c->devices);
1703
1704	list_del(&c->list);
1705	mutex_unlock(&bch_register_lock);
1706
1707	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1708	wake_up(&unregister_wait);
1709
1710	closure_debug_destroy(&c->cl);
1711	kobject_put(&c->kobj);
1712}
1713
1714static CLOSURE_CALLBACK(cache_set_flush)
1715{
1716	closure_type(c, struct cache_set, caching);
1717	struct cache *ca = c->cache;
1718	struct btree *b;
1719
1720	bch_cache_accounting_destroy(&c->accounting);
1721
1722	kobject_put(&c->internal);
1723	kobject_del(&c->kobj);
1724
1725	if (!IS_ERR_OR_NULL(c->gc_thread))
1726		kthread_stop(c->gc_thread);
1727
1728	if (!IS_ERR(c->root))
1729		list_add(&c->root->list, &c->btree_cache);
1730
1731	/*
1732	 * Avoid flushing cached nodes if cache set is retiring
1733	 * due to too many I/O errors detected.
1734	 */
1735	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1736		list_for_each_entry(b, &c->btree_cache, list) {
1737			mutex_lock(&b->write_lock);
1738			if (btree_node_dirty(b))
1739				__bch_btree_node_write(b, NULL);
1740			mutex_unlock(&b->write_lock);
1741		}
1742
1743	if (ca->alloc_thread)
1744		kthread_stop(ca->alloc_thread);
1745
1746	if (c->journal.cur) {
1747		cancel_delayed_work_sync(&c->journal.work);
1748		/* flush last journal entry if needed */
1749		c->journal.work.work.func(&c->journal.work.work);
1750	}
1751
1752	closure_return(cl);
1753}
1754
1755/*
1756 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1757 * cache set is unregistering due to too many I/O errors. In this condition,
1758 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1759 * value and whether the broken cache has dirty data:
1760 *
1761 * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1762 *  BCH_CACHED_STOP_AUTO               0               NO
1763 *  BCH_CACHED_STOP_AUTO               1               YES
1764 *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1765 *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1766 *
1767 * The expected behavior is, if stop_when_cache_set_failed is configured to
1768 * "auto" via sysfs interface, the bcache device will not be stopped if the
1769 * backing device is clean on the broken cache device.
1770 */
1771static void conditional_stop_bcache_device(struct cache_set *c,
1772					   struct bcache_device *d,
1773					   struct cached_dev *dc)
1774{
1775	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1776		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1777			d->disk->disk_name, c->set_uuid);
1778		bcache_device_stop(d);
1779	} else if (atomic_read(&dc->has_dirty)) {
1780		/*
1781		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1782		 * and dc->has_dirty == 1
1783		 */
1784		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1785			d->disk->disk_name);
1786		/*
1787		 * There might be a small time gap that cache set is
1788		 * released but bcache device is not. Inside this time
1789		 * gap, regular I/O requests will directly go into
1790		 * backing device as no cache set attached to. This
1791		 * behavior may also introduce potential inconsistence
1792		 * data in writeback mode while cache is dirty.
1793		 * Therefore before calling bcache_device_stop() due
1794		 * to a broken cache device, dc->io_disable should be
1795		 * explicitly set to true.
1796		 */
1797		dc->io_disable = true;
1798		/* make others know io_disable is true earlier */
1799		smp_mb();
1800		bcache_device_stop(d);
1801	} else {
1802		/*
1803		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1804		 * and dc->has_dirty == 0
1805		 */
1806		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1807			d->disk->disk_name);
1808	}
1809}
1810
1811static CLOSURE_CALLBACK(__cache_set_unregister)
1812{
1813	closure_type(c, struct cache_set, caching);
1814	struct cached_dev *dc;
1815	struct bcache_device *d;
1816	size_t i;
1817
1818	mutex_lock(&bch_register_lock);
1819
1820	for (i = 0; i < c->devices_max_used; i++) {
1821		d = c->devices[i];
1822		if (!d)
1823			continue;
1824
1825		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1826		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1827			dc = container_of(d, struct cached_dev, disk);
1828			bch_cached_dev_detach(dc);
1829			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1830				conditional_stop_bcache_device(c, d, dc);
1831		} else {
1832			bcache_device_stop(d);
1833		}
1834	}
1835
1836	mutex_unlock(&bch_register_lock);
1837
1838	continue_at(cl, cache_set_flush, system_wq);
1839}
1840
1841void bch_cache_set_stop(struct cache_set *c)
1842{
1843	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1844		/* closure_fn set to __cache_set_unregister() */
1845		closure_queue(&c->caching);
1846}
1847
1848void bch_cache_set_unregister(struct cache_set *c)
