1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2016 Broadcom
4 */
5
6/*
7 * Broadcom PDC Mailbox Driver
8 * The PDC provides a ring based programming interface to one or more hardware
9 * offload engines. For example, the PDC driver works with both SPU-M and SPU2
10 * cryptographic offload hardware. In some chips the PDC is referred to as MDE,
11 * and in others the FA2/FA+ hardware is used with this PDC driver.
12 *
13 * The PDC driver registers with the Linux mailbox framework as a mailbox
14 * controller, once for each PDC instance. Ring 0 for each PDC is registered as
15 * a mailbox channel. The PDC driver uses interrupts to determine when data
16 * transfers to and from an offload engine are complete. The PDC driver uses
17 * threaded IRQs so that response messages are handled outside of interrupt
18 * context.
19 *
20 * The PDC driver allows multiple messages to be pending in the descriptor
21 * rings. The tx_msg_start descriptor index indicates where the last message
22 * starts. The txin_numd value at this index indicates how many descriptor
23 * indexes make up the message. Similar state is kept on the receive side. When
24 * an rx interrupt indicates a response is ready, the PDC driver processes numd
25 * descriptors from the tx and rx ring, thus processing one response at a time.
26 */
27
28#include <linux/errno.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/slab.h>
32#include <linux/debugfs.h>
33#include <linux/interrupt.h>
34#include <linux/wait.h>
35#include <linux/platform_device.h>
36#include <linux/property.h>
37#include <linux/io.h>
38#include <linux/of.h>
39#include <linux/of_irq.h>
40#include <linux/mailbox_controller.h>
41#include <linux/mailbox/brcm-message.h>
42#include <linux/scatterlist.h>
43#include <linux/dma-direction.h>
44#include <linux/dma-mapping.h>
45#include <linux/dmapool.h>
46
47#define PDC_SUCCESS  0
48
49#define RING_ENTRY_SIZE   sizeof(struct dma64dd)
50
51/* # entries in PDC dma ring */
52#define PDC_RING_ENTRIES  512
53/*
54 * Minimum number of ring descriptor entries that must be free to tell mailbox
55 * framework that it can submit another request
56 */
57#define PDC_RING_SPACE_MIN  15
58
59#define PDC_RING_SIZE    (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
60/* Rings are 8k aligned */
61#define RING_ALIGN_ORDER  13
62#define RING_ALIGN        BIT(RING_ALIGN_ORDER)
63
64#define RX_BUF_ALIGN_ORDER  5
65#define RX_BUF_ALIGN	    BIT(RX_BUF_ALIGN_ORDER)
66
67/* descriptor bumping macros */
68#define XXD(x, max_mask)              ((x) & (max_mask))
69#define TXD(x, max_mask)              XXD((x), (max_mask))
70#define RXD(x, max_mask)              XXD((x), (max_mask))
71#define NEXTTXD(i, max_mask)          TXD((i) + 1, (max_mask))
72#define PREVTXD(i, max_mask)          TXD((i) - 1, (max_mask))
73#define NEXTRXD(i, max_mask)          RXD((i) + 1, (max_mask))
74#define PREVRXD(i, max_mask)          RXD((i) - 1, (max_mask))
75#define NTXDACTIVE(h, t, max_mask)    TXD((t) - (h), (max_mask))
76#define NRXDACTIVE(h, t, max_mask)    RXD((t) - (h), (max_mask))
77
78/* Length of BCM header at start of SPU msg, in bytes */
79#define BCM_HDR_LEN  8
80
81/*
82 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
83 * not currently support use of multiple ringsets on a single PDC engine.
84 */
85#define PDC_RINGSET  0
86
87/*
88 * Interrupt mask and status definitions. Enable interrupts for tx and rx on
89 * ring 0
90 */
91#define PDC_RCVINT_0         (16 + PDC_RINGSET)
92#define PDC_RCVINTEN_0       BIT(PDC_RCVINT_0)
93#define PDC_INTMASK	     (PDC_RCVINTEN_0)
94#define PDC_LAZY_FRAMECOUNT  1
95#define PDC_LAZY_TIMEOUT     10000
96#define PDC_LAZY_INT  (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
97#define PDC_INTMASK_OFFSET   0x24
98#define PDC_INTSTATUS_OFFSET 0x20
99#define PDC_RCVLAZY0_OFFSET  (0x30 + 4 * PDC_RINGSET)
100#define FA_RCVLAZY0_OFFSET   0x100
101
102/*
103 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
104 * before frame
105 */
106#define PDC_SPU2_RESP_HDR_LEN  17
107#define PDC_CKSUM_CTRL         BIT(27)
108#define PDC_CKSUM_CTRL_OFFSET  0x400
109
110#define PDC_SPUM_RESP_HDR_LEN  32
111
112/*
113 * Sets the following bits for write to transmit control reg:
114 * 11    - PtyChkDisable - parity check is disabled
115 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
116 */
117#define PDC_TX_CTL		0x000C0800
118
119/* Bit in tx control reg to enable tx channel */
120#define PDC_TX_ENABLE		0x1
121
122/*
123 * Sets the following bits for write to receive control reg:
124 * 7:1   - RcvOffset - size in bytes of status region at start of rx frame buf
125 * 9     - SepRxHdrDescEn - place start of new frames only in descriptors
126 *                          that have StartOfFrame set
127 * 10    - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
128 *                         remaining bytes in current frame, report error
129 *                         in rx frame status for current frame
130 * 11    - PtyChkDisable - parity check is disabled
131 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
132 */
133#define PDC_RX_CTL		0x000C0E00
134
135/* Bit in rx control reg to enable rx channel */
136#define PDC_RX_ENABLE		0x1
137
138#define CRYPTO_D64_RS0_CD_MASK   ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
139
140/* descriptor flags */
141#define D64_CTRL1_EOT   BIT(28)	/* end of descriptor table */
142#define D64_CTRL1_IOC   BIT(29)	/* interrupt on complete */
143#define D64_CTRL1_EOF   BIT(30)	/* end of frame */
144#define D64_CTRL1_SOF   BIT(31)	/* start of frame */
145
146#define RX_STATUS_OVERFLOW       0x00800000
147#define RX_STATUS_LEN            0x0000FFFF
148
149#define PDC_TXREGS_OFFSET  0x200
150#define PDC_RXREGS_OFFSET  0x220
151
152/* Maximum size buffer the DMA engine can handle */
153#define PDC_DMA_BUF_MAX 16384
154
