1// SPDX-License-Identifier: GPL-2.0-or-later
2/* hfcsusb.c
3 * mISDN driver for Colognechip HFC-S USB chip
4 *
5 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7 *
8 * module params
9 *   debug=<n>, default=0, with n=0xHHHHGGGG
10 *      H - l1 driver flags described in hfcsusb.h
11 *      G - common mISDN debug flags described at mISDNhw.h
12 *
13 *   poll=<n>, default 128
14 *     n : burst size of PH_DATA_IND at transparent rx data
15 *
16 * Revision: 0.3.3 (socket), 2008-11-05
17 */
18
19#include <linux/module.h>
20#include <linux/delay.h>
21#include <linux/usb.h>
22#include <linux/mISDNhw.h>
23#include <linux/slab.h>
24#include "hfcsusb.h"
25
26static unsigned int debug;
27static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29static LIST_HEAD(HFClist);
30static DEFINE_RWLOCK(HFClock);
31
32
33MODULE_AUTHOR("Martin Bachem");
34MODULE_LICENSE("GPL");
35module_param(debug, uint, S_IRUGO | S_IWUSR);
36module_param(poll, int, 0);
37
38static int hfcsusb_cnt;
39
40/* some function prototypes */
41static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42static void release_hw(struct hfcsusb *hw);
43static void reset_hfcsusb(struct hfcsusb *hw);
44static void setPortMode(struct hfcsusb *hw);
45static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48static void deactivate_bchannel(struct bchannel *bch);
49static int  hfcsusb_ph_info(struct hfcsusb *hw);
50
51/* start next background transfer for control channel */
52static void
53ctrl_start_transfer(struct hfcsusb *hw)
54{
55	if (debug & DBG_HFC_CALL_TRACE)
56		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58	if (hw->ctrl_cnt) {
59		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61		hw->ctrl_urb->transfer_buffer = NULL;
62		hw->ctrl_urb->transfer_buffer_length = 0;
63		hw->ctrl_write.wIndex =
64			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65		hw->ctrl_write.wValue =
66			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69	}
70}
71
72/*
73 * queue a control transfer request to write HFC-S USB
74 * chip register using CTRL resuest queue
75 */
76static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77{
78	struct ctrl_buf *buf;
79
80	if (debug & DBG_HFC_CALL_TRACE)
81		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82		       hw->name, __func__, reg, val);
83
84	spin_lock(&hw->ctrl_lock);
85	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86		spin_unlock(&hw->ctrl_lock);
87		return 1;
88	}
89	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90	buf->hfcs_reg = reg;
91	buf->reg_val = val;
92	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93		hw->ctrl_in_idx = 0;
94	if (++hw->ctrl_cnt == 1)
95		ctrl_start_transfer(hw);
96	spin_unlock(&hw->ctrl_lock);
97
98	return 0;
99}
100
101/* control completion routine handling background control cmds */
102static void
103ctrl_complete(struct urb *urb)
104{
105	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107	if (debug & DBG_HFC_CALL_TRACE)
108		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110	urb->dev = hw->dev;
111	if (hw->ctrl_cnt) {
112		hw->ctrl_cnt--;	/* decrement actual count */
113		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114			hw->ctrl_out_idx = 0;	/* pointer wrap */
115
116		ctrl_start_transfer(hw); /* start next transfer */
117	}
118}
119
120/* handle LED bits   */
121static void
122set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123{
124	if (set_on) {
125		if (led_bits < 0)
126			hw->led_state &= ~abs(led_bits);
127		else
128			hw->led_state |= led_bits;
129	} else {
130		if (led_bits < 0)
131			hw->led_state |= abs(led_bits);
132		else
133			hw->led_state &= ~led_bits;
134	}
135}
136
137/* handle LED requests  */
138static void
139handle_led(struct hfcsusb *hw, int event)
140{
141	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142		hfcsusb_idtab[hw->vend_idx].driver_info;
143	__u8 tmpled;
144
145	if (driver_info->led_scheme == LED_OFF)
146		return;
147	tmpled = hw->led_state;
148
149	switch (event) {
150	case LED_POWER_ON:
151		set_led_bit(hw, driver_info->led_bits[0], 1);
152		set_led_bit(hw, driver_info->led_bits[1], 0);
153		set_led_bit(hw, driver_info->led_bits[2], 0);
154		set_led_bit(hw, driver_info->led_bits[3], 0);
155		break;
156	case LED_POWER_OFF:
157		set_led_bit(hw, driver_info->led_bits[0], 0);
158		set_led_bit(hw, driver_info->led_bits[1], 0);
159		set_led_bit(hw, driver_info->led_bits[2], 0);
160		set_led_bit(hw, driver_info->led_bits[3], 0);
161		break;
162	case LED_S0_ON:
163		set_led_bit(hw, driver_info->led_bits[1], 1);
164		break;
165	case LED_S0_OFF:
166		set_led_bit(hw, driver_info->led_bits[1], 0);
167		break;
168	case LED_B1_ON:
169		set_led_bit(hw, driver_info->led_bits[2], 1);
170		break;
171	case LED_B1_OFF:
172		set_led_bit(hw, driver_info->led_bits[2], 0);
173		break;
174	case LED_B2_ON:
175		set_led_bit(hw, driver_info->led_bits[3], 1);
176		break;
177	case LED_B2_OFF:
178		set_led_bit(hw, driver_info->led_bits[3], 0);
179		break;
180	}
181
182	if (hw->led_state != tmpled) {
183		if (debug & DBG_HFC_CALL_TRACE)
184			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185			       hw->name, __func__,
186			       HFCUSB_P_DATA, hw->led_state);
187
188		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189	}
190}
191
192/*
193 * Layer2 -> Layer 1 Bchannel data
194 */
195static int
196hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197{
198	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
199	struct hfcsusb		*hw = bch->hw;
200	int			ret = -EINVAL;
201	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
202	u_long			flags;
203
204	if (debug & DBG_HFC_CALL_TRACE)
205		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207	switch (hh->prim) {
208	case PH_DATA_REQ:
209		spin_lock_irqsave(&hw->lock, flags);
210		ret = bchannel_senddata(bch, skb);
211		spin_unlock_irqrestore(&hw->lock, flags);
212		if (debug & DBG_HFC_CALL_TRACE)
213			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214			       hw->name, __func__, ret);
215		if (ret > 0)
216			ret = 0;
217		return ret;
218	case PH_ACTIVATE_REQ:
219		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220			hfcsusb_start_endpoint(hw, bch->nr - 1);
221			ret = hfcsusb_setup_bch(bch, ch->protocol);
222		} else
223			ret = 0;
224		if (!ret)
225			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226				    0, NULL, GFP_KERNEL);
227		break;
228	case PH_DEACTIVATE_REQ:
229		deactivate_bchannel(bch);
230		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231			    0, NULL, GFP_KERNEL);
232		ret = 0;
233		break;
234	}
235	if (!ret)
236		dev_kfree_skb(skb);
237	return ret;
238}
239
240/*
241 * send full D/B channel status information
242 * as MPH_INFORMATION_IND
243 */
244static int
245hfcsusb_ph_info(struct hfcsusb *hw)
246{
247	struct ph_info *phi;
248	struct dchannel *dch = &hw->dch;
249	int i;
250
251	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252	if (!phi)
253		return -ENOMEM;
254
255	phi->dch.ch.protocol = hw->protocol;
256	phi->dch.ch.Flags = dch->Flags;
257	phi->dch.state = dch->state;
258	phi->dch.num_bch = dch->dev.nrbchan;
259	for (i = 0; i < dch->dev.nrbchan; i++) {
260		phi->bch[i].protocol = hw->bch[i].ch.protocol;
261		phi->bch[i].Flags = hw->bch[i].Flags;
262	}
263	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264		    struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265	kfree(phi);