1849{
1850	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1851	bch_cache_set_stop(c);
1852}
1853
1854#define alloc_meta_bucket_pages(gfp, sb)		\
1855	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1856
1857struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1858{
1859	int iter_size;
1860	struct cache *ca = container_of(sb, struct cache, sb);
1861	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1862
1863	if (!c)
1864		return NULL;
1865
1866	__module_get(THIS_MODULE);
1867	closure_init(&c->cl, NULL);
1868	set_closure_fn(&c->cl, cache_set_free, system_wq);
1869
1870	closure_init(&c->caching, &c->cl);
1871	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1872
1873	/* Maybe create continue_at_noreturn() and use it here? */
1874	closure_set_stopped(&c->cl);
1875	closure_put(&c->cl);
1876
1877	kobject_init(&c->kobj, &bch_cache_set_ktype);
1878	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1879
1880	bch_cache_accounting_init(&c->accounting, &c->cl);
1881
1882	memcpy(c->set_uuid, sb->set_uuid, 16);
1883
1884	c->cache		= ca;
1885	c->cache->set		= c;
1886	c->bucket_bits		= ilog2(sb->bucket_size);
1887	c->block_bits		= ilog2(sb->block_size);
1888	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1889	c->devices_max_used	= 0;
1890	atomic_set(&c->attached_dev_nr, 0);
1891	c->btree_pages		= meta_bucket_pages(sb);
1892	if (c->btree_pages > BTREE_MAX_PAGES)
1893		c->btree_pages = max_t(int, c->btree_pages / 4,
1894				       BTREE_MAX_PAGES);
1895
1896	sema_init(&c->sb_write_mutex, 1);
1897	mutex_init(&c->bucket_lock);
1898	init_waitqueue_head(&c->btree_cache_wait);
1899	spin_lock_init(&c->btree_cannibalize_lock);
1900	init_waitqueue_head(&c->bucket_wait);
1901	init_waitqueue_head(&c->gc_wait);
1902	sema_init(&c->uuid_write_mutex, 1);
1903
1904	spin_lock_init(&c->btree_gc_time.lock);
1905	spin_lock_init(&c->btree_split_time.lock);
1906	spin_lock_init(&c->btree_read_time.lock);
1907
1908	bch_moving_init_cache_set(c);
1909
1910	INIT_LIST_HEAD(&c->list);
1911	INIT_LIST_HEAD(&c->cached_devs);
1912	INIT_LIST_HEAD(&c->btree_cache);
1913	INIT_LIST_HEAD(&c->btree_cache_freeable);
1914	INIT_LIST_HEAD(&c->btree_cache_freed);
1915	INIT_LIST_HEAD(&c->data_buckets);
1916
1917	iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1918		sizeof(struct btree_iter_set);
1919
1920	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1921	if (!c->devices)
1922		goto err;
1923
1924	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1925		goto err;
1926
1927	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1928			sizeof(struct bbio) +
1929			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1930		goto err;
1931
1932	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1933		goto err;
1934
1935	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1936			BIOSET_NEED_RESCUER))
1937		goto err;
1938
1939	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1940	if (!c->uuids)
1941		goto err;
1942
1943	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1944	if (!c->moving_gc_wq)
1945		goto err;
1946
1947	if (bch_journal_alloc(c))
1948		goto err;
1949
1950	if (bch_btree_cache_alloc(c))
1951		goto err;
1952
1953	if (bch_open_buckets_alloc(c))
1954		goto err;
1955
1956	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1957		goto err;
1958
1959	c->congested_read_threshold_us	= 2000;
1960	c->congested_write_threshold_us	= 20000;
1961	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1962	c->idle_max_writeback_rate_enabled = 1;
1963	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1964
1965	return c;
1966err:
1967	bch_cache_set_unregister(c);
1968	return NULL;
1969}
1970
1971static int run_cache_set(struct cache_set *c)
1972{
1973	const char *err = "cannot allocate memory";
1974	struct cached_dev *dc, *t;
1975	struct cache *ca = c->cache;
1976	struct closure cl;
1977	LIST_HEAD(journal);
1978	struct journal_replay *l;
1979
1980	closure_init_stack(&cl);
1981
1982	c->nbuckets = ca->sb.nbuckets;
1983	set_gc_sectors(c);
1984
1985	if (CACHE_SYNC(&c->cache->sb)) {
1986		struct bkey *k;
1987		struct jset *j;
1988
1989		err = "cannot allocate memory for journal";
1990		if (bch_journal_read(c, &journal))
1991			goto err;
1992
1993		pr_debug("btree_journal_read() done\n");
1994
1995		err = "no journal entries found";
1996		if (list_empty(&journal))
1997			goto err;
1998
1999		j = &list_entry(journal.prev, struct journal_replay, list)->j;
2000
2001		err = "IO error reading priorities";
2002		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2003			goto err;
2004
2005		/*
2006		 * If prio_read() fails it'll call cache_set_error and we'll
2007		 * tear everything down right away, but if we perhaps checked
2008		 * sooner we could avoid journal replay.