155enum pdc_hw {
156	FA_HW,		/* FA2/FA+ hardware (i.e. Northstar Plus) */
157	PDC_HW		/* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */
158};
159
160struct pdc_dma_map {
161	void *ctx;          /* opaque context associated with frame */
162};
163
164/* dma descriptor */
165struct dma64dd {
166	u32 ctrl1;      /* misc control bits */
167	u32 ctrl2;      /* buffer count and address extension */
168	u32 addrlow;    /* memory address of the date buffer, bits 31:0 */
169	u32 addrhigh;   /* memory address of the date buffer, bits 63:32 */
170};
171
172/* dma registers per channel(xmt or rcv) */
173struct dma64_regs {
174	u32  control;   /* enable, et al */
175	u32  ptr;       /* last descriptor posted to chip */
176	u32  addrlow;   /* descriptor ring base address low 32-bits */
177	u32  addrhigh;  /* descriptor ring base address bits 63:32 */
178	u32  status0;   /* last rx descriptor written by hw */
179	u32  status1;   /* driver does not use */
180};
181
182/* cpp contortions to concatenate w/arg prescan */
183#ifndef PAD
184#define _PADLINE(line)  pad ## line
185#define _XSTR(line)     _PADLINE(line)
186#define PAD             _XSTR(__LINE__)
187#endif  /* PAD */
188
189/* dma registers. matches hw layout. */
190struct dma64 {
191	struct dma64_regs dmaxmt;  /* dma tx */
192	u32          PAD[2];
193	struct dma64_regs dmarcv;  /* dma rx */
194	u32          PAD[2];
195};
196
197/* PDC registers */
198struct pdc_regs {
199	u32  devcontrol;             /* 0x000 */
200	u32  devstatus;              /* 0x004 */
201	u32  PAD;
202	u32  biststatus;             /* 0x00c */
203	u32  PAD[4];
204	u32  intstatus;              /* 0x020 */
205	u32  intmask;                /* 0x024 */
206	u32  gptimer;                /* 0x028 */
207
208	u32  PAD;
209	u32  intrcvlazy_0;           /* 0x030 (Only in PDC, not FA2) */
210	u32  intrcvlazy_1;           /* 0x034 (Only in PDC, not FA2) */
211	u32  intrcvlazy_2;           /* 0x038 (Only in PDC, not FA2) */
212	u32  intrcvlazy_3;           /* 0x03c (Only in PDC, not FA2) */
213
214	u32  PAD[48];
215	u32  fa_intrecvlazy;         /* 0x100 (Only in FA2, not PDC) */
216	u32  flowctlthresh;          /* 0x104 */
217	u32  wrrthresh;              /* 0x108 */
218	u32  gmac_idle_cnt_thresh;   /* 0x10c */
219
220	u32  PAD[4];
221	u32  ifioaccessaddr;         /* 0x120 */
222	u32  ifioaccessbyte;         /* 0x124 */
223	u32  ifioaccessdata;         /* 0x128 */
224
225	u32  PAD[21];
226	u32  phyaccess;              /* 0x180 */
227	u32  PAD;
228	u32  phycontrol;             /* 0x188 */
229	u32  txqctl;                 /* 0x18c */
230	u32  rxqctl;                 /* 0x190 */
231	u32  gpioselect;             /* 0x194 */
232	u32  gpio_output_en;         /* 0x198 */
233	u32  PAD;                    /* 0x19c */
234	u32  txq_rxq_mem_ctl;        /* 0x1a0 */
235	u32  memory_ecc_status;      /* 0x1a4 */
236	u32  serdes_ctl;             /* 0x1a8 */
237	u32  serdes_status0;         /* 0x1ac */
238	u32  serdes_status1;         /* 0x1b0 */
239	u32  PAD[11];                /* 0x1b4-1dc */
240	u32  clk_ctl_st;             /* 0x1e0 */
241	u32  hw_war;                 /* 0x1e4 (Only in PDC, not FA2) */
242	u32  pwrctl;                 /* 0x1e8 */
243	u32  PAD[5];
244
245#define PDC_NUM_DMA_RINGS   4
246	struct dma64 dmaregs[PDC_NUM_DMA_RINGS];  /* 0x0200 - 0x2fc */
247
248	/* more registers follow, but we don't use them */
249};
250
251/* structure for allocating/freeing DMA rings */
252struct pdc_ring_alloc {
253	dma_addr_t  dmabase; /* DMA address of start of ring */
254	void	   *vbase;   /* base kernel virtual address of ring */
255	u32	    size;    /* ring allocation size in bytes */
256};
257
258/*
259 * context associated with a receive descriptor.
260 * @rxp_ctx: opaque context associated with frame that starts at each
261 *           rx ring index.
262 * @dst_sg:  Scatterlist used to form reply frames beginning at a given ring
263 *           index. Retained in order to unmap each sg after reply is processed.
264 * @rxin_numd: Number of rx descriptors associated with the message that starts
265 *             at a descriptor index. Not set for every index. For example,
266 *             if descriptor index i points to a scatterlist with 4 entries,
267 *             then the next three descriptor indexes don't have a value set.
268 * @resp_hdr: Virtual address of buffer used to catch DMA rx status
269 * @resp_hdr_daddr: physical address of DMA rx status buffer
270 */
271struct pdc_rx_ctx {
272	void *rxp_ctx;
273	struct scatterlist *dst_sg;
274	u32  rxin_numd;
275	void *resp_hdr;
276	dma_addr_t resp_hdr_daddr;
277};
278
279/* PDC state structure */
280struct pdc_state {
281	/* Index of the PDC whose state is in this structure instance */
282	u8 pdc_idx;
283
284	/* Platform device for this PDC instance */
285	struct platform_device *pdev;
286
287	/*
288	 * Each PDC instance has a mailbox controller. PDC receives request
289	 * messages through mailboxes, and sends response messages through the
290	 * mailbox framework.
291	 */
292	struct mbox_controller mbc;
293
294	unsigned int pdc_irq;
295
296	/* tasklet for deferred processing after DMA rx interrupt */
297	struct tasklet_struct rx_tasklet;
298
299	/* Number of bytes of receive status prior to each rx frame */
300	u32 rx_status_len;
301	/* Whether a BCM header is prepended to each frame */
302	bool use_bcm_hdr;
303	/* Sum of length of BCM header and rx status header */
304	u32 pdc_resp_hdr_len;
305
306	/* The base virtual address of DMA hw registers */
307	void __iomem *pdc_reg_vbase;
308
309	/* Pool for allocation of DMA rings */
310	struct dma_pool *ring_pool;
311
312	/* Pool for allocation of metadata buffers for response messages */
313	struct dma_pool *rx_buf_pool;
314
315	/*
316	 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
317	 * DMA address and size of ring allocation.
