1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 *
5 * Author	Andreas Eversberg (jolly@eversberg.eu)
6 * ported to mqueue mechanism:
7 *		Peter Sprenger (sprengermoving-bytes.de)
8 *
9 * inspired by existing hfc-pci driver:
10 * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11 * Copyright 2008  by Karsten Keil (kkeil@suse.de)
12 * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
13 *
14 * Thanks to Cologne Chip AG for this great controller!
15 */
16
17/*
18 * module parameters:
19 * type:
20 *	By default (0), the card is automatically detected.
21 *	Or use the following combinations:
22 *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
23 * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
24 * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
25 *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
26 *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
27 *	Bit 10    = spare
28 *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29 * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30 *	Bit 13	  = spare
31 *	Bit 14    = 0x04000 = Use external ram (128K)
32 *	Bit 15    = 0x08000 = Use external ram (512K)
33 *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
34 * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
35 *	Bit 18    = spare
36 *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37 * (all other bits are reserved and shall be 0)
38 *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39 *		 bus (PCM master)
40 *
41 * port: (optional or required for all ports on all installed cards)
42 *	HFC-4S/HFC-8S only bits:
43 *	Bit 0	  = 0x001 = Use master clock for this S/T interface
44 *			    (ony once per chip).
45 *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
46 *			    Don't use this unless you know what you are doing!
47 *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
48 *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49 *		 received from port 1
50 *
51 *	HFC-E1 only bits:
52 *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
53 *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
54 *	Bit 2     = 0x0004 = Report LOS
55 *	Bit 3     = 0x0008 = Report AIS
56 *	Bit 4     = 0x0010 = Report SLIP
57 *	Bit 5     = 0x0020 = Report RDI
58 *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59 *			     mode instead.
60 *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
61 * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
62 *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63 *			     (E1 only)
64 *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65 *			     for default.
66 * (all other bits are reserved and shall be 0)
67 *
68 * debug:
69 *	NOTE: only one debug value must be given for all cards
70 *	enable debugging (see hfc_multi.h for debug options)
71 *
72 * poll:
73 *	NOTE: only one poll value must be given for all cards
74 *	Give the number of samples for each fifo process.
75 *	By default 128 is used. Decrease to reduce delay, increase to
76 *	reduce cpu load. If unsure, don't mess with it!
77 *	Valid is 8, 16, 32, 64, 128, 256.
78 *
79 * pcm:
80 *	NOTE: only one pcm value must be given for every card.
81 *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82 *	By default (0), the PCM bus id is 100 for the card that is PCM master.
83 *	If multiple cards are PCM master (because they are not interconnected),
84 *	each card with PCM master will have increasing PCM id.
85 *	All PCM busses with the same ID are expected to be connected and have
86 *	common time slots slots.
87 *	Only one chip of the PCM bus must be master, the others slave.
88 *	-1 means no support of PCM bus not even.
89 *	Omit this value, if all cards are interconnected or none is connected.
90 *	If unsure, don't give this parameter.
91 *
92 * dmask and bmask:
93 *	NOTE: One dmask value must be given for every HFC-E1 card.
94 *	If omitted, the E1 card has D-channel on time slot 16, which is default.
95 *	dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96 *	If multiple bits are set, multiple virtual card fragments are created.
97 *	For each bit set, a bmask value must be given. Each bit on the bmask
98 *	value stands for a B-channel. The bmask may not overlap with dmask or
99 *	with other bmask values for that card.
100 *	Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101 *		This will create one fragment with D-channel on slot 1 with
102 *		B-channels on slots 2..15, and a second fragment with D-channel
103 *		on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104 *	If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105 *	not function.
106 *	Example: dmask=0x00000001 bmask=0xfffffffe
107 *		This will create a port with all 31 usable timeslots as
108 *		B-channels.
109 *	If no bits are set on bmask, no B-channel is created for that fragment.
110 *	Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111 *		This will create 31 ports with one D-channel only.
112 *	If you don't know how to use it, you don't need it!
113 *
114 * iomode:
115 *	NOTE: only one mode value must be given for every card.
116 *	-> See hfc_multi.h for HFC_IO_MODE_* values
117 *	By default, the IO mode is pci memory IO (MEMIO).
118 *	Some cards require specific IO mode, so it cannot be changed.
119 *	It may be useful to set IO mode to register io (REGIO) to solve
120 *	PCI bridge problems.
121 *	If unsure, don't give this parameter.
122 *
123 * clockdelay_nt:
124 *	NOTE: only one clockdelay_nt value must be given once for all cards.
125 *	Give the value of the clock control register (A_ST_CLK_DLY)
126 *	of the S/T interfaces in NT mode.
127 *	This register is needed for the TBR3 certification, so don't change it.
128 *
129 * clockdelay_te:
130 *	NOTE: only one clockdelay_te value must be given once
131 *	Give the value of the clock control register (A_ST_CLK_DLY)
132 *	of the S/T interfaces in TE mode.
133 *	This register is needed for the TBR3 certification, so don't change it.
134 *
135 * clock:
136 *	NOTE: only one clock value must be given once
137 *	Selects interface with clock source for mISDN and applications.
138 *	Set to card number starting with 1. Set to -1 to disable.
139 *	By default, the first card is used as clock source.
140 *
141 * hwid:
142 *	NOTE: only one hwid value must be given once
143 *	Enable special embedded devices with XHFC controllers.