2009		 */
2010
2011		k = &j->btree_root;
2012
2013		err = "bad btree root";
2014		if (__bch_btree_ptr_invalid(c, k))
2015			goto err;
2016
2017		err = "error reading btree root";
2018		c->root = bch_btree_node_get(c, NULL, k,
2019					     j->btree_level,
2020					     true, NULL);
2021		if (IS_ERR(c->root))
2022			goto err;
2023
2024		list_del_init(&c->root->list);
2025		rw_unlock(true, c->root);
2026
2027		err = uuid_read(c, j, &cl);
2028		if (err)
2029			goto err;
2030
2031		err = "error in recovery";
2032		if (bch_btree_check(c))
2033			goto err;
2034
2035		bch_journal_mark(c, &journal);
2036		bch_initial_gc_finish(c);
2037		pr_debug("btree_check() done\n");
2038
2039		/*
2040		 * bcache_journal_next() can't happen sooner, or
2041		 * btree_gc_finish() will give spurious errors about last_gc >
2042		 * gc_gen - this is a hack but oh well.
2043		 */
2044		bch_journal_next(&c->journal);
2045
2046		err = "error starting allocator thread";
2047		if (bch_cache_allocator_start(ca))
2048			goto err;
2049
2050		/*
2051		 * First place it's safe to allocate: btree_check() and
2052		 * btree_gc_finish() have to run before we have buckets to
2053		 * allocate, and bch_bucket_alloc_set() might cause a journal
2054		 * entry to be written so bcache_journal_next() has to be called
2055		 * first.
2056		 *
2057		 * If the uuids were in the old format we have to rewrite them
2058		 * before the next journal entry is written:
2059		 */
2060		if (j->version < BCACHE_JSET_VERSION_UUID)
2061			__uuid_write(c);
2062
2063		err = "bcache: replay journal failed";
2064		if (bch_journal_replay(c, &journal))
2065			goto err;
2066	} else {
2067		unsigned int j;
2068
2069		pr_notice("invalidating existing data\n");
2070		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2071					2, SB_JOURNAL_BUCKETS);
2072
2073		for (j = 0; j < ca->sb.keys; j++)
2074			ca->sb.d[j] = ca->sb.first_bucket + j;
2075
2076		bch_initial_gc_finish(c);
2077
2078		err = "error starting allocator thread";
2079		if (bch_cache_allocator_start(ca))
2080			goto err;
2081
2082		mutex_lock(&c->bucket_lock);
2083		bch_prio_write(ca, true);
2084		mutex_unlock(&c->bucket_lock);
2085
2086		err = "cannot allocate new UUID bucket";
2087		if (__uuid_write(c))
2088			goto err;
2089
2090		err = "cannot allocate new btree root";
2091		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2092		if (IS_ERR(c->root))
2093			goto err;
2094
2095		mutex_lock(&c->root->write_lock);
2096		bkey_copy_key(&c->root->key, &MAX_KEY);
2097		bch_btree_node_write(c->root, &cl);
2098		mutex_unlock(&c->root->write_lock);
2099
2100		bch_btree_set_root(c->root);
2101		rw_unlock(true, c->root);
2102
2103		/*
2104		 * We don't want to write the first journal entry until
2105		 * everything is set up - fortunately journal entries won't be
2106		 * written until the SET_CACHE_SYNC() here:
2107		 */
2108		SET_CACHE_SYNC(&c->cache->sb, true);
2109
2110		bch_journal_next(&c->journal);
2111		bch_journal_meta(c, &cl);
2112	}
2113
2114	err = "error starting gc thread";
2115	if (bch_gc_thread_start(c))
2116		goto err;
2117
2118	closure_sync(&cl);
2119	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2120	bcache_write_super(c);
2121
2122	if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2123		pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2124
2125	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2126		bch_cached_dev_attach(dc, c, NULL);
2127
2128	flash_devs_run(c);
2129
2130	bch_journal_space_reserve(&c->journal);
2131	set_bit(CACHE_SET_RUNNING, &c->flags);
2132	return 0;
2133err:
2134	while (!list_empty(&journal)) {
2135		l = list_first_entry(&journal, struct journal_replay, list);
2136		list_del(&l->list);
2137		kfree(l);
2138	}
2139
2140	closure_sync(&cl);
2141
2142	bch_cache_set_error(c, "%s", err);
2143
2144	return -EIO;
2145}
2146
2147static const char *register_cache_set(struct cache *ca)
2148{
2149	char buf[12];
2150	const char *err = "cannot allocate memory";
2151	struct cache_set *c;
2152
2153	list_for_each_entry(c, &bch_cache_sets, list)
2154		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2155			if (c->cache)
2156				return "duplicate cache set member";