318	 */
319	struct pdc_ring_alloc tx_ring_alloc;
320	struct pdc_ring_alloc rx_ring_alloc;
321
322	struct pdc_regs *regs;    /* start of PDC registers */
323
324	struct dma64_regs *txregs_64; /* dma tx engine registers */
325	struct dma64_regs *rxregs_64; /* dma rx engine registers */
326
327	/*
328	 * Arrays of PDC_RING_ENTRIES descriptors
329	 * To use multiple ringsets, this needs to be extended
330	 */
331	struct dma64dd   *txd_64;  /* tx descriptor ring */
332	struct dma64dd   *rxd_64;  /* rx descriptor ring */
333
334	/* descriptor ring sizes */
335	u32      ntxd;       /* # tx descriptors */
336	u32      nrxd;       /* # rx descriptors */
337	u32      nrxpost;    /* # rx buffers to keep posted */
338	u32      ntxpost;    /* max number of tx buffers that can be posted */
339
340	/*
341	 * Index of next tx descriptor to reclaim. That is, the descriptor
342	 * index of the oldest tx buffer for which the host has yet to process
343	 * the corresponding response.
344	 */
345	u32  txin;
346
347	/*
348	 * Index of the first receive descriptor for the sequence of
349	 * message fragments currently under construction. Used to build up
350	 * the rxin_numd count for a message. Updated to rxout when the host
351	 * starts a new sequence of rx buffers for a new message.
352	 */
353	u32  tx_msg_start;
354
355	/* Index of next tx descriptor to post. */
356	u32  txout;
357
358	/*
359	 * Number of tx descriptors associated with the message that starts
360	 * at this tx descriptor index.
361	 */
362	u32      txin_numd[PDC_RING_ENTRIES];
363
364	/*
365	 * Index of next rx descriptor to reclaim. This is the index of
366	 * the next descriptor whose data has yet to be processed by the host.
367	 */
368	u32  rxin;
369
370	/*
371	 * Index of the first receive descriptor for the sequence of
372	 * message fragments currently under construction. Used to build up
373	 * the rxin_numd count for a message. Updated to rxout when the host
374	 * starts a new sequence of rx buffers for a new message.
375	 */
376	u32  rx_msg_start;
377
378	/*
379	 * Saved value of current hardware rx descriptor index.
380	 * The last rx buffer written by the hw is the index previous to
381	 * this one.
382	 */
383	u32  last_rx_curr;
384
385	/* Index of next rx descriptor to post. */
386	u32  rxout;
387
388	struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
389
390	/*
391	 * Scatterlists used to form request and reply frames beginning at a
392	 * given ring index. Retained in order to unmap each sg after reply
393	 * is processed
394	 */
395	struct scatterlist *src_sg[PDC_RING_ENTRIES];
396
397	/* counters */
398	u32  pdc_requests;     /* number of request messages submitted */
399	u32  pdc_replies;      /* number of reply messages received */
400	u32  last_tx_not_done; /* too few tx descriptors to indicate done */
401	u32  tx_ring_full;     /* unable to accept msg because tx ring full */
402	u32  rx_ring_full;     /* unable to accept msg because rx ring full */
403	u32  txnobuf;          /* unable to create tx descriptor */
404	u32  rxnobuf;          /* unable to create rx descriptor */
405	u32  rx_oflow;         /* count of rx overflows */
406
407	/* hardware type - FA2 or PDC/MDE */
408	enum pdc_hw hw_type;
409};
410
411/* Global variables */
412
413struct pdc_globals {
414	/* Actual number of SPUs in hardware, as reported by device tree */
415	u32 num_spu;
416};
417
418static struct pdc_globals pdcg;
419
420/* top level debug FS directory for PDC driver */
421static struct dentry *debugfs_dir;
422
423static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
424				size_t count, loff_t *offp)
425{
426	struct pdc_state *pdcs;
427	char *buf;
428	ssize_t ret, out_offset, out_count;
429
430	out_count = 512;
431
432	buf = kmalloc(out_count, GFP_KERNEL);
433	if (!buf)
434		return -ENOMEM;
435
436	pdcs = filp->private_data;
437	out_offset = 0;
438	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
439			       "SPU %u stats:\n", pdcs->pdc_idx);
440	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
441			       "PDC requests....................%u\n",
442			       pdcs->pdc_requests);
443	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
444			       "PDC responses...................%u\n",
445			       pdcs->pdc_replies);
446	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
447			       "Tx not done.....................%u\n",
448			       pdcs->last_tx_not_done);
449	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
450			       "Tx ring full....................%u\n",
451			       pdcs->tx_ring_full);
452	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
453			       "Rx ring full....................%u\n",
454			       pdcs->rx_ring_full);
455	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
456			       "Tx desc write fail. Ring full...%u\n",
457			       pdcs->txnobuf);
458	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
459			       "Rx desc write fail. Ring full...%u\n",
460			       pdcs->rxnobuf);
461	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
462			       "Receive overflow................%u\n",
463			       pdcs->rx_oflow);
464	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
465			       "Num frags in rx ring............%u\n",
466			       NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
467					  pdcs->nrxpost));
468
469	if (out_offset > out_count)
470		out_offset = out_count;
471
472	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
473	kfree(buf);
474	return ret;
475}
476
477static const struct file_operations pdc_debugfs_stats = {
478	.owner = THIS_MODULE,
479	.open = simple_open,
480	.read = pdc_debugfs_read,
481};
482
483/**
484 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
485 * directory has not yet been created, create it now. Create a stats file in
486 * this directory for a SPU.
487 * @pdcs: PDC state structure
488 */
489static void pdc_setup_debugfs(struct pdc_state *pdcs)
490{
491	char spu_stats_name[16];
492
493	if (!debugfs_initialized())
494		return;
495
496	snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
497	if (!debugfs_dir)
498		debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
499
500	/* S_IRUSR == 0400 */
501	debugfs_create_file(spu_stats_name, 0400, debugfs_dir, pdcs,
502			    &pdc_debugfs_stats);
503}
504
505static void pdc_free_debugfs(void)
506{
507	debugfs_remove_recursive(debugfs_dir);
508	debugfs_dir = NULL;
509}
510
511/**
512 * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
513 * @pdcs:      PDC state for SPU that will generate result
514 * @dma_addr:  DMA address of buffer that descriptor is being built for
515 * @buf_len:   Length of the receive buffer, in bytes
516 * @flags:     Flags to be stored in descriptor
517 */
518static inline void
519pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
520	      u32 buf_len, u32 flags)
521{
522	struct device *dev = &pdcs->pdev->dev;
523	struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
524
525	dev_dbg(dev,
526		"Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
527		pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
528
529	rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
530	rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
531	rxd->ctrl1 = cpu_to_le32(flags);
532	rxd->ctrl2 = cpu_to_le32(buf_len);
533
534	/* bump ring index and return */
535	pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
536}
537
538/**
539 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
540 * hardware.