144 */
145
146/*
147 * debug register access (never use this, it will flood your system log)
148 * #define HFC_REGISTER_DEBUG
149 */
150
151#define HFC_MULTI_VERSION	"2.03"
152
153#include <linux/interrupt.h>
154#include <linux/module.h>
155#include <linux/slab.h>
156#include <linux/pci.h>
157#include <linux/delay.h>
158#include <linux/mISDNhw.h>
159#include <linux/mISDNdsp.h>
160
161/*
162  #define IRQCOUNT_DEBUG
163  #define IRQ_DEBUG
164*/
165
166#include "hfc_multi.h"
167#ifdef ECHOPREP
168#include "gaintab.h"
169#endif
170
171#define	MAX_CARDS	8
172#define	MAX_PORTS	(8 * MAX_CARDS)
173#define	MAX_FRAGS	(32 * MAX_CARDS)
174
175static LIST_HEAD(HFClist);
176static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */
177
178static void ph_state_change(struct dchannel *);
179
180static struct hfc_multi *syncmaster;
181static int plxsd_master; /* if we have a master card (yet) */
182static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */
183
184#define	TYP_E1		1
185#define	TYP_4S		4
186#define TYP_8S		8
187
188static int poll_timer = 6;	/* default = 128 samples = 16ms */
189/* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
191#define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
192#define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
193				   (0x60 MUST be included!) */
194
195#define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
196#define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
197#define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
198
199/*
200 * module stuff
201 */
202
203static uint	type[MAX_CARDS];
204static int	pcm[MAX_CARDS];
205static uint	dmask[MAX_CARDS];
206static uint	bmask[MAX_FRAGS];
207static uint	iomode[MAX_CARDS];
208static uint	port[MAX_PORTS];
209static uint	debug;
210static uint	poll;
211static int	clock;
212static uint	timer;
213static uint	clockdelay_te = CLKDEL_TE;
214static uint	clockdelay_nt = CLKDEL_NT;
215#define HWID_NONE	0
216#define HWID_MINIP4	1
217#define HWID_MINIP8	2
218#define HWID_MINIP16	3
219static uint	hwid = HWID_NONE;
220
221static int	HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222
223MODULE_AUTHOR("Andreas Eversberg");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(HFC_MULTI_VERSION);
226module_param(debug, uint, S_IRUGO | S_IWUSR);
227module_param(poll, uint, S_IRUGO | S_IWUSR);
228module_param(clock, int, S_IRUGO | S_IWUSR);
229module_param(timer, uint, S_IRUGO | S_IWUSR);
230module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
235module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
236module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
237module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
238module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
239
240#ifdef HFC_REGISTER_DEBUG
241#define HFC_outb(hc, reg, val)					\
242	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
243#define HFC_outb_nodebug(hc, reg, val)					\
244	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
245#define HFC_inb(hc, reg)				\
246	(hc->HFC_inb(hc, reg, __func__, __LINE__))
247#define HFC_inb_nodebug(hc, reg)				\
248	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
249#define HFC_inw(hc, reg)				\
250	(hc->HFC_inw(hc, reg, __func__, __LINE__))
251#define HFC_inw_nodebug(hc, reg)				\
252	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
253#define HFC_wait(hc)				\
254	(hc->HFC_wait(hc, __func__, __LINE__))
255#define HFC_wait_nodebug(hc)				\
256	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
257#else
258#define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
259#define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
260#define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
261#define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
262#define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
263#define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
264#define HFC_wait(hc)			(hc->HFC_wait(hc))
265#define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
266#endif
267
268#ifdef CONFIG_MISDN_HFCMULTI_8xx
269#include "hfc_multi_8xx.h"
270#endif
271
272/* HFC_IO_MODE_PCIMEM */
273static void
274#ifdef HFC_REGISTER_DEBUG
275HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
276		const char *function, int line)
277#else
278	HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
279#endif
280{
281	writeb(val, hc->pci_membase + reg);
282}
283static u_char
284#ifdef HFC_REGISTER_DEBUG
285HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
286#else
287	HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
288#endif
289{
290	return readb(hc->pci_membase + reg);
291}
292static u_short
293#ifdef HFC_REGISTER_DEBUG
294HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
295#else
296	HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
297#endif
298{
299	return readw(hc->pci_membase + reg);
300}
301static void
302#ifdef HFC_REGISTER_DEBUG
303HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
304#else
305	HFC_wait_pcimem(struct hfc_multi *hc)
306#endif
307{
308	while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
309		cpu_relax();
310}
311
312/* HFC_IO_MODE_REGIO */
313static void
314#ifdef HFC_REGISTER_DEBUG
315HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
316	       const char *function, int line)
317#else
318	HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
319#endif
320{
321	outb(reg, hc->pci_iobase + 4);
322	outb(val, hc->pci_iobase);
323}
324static u_char
325#ifdef HFC_REGISTER_DEBUG
326HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
327#else
328	HFC_inb_regio(struct hfc_multi *hc, u_char reg)
329#endif
330{
331	outb(reg, hc->pci_iobase + 4);
332	return inb(hc->pci_iobase);
333}
334static u_short
335#ifdef HFC_REGISTER_DEBUG
336HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
337#else
338	HFC_inw_regio(struct hfc_multi *hc, u_char reg)
339#endif
340{
341	outb(reg, hc->pci_iobase + 4);
342	return inw(hc->pci_iobase);
343}
344static void
345#ifdef HFC_REGISTER_DEBUG
346HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
347#else
348	HFC_wait_regio(struct hfc_multi *hc)
349#endif
350{
351	outb(R_STATUS, hc->pci_iobase + 4);
352	while (inb(hc->pci_iobase) & V_BUSY)
353		cpu_relax();
354}
355
356#ifdef HFC_REGISTER_DEBUG
357static void
358HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
359	       const char *function, int line)
360{
361	char regname[256] = "", bits[9] = "xxxxxxxx";
362	int i;
363
364	i = -1;
365	while (hfc_register_names[++i].name) {
366		if (hfc_register_names[i].reg == reg)
367			strcat(regname, hfc_register_names[i].name);
368	}
369	if (regname[0] == '\0')
370		strcpy(regname, "register");
371
372	bits[7] = '0' + (!!(val & 1));
373	bits[6] = '0' + (!!(val & 2));
374	bits[5] = '0' + (!!(val & 4));
375	bits[4] = '0' + (!!(val & 8));
376	bits[3] = '0' + (!!(val & 16));
377	bits[2] = '0' + (!!(val & 32));
378	bits[1] = '0' + (!!(val & 64));
379	bits[0] = '0' + (!!(val & 128));
380	printk(KERN_DEBUG
381	       "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
382	       hc->id, reg, regname, val, bits, function, line);
383	HFC_outb_nodebug(hc, reg, val);
384}
385static u_char
386HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
387{
388	char regname[256] = "", bits[9] = "xxxxxxxx";
389	u_char val = HFC_inb_nodebug(hc, reg);
390	int i;
391
392	i = 0;
393	while (hfc_register_names[i++].name)
394		;
395	while (hfc_register_names[++i].name) {
396		if (hfc_register_names[i].reg == reg)
397			strcat(regname, hfc_register_names[i].name);
398	}
399	if (regname[0] == '\0')
400		strcpy(regname, "register");
401
402	bits[7] = '0' + (!!(val & 1));
403	bits[6] = '0' + (!!(val & 2));
404	bits[5] = '0' + (!!(val & 4));
405	bits[4] = '0' + (!!(val & 8));
406	bits[3] = '0' + (!!(val & 16));
407	bits[2] = '0' + (!!(val & 32));
408	bits[1] = '0' + (!!(val & 64));
409	bits[0] = '0' + (!!(val & 128));
410	printk(KERN_DEBUG
411	       "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
412	       hc->id, reg, regname, val, bits, function, line);
413	return val;
414}
415static u_short
416HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
417{
418	char regname[256] = "";
419	u_short val = HFC_inw_nodebug(hc, reg);
420	int i;
421
422	i = 0;