2157
2158			goto found;
2159		}
2160
2161	c = bch_cache_set_alloc(&ca->sb);
2162	if (!c)
2163		return err;
2164
2165	err = "error creating kobject";
2166	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2167	    kobject_add(&c->internal, &c->kobj, "internal"))
2168		goto err;
2169
2170	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2171		goto err;
2172
2173	bch_debug_init_cache_set(c);
2174
2175	list_add(&c->list, &bch_cache_sets);
2176found:
2177	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2178	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2179	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2180		goto err;
2181
2182	kobject_get(&ca->kobj);
2183	ca->set = c;
2184	ca->set->cache = ca;
2185
2186	err = "failed to run cache set";
2187	if (run_cache_set(c) < 0)
2188		goto err;
2189
2190	return NULL;
2191err:
2192	bch_cache_set_unregister(c);
2193	return err;
2194}
2195
2196/* Cache device */
2197
2198/* When ca->kobj released */
2199void bch_cache_release(struct kobject *kobj)
2200{
2201	struct cache *ca = container_of(kobj, struct cache, kobj);
2202	unsigned int i;
2203
2204	if (ca->set) {
2205		BUG_ON(ca->set->cache != ca);
2206		ca->set->cache = NULL;
2207	}
2208
2209	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2210	kfree(ca->prio_buckets);
2211	vfree(ca->buckets);
2212
2213	free_heap(&ca->heap);
2214	free_fifo(&ca->free_inc);
2215
2216	for (i = 0; i < RESERVE_NR; i++)
2217		free_fifo(&ca->free[i]);
2218
2219	if (ca->sb_disk)
2220		put_page(virt_to_page(ca->sb_disk));
2221
2222	if (ca->bdev_file)
2223		fput(ca->bdev_file);
2224
2225	kfree(ca);
2226	module_put(THIS_MODULE);
2227}
2228
2229static int cache_alloc(struct cache *ca)
2230{
2231	size_t free;
2232	size_t btree_buckets;
2233	struct bucket *b;
2234	int ret = -ENOMEM;
2235	const char *err = NULL;
2236
2237	__module_get(THIS_MODULE);
2238	kobject_init(&ca->kobj, &bch_cache_ktype);
2239
2240	bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
2241
2242	/*
2243	 * when ca->sb.njournal_buckets is not zero, journal exists,
2244	 * and in bch_journal_replay(), tree node may split,
2245	 * so bucket of RESERVE_BTREE type is needed,
2246	 * the worst situation is all journal buckets are valid journal,
2247	 * and all the keys need to replay,
2248	 * so the number of  RESERVE_BTREE type buckets should be as much
2249	 * as journal buckets
2250	 */
2251	btree_buckets = ca->sb.njournal_buckets ?: 8;
2252	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2253	if (!free) {
2254		ret = -EPERM;
2255		err = "ca->sb.nbuckets is too small";
2256		goto err_free;
2257	}
2258
2259	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2260						GFP_KERNEL)) {
2261		err = "ca->free[RESERVE_BTREE] alloc failed";
2262		goto err_btree_alloc;
2263	}
2264
2265	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2266							GFP_KERNEL)) {
2267		err = "ca->free[RESERVE_PRIO] alloc failed";
2268		goto err_prio_alloc;
2269	}
2270
2271	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2272		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2273		goto err_movinggc_alloc;
2274	}
2275
2276	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2277		err = "ca->free[RESERVE_NONE] alloc failed";
2278		goto err_none_alloc;
2279	}
2280
2281	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2282		err = "ca->free_inc alloc failed";
2283		goto err_free_inc_alloc;
2284	}
2285
2286	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2287		err = "ca->heap alloc failed";
2288		goto err_heap_alloc;
2289	}
2290
2291	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2292			      ca->sb.nbuckets));
2293	if (!ca->buckets) {
2294		err = "ca->buckets alloc failed";
2295		goto err_buckets_alloc;
2296	}
2297
2298	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2299				   prio_buckets(ca), 2),
2300				   GFP_KERNEL);
2301	if (!ca->prio_buckets) {
2302		err = "ca->prio_buckets alloc failed";
2303		goto err_prio_buckets_alloc;
2304	}
2305
2306	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2307	if (!ca->disk_buckets) {
2308		err = "ca->disk_buckets alloc failed";
2309		goto err_disk_buckets_alloc;