266
267	return 0;
268}
269
270/*
271 * Layer2 -> Layer 1 Dchannel data
272 */
273static int
274hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275{
276	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
277	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
278	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
279	struct hfcsusb		*hw = dch->hw;
280	int			ret = -EINVAL;
281	u_long			flags;
282
283	switch (hh->prim) {
284	case PH_DATA_REQ:
285		if (debug & DBG_HFC_CALL_TRACE)
286			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
287			       hw->name, __func__);
288
289		spin_lock_irqsave(&hw->lock, flags);
290		ret = dchannel_senddata(dch, skb);
291		spin_unlock_irqrestore(&hw->lock, flags);
292		if (ret > 0) {
293			ret = 0;
294			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295		}
296		break;
297
298	case PH_ACTIVATE_REQ:
299		if (debug & DBG_HFC_CALL_TRACE)
300			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
301			       hw->name, __func__,
302			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303
304		if (hw->protocol == ISDN_P_NT_S0) {
305			ret = 0;
306			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
307				_queue_data(&dch->dev.D,
308					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
309					    NULL, GFP_ATOMIC);
310			} else {
311				hfcsusb_ph_command(hw,
312						   HFC_L1_ACTIVATE_NT);
313				test_and_set_bit(FLG_L2_ACTIVATED,
314						 &dch->Flags);
315			}
316		} else {
317			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
318			ret = l1_event(dch->l1, hh->prim);
319		}
320		break;
321
322	case PH_DEACTIVATE_REQ:
323		if (debug & DBG_HFC_CALL_TRACE)
324			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
325			       hw->name, __func__);
326		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327
328		if (hw->protocol == ISDN_P_NT_S0) {
329			struct sk_buff_head free_queue;
330
331			__skb_queue_head_init(&free_queue);
332			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
333			spin_lock_irqsave(&hw->lock, flags);
334			skb_queue_splice_init(&dch->squeue, &free_queue);
335			if (dch->tx_skb) {
336				__skb_queue_tail(&free_queue, dch->tx_skb);
337				dch->tx_skb = NULL;
338			}
339			dch->tx_idx = 0;
340			if (dch->rx_skb) {
341				__skb_queue_tail(&free_queue, dch->rx_skb);
342				dch->rx_skb = NULL;
343			}
344			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
345			spin_unlock_irqrestore(&hw->lock, flags);
346			__skb_queue_purge(&free_queue);
347#ifdef FIXME
348			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
349				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
350#endif
351			ret = 0;
352		} else
353			ret = l1_event(dch->l1, hh->prim);
354		break;
355	case MPH_INFORMATION_REQ:
356		ret = hfcsusb_ph_info(hw);
357		break;
358	}
359
360	return ret;
361}
362
363/*
364 * Layer 1 callback function
365 */
366static int
367hfc_l1callback(struct dchannel *dch, u_int cmd)
368{
369	struct hfcsusb *hw = dch->hw;
370
371	if (debug & DBG_HFC_CALL_TRACE)
372		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
373		       hw->name, __func__, cmd);
374
375	switch (cmd) {
376	case INFO3_P8:
377	case INFO3_P10:
378	case HW_RESET_REQ:
379	case HW_POWERUP_REQ:
380		break;
381
382	case HW_DEACT_REQ:
383		skb_queue_purge(&dch->squeue);
384		if (dch->tx_skb) {
385			dev_kfree_skb(dch->tx_skb);
386			dch->tx_skb = NULL;
387		}
388		dch->tx_idx = 0;
389		if (dch->rx_skb) {
390			dev_kfree_skb(dch->rx_skb);
391			dch->rx_skb = NULL;
392		}
393		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
394		break;
395	case PH_ACTIVATE_IND:
396		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
397		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
398			    GFP_ATOMIC);
399		break;
400	case PH_DEACTIVATE_IND:
401		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
402		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
403			    GFP_ATOMIC);
404		break;
405	default:
406		if (dch->debug & DEBUG_HW)
407			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
408			       hw->name, __func__, cmd);
409		return -1;
410	}
411	return hfcsusb_ph_info(hw);
412}
413
414static int
415open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
416	      struct channel_req *rq)
417{
418	int err = 0;
419
420	if (debug & DEBUG_HW_OPEN)
421		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
422		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
423		       __builtin_return_address(0));
424	if (rq->protocol == ISDN_P_NONE)
425		return -EINVAL;
426
427	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
428	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
429	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
430
431	/* E-Channel logging */
432	if (rq->adr.channel == 1) {
433		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
434			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
435			set_bit(FLG_ACTIVE, &hw->ech.Flags);
436			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
437				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
438		} else
439			return -EINVAL;
440	}
441
442	if (!hw->initdone) {
443		hw->protocol = rq->protocol;
444		if (rq->protocol == ISDN_P_TE_S0) {
445			err = create_l1(&hw->dch, hfc_l1callback);
446			if (err)
447				return err;
448		}
449		setPortMode(hw);
450		ch->protocol = rq->protocol;
451		hw->initdone = 1;
452	} else {
453		if (rq->protocol != ch->protocol)
454			return -EPROTONOSUPPORT;
455	}
456
457	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
458	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
459		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
460			    0, NULL, GFP_KERNEL);
461	rq->ch = ch;
462	if (!try_module_get(THIS_MODULE))
463		printk(KERN_WARNING "%s: %s: cannot get module\n",
464		       hw->name, __func__);
465	return 0;
466}
467
468static int
469open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
470{
471	struct bchannel		*bch;
472
473	if (rq->adr.channel == 0 || rq->adr.channel > 2)
474		return -EINVAL;
475	if (rq->protocol == ISDN_P_NONE)
476		return -EINVAL;
477
478	if (debug & DBG_HFC_CALL_TRACE)
479		printk(KERN_DEBUG "%s: %s B%i\n",
480		       hw->name, __func__, rq->adr.channel);
481
482	bch = &hw->bch[rq->adr.channel - 1];
483	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
484		return -EBUSY; /* b-channel can be only open once */
485	bch->ch.protocol = rq->protocol;
486	rq->ch = &bch->ch;
487
488	if (!try_module_get(THIS_MODULE))
489		printk(KERN_WARNING "%s: %s:cannot get module\n",
490		       hw->name, __func__);
491	return 0;
492}
493
494static int
495channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
496{
497	int ret = 0;
498
499	if (debug & DBG_HFC_CALL_TRACE)
500		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
501		       hw->name, __func__, (cq->op), (cq->channel));
502
503	switch (cq->op) {
504	case MISDN_CTRL_GETOP:
505		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
506			MISDN_CTRL_DISCONNECT;
507		break;
508	default:
509		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
510		       hw->name, __func__, cq->op);
511		ret = -EINVAL;
512		break;
513	}
514	return ret;
515}
516
517/*
518 * device control function
519 */
520static int
521hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
522{
523	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