541 * @pdcs:        PDC state for the SPU that will process this request
542 * @dma_addr:    DMA address of packet to be transmitted
543 * @buf_len:     Length of tx buffer, in bytes
544 * @flags:       Flags to be stored in descriptor
545 */
546static inline void
547pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
548	      u32 flags)
549{
550	struct device *dev = &pdcs->pdev->dev;
551	struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
552
553	dev_dbg(dev,
554		"Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
555		pdcs->pdc_idx, pdcs->txout, buf_len, flags);
556
557	txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
558	txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
559	txd->ctrl1 = cpu_to_le32(flags);
560	txd->ctrl2 = cpu_to_le32(buf_len);
561
562	/* bump ring index and return */
563	pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
564}
565
566/**
567 * pdc_receive_one() - Receive a response message from a given SPU.
568 * @pdcs:    PDC state for the SPU to receive from
569 *
570 * When the return code indicates success, the response message is available in
571 * the receive buffers provided prior to submission of the request.
572 *
573 * Return:  PDC_SUCCESS if one or more receive descriptors was processed
574 *          -EAGAIN indicates that no response message is available
575 *          -EIO an error occurred
576 */
577static int
578pdc_receive_one(struct pdc_state *pdcs)
579{
580	struct device *dev = &pdcs->pdev->dev;
581	struct mbox_controller *mbc;
582	struct mbox_chan *chan;
583	struct brcm_message mssg;
584	u32 len, rx_status;
585	u32 num_frags;
586	u8 *resp_hdr;    /* virtual addr of start of resp message DMA header */
587	u32 frags_rdy;   /* number of fragments ready to read */
588	u32 rx_idx;      /* ring index of start of receive frame */
589	dma_addr_t resp_hdr_daddr;
590	struct pdc_rx_ctx *rx_ctx;
591
592	mbc = &pdcs->mbc;
593	chan = &mbc->chans[0];
594	mssg.type = BRCM_MESSAGE_SPU;
595
596	/*
597	 * return if a complete response message is not yet ready.
598	 * rxin_numd[rxin] is the number of fragments in the next msg
599	 * to read.
600	 */
601	frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
602	if ((frags_rdy == 0) ||
603	    (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
604		/* No response ready */
605		return -EAGAIN;
606
607	num_frags = pdcs->txin_numd[pdcs->txin];
608	WARN_ON(num_frags == 0);
609
610	dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
611		     sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
612
613	pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
614
615	dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
616		pdcs->pdc_idx, num_frags);
617
618	rx_idx = pdcs->rxin;
619	rx_ctx = &pdcs->rx_ctx[rx_idx];
620	num_frags = rx_ctx->rxin_numd;
621	/* Return opaque context with result */
622	mssg.ctx = rx_ctx->rxp_ctx;
623	rx_ctx->rxp_ctx = NULL;
624	resp_hdr = rx_ctx->resp_hdr;
625	resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
626	dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
627		     DMA_FROM_DEVICE);
628
629	pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
630
631	dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
632		pdcs->pdc_idx, num_frags);
633
634	dev_dbg(dev,
635		"PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
636		pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
637		pdcs->rxout, pdcs->last_rx_curr);
638
639	if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
640		/*
641		 * For SPU-M, get length of response msg and rx overflow status.
642		 */
643		rx_status = *((u32 *)resp_hdr);
644		len = rx_status & RX_STATUS_LEN;
645		dev_dbg(dev,
646			"SPU response length %u bytes", len);
647		if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
648			if (rx_status & RX_STATUS_OVERFLOW) {
649				dev_err_ratelimited(dev,
650						    "crypto receive overflow");
651				pdcs->rx_oflow++;
652			} else {
653				dev_info_ratelimited(dev, "crypto rx len = 0");
654			}
655			return -EIO;
656		}
657	}
658
659	dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
660
661	mbox_chan_received_data(chan, &mssg);
662
663	pdcs->pdc_replies++;
664	return PDC_SUCCESS;
665}
666
667/**
668 * pdc_receive() - Process as many responses as are available in the rx ring.
669 * @pdcs:  PDC state
670 *
671 * Called within the hard IRQ.
672 * Return:
673 */
674static int
675pdc_receive(struct pdc_state *pdcs)
676{
677	int rx_status;
678
679	/* read last_rx_curr from register once */
680	pdcs->last_rx_curr =
681	    (ioread32((const void __iomem *)&pdcs->rxregs_64->status0) &
682	     CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
683
684	do {
685		/* Could be many frames ready */
686		rx_status = pdc_receive_one(pdcs);
687	} while (rx_status == PDC_SUCCESS);
688
689	return 0;
690}
691
692/**
693 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
694 * descriptors for a given SPU. The scatterlist buffers contain the data for a
695 * SPU request message.
696 * @pdcs:      PDC state for the SPU that will process this request
697 * @sg:        Scatterlist whose buffers contain part of the SPU request
698 *
699 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
700 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
701 *
702 * Return: PDC_SUCCESS if successful
703 *         < 0 otherwise
704 */
705static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
706{
707	u32 flags = 0;
708	u32 eot;
709	u32 tx_avail;
710
711	/*
712	 * Num descriptors needed. Conservatively assume we need a descriptor
713	 * for every entry in sg.
714	 */
715	u32 num_desc;
716	u32 desc_w = 0;	/* Number of tx descriptors written */
717	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
718	dma_addr_t databufptr;	/* DMA address to put in descriptor */
719
720	num_desc = (u32)sg_nents(sg);
721
722	/* check whether enough tx descriptors are available */
723	tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
724					      pdcs->ntxpost);
725	if (unlikely(num_desc > tx_avail)) {
726		pdcs->txnobuf++;
727		return -ENOSPC;
728	}
729
730	/* build tx descriptors */
731	if (pdcs->tx_msg_start == pdcs->txout) {
732		/* Start of frame */
733		pdcs->txin_numd[pdcs->tx_msg_start] = 0;
734		pdcs->src_sg[pdcs->txout] = sg;
735		flags = D64_CTRL1_SOF;
736	}
737
738	while (sg) {
739		if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
740			eot = D64_CTRL1_EOT;
741		else
742			eot = 0;
743
744		/*
745		 * If sg buffer larger than PDC limit, split across
746		 * multiple descriptors
747		 */
748		bufcnt = sg_dma_len(sg);
749		databufptr = sg_dma_address(sg);
750		while (bufcnt > PDC_DMA_BUF_MAX) {
751			pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
752				      flags | eot);
753			desc_w++;
754			bufcnt -= PDC_DMA_BUF_MAX;
755			databufptr += PDC_DMA_BUF_MAX;
756			if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
757				eot = D64_CTRL1_EOT;
758			else
759				eot = 0;
760		}
761		sg = sg_next(sg);
762		if (!sg)
763			/* Writing last descriptor for frame */
764			flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
765		pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
766		desc_w++;
767		/* Clear start of frame after first descriptor */
768		flags &= ~D64_CTRL1_SOF;
769	}
770	pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
771
772	return PDC_SUCCESS;
773}
774
775/**
776 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
777 * ring.