2310	}
2311
2312	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2313
2314	for_each_bucket(b, ca)
2315		atomic_set(&b->pin, 0);
2316	return 0;
2317
2318err_disk_buckets_alloc:
2319	kfree(ca->prio_buckets);
2320err_prio_buckets_alloc:
2321	vfree(ca->buckets);
2322err_buckets_alloc:
2323	free_heap(&ca->heap);
2324err_heap_alloc:
2325	free_fifo(&ca->free_inc);
2326err_free_inc_alloc:
2327	free_fifo(&ca->free[RESERVE_NONE]);
2328err_none_alloc:
2329	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2330err_movinggc_alloc:
2331	free_fifo(&ca->free[RESERVE_PRIO]);
2332err_prio_alloc:
2333	free_fifo(&ca->free[RESERVE_BTREE]);
2334err_btree_alloc:
2335err_free:
2336	module_put(THIS_MODULE);
2337	if (err)
2338		pr_notice("error %pg: %s\n", ca->bdev, err);
2339	return ret;
2340}
2341
2342static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2343				struct file *bdev_file,
2344				struct cache *ca)
2345{
2346	const char *err = NULL; /* must be set for any error case */
2347	int ret = 0;
2348
2349	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2350	ca->bdev_file = bdev_file;
2351	ca->bdev = file_bdev(bdev_file);
2352	ca->sb_disk = sb_disk;
2353
2354	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
2355		ca->discard = CACHE_DISCARD(&ca->sb);
2356
2357	ret = cache_alloc(ca);
2358	if (ret != 0) {
2359		if (ret == -ENOMEM)
2360			err = "cache_alloc(): -ENOMEM";
2361		else if (ret == -EPERM)
2362			err = "cache_alloc(): cache device is too small";
2363		else
2364			err = "cache_alloc(): unknown error";
2365		pr_notice("error %pg: %s\n", file_bdev(bdev_file), err);
2366		/*
2367		 * If we failed here, it means ca->kobj is not initialized yet,
2368		 * kobject_put() won't be called and there is no chance to
2369		 * call fput() to bdev in bch_cache_release(). So
2370		 * we explicitly call fput() on the block device here.
2371		 */
2372		fput(bdev_file);
2373		return ret;
2374	}
2375
2376	if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) {
2377		pr_notice("error %pg: error calling kobject_add\n",
2378			  file_bdev(bdev_file));
2379		ret = -ENOMEM;
2380		goto out;
2381	}
2382
2383	mutex_lock(&bch_register_lock);
2384	err = register_cache_set(ca);
2385	mutex_unlock(&bch_register_lock);
2386
2387	if (err) {
2388		ret = -ENODEV;
2389		goto out;
2390	}
2391
2392	pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file));
2393
2394out:
2395	kobject_put(&ca->kobj);
2396	return ret;
2397}
2398
2399/* Global interfaces/init */
2400
2401static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2402			       const char *buffer, size_t size);
2403static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2404					 struct kobj_attribute *attr,
2405					 const char *buffer, size_t size);
2406
2407kobj_attribute_write(register,		register_bcache);
2408kobj_attribute_write(register_quiet,	register_bcache);
2409kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2410
2411static bool bch_is_open_backing(dev_t dev)
2412{
2413	struct cache_set *c, *tc;
2414	struct cached_dev *dc, *t;
2415
2416	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2417		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2418			if (dc->bdev->bd_dev == dev)
2419				return true;
2420	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2421		if (dc->bdev->bd_dev == dev)
2422			return true;
2423	return false;
2424}
2425
2426static bool bch_is_open_cache(dev_t dev)
2427{
2428	struct cache_set *c, *tc;
2429
2430	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2431		struct cache *ca = c->cache;
2432
2433		if (ca->bdev->bd_dev == dev)
2434			return true;
2435	}
2436
2437	return false;
2438}
2439
2440static bool bch_is_open(dev_t dev)
2441{
2442	return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2443}
2444
2445struct async_reg_args {
2446	struct delayed_work reg_work;
2447	char *path;
2448	struct cache_sb *sb;
2449	struct cache_sb_disk *sb_disk;
2450	struct file *bdev_file;
2451	void *holder;
2452};
2453
2454static void register_bdev_worker(struct work_struct *work)
2455{
2456	int fail = false;
2457	struct async_reg_args *args =
2458		container_of(work, struct async_reg_args, reg_work.work);