524	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
525	struct hfcsusb		*hw = dch->hw;
526	struct channel_req	*rq;
527	int			err = 0;
528
529	if (dch->debug & DEBUG_HW)
530		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
531		       hw->name, __func__, cmd, arg);
532	switch (cmd) {
533	case OPEN_CHANNEL:
534		rq = arg;
535		if ((rq->protocol == ISDN_P_TE_S0) ||
536		    (rq->protocol == ISDN_P_NT_S0))
537			err = open_dchannel(hw, ch, rq);
538		else
539			err = open_bchannel(hw, rq);
540		if (!err)
541			hw->open++;
542		break;
543	case CLOSE_CHANNEL:
544		hw->open--;
545		if (debug & DEBUG_HW_OPEN)
546			printk(KERN_DEBUG
547			       "%s: %s: dev(%d) close from %p (open %d)\n",
548			       hw->name, __func__, hw->dch.dev.id,
549			       __builtin_return_address(0), hw->open);
550		if (!hw->open) {
551			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
552			if (hw->fifos[HFCUSB_PCM_RX].pipe)
553				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
554			handle_led(hw, LED_POWER_ON);
555		}
556		module_put(THIS_MODULE);
557		break;
558	case CONTROL_CHANNEL:
559		err = channel_ctrl(hw, arg);
560		break;
561	default:
562		if (dch->debug & DEBUG_HW)
563			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
564			       hw->name, __func__, cmd);
565		return -EINVAL;
566	}
567	return err;
568}
569
570/*
571 * S0 TE state change event handler
572 */
573static void
574ph_state_te(struct dchannel *dch)
575{
576	struct hfcsusb *hw = dch->hw;
577
578	if (debug & DEBUG_HW) {
579		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
580			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
581			       HFC_TE_LAYER1_STATES[dch->state]);
582		else
583			printk(KERN_DEBUG "%s: %s: TE F%d\n",
584			       hw->name, __func__, dch->state);
585	}
586
587	switch (dch->state) {
588	case 0:
589		l1_event(dch->l1, HW_RESET_IND);
590		break;
591	case 3:
592		l1_event(dch->l1, HW_DEACT_IND);
593		break;
594	case 5:
595	case 8:
596		l1_event(dch->l1, ANYSIGNAL);
597		break;
598	case 6:
599		l1_event(dch->l1, INFO2);
600		break;
601	case 7:
602		l1_event(dch->l1, INFO4_P8);
603		break;
604	}
605	if (dch->state == 7)
606		handle_led(hw, LED_S0_ON);
607	else
608		handle_led(hw, LED_S0_OFF);
609}
610
611/*
612 * S0 NT state change event handler
613 */
614static void
615ph_state_nt(struct dchannel *dch)
616{
617	struct hfcsusb *hw = dch->hw;
618
619	if (debug & DEBUG_HW) {
620		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
621			printk(KERN_DEBUG "%s: %s: %s\n",
622			       hw->name, __func__,
623			       HFC_NT_LAYER1_STATES[dch->state]);
624
625		else
626			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
627			       hw->name, __func__, dch->state);
628	}
629
630	switch (dch->state) {
631	case (1):
632		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
633		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
634		hw->nt_timer = 0;
635		hw->timers &= ~NT_ACTIVATION_TIMER;
636		handle_led(hw, LED_S0_OFF);
637		break;
638
639	case (2):
640		if (hw->nt_timer < 0) {
641			hw->nt_timer = 0;
642			hw->timers &= ~NT_ACTIVATION_TIMER;
643			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
644		} else {
645			hw->timers |= NT_ACTIVATION_TIMER;
646			hw->nt_timer = NT_T1_COUNT;
647			/* allow G2 -> G3 transition */
648			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
649		}
650		break;
651	case (3):
652		hw->nt_timer = 0;
653		hw->timers &= ~NT_ACTIVATION_TIMER;
654		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
655		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
656			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
657		handle_led(hw, LED_S0_ON);
658		break;
659	case (4):
660		hw->nt_timer = 0;
661		hw->timers &= ~NT_ACTIVATION_TIMER;
662		break;
663	default:
664		break;
665	}
666	hfcsusb_ph_info(hw);
667}
668
669static void
670ph_state(struct dchannel *dch)
671{
672	struct hfcsusb *hw = dch->hw;
673
674	if (hw->protocol == ISDN_P_NT_S0)
675		ph_state_nt(dch);
676	else if (hw->protocol == ISDN_P_TE_S0)
677		ph_state_te(dch);
678}
679
680/*
681 * disable/enable BChannel for desired protocol
682 */
683static int
684hfcsusb_setup_bch(struct bchannel *bch, int protocol)
685{
686	struct hfcsusb *hw = bch->hw;
687	__u8 conhdlc, sctrl, sctrl_r;
688
689	if (debug & DEBUG_HW)
690		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
691		       hw->name, __func__, bch->state, protocol,
692		       bch->nr);
693
694	/* setup val for CON_HDLC */
695	conhdlc = 0;
696	if (protocol > ISDN_P_NONE)
697		conhdlc = 8;	/* enable FIFO */
698
699	switch (protocol) {
700	case (-1):	/* used for init */
701		bch->state = -1;
702		fallthrough;
703	case (ISDN_P_NONE):
704		if (bch->state == ISDN_P_NONE)
705			return 0; /* already in idle state */
706		bch->state = ISDN_P_NONE;
707		clear_bit(FLG_HDLC, &bch->Flags);
708		clear_bit(FLG_TRANSPARENT, &bch->Flags);
709		break;
710	case (ISDN_P_B_RAW):
711		conhdlc |= 2;
712		bch->state = protocol;
713		set_bit(FLG_TRANSPARENT, &bch->Flags);
714		break;
715	case (ISDN_P_B_HDLC):
716		bch->state = protocol;
717		set_bit(FLG_HDLC, &bch->Flags);
718		break;
719	default:
720		if (debug & DEBUG_HW)
721			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
722			       hw->name, __func__, protocol);
723		return -ENOPROTOOPT;
724	}
725
726	if (protocol >= ISDN_P_NONE) {
727		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
728		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729		write_reg(hw, HFCUSB_INC_RES_F, 2);
730		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
731		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
732		write_reg(hw, HFCUSB_INC_RES_F, 2);
733
734		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
735		sctrl_r = 0x0;
736		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
737			sctrl |= 1;
738			sctrl_r |= 1;
739		}
740		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
741			sctrl |= 2;
742			sctrl_r |= 2;
743		}
744		write_reg(hw, HFCUSB_SCTRL, sctrl);
745		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
746
747		if (protocol > ISDN_P_NONE)
748			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
749		else
750			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
751				   LED_B2_OFF);
752	}
753	return hfcsusb_ph_info(hw);
754}
755
756static void
757hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
758{
759	if (debug & DEBUG_HW)
760		printk(KERN_DEBUG "%s: %s: %x\n",
761		       hw->name, __func__, command);
762
763	switch (command) {
764	case HFC_L1_ACTIVATE_TE:
765		/* force sending sending INFO1 */
766		write_reg(hw, HFCUSB_STATES, 0x14);
767		/* start l1 activation */
768		write_reg(hw, HFCUSB_STATES, 0x04);
769		break;
770
771	case HFC_L1_FORCE_DEACTIVATE_TE:
772		write_reg(hw, HFCUSB_STATES, 0x10);
773		write_reg(hw, HFCUSB_STATES, 0x03);
774		break;
775
776	case HFC_L1_ACTIVATE_NT:
777		if (hw->dch.state == 3)
778			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
779				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
780		else
781			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
782				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
783		break;
784
785	case HFC_L1_DEACTIVATE_NT:
786		write_reg(hw, HFCUSB_STATES,
787			  HFCUSB_DO_ACTION);
788		break;
789	}
790}
791
792/*
793 * Layer 1 B-channel hardware access
794 */
795static int
796channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
797{
798	return mISDN_ctrl_bchannel(bch, cq);
799}
800
801/* collect data from incoming interrupt or isochron USB data */
802static void
803hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
804		 int finish)
805{
806	struct hfcsusb	*hw = fifo->hw;
807	struct sk_buff	*rx_skb = NULL;
808	int		maxlen = 0;
809	int		fifon = fifo->fifonum;
810	int		i;
811	int		hdlc = 0;
812	unsigned long	flags;
813
814	if (debug & DBG_HFC_CALL_TRACE)
815		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
816		       "dch(%p) bch(%p) ech(%p)\n",
817		       hw->name, __func__, fifon, len,
818		       fifo->dch, fifo->bch, fifo->ech);
819
820	if (!len)
821		return;
822
823	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
824		printk(KERN_DEBUG "%s: %s: undefined channel\n",
825		       hw->name, __func__);
826		return;
827	}
828
829	spin_lock_irqsave(&hw->lock, flags);
830	if (fifo->dch) {
831		rx_skb = fifo->dch->rx_skb;
832		maxlen = fifo->dch->maxlen;
833		hdlc = 1;
834	}
835	if (fifo->bch) {
836		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
837			fifo->bch->dropcnt += len;
838			spin_unlock_irqrestore(&hw->lock, flags);
839			return;
840		}
841		maxlen = bchannel_get_rxbuf(fifo->bch, len);
842		rx_skb = fifo->bch->rx_skb;
843		if (maxlen < 0) {
844			if (rx_skb)
845				skb_trim(rx_skb, 0);
846			pr_warn("%s.B%d: No bufferspace for %d bytes\n",
847				hw->name, fifo->bch->nr, len);
848			spin_unlock_irqrestore(&hw->lock, flags);
849			return;
850		}
851		maxlen = fifo->bch->maxlen;
852		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
853	}
854	if (fifo->ech) {
855		rx_skb = fifo->ech->rx_skb;
856		maxlen = fifo->ech->maxlen;
857		hdlc = 1;
858	}
859
860	if (fifo->dch || fifo->ech) {
861		if (!rx_skb) {
862			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
863			if (rx_skb) {
864				if (fifo->dch)
865					fifo->dch->rx_skb = rx_skb;
866				if (fifo->ech)
867					fifo->ech->rx_skb = rx_skb;
868				skb_trim(rx_skb, 0);
869			} else {
870				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
871				       hw->name, __func__);
872				spin_unlock_irqrestore(&hw->lock, flags);
873				return;
874			}
875		}
876		/* D/E-Channel SKB range check */
877		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
878			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
879			       "for fifo(%d) HFCUSB_D_RX\n",
880			       hw->name, __func__, fifon);
881			skb_trim(rx_skb, 0);
882			spin_unlock_irqrestore(&hw->lock, flags);
883			return;
884		}
885	}
886
887	skb_put_data(rx_skb, data, len);
888
889	if (hdlc) {
890		/* we have a complete hdlc packet */
891		if (finish) {
892			if ((rx_skb->len > 3) &&
893			    (!(rx_skb->data[rx_skb->len - 1]))) {
894				if (debug & DBG_HFC_FIFO_VERBOSE) {
895					printk(KERN_DEBUG "%s: %s: fifon(%i)"
896					       " new RX len(%i): ",
897					       hw->name, __func__, fifon,
898					       rx_skb->len);
899					i = 0;
900					while (i < rx_skb->len)
901						printk("%02x ",
902						       rx_skb->data[i++]);
903					printk("\n");
904				}
905
906				/* remove CRC & status */
907				skb_trim(rx_skb, rx_skb->len - 3);
908
909				if (fifo->dch)
910					recv_Dchannel(fifo->dch);
911				if (fifo->bch)
912					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
913						      0);
914				if (fifo->ech)
915					recv_Echannel(fifo->ech,
916						      &hw->dch);
917			} else {
918				if (debug & DBG_HFC_FIFO_VERBOSE) {
919					printk(KERN_DEBUG
920					       "%s: CRC or minlen ERROR fifon(%i) "
921					       "RX len(%i): ",
922					       hw->name, fifon, rx_skb->len);
923					i = 0;
924					while (i < rx_skb->len)
925						printk("%02x ",
926						       rx_skb->data[i++]);
927					printk("\n");
928				}
929				skb_trim(rx_skb, 0);
930			}
931		}
932	} else {
933		/* deliver transparent data to layer2 */
934		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
935	}
936	spin_unlock_irqrestore(&hw->lock, flags);
937}
938
939static void
940fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
941	      void *buf, int num_packets, int packet_size, int interval,
942	      usb_complete_t complete, void *context)
943{
944	int k;
945
946	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
947			  complete, context);
948
949	urb->number_of_packets = num_packets;
950	urb->transfer_flags = URB_ISO_ASAP;
951	urb->actual_length = 0;
952	urb->interval = interval;
953
954	for (k = 0; k < num_packets; k++) {
955		urb->iso_frame_desc[k].offset = packet_size * k;
956		urb->iso_frame_desc[k].length = packet_size;
957		urb->iso_frame_desc[k].actual_length = 0;
958	}
959}
960
961/* receive completion routine for all ISO tx fifos   */
962static void
963rx_iso_complete(struct urb *urb)
964{
965	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
966	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
967	struct hfcsusb *hw = fifo->hw;
968	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
969		status, iso_status, i;
970	__u8 *buf;
971	static __u8 eof[8];
972	__u8 s0_state;
973	unsigned long flags;
974
975	fifon = fifo->fifonum;
976	status = urb->status;
977
978	spin_lock_irqsave(&hw->lock, flags);
979	if (fifo->stop_gracefull) {
980		fifo->stop_gracefull = 0;
981		fifo->active = 0;
982		spin_unlock_irqrestore(&hw->lock, flags);
983		return;
984	}
985	spin_unlock_irqrestore(&hw->lock, flags);
986
987	/*
988	 * ISO transfer only partially completed,
989	 * look at individual frame status for details
990	 */
991	if (status == -EXDEV) {
992		if (debug & DEBUG_HW)
993			printk(KERN_DEBUG "%s: %s: with -EXDEV "
994			       "urb->status %d, fifonum %d\n",
995			       hw->name, __func__,  status, fifon);
996
997		/* clear status, so go on with ISO transfers */
998		status = 0;
999	}
1000
1001	s0_state = 0;
1002	if (fifo->active && !status) {
1003		num_isoc_packets = iso_packets[fifon];
1004		maxlen = fifo->usb_packet_maxlen;
1005
1006		for (k = 0; k < num_isoc_packets; ++k) {
1007			len = urb->iso_frame_desc[k].actual_length;
1008			offset = urb->iso_frame_desc[k].offset;
1009			buf = context_iso_urb->buffer + offset;
1010			iso_status = urb->iso_frame_desc[k].status;
1011
1012			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1013				printk(KERN_DEBUG "%s: %s: "
1014				       "ISO packet %i, status: %i\n",
1015				       hw->name, __func__, k, iso_status);
1016			}
1017
1018			/* USB data log for every D ISO in */
1019			if ((fifon == HFCUSB_D_RX) &&
1020			    (debug & DBG_HFC_USB_VERBOSE)) {
1021				printk(KERN_DEBUG
1022				       "%s: %s: %d (%d/%d) len(%d) ",
1023				       hw->name, __func__, urb->start_frame,
1024				       k, num_isoc_packets - 1,
1025				       len);
1026				for (i = 0; i < len; i++)
1027					printk("%x ", buf[i]);
1028				printk("\n");
1029			}
1030
1031			if (!iso_status) {
1032				if (fifo->last_urblen != maxlen) {
1033					/*
1034					 * save fifo fill-level threshold bits
1035					 * to use them later in TX ISO URB
1036					 * completions
1037					 */
1038					hw->threshold_mask = buf[1];
1039
1040					if (fifon == HFCUSB_D_RX)
1041						s0_state = (buf[0] >> 4);
1042
1043					eof[fifon] = buf[0] & 1;
1044					if (len > 2)
1045						hfcsusb_rx_frame(fifo, buf + 2,
1046								 len - 2, (len < maxlen)
1047								 ? eof[fifon] : 0);
1048				} else
1049					hfcsusb_rx_frame(fifo, buf, len,
1050							 (len < maxlen) ?