778 * @pdcs:  PDC state for SPU to process the request
779 *
780 * Sets the index of the last descriptor written in both the rx and tx ring.
781 *
782 * Return: PDC_SUCCESS
783 */
784static int pdc_tx_list_final(struct pdc_state *pdcs)
785{
786	/*
787	 * write barrier to ensure all register writes are complete
788	 * before chip starts to process new request
789	 */
790	wmb();
791	iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
792	iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
793	pdcs->pdc_requests++;
794
795	return PDC_SUCCESS;
796}
797
798/**
799 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
800 * @pdcs:   PDC state for SPU handling request
801 * @dst_sg: scatterlist providing rx buffers for response to be returned to
802 *	    mailbox client
803 * @ctx:    Opaque context for this request
804 *
805 * Posts a single receive descriptor to hold the metadata that precedes a
806 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
807 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
808 * rx to indicate the start of a new message.
809 *
810 * Return:  PDC_SUCCESS if successful
811 *          < 0 if an error (e.g., rx ring is full)
812 */
813static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
814			    void *ctx)
815{
816	u32 flags = 0;
817	u32 rx_avail;
818	u32 rx_pkt_cnt = 1;	/* Adding a single rx buffer */
819	dma_addr_t daddr;
820	void *vaddr;
821	struct pdc_rx_ctx *rx_ctx;
822
823	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
824					      pdcs->nrxpost);
825	if (unlikely(rx_pkt_cnt > rx_avail)) {
826		pdcs->rxnobuf++;
827		return -ENOSPC;
828	}
829
830	/* allocate a buffer for the dma rx status */
831	vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
832	if (unlikely(!vaddr))
833		return -ENOMEM;
834
835	/*
836	 * Update msg_start indexes for both tx and rx to indicate the start
837	 * of a new sequence of descriptor indexes that contain the fragments
838	 * of the same message.
839	 */
840	pdcs->rx_msg_start = pdcs->rxout;
841	pdcs->tx_msg_start = pdcs->txout;
842
843	/* This is always the first descriptor in the receive sequence */
844	flags = D64_CTRL1_SOF;
845	pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
846
847	if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
848		flags |= D64_CTRL1_EOT;
849
850	rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
851	rx_ctx->rxp_ctx = ctx;
852	rx_ctx->dst_sg = dst_sg;
853	rx_ctx->resp_hdr = vaddr;
854	rx_ctx->resp_hdr_daddr = daddr;
855	pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
856	return PDC_SUCCESS;
857}
858
859/**
860 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
861 * descriptors for a given SPU. The caller must have already DMA mapped the
862 * scatterlist.
863 * @pdcs:       PDC state for the SPU that will process this request
864 * @sg:         Scatterlist whose buffers are added to the receive ring
865 *
866 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
867 * multiple receive descriptors are written, each with a buffer <=
868 * PDC_DMA_BUF_MAX.
869 *
870 * Return: PDC_SUCCESS if successful
871 *         < 0 otherwise (e.g., receive ring is full)
872 */
873static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
874{
875	u32 flags = 0;
876	u32 rx_avail;
877
878	/*
879	 * Num descriptors needed. Conservatively assume we need a descriptor
880	 * for every entry from our starting point in the scatterlist.
881	 */
882	u32 num_desc;
883	u32 desc_w = 0;	/* Number of tx descriptors written */
884	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
885	dma_addr_t databufptr;	/* DMA address to put in descriptor */
886
887	num_desc = (u32)sg_nents(sg);
888
889	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
890					      pdcs->nrxpost);
891	if (unlikely(num_desc > rx_avail)) {
892		pdcs->rxnobuf++;
893		return -ENOSPC;
894	}
895
896	while (sg) {
897		if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
898			flags = D64_CTRL1_EOT;
899		else
900			flags = 0;
901
902		/*
903		 * If sg buffer larger than PDC limit, split across
904		 * multiple descriptors
905		 */
906		bufcnt = sg_dma_len(sg);
907		databufptr = sg_dma_address(sg);
908		while (bufcnt > PDC_DMA_BUF_MAX) {
909			pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
910			desc_w++;
911			bufcnt -= PDC_DMA_BUF_MAX;
912			databufptr += PDC_DMA_BUF_MAX;
913			if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
914				flags = D64_CTRL1_EOT;
915			else
916				flags = 0;
917		}
918		pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
919		desc_w++;
920		sg = sg_next(sg);
921	}
922	pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
923
924	return PDC_SUCCESS;
925}
926
927/**
928 * pdc_irq_handler() - Interrupt handler called in interrupt context.
929 * @irq:      Interrupt number that has fired
930 * @data:     device struct for DMA engine that generated the interrupt
931 *
932 * We have to clear the device interrupt status flags here. So cache the
933 * status for later use in the thread function. Other than that, just return
934 * WAKE_THREAD to invoke the thread function.
935 *
936 * Return: IRQ_WAKE_THREAD if interrupt is ours
937 *         IRQ_NONE otherwise
938 */
939static irqreturn_t pdc_irq_handler(int irq, void *data)
940{
941	struct device *dev = (struct device *)data;
942	struct pdc_state *pdcs = dev_get_drvdata(dev);
943	u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
944
945	if (unlikely(intstatus == 0))
946		return IRQ_NONE;
947
948	/* Disable interrupts until soft handler runs */
949	iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
950
951	/* Clear interrupt flags in device */
952	iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
953
954	/* Wakeup IRQ thread */
955	tasklet_schedule(&pdcs->rx_tasklet);
956	return IRQ_HANDLED;
957}
958
959/**
960 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after
961 * a DMA receive interrupt. Reenables the receive interrupt.
962 * @t: Pointer to the Altera sSGDMA channel structure
963 */
964static void pdc_tasklet_cb(struct tasklet_struct *t)
965{
966	struct pdc_state *pdcs = from_tasklet(pdcs, t, rx_tasklet);
967
968	pdc_receive(pdcs);
969
970	/* reenable interrupts */
971	iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
972}
973
974/**
975 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
976 * descriptors in one ringset.