423	while (hfc_register_names[i++].name)
424		;
425	while (hfc_register_names[++i].name) {
426		if (hfc_register_names[i].reg == reg)
427			strcat(regname, hfc_register_names[i].name);
428	}
429	if (regname[0] == '\0')
430		strcpy(regname, "register");
431
432	printk(KERN_DEBUG
433	       "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
434	       hc->id, reg, regname, val, function, line);
435	return val;
436}
437static void
438HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
439{
440	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
441	       hc->id, function, line);
442	HFC_wait_nodebug(hc);
443}
444#endif
445
446/* write fifo data (REGIO) */
447static void
448write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
449{
450	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
451	while (len >> 2) {
452		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
453		data += 4;
454		len -= 4;
455	}
456	while (len >> 1) {
457		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
458		data += 2;
459		len -= 2;
460	}
461	while (len) {
462		outb(*data, hc->pci_iobase);
463		data++;
464		len--;
465	}
466}
467/* write fifo data (PCIMEM) */
468static void
469write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
470{
471	while (len >> 2) {
472		writel(cpu_to_le32(*(u32 *)data),
473		       hc->pci_membase + A_FIFO_DATA0);
474		data += 4;
475		len -= 4;
476	}
477	while (len >> 1) {
478		writew(cpu_to_le16(*(u16 *)data),
479		       hc->pci_membase + A_FIFO_DATA0);
480		data += 2;
481		len -= 2;
482	}
483	while (len) {
484		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
485		data++;
486		len--;
487	}
488}
489
490/* read fifo data (REGIO) */
491static void
492read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
493{
494	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
495	while (len >> 2) {
496		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
497		data += 4;
498		len -= 4;
499	}
500	while (len >> 1) {
501		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
502		data += 2;
503		len -= 2;
504	}
505	while (len) {
506		*data = inb(hc->pci_iobase);
507		data++;
508		len--;
509	}
510}
511
512/* read fifo data (PCIMEM) */
513static void
514read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
515{
516	while (len >> 2) {
517		*(u32 *)data =
518			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
519		data += 4;
520		len -= 4;
521	}
522	while (len >> 1) {
523		*(u16 *)data =
524			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
525		data += 2;
526		len -= 2;
527	}
528	while (len) {
529		*data = readb(hc->pci_membase + A_FIFO_DATA0);
530		data++;
531		len--;
532	}
533}
534
535static void
536enable_hwirq(struct hfc_multi *hc)
537{
538	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
539	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
540}
541
542static void
543disable_hwirq(struct hfc_multi *hc)
544{
545	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
546	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
547}
548
549#define	NUM_EC 2
550#define	MAX_TDM_CHAN 32
551
552
553static inline void
554enablepcibridge(struct hfc_multi *c)
555{
556	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
557}
558
559static inline void
560disablepcibridge(struct hfc_multi *c)
561{
562	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
563}
564
565static inline unsigned char
566readpcibridge(struct hfc_multi *hc, unsigned char address)
567{
568	unsigned short cipv;
569	unsigned char data;
570
571	if (!hc->pci_iobase)
572		return 0;
573
574	/* slow down a PCI read access by 1 PCI clock cycle */
575	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
576
577	if (address == 0)
578		cipv = 0x4000;
579	else
580		cipv = 0x5800;
581
582	/* select local bridge port address by writing to CIP port */
583	/* data = HFC_inb(c, cipv); * was _io before */
584	outw(cipv, hc->pci_iobase + 4);
585	data = inb(hc->pci_iobase);
586
587	/* restore R_CTRL for normal PCI read cycle speed */
588	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
589
590	return data;
591}
592
593static inline void
594writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
595{
596	unsigned short cipv;
597	unsigned int datav;
598
599	if (!hc->pci_iobase)
600		return;
601
602	if (address == 0)
603		cipv = 0x4000;
604	else
605		cipv = 0x5800;
606
607	/* select local bridge port address by writing to CIP port */
608	outw(cipv, hc->pci_iobase + 4);
609	/* define a 32 bit dword with 4 identical bytes for write sequence */
610	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
611		((__u32) data << 24);
612
613	/*
614	 * write this 32 bit dword to the bridge data port
615	 * this will initiate a write sequence of up to 4 writes to the same
616	 * address on the local bus interface the number of write accesses
617	 * is undefined but >=1 and depends on the next PCI transaction
618	 * during write sequence on the local bus
619	 */
620	outl(datav, hc->pci_iobase);
621}
622
623static inline void
624cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
625{
626	/* Do data pin read low byte */
627	HFC_outb(hc, R_GPIO_OUT1, reg);
628}
629
630static inline void
631cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
632{
633	cpld_set_reg(hc, reg);
634
635	enablepcibridge(hc);
636	writepcibridge(hc, 1, val);
637	disablepcibridge(hc);
638
639	return;
640}
641
642static inline void
643vpm_write_address(struct hfc_multi *hc, unsigned short addr)
644{
645	cpld_write_reg(hc, 0, 0xff & addr);
646	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
647}
648
649static inline unsigned char
650vpm_in(struct hfc_multi *c, int which, unsigned short addr)
651{
652	unsigned char res;
653
654	vpm_write_address(c, addr);
655
656	if (!which)
657		cpld_set_reg(c, 2);
658	else
659		cpld_set_reg(c, 3);
660
661	enablepcibridge(c);
662	res = readpcibridge(c, 1);
663	disablepcibridge(c);
664
665	cpld_set_reg(c, 0);
666
667	return res;
668}
669
670static inline void
671vpm_out(struct hfc_multi *c, int which, unsigned short addr,
672	unsigned char data)
673{
674	vpm_write_address(c, addr);
675
676	enablepcibridge(c);
677
678	if (!which)
679		cpld_set_reg(c, 2);
680	else
681		cpld_set_reg(c, 3);
682
683	writepcibridge(c, 1, data);
684
685	cpld_set_reg(c, 0);
686
687	disablepcibridge(c);
688
689	{
690		unsigned char regin;
691		regin = vpm_in(c, which, addr);
692		if (regin != data)
693			printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
694			       "0x%x\n", data, addr, regin);
695	}
696
697}
698
699
700static void
701vpm_init(struct hfc_multi *wc)
702{
703	unsigned char reg;
704	unsigned int mask;
705	unsigned int i, x, y;
706	unsigned int ver;
707
708	for (x = 0; x < NUM_EC; x++) {
709		/* Setup GPIO's */
710		if (!x) {
711			ver = vpm_in(wc, x, 0x1a0);
712			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
713		}
714
715		for (y = 0; y < 4; y++) {
716			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
717			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
718			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
719		}
720
721		/* Setup TDM path - sets fsync and tdm_clk as inputs */
722		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
723		vpm_out(wc, x, 0x1a3, reg & ~2);
724
725		/* Setup Echo length (256 taps) */
726		vpm_out(wc, x, 0x022, 1);
727		vpm_out(wc, x, 0x023, 0xff);
728
729		/* Setup timeslots */
730		vpm_out(wc, x, 0x02f, 0x00);
731		mask = 0x02020202 << (x * 4);
732
733		/* Setup the tdm channel masks for all chips */
734		for (i = 0; i < 4; i++)
735			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
736
737		/* Setup convergence rate */
738		printk(KERN_DEBUG "VPM: A-law mode\n");
739		reg = 0x00 | 0x10 | 0x01;
740		vpm_out(wc, x, 0x20, reg);
741		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
742		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
743
744		vpm_out(wc, x, 0x24, 0x02);
745		reg = vpm_in(wc, x, 0x24);
746		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
747
748		/* Initialize echo cans */
749		for (i = 0; i < MAX_TDM_CHAN; i++) {
750			if (mask & (0x00000001 << i))
751				vpm_out(wc, x, i, 0x00);
752		}
753
754		/*
755		 * ARM arch at least disallows a udelay of
756		 * more than 2ms... it gives a fake "__bad_udelay"
757		 * reference at link-time.