1051							 eof[fifon] : 0);
1052				fifo->last_urblen = len;
1053			}
1054		}
1055
1056		/* signal S0 layer1 state change */
1057		if ((s0_state) && (hw->initdone) &&
1058		    (s0_state != hw->dch.state)) {
1059			hw->dch.state = s0_state;
1060			schedule_event(&hw->dch, FLG_PHCHANGE);
1061		}
1062
1063		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1064			      context_iso_urb->buffer, num_isoc_packets,
1065			      fifo->usb_packet_maxlen, fifo->intervall,
1066			      (usb_complete_t)rx_iso_complete, urb->context);
1067		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1068		if (errcode < 0) {
1069			if (debug & DEBUG_HW)
1070				printk(KERN_DEBUG "%s: %s: error submitting "
1071				       "ISO URB: %d\n",
1072				       hw->name, __func__, errcode);
1073		}
1074	} else {
1075		if (status && (debug & DBG_HFC_URB_INFO))
1076			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1077			       "urb->status %d, fifonum %d\n",
1078			       hw->name, __func__, status, fifon);
1079	}
1080}
1081
1082/* receive completion routine for all interrupt rx fifos */
1083static void
1084rx_int_complete(struct urb *urb)
1085{
1086	int len, status, i;
1087	__u8 *buf, maxlen, fifon;
1088	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1089	struct hfcsusb *hw = fifo->hw;
1090	static __u8 eof[8];
1091	unsigned long flags;
1092
1093	spin_lock_irqsave(&hw->lock, flags);
1094	if (fifo->stop_gracefull) {
1095		fifo->stop_gracefull = 0;
1096		fifo->active = 0;
1097		spin_unlock_irqrestore(&hw->lock, flags);
1098		return;
1099	}
1100	spin_unlock_irqrestore(&hw->lock, flags);
1101
1102	fifon = fifo->fifonum;
1103	if ((!fifo->active) || (urb->status)) {
1104		if (debug & DBG_HFC_URB_ERROR)
1105			printk(KERN_DEBUG
1106			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1107			       hw->name, __func__, fifon, urb->status);
1108
1109		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1110		return;
1111	}
1112	len = urb->actual_length;
1113	buf = fifo->buffer;
1114	maxlen = fifo->usb_packet_maxlen;
1115
1116	/* USB data log for every D INT in */
1117	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1118		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1119		       hw->name, __func__, len);
1120		for (i = 0; i < len; i++)
1121			printk("%02x ", buf[i]);
1122		printk("\n");
1123	}
1124
1125	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1126		/* the threshold mask is in the 2nd status byte */
1127		hw->threshold_mask = buf[1];
1128
1129		/* signal S0 layer1 state change */
1130		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1131			hw->dch.state = (buf[0] >> 4);
1132			schedule_event(&hw->dch, FLG_PHCHANGE);
1133		}
1134
1135		eof[fifon] = buf[0] & 1;
1136		/* if we have more than the 2 status bytes -> collect data */
1137		if (len > 2)
1138			hfcsusb_rx_frame(fifo, buf + 2,
1139					 urb->actual_length - 2,
1140					 (len < maxlen) ? eof[fifon] : 0);
1141	} else {
1142		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1143				 (len < maxlen) ? eof[fifon] : 0);
1144	}
1145	fifo->last_urblen = urb->actual_length;
1146
1147	status = usb_submit_urb(urb, GFP_ATOMIC);
1148	if (status) {
1149		if (debug & DEBUG_HW)
1150			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1151			       hw->name, __func__);
1152	}
1153}
1154
1155/* transmit completion routine for all ISO tx fifos */
1156static void
1157tx_iso_complete(struct urb *urb)
1158{
1159	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1160	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1161	struct hfcsusb *hw = fifo->hw;
1162	struct sk_buff *tx_skb;
1163	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1164		errcode, hdlc, i;
1165	int *tx_idx;
1166	int frame_complete, fifon, status, fillempty = 0;
1167	__u8 threshbit, *p;
1168	unsigned long flags;
1169
1170	spin_lock_irqsave(&hw->lock, flags);
1171	if (fifo->stop_gracefull) {
1172		fifo->stop_gracefull = 0;
1173		fifo->active = 0;
1174		spin_unlock_irqrestore(&hw->lock, flags);
1175		return;
1176	}
1177
1178	if (fifo->dch) {
1179		tx_skb = fifo->dch->tx_skb;
1180		tx_idx = &fifo->dch->tx_idx;
1181		hdlc = 1;
1182	} else if (fifo->bch) {
1183		tx_skb = fifo->bch->tx_skb;
1184		tx_idx = &fifo->bch->tx_idx;
1185		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1186		if (!tx_skb && !hdlc &&
1187		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1188			fillempty = 1;
1189	} else {
1190		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1191		       hw->name, __func__);
1192		spin_unlock_irqrestore(&hw->lock, flags);
1193		return;
1194	}
1195
1196	fifon = fifo->fifonum;
1197	status = urb->status;
1198
1199	tx_offset = 0;
1200
1201	/*
1202	 * ISO transfer only partially completed,
1203	 * look at individual frame status for details
1204	 */
1205	if (status == -EXDEV) {
1206		if (debug & DBG_HFC_URB_ERROR)
1207			printk(KERN_DEBUG "%s: %s: "
1208			       "-EXDEV (%i) fifon (%d)\n",
1209			       hw->name, __func__, status, fifon);
1210
1211		/* clear status, so go on with ISO transfers */
1212		status = 0;
1213	}
1214
1215	if (fifo->active && !status) {
1216		/* is FifoFull-threshold set for our channel? */
1217		threshbit = (hw->threshold_mask & (1 << fifon));
1218		num_isoc_packets = iso_packets[fifon];
1219
1220		/* predict dataflow to avoid fifo overflow */
1221		if (fifon >= HFCUSB_D_TX)
1222			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1223		else
1224			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1225		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1226			      context_iso_urb->buffer, num_isoc_packets,
1227			      fifo->usb_packet_maxlen, fifo->intervall,
1228			      (usb_complete_t)tx_iso_complete, urb->context);
1229		memset(context_iso_urb->buffer, 0,
1230		       sizeof(context_iso_urb->buffer));
1231		frame_complete = 0;
1232
1233		for (k = 0; k < num_isoc_packets; ++k) {
1234			/* analyze tx success of previous ISO packets */
1235			if (debug & DBG_HFC_URB_ERROR) {
1236				errcode = urb->iso_frame_desc[k].status;
1237				if (errcode) {
1238					printk(KERN_DEBUG "%s: %s: "
1239					       "ISO packet %i, status: %i\n",
1240					       hw->name, __func__, k, errcode);
1241				}
1242			}
1243
1244			/* Generate next ISO Packets */
1245			if (tx_skb)
1246				remain = tx_skb->len - *tx_idx;
1247			else if (fillempty)
1248				remain = 15; /* > not complete */
1249			else
1250				remain = 0;
1251
1252			if (remain > 0) {
1253				fifo->bit_line -= sink;
1254				current_len = (0 - fifo->bit_line) / 8;
1255				if (current_len > 14)
1256					current_len = 14;
1257				if (current_len < 0)
1258					current_len = 0;
1259				if (remain < current_len)
1260					current_len = remain;
1261
1262				/* how much bit do we put on the line? */
1263				fifo->bit_line += current_len * 8;
1264
1265				context_iso_urb->buffer[tx_offset] = 0;
1266				if (current_len == remain) {
1267					if (hdlc) {
1268						/* signal frame completion */
1269						context_iso_urb->
1270							buffer[tx_offset] = 1;
1271						/* add 2 byte flags and 16bit
1272						 * CRC at end of ISDN frame */
1273						fifo->bit_line += 32;
1274					}
1275					frame_complete = 1;
1276				}
1277
1278				/* copy tx data to iso-urb buffer */
1279				p = context_iso_urb->buffer + tx_offset + 1;
1280				if (fillempty) {
1281					memset(p, fifo->bch->fill[0],
1282					       current_len);
1283				} else {
1284					memcpy(p, (tx_skb->data + *tx_idx),
1285					       current_len);
1286					*tx_idx += current_len;
1287				}
1288				urb->iso_frame_desc[k].offset = tx_offset;
1289				urb->iso_frame_desc[k].length = current_len + 1;
1290
1291				/* USB data log for every D ISO out */
1292				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1293				    (debug & DBG_HFC_USB_VERBOSE)) {
1294					printk(KERN_DEBUG
1295					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1296					       hw->name, __func__,
1297					       k, num_isoc_packets - 1,
1298					       urb->iso_frame_desc[k].offset,
1299					       urb->iso_frame_desc[k].length);
1300
1301					for (i = urb->iso_frame_desc[k].offset;
1302					     i < (urb->iso_frame_desc[k].offset
1303						  + urb->iso_frame_desc[k].length);
1304					     i++)
1305						printk("%x ",
1306						       context_iso_urb->buffer[i]);
1307
1308					printk(" skb->len(%i) tx-idx(%d)\n",
1309					       tx_skb->len, *tx_idx);
1310				}
1311
1312				tx_offset += (current_len + 1);
1313			} else {
1314				urb->iso_frame_desc[k].offset = tx_offset++;
1315				urb->iso_frame_desc[k].length = 1;