2459
2460	mutex_lock(&bch_register_lock);
2461	if (register_bdev(args->sb, args->sb_disk, args->bdev_file,
2462			  args->holder) < 0)
2463		fail = true;
2464	mutex_unlock(&bch_register_lock);
2465
2466	if (fail)
2467		pr_info("error %s: fail to register backing device\n",
2468			args->path);
2469	kfree(args->sb);
2470	kfree(args->path);
2471	kfree(args);
2472	module_put(THIS_MODULE);
2473}
2474
2475static void register_cache_worker(struct work_struct *work)
2476{
2477	int fail = false;
2478	struct async_reg_args *args =
2479		container_of(work, struct async_reg_args, reg_work.work);
2480
2481	/* blkdev_put() will be called in bch_cache_release() */
2482	if (register_cache(args->sb, args->sb_disk, args->bdev_file,
2483			   args->holder))
2484		fail = true;
2485
2486	if (fail)
2487		pr_info("error %s: fail to register cache device\n",
2488			args->path);
2489	kfree(args->sb);
2490	kfree(args->path);
2491	kfree(args);
2492	module_put(THIS_MODULE);
2493}
2494
2495static void register_device_async(struct async_reg_args *args)
2496{
2497	if (SB_IS_BDEV(args->sb))
2498		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2499	else
2500		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2501
2502	/* 10 jiffies is enough for a delay */
2503	queue_delayed_work(system_wq, &args->reg_work, 10);
2504}
2505
2506static void *alloc_holder_object(struct cache_sb *sb)
2507{
2508	if (SB_IS_BDEV(sb))
2509		return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2510	return kzalloc(sizeof(struct cache), GFP_KERNEL);
2511}
2512
2513static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2514			       const char *buffer, size_t size)
2515{
2516	const char *err;
2517	char *path = NULL;
2518	struct cache_sb *sb;
2519	struct cache_sb_disk *sb_disk;
2520	struct file *bdev_file, *bdev_file2;
2521	void *holder = NULL;
2522	ssize_t ret;
2523	bool async_registration = false;
2524	bool quiet = false;
2525
2526#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2527	async_registration = true;
2528#endif
2529
2530	ret = -EBUSY;
2531	err = "failed to reference bcache module";
2532	if (!try_module_get(THIS_MODULE))
2533		goto out;
2534
2535	/* For latest state of bcache_is_reboot */
2536	smp_mb();
2537	err = "bcache is in reboot";
2538	if (bcache_is_reboot)
2539		goto out_module_put;
2540
2541	ret = -ENOMEM;
2542	err = "cannot allocate memory";
2543	path = kstrndup(buffer, size, GFP_KERNEL);
2544	if (!path)
2545		goto out_module_put;
2546
2547	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2548	if (!sb)
2549		goto out_free_path;
2550
2551	ret = -EINVAL;
2552	err = "failed to open device";
2553	bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2554	if (IS_ERR(bdev_file))
2555		goto out_free_sb;
2556
2557	err = "failed to set blocksize";
2558	if (set_blocksize(file_bdev(bdev_file), 4096))
2559		goto out_blkdev_put;
2560
2561	err = read_super(sb, file_bdev(bdev_file), &sb_disk);
2562	if (err)
2563		goto out_blkdev_put;
2564
2565	holder = alloc_holder_object(sb);
2566	if (!holder) {
2567		ret = -ENOMEM;
2568		err = "cannot allocate memory";
2569		goto out_put_sb_page;
2570	}
2571
2572	/* Now reopen in exclusive mode with proper holder */
2573	bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev,
2574			BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL);
2575	fput(bdev_file);
2576	bdev_file = bdev_file2;
2577	if (IS_ERR(bdev_file)) {
2578		ret = PTR_ERR(bdev_file);
2579		bdev_file = NULL;
2580		if (ret == -EBUSY) {
2581			dev_t dev;
2582
2583			mutex_lock(&bch_register_lock);
2584			if (lookup_bdev(strim(path), &dev) == 0 &&
2585			    bch_is_open(dev))
2586				err = "device already registered";
2587			else
2588				err = "device busy";
2589			mutex_unlock(&bch_register_lock);
2590			if (attr == &ksysfs_register_quiet) {
2591				quiet = true;
2592				ret = size;
2593			}
2594		}
2595		goto out_free_holder;
2596	}
2597
2598	err = "failed to register device";
2599
2600	if (async_registration) {
2601		/* register in asynchronous way */
2602		struct async_reg_args *args =
2603			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2604
2605		if (!args) {
2606			ret = -ENOMEM;