758		 * long delays in kernel code are pretty sucky anyway
759		 * for now work around it using 5 x 2ms instead of 1 x 10ms
760		 */
761
762		udelay(2000);
763		udelay(2000);
764		udelay(2000);
765		udelay(2000);
766		udelay(2000);
767
768		/* Put in bypass mode */
769		for (i = 0; i < MAX_TDM_CHAN; i++) {
770			if (mask & (0x00000001 << i))
771				vpm_out(wc, x, i, 0x01);
772		}
773
774		/* Enable bypass */
775		for (i = 0; i < MAX_TDM_CHAN; i++) {
776			if (mask & (0x00000001 << i))
777				vpm_out(wc, x, 0x78 + i, 0x01);
778		}
779
780	}
781}
782
783#ifdef UNUSED
784static void
785vpm_check(struct hfc_multi *hctmp)
786{
787	unsigned char gpi2;
788
789	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
790
791	if ((gpi2 & 0x3) != 0x3)
792		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
793}
794#endif /* UNUSED */
795
796
797/*
798 * Interface to enable/disable the HW Echocan
799 *
800 * these functions are called within a spin_lock_irqsave on
801 * the channel instance lock, so we are not disturbed by irqs
802 *
803 * we can later easily change the interface to make  other
804 * things configurable, for now we configure the taps
805 *
806 */
807
808static void
809vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
810{
811	unsigned int timeslot;
812	unsigned int unit;
813	struct bchannel *bch = hc->chan[ch].bch;
814#ifdef TXADJ
815	int txadj = -4;
816	struct sk_buff *skb;
817#endif
818	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
819		return;
820
821	if (!bch)
822		return;
823
824#ifdef TXADJ
825	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
826			       sizeof(int), &txadj, GFP_ATOMIC);
827	if (skb)
828		recv_Bchannel_skb(bch, skb);
829#endif
830
831	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
832	unit = ch % 4;
833
834	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
835	       taps, timeslot);
836
837	vpm_out(hc, unit, timeslot, 0x7e);
838}
839
840static void
841vpm_echocan_off(struct hfc_multi *hc, int ch)
842{
843	unsigned int timeslot;
844	unsigned int unit;
845	struct bchannel *bch = hc->chan[ch].bch;
846#ifdef TXADJ
847	int txadj = 0;
848	struct sk_buff *skb;
849#endif
850
851	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
852		return;
853
854	if (!bch)
855		return;
856
857#ifdef TXADJ
858	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
859			       sizeof(int), &txadj, GFP_ATOMIC);
860	if (skb)
861		recv_Bchannel_skb(bch, skb);
862#endif
863
864	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
865	unit = ch % 4;
866
867	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
868	       timeslot);
869	/* FILLME */
870	vpm_out(hc, unit, timeslot, 0x01);
871}
872
873
874/*
875 * Speech Design resync feature
876 * NOTE: This is called sometimes outside interrupt handler.
877 * We must lock irqsave, so no other interrupt (other card) will occur!
878 * Also multiple interrupts may nest, so must lock each access (lists, card)!
879 */
880static inline void
881hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
882{
883	struct hfc_multi *hc, *next, *pcmmaster = NULL;
884	void __iomem *plx_acc_32;
885	u_int pv;
886	u_long flags;
887
888	spin_lock_irqsave(&HFClock, flags);
889	spin_lock(&plx_lock); /* must be locked inside other locks */
890
891	if (debug & DEBUG_HFCMULTI_PLXSD)
892		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
893		       __func__, syncmaster);
894
895	/* select new master */
896	if (newmaster) {
897		if (debug & DEBUG_HFCMULTI_PLXSD)
898			printk(KERN_DEBUG "using provided controller\n");
899	} else {
900		list_for_each_entry_safe(hc, next, &HFClist, list) {
901			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
902				if (hc->syncronized) {
903					newmaster = hc;
904					break;
905				}
906			}
907		}
908	}
909
910	/* Disable sync of all cards */
911	list_for_each_entry_safe(hc, next, &HFClist, list) {
912		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
913			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
914			pv = readl(plx_acc_32);
915			pv &= ~PLX_SYNC_O_EN;
916			writel(pv, plx_acc_32);
917			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
918				pcmmaster = hc;
919				if (hc->ctype == HFC_TYPE_E1) {
920					if (debug & DEBUG_HFCMULTI_PLXSD)
921						printk(KERN_DEBUG
922						       "Schedule SYNC_I\n");
923					hc->e1_resync |= 1; /* get SYNC_I */
924				}
925			}
926		}
927	}
928
929	if (newmaster) {
930		hc = newmaster;
931		if (debug & DEBUG_HFCMULTI_PLXSD)
932			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
933			       "interface.\n", hc->id, hc);
934		/* Enable new sync master */
935		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
936		pv = readl(plx_acc_32);
937		pv |= PLX_SYNC_O_EN;
938		writel(pv, plx_acc_32);
939		/* switch to jatt PLL, if not disabled by RX_SYNC */
940		if (hc->ctype == HFC_TYPE_E1
941		    && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
942			if (debug & DEBUG_HFCMULTI_PLXSD)
943				printk(KERN_DEBUG "Schedule jatt PLL\n");
944			hc->e1_resync |= 2; /* switch to jatt */
945		}
946	} else {
947		if (pcmmaster) {
948			hc = pcmmaster;
949			if (debug & DEBUG_HFCMULTI_PLXSD)
950				printk(KERN_DEBUG
951				       "id=%d (0x%p) = PCM master syncronized "
952				       "with QUARTZ\n", hc->id, hc);
953			if (hc->ctype == HFC_TYPE_E1) {
954				/* Use the crystal clock for the PCM
955				   master card */
956				if (debug & DEBUG_HFCMULTI_PLXSD)
957					printk(KERN_DEBUG
958					       "Schedule QUARTZ for HFC-E1\n");
959				hc->e1_resync |= 4; /* switch quartz */
960			} else {
961				if (debug & DEBUG_HFCMULTI_PLXSD)
962					printk(KERN_DEBUG
963					       "QUARTZ is automatically "
964					       "enabled by HFC-%dS\n", hc->ctype);
965			}
966			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
967			pv = readl(plx_acc_32);
968			pv |= PLX_SYNC_O_EN;
969			writel(pv, plx_acc_32);
970		} else
971			if (!rm)
972				printk(KERN_ERR "%s no pcm master, this MUST "
973				       "not happen!\n", __func__);
974	}
975	syncmaster = newmaster;
976
977	spin_unlock(&plx_lock);
978	spin_unlock_irqrestore(&HFClock, flags);
979}
980
981/* This must be called AND hc must be locked irqsave!!! */
982static inline void
983plxsd_checksync(struct hfc_multi *hc, int rm)
984{
985	if (hc->syncronized) {
986		if (syncmaster == NULL) {
987			if (debug & DEBUG_HFCMULTI_PLXSD)
988				printk(KERN_DEBUG "%s: GOT sync on card %d"
989				       " (id=%d)\n", __func__, hc->id + 1,