1316				/* we lower data margin every msec */
1317				fifo->bit_line -= sink;
1318				if (fifo->bit_line < BITLINE_INF)
1319					fifo->bit_line = BITLINE_INF;
1320			}
1321
1322			if (frame_complete) {
1323				frame_complete = 0;
1324
1325				if (debug & DBG_HFC_FIFO_VERBOSE) {
1326					printk(KERN_DEBUG  "%s: %s: "
1327					       "fifon(%i) new TX len(%i): ",
1328					       hw->name, __func__,
1329					       fifon, tx_skb->len);
1330					i = 0;
1331					while (i < tx_skb->len)
1332						printk("%02x ",
1333						       tx_skb->data[i++]);
1334					printk("\n");
1335				}
1336
1337				dev_consume_skb_irq(tx_skb);
1338				tx_skb = NULL;
1339				if (fifo->dch && get_next_dframe(fifo->dch))
1340					tx_skb = fifo->dch->tx_skb;
1341				else if (fifo->bch &&
1342					 get_next_bframe(fifo->bch))
1343					tx_skb = fifo->bch->tx_skb;
1344			}
1345		}
1346		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1347		if (errcode < 0) {
1348			if (debug & DEBUG_HW)
1349				printk(KERN_DEBUG
1350				       "%s: %s: error submitting ISO URB: %d \n",
1351				       hw->name, __func__, errcode);
1352		}
1353
1354		/*
1355		 * abuse DChannel tx iso completion to trigger NT mode state
1356		 * changes tx_iso_complete is assumed to be called every
1357		 * fifo->intervall (ms)
1358		 */
1359		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1360		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1361			if ((--hw->nt_timer) < 0)
1362				schedule_event(&hw->dch, FLG_PHCHANGE);
1363		}
1364
1365	} else {
1366		if (status && (debug & DBG_HFC_URB_ERROR))
1367			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1368			       "fifonum=%d\n",
1369			       hw->name, __func__,
1370			       symbolic(urb_errlist, status), status, fifon);
1371	}
1372	spin_unlock_irqrestore(&hw->lock, flags);
1373}
1374
1375/*
1376 * allocs urbs and start isoc transfer with two pending urbs to avoid
1377 * gaps in the transfer chain
1378 */
1379static int
1380start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1381		 usb_complete_t complete, int packet_size)
1382{
1383	struct hfcsusb *hw = fifo->hw;
1384	int i, k, errcode;
1385
1386	if (debug)
1387		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1388		       hw->name, __func__, fifo->fifonum);
1389
1390	/* allocate Memory for Iso out Urbs */
1391	for (i = 0; i < 2; i++) {
1392		if (!(fifo->iso[i].urb)) {
1393			fifo->iso[i].urb =
1394				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1395			if (!(fifo->iso[i].urb)) {
1396				printk(KERN_DEBUG
1397				       "%s: %s: alloc urb for fifo %i failed",
1398				       hw->name, __func__, fifo->fifonum);
1399				continue;
1400			}
1401			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1402			fifo->iso[i].indx = i;
1403
1404			/* Init the first iso */
1405			if (ISO_BUFFER_SIZE >=
1406			    (fifo->usb_packet_maxlen *
1407			     num_packets_per_urb)) {
1408				fill_isoc_urb(fifo->iso[i].urb,
1409					      fifo->hw->dev, fifo->pipe,
1410					      fifo->iso[i].buffer,
1411					      num_packets_per_urb,
1412					      fifo->usb_packet_maxlen,
1413					      fifo->intervall, complete,
1414					      &fifo->iso[i]);
1415				memset(fifo->iso[i].buffer, 0,
1416				       sizeof(fifo->iso[i].buffer));
1417
1418				for (k = 0; k < num_packets_per_urb; k++) {
1419					fifo->iso[i].urb->
1420						iso_frame_desc[k].offset =
1421						k * packet_size;
1422					fifo->iso[i].urb->
1423						iso_frame_desc[k].length =
1424						packet_size;
1425				}
1426			} else {
1427				printk(KERN_DEBUG
1428				       "%s: %s: ISO Buffer size to small!\n",
1429				       hw->name, __func__);
1430			}
1431		}
1432		fifo->bit_line = BITLINE_INF;
1433
1434		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1435		fifo->active = (errcode >= 0) ? 1 : 0;
1436		fifo->stop_gracefull = 0;
1437		if (errcode < 0) {
1438			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1439			       hw->name, __func__,
1440			       symbolic(urb_errlist, errcode), i);
1441		}
1442	}
1443	return fifo->active;
1444}
1445
1446static void
1447stop_iso_gracefull(struct usb_fifo *fifo)
1448{
1449	struct hfcsusb *hw = fifo->hw;
1450	int i, timeout;
1451	u_long flags;
1452
1453	for (i = 0; i < 2; i++) {
1454		spin_lock_irqsave(&hw->lock, flags);
1455		if (debug)
1456			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1457			       hw->name, __func__, fifo->fifonum, i);
1458		fifo->stop_gracefull = 1;
1459		spin_unlock_irqrestore(&hw->lock, flags);
1460	}
1461
1462	for (i = 0; i < 2; i++) {
1463		timeout = 3;
1464		while (fifo->stop_gracefull && timeout--)
1465			schedule_timeout_interruptible((HZ / 1000) * 16);
1466		if (debug && fifo->stop_gracefull)
1467			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1468			       hw->name, __func__, fifo->fifonum, i);
1469	}
1470}
1471
1472static void
1473stop_int_gracefull(struct usb_fifo *fifo)
1474{
1475	struct hfcsusb *hw = fifo->hw;
1476	int timeout;
1477	u_long flags;
1478
1479	spin_lock_irqsave(&hw->lock, flags);
1480	if (debug)
1481		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1482		       hw->name, __func__, fifo->fifonum);
1483	fifo->stop_gracefull = 1;
1484	spin_unlock_irqrestore(&hw->lock, flags);
1485
1486	timeout = 3;
1487	while (fifo->stop_gracefull && timeout--)
1488		schedule_timeout_interruptible((HZ / 1000) * 3);
1489	if (debug && fifo->stop_gracefull)
1490		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1491		       hw->name, __func__, fifo->fifonum);
1492}
1493
1494/* start the interrupt transfer for the given fifo */
1495static void
1496start_int_fifo(struct usb_fifo *fifo)
1497{
1498	struct hfcsusb *hw = fifo->hw;
1499	int errcode;
1500
1501	if (debug)
1502		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1503		       hw->name, __func__, fifo->fifonum);
1504
1505	if (!fifo->urb) {
1506		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1507		if (!fifo->urb)
1508			return;
1509	}
1510	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1511			 fifo->buffer, fifo->usb_packet_maxlen,
1512			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1513	fifo->active = 1;
1514	fifo->stop_gracefull = 0;
1515	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1516	if (errcode) {
1517		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1518		       hw->name, __func__, errcode);
1519		fifo->active = 0;
1520	}
1521}
1522
1523static void
1524setPortMode(struct hfcsusb *hw)
1525{
1526	if (debug & DEBUG_HW)
1527		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1528		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1529
1530	if (hw->protocol == ISDN_P_TE_S0) {
1531		write_reg(hw, HFCUSB_SCTRL, 0x40);
1532		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1533		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1534		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1535		write_reg(hw, HFCUSB_STATES, 3);
1536	} else {
1537		write_reg(hw, HFCUSB_SCTRL, 0x44);
1538		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1539		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1540		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1541		write_reg(hw, HFCUSB_STATES, 1);
1542	}
1543}
1544
1545static void
1546reset_hfcsusb(struct hfcsusb *hw)
1547{
1548	struct usb_fifo *fifo;
1549	int i;
1550
1551	if (debug & DEBUG_HW)
1552		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1553
1554	/* do Chip reset */
1555	write_reg(hw, HFCUSB_CIRM, 8);
1556
1557	/* aux = output, reset off */
1558	write_reg(hw, HFCUSB_CIRM, 0x10);
1559
1560	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1561	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1562		  ((hw->packet_size / 8) << 4));
1563
1564	/* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
1565	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1566
1567	/* enable PCM/GCI master mode */
1568	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1569	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1570
1571	/* init the fifos */
1572	write_reg(hw, HFCUSB_F_THRES,
1573		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1574
1575	fifo = hw->fifos;
1576	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1577		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1578		fifo[i].max_size =
1579			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1580		fifo[i].last_urblen = 0;
1581
1582		/* set 2 bit for D- & E-channel */
1583		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1584
1585		/* enable all fifos */
1586		if (i == HFCUSB_D_TX)
1587			write_reg(hw, HFCUSB_CON_HDLC,