2607			err = "cannot allocate memory";
2608			goto out_free_holder;
2609		}
2610
2611		args->path	= path;
2612		args->sb	= sb;
2613		args->sb_disk	= sb_disk;
2614		args->bdev_file	= bdev_file;
2615		args->holder	= holder;
2616		register_device_async(args);
2617		/* No wait and returns to user space */
2618		goto async_done;
2619	}
2620
2621	if (SB_IS_BDEV(sb)) {
2622		mutex_lock(&bch_register_lock);
2623		ret = register_bdev(sb, sb_disk, bdev_file, holder);
2624		mutex_unlock(&bch_register_lock);
2625		/* blkdev_put() will be called in cached_dev_free() */
2626		if (ret < 0)
2627			goto out_free_sb;
2628	} else {
2629		/* blkdev_put() will be called in bch_cache_release() */
2630		ret = register_cache(sb, sb_disk, bdev_file, holder);
2631		if (ret)
2632			goto out_free_sb;
2633	}
2634
2635	kfree(sb);
2636	kfree(path);
2637	module_put(THIS_MODULE);
2638async_done:
2639	return size;
2640
2641out_free_holder:
2642	kfree(holder);
2643out_put_sb_page:
2644	put_page(virt_to_page(sb_disk));
2645out_blkdev_put:
2646	if (bdev_file)
2647		fput(bdev_file);
2648out_free_sb:
2649	kfree(sb);
2650out_free_path:
2651	kfree(path);
2652	path = NULL;
2653out_module_put:
2654	module_put(THIS_MODULE);
2655out:
2656	if (!quiet)
2657		pr_info("error %s: %s\n", path?path:"", err);
2658	return ret;
2659}
2660
2661
2662struct pdev {
2663	struct list_head list;
2664	struct cached_dev *dc;
2665};
2666
2667static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2668					 struct kobj_attribute *attr,
2669					 const char *buffer,
2670					 size_t size)
2671{
2672	LIST_HEAD(pending_devs);
2673	ssize_t ret = size;
2674	struct cached_dev *dc, *tdc;
2675	struct pdev *pdev, *tpdev;
2676	struct cache_set *c, *tc;
2677
2678	mutex_lock(&bch_register_lock);
2679	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2680		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2681		if (!pdev)
2682			break;
2683		pdev->dc = dc;
2684		list_add(&pdev->list, &pending_devs);
2685	}
2686
2687	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2688		char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2689		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2690			char *set_uuid = c->set_uuid;
2691
2692			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2693				list_del(&pdev->list);
2694				kfree(pdev);
2695				break;
2696			}
2697		}
2698	}
2699	mutex_unlock(&bch_register_lock);
2700
2701	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2702		pr_info("delete pdev %p\n", pdev);
2703		list_del(&pdev->list);
2704		bcache_device_stop(&pdev->dc->disk);
2705		kfree(pdev);
2706	}
2707
2708	return ret;
2709}
2710
2711static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2712{
2713	if (bcache_is_reboot)
2714		return NOTIFY_DONE;
2715
2716	if (code == SYS_DOWN ||
2717	    code == SYS_HALT ||
2718	    code == SYS_POWER_OFF) {
2719		DEFINE_WAIT(wait);
2720		unsigned long start = jiffies;
2721		bool stopped = false;
2722
2723		struct cache_set *c, *tc;
2724		struct cached_dev *dc, *tdc;
2725
2726		mutex_lock(&bch_register_lock);
2727
2728		if (bcache_is_reboot)
2729			goto out;
2730
2731		/* New registration is rejected since now */
2732		bcache_is_reboot = true;
2733		/*
2734		 * Make registering caller (if there is) on other CPU
2735		 * core know bcache_is_reboot set to true earlier
2736		 */
2737		smp_mb();
2738
2739		if (list_empty(&bch_cache_sets) &&
2740		    list_empty(&uncached_devices))
2741			goto out;
2742
2743		mutex_unlock(&bch_register_lock);
2744
2745		pr_info("Stopping all devices:\n");
2746
2747		/*
2748		 * The reason bch_register_lock is not held to call
2749		 * bch_cache_set_stop() and bcache_device_stop() is to
2750		 * avoid potential deadlock during reboot, because cache
2751		 * set or bcache device stopping process will acquire
2752		 * bch_register_lock too.
2753		 *
2754		 * We are safe here because bcache_is_reboot sets to
2755		 * true already, register_bcache() will reject new
2756		 * registration now. bcache_is_reboot also makes sure
2757		 * bcache_reboot() won't be re-entered on by other thread,
2758		 * so there is no race in following list iteration by
2759		 * list_for_each_entry_safe().