977 * @pdcs:    PDC instance state
978 * @ringset: index of ringset being used
979 *
980 * Return: PDC_SUCCESS if ring initialized
981 *         < 0 otherwise
982 */
983static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
984{
985	int i;
986	int err = PDC_SUCCESS;
987	struct dma64 *dma_reg;
988	struct device *dev = &pdcs->pdev->dev;
989	struct pdc_ring_alloc tx;
990	struct pdc_ring_alloc rx;
991
992	/* Allocate tx ring */
993	tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
994	if (unlikely(!tx.vbase)) {
995		err = -ENOMEM;
996		goto done;
997	}
998
999	/* Allocate rx ring */
1000	rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1001	if (unlikely(!rx.vbase)) {
1002		err = -ENOMEM;
1003		goto fail_dealloc;
1004	}
1005
1006	dev_dbg(dev, " - base DMA addr of tx ring      %pad", &tx.dmabase);
1007	dev_dbg(dev, " - base virtual addr of tx ring  %p", tx.vbase);
1008	dev_dbg(dev, " - base DMA addr of rx ring      %pad", &rx.dmabase);
1009	dev_dbg(dev, " - base virtual addr of rx ring  %p", rx.vbase);
1010
1011	memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1012	memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1013
1014	pdcs->rxin = 0;
1015	pdcs->rx_msg_start = 0;
1016	pdcs->last_rx_curr = 0;
1017	pdcs->rxout = 0;
1018	pdcs->txin = 0;
1019	pdcs->tx_msg_start = 0;
1020	pdcs->txout = 0;
1021
1022	/* Set descriptor array base addresses */
1023	pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1024	pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1025
1026	/* Tell device the base DMA address of each ring */
1027	dma_reg = &pdcs->regs->dmaregs[ringset];
1028
1029	/* But first disable DMA and set curptr to 0 for both TX & RX */
1030	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1031	iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1032		  &dma_reg->dmarcv.control);
1033	iowrite32(0, &dma_reg->dmaxmt.ptr);
1034	iowrite32(0, &dma_reg->dmarcv.ptr);
1035
1036	/* Set base DMA addresses */
1037	iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1038		  &dma_reg->dmaxmt.addrlow);
1039	iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1040		  &dma_reg->dmaxmt.addrhigh);
1041
1042	iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1043		  &dma_reg->dmarcv.addrlow);
1044	iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1045		  &dma_reg->dmarcv.addrhigh);
1046
1047	/* Re-enable DMA */
1048	iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1049	iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1050		  &dma_reg->dmarcv.control);
1051
1052	/* Initialize descriptors */
1053	for (i = 0; i < PDC_RING_ENTRIES; i++) {
1054		/* Every tx descriptor can be used for start of frame. */
1055		if (i != pdcs->ntxpost) {
1056			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1057				  &pdcs->txd_64[i].ctrl1);
1058		} else {
1059			/* Last descriptor in ringset. Set End of Table. */
1060			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1061				  D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1062		}
1063
1064		/* Every rx descriptor can be used for start of frame */
1065		if (i != pdcs->nrxpost) {
1066			iowrite32(D64_CTRL1_SOF,
1067				  &pdcs->rxd_64[i].ctrl1);
1068		} else {
1069			/* Last descriptor in ringset. Set End of Table. */
1070			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1071				  &pdcs->rxd_64[i].ctrl1);
1072		}
1073	}
1074	return PDC_SUCCESS;
1075
1076fail_dealloc:
1077	dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1078done:
1079	return err;
1080}
1081
1082static void pdc_ring_free(struct pdc_state *pdcs)
1083{
1084	if (pdcs->tx_ring_alloc.vbase) {
1085		dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1086			      pdcs->tx_ring_alloc.dmabase);
1087		pdcs->tx_ring_alloc.vbase = NULL;
1088	}
1089
1090	if (pdcs->rx_ring_alloc.vbase) {
1091		dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1092			      pdcs->rx_ring_alloc.dmabase);
1093		pdcs->rx_ring_alloc.vbase = NULL;
1094	}
1095}
1096
1097/**
1098 * pdc_desc_count() - Count the number of DMA descriptors that will be required
1099 * for a given scatterlist. Account for the max length of a DMA buffer.
1100 * @sg:    Scatterlist to be DMA'd
1101 * Return: Number of descriptors required
1102 */
1103static u32 pdc_desc_count(struct scatterlist *sg)
1104{
1105	u32 cnt = 0;
1106
1107	while (sg) {
1108		cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1109		sg = sg_next(sg);
1110	}
1111	return cnt;
1112}
1113
1114/**
1115 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors
1116 * and the rx ring has room for rx_cnt descriptors.
1117 * @pdcs:  PDC state
1118 * @tx_cnt: The number of descriptors required in the tx ring
1119 * @rx_cnt: The number of descriptors required i the rx ring
1120 *
1121 * Return: true if one of the rings does not have enough space
1122 *         false if sufficient space is available in both rings
1123 */
1124static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1125{
1126	u32 rx_avail;
1127	u32 tx_avail;
1128	bool full = false;
1129
1130	/* Check if the tx and rx rings are likely to have enough space */
1131	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1132					      pdcs->nrxpost);
1133	if (unlikely(rx_cnt > rx_avail)) {
1134		pdcs->rx_ring_full++;
1135		full = true;
1136	}
1137
1138	if (likely(!full)) {
1139		tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1140						      pdcs->ntxpost);
1141		if (unlikely(tx_cnt > tx_avail)) {
1142			pdcs->tx_ring_full++;
1143			full = true;
1144		}
1145	}
1146	return full;
1147}
1148
1149/**
1150 * pdc_last_tx_done() - If both the tx and rx rings have at least
1151 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox
1152 * framework can submit another message.
1153 * @chan:  mailbox channel to check
1154 * Return: true if PDC can accept another message on this channel
1155 */
1156static bool pdc_last_tx_done(struct mbox_chan *chan)
1157{
1158	struct pdc_state *pdcs = chan->con_priv;
1159	bool ret;
1160
1161	if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1162				    PDC_RING_SPACE_MIN))) {
1163		pdcs->last_tx_not_done++;
1164		ret = false;
1165	} else {
1166		ret = true;
1167	}
1168	return ret;
1169}
1170
1171/**
1172 * pdc_send_data() - mailbox send_data function
1173 * @chan:	The mailbox channel on which the data is sent. The channel
1174 *              corresponds to a DMA ringset.
1175 * @data:	The mailbox message to be sent. The message must be a
1176 *              brcm_message structure.
1177 *
1178 * This function is registered as the send_data function for the mailbox
1179 * controller. From the destination scatterlist in the mailbox message, it
1180 * creates a sequence of receive descriptors in the rx ring. From the source
1181 * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1182 * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1183 * initiate the DMA transfer.
1184 *
1185 * This function does the DMA map and unmap of the src and dst scatterlists in
1186 * the mailbox message.