990				       hc->id);
991			hfcmulti_resync(hc, hc, rm);
992		}
993	} else {
994		if (syncmaster == hc) {
995			if (debug & DEBUG_HFCMULTI_PLXSD)
996				printk(KERN_DEBUG "%s: LOST sync on card %d"
997				       " (id=%d)\n", __func__, hc->id + 1,
998				       hc->id);
999			hfcmulti_resync(hc, NULL, rm);
1000		}
1001	}
1002}
1003
1004
1005/*
1006 * free hardware resources used by driver
1007 */
1008static void
1009release_io_hfcmulti(struct hfc_multi *hc)
1010{
1011	void __iomem *plx_acc_32;
1012	u_int	pv;
1013	u_long	plx_flags;
1014
1015	if (debug & DEBUG_HFCMULTI_INIT)
1016		printk(KERN_DEBUG "%s: entered\n", __func__);
1017
1018	/* soft reset also masks all interrupts */
1019	hc->hw.r_cirm |= V_SRES;
1020	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1021	udelay(1000);
1022	hc->hw.r_cirm &= ~V_SRES;
1023	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1024	udelay(1000); /* instead of 'wait' that may cause locking */
1025
1026	/* release Speech Design card, if PLX was initialized */
1027	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1028		if (debug & DEBUG_HFCMULTI_PLXSD)
1029			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1030			       __func__, hc->id + 1);
1031		spin_lock_irqsave(&plx_lock, plx_flags);
1032		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1033		writel(PLX_GPIOC_INIT, plx_acc_32);
1034		pv = readl(plx_acc_32);
1035		/* Termination off */
1036		pv &= ~PLX_TERM_ON;
1037		/* Disconnect the PCM */
1038		pv |= PLX_SLAVE_EN_N;
1039		pv &= ~PLX_MASTER_EN;
1040		pv &= ~PLX_SYNC_O_EN;
1041		/* Put the DSP in Reset */
1042		pv &= ~PLX_DSP_RES_N;
1043		writel(pv, plx_acc_32);
1044		if (debug & DEBUG_HFCMULTI_INIT)
1045			printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1046			       __func__, pv);
1047		spin_unlock_irqrestore(&plx_lock, plx_flags);
1048	}
1049
1050	/* disable memory mapped ports / io ports */
1051	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1052	if (hc->pci_dev)
1053		pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1054	if (hc->pci_membase)
1055		iounmap(hc->pci_membase);
1056	if (hc->plx_membase)
1057		iounmap(hc->plx_membase);
1058	if (hc->pci_iobase)
1059		release_region(hc->pci_iobase, 8);
1060	if (hc->xhfc_membase)
1061		iounmap((void *)hc->xhfc_membase);
1062
1063	if (hc->pci_dev) {
1064		pci_disable_device(hc->pci_dev);
1065		pci_set_drvdata(hc->pci_dev, NULL);
1066	}
1067	if (debug & DEBUG_HFCMULTI_INIT)
1068		printk(KERN_DEBUG "%s: done\n", __func__);
1069}
1070
1071/*
1072 * function called to reset the HFC chip. A complete software reset of chip
1073 * and fifos is done. All configuration of the chip is done.
1074 */
1075
1076static int
1077init_chip(struct hfc_multi *hc)
1078{
1079	u_long			flags, val, val2 = 0, rev;
1080	int			i, err = 0;
1081	u_char			r_conf_en, rval;
1082	void __iomem		*plx_acc_32;
1083	u_int			pv;
1084	u_long			plx_flags, hfc_flags;
1085	int			plx_count;
1086	struct hfc_multi	*pos, *next, *plx_last_hc;
1087
1088	spin_lock_irqsave(&hc->lock, flags);
1089	/* reset all registers */
1090	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1091
1092	/* revision check */
1093	if (debug & DEBUG_HFCMULTI_INIT)
1094		printk(KERN_DEBUG "%s: entered\n", __func__);
1095	val = HFC_inb(hc, R_CHIP_ID);
1096	if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1097	    (val >> 1) != 0x31) {
1098		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1099		err = -EIO;
1100		goto out;
1101	}
1102	rev = HFC_inb(hc, R_CHIP_RV);
1103	printk(KERN_INFO
1104	       "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1105	       val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1106	       " (old FIFO handling)" : "");
1107	if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1108		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1109		printk(KERN_WARNING
1110		       "HFC_multi: NOTE: Your chip is revision 0, "
1111		       "ask Cologne Chip for update. Newer chips "
1112		       "have a better FIFO handling. Old chips "
1113		       "still work but may have slightly lower "
1114		       "HDLC transmit performance.\n");
1115	}
1116	if (rev > 1) {
1117		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1118		       "consider chip revision = %ld. The chip / "
1119		       "bridge may not work.\n", rev);
1120	}
1121
1122	/* set s-ram size */
1123	hc->Flen = 0x10;
1124	hc->Zmin = 0x80;
1125	hc->Zlen = 384;
1126	hc->DTMFbase = 0x1000;
1127	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1128		if (debug & DEBUG_HFCMULTI_INIT)
1129			printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1130			       __func__);
1131		hc->hw.r_ctrl |= V_EXT_RAM;
1132		hc->hw.r_ram_sz = 1;
1133		hc->Flen = 0x20;
1134		hc->Zmin = 0xc0;
1135		hc->Zlen = 1856;
1136		hc->DTMFbase = 0x2000;
1137	}
1138	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1139		if (debug & DEBUG_HFCMULTI_INIT)
1140			printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1141			       __func__);
1142		hc->hw.r_ctrl |= V_EXT_RAM;
1143		hc->hw.r_ram_sz = 2;
1144		hc->Flen = 0x20;
1145		hc->Zmin = 0xc0;
1146		hc->Zlen = 8000;
1147		hc->DTMFbase = 0x2000;
1148	}
1149	if (hc->ctype == HFC_TYPE_XHFC) {
1150		hc->Flen = 0x8;
1151		hc->Zmin = 0x0;
1152		hc->Zlen = 64;
1153		hc->DTMFbase = 0x0;
1154	}
1155	hc->max_trans = poll << 1;
1156	if (hc->max_trans > hc->Zlen)
1157		hc->max_trans = hc->Zlen;
1158
1159	/* Speech Design PLX bridge */
1160	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1161		if (debug & DEBUG_HFCMULTI_PLXSD)
1162			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1163			       __func__, hc->id + 1);
1164		spin_lock_irqsave(&plx_lock, plx_flags);
1165		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1166		writel(PLX_GPIOC_INIT, plx_acc_32);
1167		pv = readl(plx_acc_32);
1168		/* The first and the last cards are terminating the PCM bus */
1169		pv |= PLX_TERM_ON; /* hc is currently the last */
1170		/* Disconnect the PCM */
1171		pv |= PLX_SLAVE_EN_N;
1172		pv &= ~PLX_MASTER_EN;
1173		pv &= ~PLX_SYNC_O_EN;
1174		/* Put the DSP in Reset */
1175		pv &= ~PLX_DSP_RES_N;
1176		writel(pv, plx_acc_32);
1177		spin_unlock_irqrestore(&plx_lock, plx_flags);
1178		if (debug & DEBUG_HFCMULTI_INIT)
1179			printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1180			       __func__, pv);
1181		/*
1182		 * If we are the 3rd PLXSD card or higher, we must turn
1183		 * termination of last PLXSD card off.