2760		 */
2761		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2762			bch_cache_set_stop(c);
2763
2764		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2765			bcache_device_stop(&dc->disk);
2766
2767
2768		/*
2769		 * Give an early chance for other kthreads and
2770		 * kworkers to stop themselves
2771		 */
2772		schedule();
2773
2774		/* What's a condition variable? */
2775		while (1) {
2776			long timeout = start + 10 * HZ - jiffies;
2777
2778			mutex_lock(&bch_register_lock);
2779			stopped = list_empty(&bch_cache_sets) &&
2780				list_empty(&uncached_devices);
2781
2782			if (timeout < 0 || stopped)
2783				break;
2784
2785			prepare_to_wait(&unregister_wait, &wait,
2786					TASK_UNINTERRUPTIBLE);
2787
2788			mutex_unlock(&bch_register_lock);
2789			schedule_timeout(timeout);
2790		}
2791
2792		finish_wait(&unregister_wait, &wait);
2793
2794		if (stopped)
2795			pr_info("All devices stopped\n");
2796		else
2797			pr_notice("Timeout waiting for devices to be closed\n");
2798out:
2799		mutex_unlock(&bch_register_lock);
2800	}
2801
2802	return NOTIFY_DONE;
2803}
2804
2805static struct notifier_block reboot = {
2806	.notifier_call	= bcache_reboot,
2807	.priority	= INT_MAX, /* before any real devices */
2808};
2809
2810static void bcache_exit(void)
2811{
2812	bch_debug_exit();
2813	bch_request_exit();
2814	if (bcache_kobj)
2815		kobject_put(bcache_kobj);
2816	if (bcache_wq)
2817		destroy_workqueue(bcache_wq);
2818	if (bch_journal_wq)
2819		destroy_workqueue(bch_journal_wq);
2820	if (bch_flush_wq)
2821		destroy_workqueue(bch_flush_wq);
2822	bch_btree_exit();
2823
2824	if (bcache_major)
2825		unregister_blkdev(bcache_major, "bcache");
2826	unregister_reboot_notifier(&reboot);
2827	mutex_destroy(&bch_register_lock);
2828}
2829
2830/* Check and fixup module parameters */
2831static void check_module_parameters(void)
2832{
2833	if (bch_cutoff_writeback_sync == 0)
2834		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2835	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2836		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2837			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2838		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2839	}
2840
2841	if (bch_cutoff_writeback == 0)
2842		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2843	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2844		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2845			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2846		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2847	}
2848
2849	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2850		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2851			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2852		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2853	}
2854}
2855
2856static int __init bcache_init(void)
2857{
2858	static const struct attribute *files[] = {
2859		&ksysfs_register.attr,
2860		&ksysfs_register_quiet.attr,
2861		&ksysfs_pendings_cleanup.attr,
2862		NULL
2863	};
2864
2865	check_module_parameters();
2866
2867	mutex_init(&bch_register_lock);
2868	init_waitqueue_head(&unregister_wait);
2869	register_reboot_notifier(&reboot);
2870
2871	bcache_major = register_blkdev(0, "bcache");
2872	if (bcache_major < 0) {
2873		unregister_reboot_notifier(&reboot);
2874		mutex_destroy(&bch_register_lock);
2875		return bcache_major;
2876	}
2877
2878	if (bch_btree_init())
2879		goto err;
2880
2881	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2882	if (!bcache_wq)
2883		goto err;
2884
2885	/*
2886	 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2887	 *
2888	 * 1. It used `system_wq` before which also does no memory reclaim.
2889	 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2890	 *    reduced throughput can be observed.
2891	 *
2892	 * We still want to user our own queue to not congest the `system_wq`.
2893	 */
2894	bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2895	if (!bch_flush_wq)
2896		goto err;
2897
2898	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2899	if (!bch_journal_wq)
2900		goto err;
2901
2902	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2903	if (!bcache_kobj)
2904		goto err;
2905
2906	if (bch_request_init() ||
2907	    sysfs_create_files(bcache_kobj, files))
2908		goto err;
2909
2910	bch_debug_init();
2911
2912	bcache_is_reboot = false;
2913
2914	return 0;
2915err:
2916	bcache_exit();
2917	return -ENOMEM;
2918}
2919
2920/*
2921 * Module hooks
2922 */
2923module_exit(bcache_exit);
2924module_init(bcache_init);
2925
2926module_param(bch_cutoff_writeback, uint, 0);
2927MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2928
2929module_param(bch_cutoff_writeback_sync, uint, 0);
2930MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2931
2932MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2933MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2934MODULE_LICENSE("GPL");
2935