1187 *
1188 * Return: 0 if successful
1189 *	   -ENOTSUPP if the mailbox message is a type this driver does not
1190 *			support
1191 *         < 0 if an error
1192 */
1193static int pdc_send_data(struct mbox_chan *chan, void *data)
1194{
1195	struct pdc_state *pdcs = chan->con_priv;
1196	struct device *dev = &pdcs->pdev->dev;
1197	struct brcm_message *mssg = data;
1198	int err = PDC_SUCCESS;
1199	int src_nent;
1200	int dst_nent;
1201	int nent;
1202	u32 tx_desc_req;
1203	u32 rx_desc_req;
1204
1205	if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1206		return -ENOTSUPP;
1207
1208	src_nent = sg_nents(mssg->spu.src);
1209	if (likely(src_nent)) {
1210		nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1211		if (unlikely(nent == 0))
1212			return -EIO;
1213	}
1214
1215	dst_nent = sg_nents(mssg->spu.dst);
1216	if (likely(dst_nent)) {
1217		nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1218				  DMA_FROM_DEVICE);
1219		if (unlikely(nent == 0)) {
1220			dma_unmap_sg(dev, mssg->spu.src, src_nent,
1221				     DMA_TO_DEVICE);
1222			return -EIO;
1223		}
1224	}
1225
1226	/*
1227	 * Check if the tx and rx rings have enough space. Do this prior to
1228	 * writing any tx or rx descriptors. Need to ensure that we do not write
1229	 * a partial set of descriptors, or write just rx descriptors but
1230	 * corresponding tx descriptors don't fit. Note that we want this check
1231	 * and the entire sequence of descriptor to happen without another
1232	 * thread getting in. The channel spin lock in the mailbox framework
1233	 * ensures this.
1234	 */
1235	tx_desc_req = pdc_desc_count(mssg->spu.src);
1236	rx_desc_req = pdc_desc_count(mssg->spu.dst);
1237	if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1238		return -ENOSPC;
1239
1240	/* Create rx descriptors to SPU catch response */
1241	err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1242	err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1243
1244	/* Create tx descriptors to submit SPU request */
1245	err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1246	err |= pdc_tx_list_final(pdcs);	/* initiate transfer */
1247
1248	if (unlikely(err))
1249		dev_err(&pdcs->pdev->dev,
1250			"%s failed with error %d", __func__, err);
1251
1252	return err;
1253}
1254
1255static int pdc_startup(struct mbox_chan *chan)
1256{
1257	return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1258}
1259
1260static void pdc_shutdown(struct mbox_chan *chan)
1261{
1262	struct pdc_state *pdcs = chan->con_priv;
1263
1264	if (!pdcs)
1265		return;
1266
1267	dev_dbg(&pdcs->pdev->dev,
1268		"Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1269	pdc_ring_free(pdcs);
1270}
1271
1272/**
1273 * pdc_hw_init() - Use the given initialization parameters to initialize the
1274 * state for one of the PDCs.
1275 * @pdcs:  state of the PDC
1276 */
1277static
1278void pdc_hw_init(struct pdc_state *pdcs)
1279{
1280	struct platform_device *pdev;
1281	struct device *dev;
1282	struct dma64 *dma_reg;
1283	int ringset = PDC_RINGSET;
1284
1285	pdev = pdcs->pdev;
1286	dev = &pdev->dev;
1287
1288	dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1289	dev_dbg(dev, "state structure:                   %p",
1290		pdcs);
1291	dev_dbg(dev, " - base virtual addr of hw regs    %p",
1292		pdcs->pdc_reg_vbase);
1293
1294	/* initialize data structures */
1295	pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1296	pdcs->txregs_64 = (struct dma64_regs *)
1297	    (((u8 *)pdcs->pdc_reg_vbase) +
1298		     PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1299	pdcs->rxregs_64 = (struct dma64_regs *)
1300	    (((u8 *)pdcs->pdc_reg_vbase) +
1301		     PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1302
1303	pdcs->ntxd = PDC_RING_ENTRIES;
1304	pdcs->nrxd = PDC_RING_ENTRIES;
1305	pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1306	pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1307	iowrite32(0, &pdcs->regs->intmask);
1308
1309	dma_reg = &pdcs->regs->dmaregs[ringset];
1310
1311	/* Configure DMA but will enable later in pdc_ring_init() */
1312	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1313
1314	iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1315		  &dma_reg->dmarcv.control);
1316
1317	/* Reset current index pointers after making sure DMA is disabled */
1318	iowrite32(0, &dma_reg->dmaxmt.ptr);
1319	iowrite32(0, &dma_reg->dmarcv.ptr);
1320
1321	if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1322		iowrite32(PDC_CKSUM_CTRL,
1323			  pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1324}
1325
1326/**
1327 * pdc_hw_disable() - Disable the tx and rx control in the hw.
1328 * @pdcs: PDC state structure
1329 *
1330 */
1331static void pdc_hw_disable(struct pdc_state *pdcs)
1332{
1333	struct dma64 *dma_reg;
1334
1335	dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1336	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1337	iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1338		  &dma_reg->dmarcv.control);
1339}
1340
1341/**
1342 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1343 * header returned with each response message.
1344 * @pdcs: PDC state structure
1345 *
1346 * The metadata is not returned to the mailbox client. So the PDC driver
1347 * manages these buffers.
1348 *
1349 * Return: PDC_SUCCESS
1350 *         -ENOMEM if pool creation fails
1351 */
1352static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1353{
1354	struct platform_device *pdev;
1355	struct device *dev;
1356
1357	pdev = pdcs->pdev;
1358	dev = &pdev->dev;
1359
1360	pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1361	if (pdcs->use_bcm_hdr)
1362		pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1363
1364	pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1365					    pdcs->pdc_resp_hdr_len,
1366					    RX_BUF_ALIGN, 0);
1367	if (!pdcs->rx_buf_pool)
1368		return -ENOMEM;
1369
1370	return PDC_SUCCESS;
1371}
1372
1373/**
1374 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1375 * specify a threaded IRQ handler for deferred handling of interrupts outside of
1376 * interrupt context.
1377 * @pdcs:   PDC state
1378 *
1379 * Set the interrupt mask for transmit and receive done.
1380 * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1381 *
1382 * Return:  PDC_SUCCESS
1383 *          <0 if threaded irq request fails
1384 */
1385static int pdc_interrupts_init(struct pdc_state *pdcs)
1386{
1387	struct platform_device *pdev = pdcs->pdev;
1388	struct device *dev = &pdev->dev;
1389	struct device_node *dn = pdev->dev.of_node;
1390	int err;
1391
1392	/* interrupt configuration */
1393	iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1394
1395	if (pdcs->hw_type == FA_HW)
1396		iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1397			  FA_RCVLAZY0_OFFSET);
1398	else
1399		iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1400			  PDC_RCVLAZY0_OFFSET);
1401
1402	/* read irq from device tree */
1403	pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1404	dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1405		dev_name(dev), pdcs->pdc_irq, pdcs);
1406
1407	err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1408			       dev_name(dev), dev);
1409	if (err) {
1410		dev_err(dev, "IRQ %u request failed with err %d\n",
1411			pdcs->pdc_irq, err);
1412		return err;
1413	}
1414	return PDC_SUCCESS;
1415}
1416
1417static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1418	.send_data = pdc_send_data,
1419	.last_tx_done = pdc_last_tx_done,
1420	.startup = pdc_startup,
1421	.shutdown = pdc_shutdown
1422};
1423
1424/**
1425 * pdc_mb_init() - Initialize the mailbox controller.