1184		 */
1185		spin_lock_irqsave(&HFClock, hfc_flags);
1186		plx_count = 0;
1187		plx_last_hc = NULL;
1188		list_for_each_entry_safe(pos, next, &HFClist, list) {
1189			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1190				plx_count++;
1191				if (pos != hc)
1192					plx_last_hc = pos;
1193			}
1194		}
1195		if (plx_count >= 3) {
1196			if (debug & DEBUG_HFCMULTI_PLXSD)
1197				printk(KERN_DEBUG "%s: card %d is between, so "
1198				       "we disable termination\n",
1199				       __func__, plx_last_hc->id + 1);
1200			spin_lock_irqsave(&plx_lock, plx_flags);
1201			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1202			pv = readl(plx_acc_32);
1203			pv &= ~PLX_TERM_ON;
1204			writel(pv, plx_acc_32);
1205			spin_unlock_irqrestore(&plx_lock, plx_flags);
1206			if (debug & DEBUG_HFCMULTI_INIT)
1207				printk(KERN_DEBUG
1208				       "%s: term off: PLX_GPIO=%x\n",
1209				       __func__, pv);
1210		}
1211		spin_unlock_irqrestore(&HFClock, hfc_flags);
1212		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1213	}
1214
1215	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1216		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1217
1218	/* we only want the real Z2 read-pointer for revision > 0 */
1219	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1220		hc->hw.r_ram_sz |= V_FZ_MD;
1221
1222	/* select pcm mode */
1223	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1224		if (debug & DEBUG_HFCMULTI_INIT)
1225			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1226			       __func__);
1227	} else
1228		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1229			if (debug & DEBUG_HFCMULTI_INIT)
1230				printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1231				       __func__);
1232			hc->hw.r_pcm_md0 |= V_PCM_MD;
1233		} else {
1234			if (debug & DEBUG_HFCMULTI_INIT)
1235				printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1236				       __func__);
1237		}
1238
1239	/* soft reset */
1240	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1241	if (hc->ctype == HFC_TYPE_XHFC)
1242		HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1243			 0x11 /* 16 Bytes TX/RX */);
1244	else
1245		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1246	HFC_outb(hc, R_FIFO_MD, 0);
1247	if (hc->ctype == HFC_TYPE_XHFC)
1248		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1249	else
1250		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1251			| V_RLD_EPR;
1252	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1253	udelay(100);
1254	hc->hw.r_cirm = 0;
1255	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1256	udelay(100);
1257	if (hc->ctype != HFC_TYPE_XHFC)
1258		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1259
1260	/* Speech Design PLX bridge pcm and sync mode */
1261	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1262		spin_lock_irqsave(&plx_lock, plx_flags);
1263		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1264		pv = readl(plx_acc_32);
1265		/* Connect PCM */
1266		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1267			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1268			pv |= PLX_SYNC_O_EN;
1269			if (debug & DEBUG_HFCMULTI_INIT)
1270				printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1271				       __func__, pv);
1272		} else {
1273			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1274			pv &= ~PLX_SYNC_O_EN;
1275			if (debug & DEBUG_HFCMULTI_INIT)
1276				printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1277				       __func__, pv);
1278		}
1279		writel(pv, plx_acc_32);
1280		spin_unlock_irqrestore(&plx_lock, plx_flags);
1281	}
1282
1283	/* PCM setup */
1284	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1285	if (hc->slots == 32)
1286		HFC_outb(hc, R_PCM_MD1, 0x00);
1287	if (hc->slots == 64)
1288		HFC_outb(hc, R_PCM_MD1, 0x10);
1289	if (hc->slots == 128)
1290		HFC_outb(hc, R_PCM_MD1, 0x20);
1291	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1292	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1293		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1294	else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1295		HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1296	else
1297		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1298	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1299	for (i = 0; i < 256; i++) {
1300		HFC_outb_nodebug(hc, R_SLOT, i);
1301		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1302		if (hc->ctype != HFC_TYPE_XHFC)
1303			HFC_outb_nodebug(hc, A_CONF, 0);
1304		hc->slot_owner[i] = -1;
1305	}
1306
1307	/* set clock speed */
1308	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1309		if (debug & DEBUG_HFCMULTI_INIT)
1310			printk(KERN_DEBUG
1311			       "%s: setting double clock\n", __func__);
1312		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1313	}
1314
1315	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1316		HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1317
1318	/* B410P GPIO */
1319	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1320		printk(KERN_NOTICE "Setting GPIOs\n");
1321		HFC_outb(hc, R_GPIO_SEL, 0x30);
1322		HFC_outb(hc, R_GPIO_EN1, 0x3);
1323		udelay(1000);
1324		printk(KERN_NOTICE "calling vpm_init\n");
1325		vpm_init(hc);
1326	}
1327
1328	/* check if R_F0_CNT counts (8 kHz frame count) */
1329	val = HFC_inb(hc, R_F0_CNTL);
1330	val += HFC_inb(hc, R_F0_CNTH) << 8;
1331	if (debug & DEBUG_HFCMULTI_INIT)
1332		printk(KERN_DEBUG
1333		       "HFC_multi F0_CNT %ld after reset\n", val);
1334	spin_unlock_irqrestore(&hc->lock, flags);
1335	set_current_state(TASK_UNINTERRUPTIBLE);
1336	schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1337	spin_lock_irqsave(&hc->lock, flags);
1338	val2 = HFC_inb(hc, R_F0_CNTL);
1339	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1340	if (debug & DEBUG_HFCMULTI_INIT)
1341		printk(KERN_DEBUG
1342		       "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1343		       val2);
1344	if (val2 >= val + 8) { /* 1 ms */
1345		/* it counts, so we keep the pcm mode */
1346		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1347			printk(KERN_INFO "controller is PCM bus MASTER\n");
1348		else
1349			if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1350				printk(KERN_INFO "controller is PCM bus SLAVE\n");
1351			else {
1352				test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1353				printk(KERN_INFO "controller is PCM bus SLAVE "
1354				       "(auto detected)\n");
1355			}
1356	} else {
1357		/* does not count */
1358		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1359		controller_fail:
1360			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1361			       "pulse. Seems that controller fails.\n");
1362			err = -EIO;
1363			goto out;
1364		}
1365		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1366			printk(KERN_INFO "controller is PCM bus SLAVE "
1367			       "(ignoring missing PCM clock)\n");
1368		} else {
1369			/* only one pcm master */
1370			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1371			    && plxsd_master) {
1372				printk(KERN_ERR "HFC_multi ERROR, no clock "
1373				       "on another Speech Design card found. "
1374				       "Please be sure to connect PCM cable.\n");