1588				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1589		else
1590			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1591		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1592	}
1593
1594	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1595	handle_led(hw, LED_POWER_ON);
1596}
1597
1598/* start USB data pipes dependand on device's endpoint configuration */
1599static void
1600hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1601{
1602	/* quick check if endpoint already running */
1603	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1604		return;
1605	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1606		return;
1607	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1608		return;
1609	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1610		return;
1611
1612	/* start rx endpoints using USB INT IN method */
1613	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1614		start_int_fifo(hw->fifos + channel * 2 + 1);
1615
1616	/* start rx endpoints using USB ISO IN method */
1617	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1618		switch (channel) {
1619		case HFC_CHAN_D:
1620			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1621					 ISOC_PACKETS_D,
1622					 (usb_complete_t)rx_iso_complete,
1623					 16);
1624			break;
1625		case HFC_CHAN_E:
1626			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1627					 ISOC_PACKETS_D,
1628					 (usb_complete_t)rx_iso_complete,
1629					 16);
1630			break;
1631		case HFC_CHAN_B1:
1632			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1633					 ISOC_PACKETS_B,
1634					 (usb_complete_t)rx_iso_complete,
1635					 16);
1636			break;
1637		case HFC_CHAN_B2:
1638			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1639					 ISOC_PACKETS_B,
1640					 (usb_complete_t)rx_iso_complete,
1641					 16);
1642			break;
1643		}
1644	}
1645
1646	/* start tx endpoints using USB ISO OUT method */
1647	switch (channel) {
1648	case HFC_CHAN_D:
1649		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1650				 ISOC_PACKETS_B,
1651				 (usb_complete_t)tx_iso_complete, 1);
1652		break;
1653	case HFC_CHAN_B1:
1654		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1655				 ISOC_PACKETS_D,
1656				 (usb_complete_t)tx_iso_complete, 1);
1657		break;
1658	case HFC_CHAN_B2:
1659		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1660				 ISOC_PACKETS_B,
1661				 (usb_complete_t)tx_iso_complete, 1);
1662		break;
1663	}
1664}
1665
1666/* stop USB data pipes dependand on device's endpoint configuration */
1667static void
1668hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1669{
1670	/* quick check if endpoint currently running */
1671	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1672		return;
1673	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1674		return;
1675	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1676		return;
1677	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1678		return;
1679
1680	/* rx endpoints using USB INT IN method */
1681	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1682		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1683
1684	/* rx endpoints using USB ISO IN method */
1685	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1686		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1687
1688	/* tx endpoints using USB ISO OUT method */
1689	if (channel != HFC_CHAN_E)
1690		stop_iso_gracefull(hw->fifos + channel * 2);
1691}
1692
1693
1694/* Hardware Initialization */
1695static int
1696setup_hfcsusb(struct hfcsusb *hw)
1697{
1698	void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1699	u_char b;
1700	int ret;
1701
1702	if (debug & DBG_HFC_CALL_TRACE)
1703		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1704
1705	if (!dmabuf)
1706		return -ENOMEM;
1707
1708	ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1709
1710	memcpy(&b, dmabuf, sizeof(u_char));
1711	kfree(dmabuf);
1712
1713	/* check the chip id */
1714	if (ret != 1) {
1715		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1716		       hw->name, __func__);
1717		return 1;
1718	}
1719	if (b != HFCUSB_CHIPID) {
1720		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1721		       hw->name, __func__, b);
1722		return 1;
1723	}
1724
1725	/* first set the needed config, interface and alternate */
1726	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1727
1728	hw->led_state = 0;
1729
1730	/* init the background machinery for control requests */
1731	hw->ctrl_read.bRequestType = 0xc0;
1732	hw->ctrl_read.bRequest = 1;
1733	hw->ctrl_read.wLength = cpu_to_le16(1);
1734	hw->ctrl_write.bRequestType = 0x40;
1735	hw->ctrl_write.bRequest = 0;
1736	hw->ctrl_write.wLength = 0;
1737	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1738			     (u_char *)&hw->ctrl_write, NULL, 0,
1739			     (usb_complete_t)ctrl_complete, hw);
1740
1741	reset_hfcsusb(hw);
1742	return 0;
1743}
1744
1745static void
1746release_hw(struct hfcsusb *hw)
1747{
1748	if (debug & DBG_HFC_CALL_TRACE)
1749		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1750
1751	/*
1752	 * stop all endpoints gracefully
1753	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1754	 *       signals after calling mISDN_unregister_device()
1755	 */
1756	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1757	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1758	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1759	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1760		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1761	if (hw->protocol == ISDN_P_TE_S0)
1762		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1763
1764	mISDN_unregister_device(&hw->dch.dev);
1765	mISDN_freebchannel(&hw->bch[1]);
1766	mISDN_freebchannel(&hw->bch[0]);
1767	mISDN_freedchannel(&hw->dch);
1768
1769	if (hw->ctrl_urb) {
1770		usb_kill_urb(hw->ctrl_urb);
1771		usb_free_urb(hw->ctrl_urb);
1772		hw->ctrl_urb = NULL;
1773	}
1774
1775	if (hw->intf)
1776		usb_set_intfdata(hw->intf, NULL);
1777	list_del(&hw->list);
1778	kfree(hw);
1779	hw = NULL;
1780}
1781
1782static void
1783deactivate_bchannel(struct bchannel *bch)
1784{
1785	struct hfcsusb *hw = bch->hw;
1786	u_long flags;
1787
1788	if (bch->debug & DEBUG_HW)
1789		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1790		       hw->name, __func__, bch->nr);
1791
1792	spin_lock_irqsave(&hw->lock, flags);
1793	mISDN_clear_bchannel(bch);
1794	spin_unlock_irqrestore(&hw->lock, flags);
1795	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1796	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1797}
1798
1799/*
1800 * Layer 1 B-channel hardware access
1801 */
1802static int
1803hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1804{
1805	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1806	int		ret = -EINVAL;
1807
1808	if (bch->debug & DEBUG_HW)
1809		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1810
1811	switch (cmd) {
1812	case HW_TESTRX_RAW:
1813	case HW_TESTRX_HDLC:
1814	case HW_TESTRX_OFF:
1815		ret = -EINVAL;
1816		break;
1817
1818	case CLOSE_CHANNEL:
1819		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1820		deactivate_bchannel(bch);
1821		ch->protocol = ISDN_P_NONE;
1822		ch->peer = NULL;
1823		module_put(THIS_MODULE);
1824		ret = 0;
1825		break;
1826	case CONTROL_CHANNEL:
1827		ret = channel_bctrl(bch, arg);
1828		break;
1829	default:
1830		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1831		       __func__, cmd);
1832	}
1833	return ret;
1834}
1835
1836static int
1837setup_instance(struct hfcsusb *hw, struct device *parent)
1838{
1839	u_long	flags;
1840	int	err, i;
1841
1842	if (debug & DBG_HFC_CALL_TRACE)
1843		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1844
1845	spin_lock_init(&hw->ctrl_lock);
1846	spin_lock_init(&hw->lock);
1847
1848	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1849	hw->dch.debug = debug & 0xFFFF;
1850	hw->dch.hw = hw;
1851	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1852	hw->dch.dev.D.send = hfcusb_l2l1D;
1853	hw->dch.dev.D.ctrl = hfc_dctrl;
1854
1855	/* enable E-Channel logging */
1856	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1857		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1858
1859	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1860		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1861	hw->dch.dev.nrbchan = 2;
1862	for (i = 0; i < 2; i++) {
1863		hw->bch[i].nr = i + 1;
1864		set_channelmap(i + 1, hw->dch.dev.channelmap);
1865		hw->bch[i].debug = debug;
1866		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1867		hw->bch[i].hw = hw;