1426 * @pdcs:  PDC state
1427 *
1428 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1429 * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1430 * complete interrupt to determine when a mailbox message has successfully been
1431 * transmitted.
1432 *
1433 * Return: 0 on success
1434 *         < 0 if there is an allocation or registration failure
1435 */
1436static int pdc_mb_init(struct pdc_state *pdcs)
1437{
1438	struct device *dev = &pdcs->pdev->dev;
1439	struct mbox_controller *mbc;
1440	int chan_index;
1441	int err;
1442
1443	mbc = &pdcs->mbc;
1444	mbc->dev = dev;
1445	mbc->ops = &pdc_mbox_chan_ops;
1446	mbc->num_chans = 1;
1447	mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1448				  GFP_KERNEL);
1449	if (!mbc->chans)
1450		return -ENOMEM;
1451
1452	mbc->txdone_irq = false;
1453	mbc->txdone_poll = true;
1454	mbc->txpoll_period = 1;
1455	for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1456		mbc->chans[chan_index].con_priv = pdcs;
1457
1458	/* Register mailbox controller */
1459	err = devm_mbox_controller_register(dev, mbc);
1460	if (err) {
1461		dev_crit(dev,
1462			 "Failed to register PDC mailbox controller. Error %d.",
1463			 err);
1464		return err;
1465	}
1466	return 0;
1467}
1468
1469/* Device tree API */
1470static const int pdc_hw = PDC_HW;
1471static const int fa_hw = FA_HW;
1472
1473static const struct of_device_id pdc_mbox_of_match[] = {
1474	{.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw},
1475	{.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw},
1476	{ /* sentinel */ }
1477};
1478MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1479
1480/**
1481 * pdc_dt_read() - Read application-specific data from device tree.
1482 * @pdev:  Platform device
1483 * @pdcs:  PDC state
1484 *
1485 * Reads the number of bytes of receive status that precede each received frame.
1486 * Reads whether transmit and received frames should be preceded by an 8-byte
1487 * BCM header.
1488 *
1489 * Return: 0 if successful
1490 *         -ENODEV if device not available
1491 */
1492static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1493{
1494	struct device *dev = &pdev->dev;
1495	struct device_node *dn = pdev->dev.of_node;
1496	const int *hw_type;
1497	int err;
1498
1499	err = of_property_read_u32(dn, "brcm,rx-status-len",
1500				   &pdcs->rx_status_len);
1501	if (err < 0)
1502		dev_err(dev,
1503			"%s failed to get DMA receive status length from device tree",
1504			__func__);
1505
1506	pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1507
1508	pdcs->hw_type = PDC_HW;
1509
1510	hw_type = device_get_match_data(dev);
1511	if (hw_type)
1512		pdcs->hw_type = *hw_type;
1513
1514	return 0;
1515}
1516
1517/**
1518 * pdc_probe() - Probe function for PDC driver.
1519 * @pdev:   PDC platform device
1520 *
1521 * Reserve and map register regions defined in device tree.
1522 * Allocate and initialize tx and rx DMA rings.
1523 * Initialize a mailbox controller for each PDC.
1524 *
1525 * Return: 0 if successful
1526 *         < 0 if an error
1527 */
1528static int pdc_probe(struct platform_device *pdev)
1529{
1530	int err = 0;
1531	struct device *dev = &pdev->dev;
1532	struct resource *pdc_regs;
1533	struct pdc_state *pdcs;
1534
1535	/* PDC state for one SPU */
1536	pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1537	if (!pdcs) {
1538		err = -ENOMEM;
1539		goto cleanup;
1540	}
1541
1542	pdcs->pdev = pdev;
1543	platform_set_drvdata(pdev, pdcs);
1544	pdcs->pdc_idx = pdcg.num_spu;
1545	pdcg.num_spu++;
1546
1547	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39));
1548	if (err) {
1549		dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1550		goto cleanup;
1551	}
1552
1553	/* Create DMA pool for tx ring */
1554	pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1555					  RING_ALIGN, 0);
1556	if (!pdcs->ring_pool) {
1557		err = -ENOMEM;
1558		goto cleanup;
1559	}
1560
1561	err = pdc_dt_read(pdev, pdcs);
1562	if (err)
1563		goto cleanup_ring_pool;
1564
1565	pdcs->pdc_reg_vbase = devm_platform_get_and_ioremap_resource(pdev, 0, &pdc_regs);
1566	if (IS_ERR(pdcs->pdc_reg_vbase)) {
1567		err = PTR_ERR(pdcs->pdc_reg_vbase);
1568		goto cleanup_ring_pool;
1569	}
1570	dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1571		&pdc_regs->start, &pdc_regs->end);
1572
1573	/* create rx buffer pool after dt read to know how big buffers are */
1574	err = pdc_rx_buf_pool_create(pdcs);
1575	if (err)
1576		goto cleanup_ring_pool;
1577
1578	pdc_hw_init(pdcs);
1579
1580	/* Init tasklet for deferred DMA rx processing */
1581	tasklet_setup(&pdcs->rx_tasklet, pdc_tasklet_cb);
1582
1583	err = pdc_interrupts_init(pdcs);
1584	if (err)
1585		goto cleanup_buf_pool;
1586
1587	/* Initialize mailbox controller */
1588	err = pdc_mb_init(pdcs);
1589	if (err)
1590		goto cleanup_buf_pool;
1591
1592	pdc_setup_debugfs(pdcs);
1593
1594	dev_dbg(dev, "pdc_probe() successful");
1595	return PDC_SUCCESS;
1596
1597cleanup_buf_pool:
1598	tasklet_kill(&pdcs->rx_tasklet);
1599	dma_pool_destroy(pdcs->rx_buf_pool);
1600
1601cleanup_ring_pool:
1602	dma_pool_destroy(pdcs->ring_pool);
1603
1604cleanup:
1605	return err;
1606}
1607
1608static void pdc_remove(struct platform_device *pdev)
1609{
1610	struct pdc_state *pdcs = platform_get_drvdata(pdev);
1611
1612	pdc_free_debugfs();
1613
1614	tasklet_kill(&pdcs->rx_tasklet);
1615
1616	pdc_hw_disable(pdcs);
1617
1618	dma_pool_destroy(pdcs->rx_buf_pool);
1619	dma_pool_destroy(pdcs->ring_pool);
1620}
1621
1622static struct platform_driver pdc_mbox_driver = {
1623	.probe = pdc_probe,
1624	.remove_new = pdc_remove,
1625	.driver = {
1626		   .name = "brcm-iproc-pdc-mbox",
1627		   .of_match_table = pdc_mbox_of_match,
1628		   },
1629};
1630module_platform_driver(pdc_mbox_driver);
1631
1632MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1633MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1634MODULE_LICENSE("GPL v2");
1635