1375				err = -EIO;
1376				goto out;
1377			}
1378			/* retry with master clock */
1379			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1380				spin_lock_irqsave(&plx_lock, plx_flags);
1381				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1382				pv = readl(plx_acc_32);
1383				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1384				pv |= PLX_SYNC_O_EN;
1385				writel(pv, plx_acc_32);
1386				spin_unlock_irqrestore(&plx_lock, plx_flags);
1387				if (debug & DEBUG_HFCMULTI_INIT)
1388					printk(KERN_DEBUG "%s: master: "
1389					       "PLX_GPIO=%x\n", __func__, pv);
1390			}
1391			hc->hw.r_pcm_md0 |= V_PCM_MD;
1392			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1393			spin_unlock_irqrestore(&hc->lock, flags);
1394			set_current_state(TASK_UNINTERRUPTIBLE);
1395			schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1396			spin_lock_irqsave(&hc->lock, flags);
1397			val2 = HFC_inb(hc, R_F0_CNTL);
1398			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1399			if (debug & DEBUG_HFCMULTI_INIT)
1400				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1401				       "10 ms (2nd try)\n", val2);
1402			if (val2 >= val + 8) { /* 1 ms */
1403				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1404						 &hc->chip);
1405				printk(KERN_INFO "controller is PCM bus MASTER "
1406				       "(auto detected)\n");
1407			} else
1408				goto controller_fail;
1409		}
1410	}
1411
1412	/* Release the DSP Reset */
1413	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1414		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1415			plxsd_master = 1;
1416		spin_lock_irqsave(&plx_lock, plx_flags);
1417		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1418		pv = readl(plx_acc_32);
1419		pv |=  PLX_DSP_RES_N;
1420		writel(pv, plx_acc_32);
1421		spin_unlock_irqrestore(&plx_lock, plx_flags);
1422		if (debug & DEBUG_HFCMULTI_INIT)
1423			printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1424			       __func__, pv);
1425	}
1426
1427	/* pcm id */
1428	if (hc->pcm)
1429		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1430		       hc->pcm);
1431	else {
1432		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1433		    || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1434			PCM_cnt++; /* SD has proprietary bridging */
1435		}
1436		hc->pcm = PCM_cnt;
1437		printk(KERN_INFO "controller has PCM BUS ID %d "
1438		       "(auto selected)\n", hc->pcm);
1439	}
1440
1441	/* set up timer */
1442	HFC_outb(hc, R_TI_WD, poll_timer);
1443	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1444
1445	/* set E1 state machine IRQ */
1446	if (hc->ctype == HFC_TYPE_E1)
1447		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1448
1449	/* set DTMF detection */
1450	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1451		if (debug & DEBUG_HFCMULTI_INIT)
1452			printk(KERN_DEBUG "%s: enabling DTMF detection "
1453			       "for all B-channel\n", __func__);
1454		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1455		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1456			hc->hw.r_dtmf |= V_ULAW_SEL;
1457		HFC_outb(hc, R_DTMF_N, 102 - 1);
1458		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1459	}
1460
1461	/* conference engine */
1462	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1463		r_conf_en = V_CONF_EN | V_ULAW;
1464	else
1465		r_conf_en = V_CONF_EN;
1466	if (hc->ctype != HFC_TYPE_XHFC)
1467		HFC_outb(hc, R_CONF_EN, r_conf_en);
1468
1469	/* setting leds */
1470	switch (hc->leds) {
1471	case 1: /* HFC-E1 OEM */
1472		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1473			HFC_outb(hc, R_GPIO_SEL, 0x32);
1474		else
1475			HFC_outb(hc, R_GPIO_SEL, 0x30);
1476
1477		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1478		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1479
1480		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1481		break;
1482
1483	case 2: /* HFC-4S OEM */
1484	case 3:
1485		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1486		HFC_outb(hc, R_GPIO_EN1, 0xff);
1487		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1488		break;
1489	}
1490
1491	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1492		hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1493		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1494	}
1495
1496	/* set master clock */
1497	if (hc->masterclk >= 0) {
1498		if (debug & DEBUG_HFCMULTI_INIT)
1499			printk(KERN_DEBUG "%s: setting ST master clock "
1500			       "to port %d (0..%d)\n",
1501			       __func__, hc->masterclk, hc->ports - 1);
1502		hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1503		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1504	}
1505
1506
1507
1508	/* setting misc irq */
1509	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1510	if (debug & DEBUG_HFCMULTI_INIT)
1511		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1512		       hc->hw.r_irqmsk_misc);
1513
1514	/* RAM access test */
1515	HFC_outb(hc, R_RAM_ADDR0, 0);
1516	HFC_outb(hc, R_RAM_ADDR1, 0);
1517	HFC_outb(hc, R_RAM_ADDR2, 0);
1518	for (i = 0; i < 256; i++) {
1519		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1520		HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1521	}
1522	for (i = 0; i < 256; i++) {
1523		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1524		HFC_inb_nodebug(hc, R_RAM_DATA);
1525		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1526		if (rval != ((i * 3) & 0xff)) {
1527			printk(KERN_DEBUG
1528			       "addr:%x val:%x should:%x\n", i, rval,
1529			       (i * 3) & 0xff);
1530			err++;
1531		}
1532	}
1533	if (err) {
1534		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1535		err = -EIO;
1536		goto out;
1537	}
1538
1539	if (debug & DEBUG_HFCMULTI_INIT)
1540		printk(KERN_DEBUG "%s: done\n", __func__);
1541out:
1542	spin_unlock_irqrestore(&hc->lock, flags);
1543	return err;
1544}
1545
1546
1547/*
1548 * control the watchdog
1549 */
1550static void
1551hfcmulti_watchdog(struct hfc_multi *hc)
1552{
1553	hc->wdcount++;
1554
1555	if (hc->wdcount > 10) {
1556		hc->wdcount = 0;
1557		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1558			V_GPIO_OUT3 : V_GPIO_OUT2;
1559
1560		/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1561		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1562		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1563	}
1564}
1565
1566
1567
1568/*
1569 * output leds
1570 */
1571static void
1572hfcmulti_leds(struct hfc_multi *hc)
1573{
1574	unsigned long lled;
1575	unsigned long leddw;
1576	int i, state, active, leds;
1577	struct dchannel *dch;
1578	int led[4];
1579
1580	switch (hc->leds) {
1581	case 1: /* HFC-E1 OEM */
1582		/* 2 red steady:       LOS
1583		 * 1 red steady:       L1 not active
1584		 * 2 green steady:     L1 active
1585		 * 1st green flashing: activity on TX
1586		 * 2nd green flashing: activity on RX
1587		 */
1588		led[0] = 0;
1589		led[1] = 0;
1590		led[2] = 0;
1591		led[3] = 0;
1592		dch = hc->chan[hc->dnum[0]].dch;
1593		if (dch) {
1594			if (hc->chan[hc->dnum[0]].los)
1595				led[1] = 1;
1596			if (hc->e1_state != 1) {
1597				led[0] = 1;
1598				hc->flash[2] = 0;
1599				hc->flash[3] = 0;
1600			} else {
1601				led[2] = 1;
1602				led[3] = 1;