1868		hw->bch[i].ch.send = hfcusb_l2l1B;
1869		hw->bch[i].ch.ctrl = hfc_bctrl;
1870		hw->bch[i].ch.nr = i + 1;
1871		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1872	}
1873
1874	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1875	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1876	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1877	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1878	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1879	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1880	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1881	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1882
1883	err = setup_hfcsusb(hw);
1884	if (err)
1885		goto out;
1886
1887	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1888		 hfcsusb_cnt + 1);
1889	printk(KERN_INFO "%s: registered as '%s'\n",
1890	       DRIVER_NAME, hw->name);
1891
1892	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1893	if (err)
1894		goto out;
1895
1896	hfcsusb_cnt++;
1897	write_lock_irqsave(&HFClock, flags);
1898	list_add_tail(&hw->list, &HFClist);
1899	write_unlock_irqrestore(&HFClock, flags);
1900	return 0;
1901
1902out:
1903	mISDN_freebchannel(&hw->bch[1]);
1904	mISDN_freebchannel(&hw->bch[0]);
1905	mISDN_freedchannel(&hw->dch);
1906	kfree(hw);
1907	return err;
1908}
1909
1910static int
1911hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1912{
1913	struct hfcsusb			*hw;
1914	struct usb_device		*dev = interface_to_usbdev(intf);
1915	struct usb_host_interface	*iface = intf->cur_altsetting;
1916	struct usb_host_interface	*iface_used = NULL;
1917	struct usb_host_endpoint	*ep;
1918	struct hfcsusb_vdata		*driver_info;
1919	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1920		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1921		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1922		alt_used = 0;
1923
1924	vend_idx = 0xffff;
1925	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1926		if ((le16_to_cpu(dev->descriptor.idVendor)
1927		     == hfcsusb_idtab[i].idVendor) &&
1928		    (le16_to_cpu(dev->descriptor.idProduct)
1929		     == hfcsusb_idtab[i].idProduct)) {
1930			vend_idx = i;
1931			continue;
1932		}
1933	}
1934
1935	printk(KERN_DEBUG
1936	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1937	       __func__, ifnum, iface->desc.bAlternateSetting,
1938	       intf->minor, vend_idx);
1939
1940	if (vend_idx == 0xffff) {
1941		printk(KERN_WARNING
1942		       "%s: no valid vendor found in USB descriptor\n",
1943		       __func__);
1944		return -EIO;
1945	}
1946	/* if vendor and product ID is OK, start probing alternate settings */
1947	alt_idx = 0;
1948	small_match = -1;
1949
1950	/* default settings */
1951	iso_packet_size = 16;
1952	packet_size = 64;
1953
1954	while (alt_idx < intf->num_altsetting) {
1955		iface = intf->altsetting + alt_idx;
1956		probe_alt_setting = iface->desc.bAlternateSetting;
1957		cfg_used = 0;
1958
1959		while (validconf[cfg_used][0]) {
1960			cfg_found = 1;
1961			vcf = validconf[cfg_used];
1962			ep = iface->endpoint;
1963			memcpy(cmptbl, vcf, 16 * sizeof(int));
1964
1965			/* check for all endpoints in this alternate setting */
1966			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1967				ep_addr = ep->desc.bEndpointAddress;
1968
1969				/* get endpoint base */
1970				idx = ((ep_addr & 0x7f) - 1) * 2;
1971				if (idx > 15)
1972					return -EIO;
1973
1974				if (ep_addr & 0x80)
1975					idx++;
1976				attr = ep->desc.bmAttributes;
1977
1978				if (cmptbl[idx] != EP_NOP) {
1979					if (cmptbl[idx] == EP_NUL)
1980						cfg_found = 0;
1981					if (attr == USB_ENDPOINT_XFER_INT
1982					    && cmptbl[idx] == EP_INT)
1983						cmptbl[idx] = EP_NUL;
1984					if (attr == USB_ENDPOINT_XFER_BULK
1985					    && cmptbl[idx] == EP_BLK)
1986						cmptbl[idx] = EP_NUL;
1987					if (attr == USB_ENDPOINT_XFER_ISOC
1988					    && cmptbl[idx] == EP_ISO)
1989						cmptbl[idx] = EP_NUL;
1990
1991					if (attr == USB_ENDPOINT_XFER_INT &&
1992					    ep->desc.bInterval < vcf[17]) {
1993						cfg_found = 0;
1994					}
1995				}
1996				ep++;
1997			}
1998
1999			for (i = 0; i < 16; i++)
2000				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2001					cfg_found = 0;
2002
2003			if (cfg_found) {
2004				if (small_match < cfg_used) {
2005					small_match = cfg_used;
2006					alt_used = probe_alt_setting;
2007					iface_used = iface;
2008				}
2009			}
2010			cfg_used++;
2011		}
2012		alt_idx++;
2013	}	/* (alt_idx < intf->num_altsetting) */
2014
2015	/* not found a valid USB Ta Endpoint config */
2016	if (small_match == -1)
2017		return -EIO;
2018
2019	iface = iface_used;
2020	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2021	if (!hw)
2022		return -ENOMEM;	/* got no mem */
2023	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2024
2025	ep = iface->endpoint;
2026	vcf = validconf[small_match];
2027
2028	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2029		struct usb_fifo *f;
2030
2031		ep_addr = ep->desc.bEndpointAddress;
2032		/* get endpoint base */
2033		idx = ((ep_addr & 0x7f) - 1) * 2;
2034		if (ep_addr & 0x80)
2035			idx++;
2036		f = &hw->fifos[idx & 7];
2037
2038		/* init Endpoints */
2039		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2040			ep++;
2041			continue;
2042		}
2043		switch (ep->desc.bmAttributes) {
2044		case USB_ENDPOINT_XFER_INT:
2045			f->pipe = usb_rcvintpipe(dev,
2046						 ep->desc.bEndpointAddress);
2047			f->usb_transfer_mode = USB_INT;
2048			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2049			break;
2050		case USB_ENDPOINT_XFER_BULK:
2051			if (ep_addr & 0x80)
2052				f->pipe = usb_rcvbulkpipe(dev,
2053							  ep->desc.bEndpointAddress);
2054			else
2055				f->pipe = usb_sndbulkpipe(dev,
2056							  ep->desc.bEndpointAddress);
2057			f->usb_transfer_mode = USB_BULK;
2058			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2059			break;
2060		case USB_ENDPOINT_XFER_ISOC:
2061			if (ep_addr & 0x80)
2062				f->pipe = usb_rcvisocpipe(dev,
2063							  ep->desc.bEndpointAddress);
2064			else
2065				f->pipe = usb_sndisocpipe(dev,
2066							  ep->desc.bEndpointAddress);
2067			f->usb_transfer_mode = USB_ISOC;
2068			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2069			break;
2070		default:
2071			f->pipe = 0;
2072		}
2073
2074		if (f->pipe) {
2075			f->fifonum = idx & 7;
2076			f->hw = hw;
2077			f->usb_packet_maxlen =
2078				le16_to_cpu(ep->desc.wMaxPacketSize);
2079			f->intervall = ep->desc.bInterval;
2080		}
2081		ep++;
2082	}
2083	hw->dev = dev; /* save device */
2084	hw->if_used = ifnum; /* save used interface */
2085	hw->alt_used = alt_used; /* and alternate config */
2086	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2087	hw->cfg_used = vcf[16];	/* store used config */
2088	hw->vend_idx = vend_idx; /* store found vendor */
2089	hw->packet_size = packet_size;
2090	hw->iso_packet_size = iso_packet_size;
2091
2092	/* create the control pipes needed for register access */
2093	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2094	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2095
2096	driver_info = (struct hfcsusb_vdata *)
2097		      hfcsusb_idtab[vend_idx].driver_info;
2098
2099	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2100	if (!hw->ctrl_urb) {
2101		pr_warn("%s: No memory for control urb\n",
2102			driver_info->vend_name);
2103		kfree(hw);
2104		return -ENOMEM;
2105	}
2106
2107	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2108		hw->name, __func__, driver_info->vend_name,
2109		conf_str[small_match], ifnum, alt_used);
2110
2111	if (setup_instance(hw, dev->dev.parent))
2112		return -EIO;
2113
2114	hw->intf = intf;
2115	usb_set_intfdata(hw->intf, hw);
2116	return 0;
2117}
2118
2119/* function called when an active device is removed */
2120static void
2121hfcsusb_disconnect(struct usb_interface *intf)
2122{
2123	struct hfcsusb *hw = usb_get_intfdata(intf);
2124	struct hfcsusb *next;
2125	int cnt = 0;
2126
2127	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2128
2129	handle_led(hw, LED_POWER_OFF);
2130	release_hw(hw);
2131
2132	list_for_each_entry_safe(hw, next, &HFClist, list)
2133		cnt++;
2134	if (!cnt)
2135		hfcsusb_cnt = 0;
2136
2137	usb_set_intfdata(intf, NULL);
2138}
2139
2140static struct usb_driver hfcsusb_drv = {
2141	.name = DRIVER_NAME,
2142	.id_table = hfcsusb_idtab,
2143	.probe = hfcsusb_probe,
2144	.disconnect = hfcsusb_disconnect,
2145	.disable_hub_initiated_lpm = 1,
2146};
2147
2148module_usb_driver(hfcsusb_drv);
2149