1603				if (!hc->flash[2] && hc->activity_tx)
1604					hc->flash[2] = poll;
1605				if (!hc->flash[3] && hc->activity_rx)
1606					hc->flash[3] = poll;
1607				if (hc->flash[2] && hc->flash[2] < 1024)
1608					led[2] = 0;
1609				if (hc->flash[3] && hc->flash[3] < 1024)
1610					led[3] = 0;
1611				if (hc->flash[2] >= 2048)
1612					hc->flash[2] = 0;
1613				if (hc->flash[3] >= 2048)
1614					hc->flash[3] = 0;
1615				if (hc->flash[2])
1616					hc->flash[2] += poll;
1617				if (hc->flash[3])
1618					hc->flash[3] += poll;
1619			}
1620		}
1621		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1622		/* leds are inverted */
1623		if (leds != (int)hc->ledstate) {
1624			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1625			hc->ledstate = leds;
1626		}
1627		break;
1628
1629	case 2: /* HFC-4S OEM */
1630		/* red steady:     PH_DEACTIVATE
1631		 * green steady:   PH_ACTIVATE
1632		 * green flashing: activity on TX
1633		 */
1634		for (i = 0; i < 4; i++) {
1635			state = 0;
1636			active = -1;
1637			dch = hc->chan[(i << 2) | 2].dch;
1638			if (dch) {
1639				state = dch->state;
1640				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1641					active = 3;
1642				else
1643					active = 7;
1644			}
1645			if (state) {
1646				if (state == active) {
1647					led[i] = 1; /* led green */
1648					hc->activity_tx |= hc->activity_rx;
1649					if (!hc->flash[i] &&
1650						(hc->activity_tx & (1 << i)))
1651							hc->flash[i] = poll;
1652					if (hc->flash[i] && hc->flash[i] < 1024)
1653						led[i] = 0; /* led off */
1654					if (hc->flash[i] >= 2048)
1655						hc->flash[i] = 0;
1656					if (hc->flash[i])
1657						hc->flash[i] += poll;
1658				} else {
1659					led[i] = 2; /* led red */
1660					hc->flash[i] = 0;
1661				}
1662			} else
1663				led[i] = 0; /* led off */
1664		}
1665		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1666			leds = 0;
1667			for (i = 0; i < 4; i++) {
1668				if (led[i] == 1) {
1669					/*green*/
1670					leds |= (0x2 << (i * 2));
1671				} else if (led[i] == 2) {
1672					/*red*/
1673					leds |= (0x1 << (i * 2));
1674				}
1675			}
1676			if (leds != (int)hc->ledstate) {
1677				vpm_out(hc, 0, 0x1a8 + 3, leds);
1678				hc->ledstate = leds;
1679			}
1680		} else {
1681			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1682				((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1683				((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1684				((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1685			if (leds != (int)hc->ledstate) {
1686				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1687				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1688				hc->ledstate = leds;
1689			}
1690		}
1691		break;
1692
1693	case 3: /* HFC 1S/2S Beronet */
1694		/* red steady:     PH_DEACTIVATE
1695		 * green steady:   PH_ACTIVATE
1696		 * green flashing: activity on TX
1697		 */
1698		for (i = 0; i < 2; i++) {
1699			state = 0;
1700			active = -1;
1701			dch = hc->chan[(i << 2) | 2].dch;
1702			if (dch) {
1703				state = dch->state;
1704				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1705					active = 3;
1706				else
1707					active = 7;
1708			}
1709			if (state) {
1710				if (state == active) {
1711					led[i] = 1; /* led green */
1712					hc->activity_tx |= hc->activity_rx;
1713					if (!hc->flash[i] &&
1714						(hc->activity_tx & (1 << i)))
1715							hc->flash[i] = poll;
1716					if (hc->flash[i] < 1024)
1717						led[i] = 0; /* led off */
1718					if (hc->flash[i] >= 2048)
1719						hc->flash[i] = 0;
1720					if (hc->flash[i])
1721						hc->flash[i] += poll;
1722				} else {
1723					led[i] = 2; /* led red */
1724					hc->flash[i] = 0;
1725				}
1726			} else
1727				led[i] = 0; /* led off */
1728		}
1729		leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1730			| ((led[1]&1) << 3);
1731		if (leds != (int)hc->ledstate) {
1732			HFC_outb_nodebug(hc, R_GPIO_EN1,
1733					 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1734			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1735					 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1736			hc->ledstate = leds;
1737		}
1738		break;
1739	case 8: /* HFC 8S+ Beronet */
1740		/* off:      PH_DEACTIVATE
1741		 * steady:   PH_ACTIVATE
1742		 * flashing: activity on TX
1743		 */
1744		lled = 0xff; /* leds off */
1745		for (i = 0; i < 8; i++) {
1746			state = 0;
1747			active = -1;
1748			dch = hc->chan[(i << 2) | 2].dch;
1749			if (dch) {
1750				state = dch->state;
1751				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1752					active = 3;
1753				else
1754					active = 7;
1755			}
1756			if (state) {
1757				if (state == active) {
1758					lled &= ~(1 << i); /* led on */
1759					hc->activity_tx |= hc->activity_rx;
1760					if (!hc->flash[i] &&
1761						(hc->activity_tx & (1 << i)))
1762							hc->flash[i] = poll;
1763					if (hc->flash[i] < 1024)
1764						lled |= 1 << i; /* led off */
1765					if (hc->flash[i] >= 2048)
1766						hc->flash[i] = 0;
1767					if (hc->flash[i])
1768						hc->flash[i] += poll;
1769				} else
1770					hc->flash[i] = 0;
1771			}
1772		}
1773		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1774		if (leddw != hc->ledstate) {
1775			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1776			   HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1777			/* was _io before */
1778			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1779			outw(0x4000, hc->pci_iobase + 4);
1780			outl(leddw, hc->pci_iobase);
1781			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1782			hc->ledstate = leddw;
1783		}
1784		break;
1785	}
1786	hc->activity_tx = 0;
1787	hc->activity_rx = 0;
1788}
1789/*
1790 * read dtmf coefficients
1791 */
1792
1793static void
1794hfcmulti_dtmf(struct hfc_multi *hc)
1795{
1796	s32		*coeff;
1797	u_int		mantissa;
1798	int		co, ch;
1799	struct bchannel	*bch = NULL;
1800	u8		exponent;
1801	int		dtmf = 0;
1802	int		addr;
1803	u16		w_float;
1804	struct sk_buff	*skb;
1805	struct mISDNhead *hh;
1806
1807	if (debug & DEBUG_HFCMULTI_DTMF)
1808		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1809	for (ch = 0; ch <= 31; ch++) {
1810		/* only process enabled B-channels */
1811		bch = hc->chan[ch].bch;
1812		if (!bch)
1813			continue;
1814		if (!hc->created[hc->chan[ch].port])
1815			continue;
1816		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1817			continue;
1818		if (debug & DEBUG_HFCMULTI_DTMF)
1819			printk(KERN_DEBUG "%s: dtmf channel %d:",
1820			       __func__, ch);
1821		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1822		dtmf = 1;
1823		for (co = 0; co < 8; co++) {
1824			/* read W(n-1) coefficient */
1825			addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1826			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1827			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1828			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1829					 | V_ADDR_INC);
1830			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1831			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1832			if (debug & DEBUG_HFCMULTI_DTMF)
1833				printk(" %04x", w_float);
1834
1835			/* decode float (see chip doc) */
1836			mantissa = w_float & 0x0fff;
1837			if (w_float & 0x8000)
1838				mantissa |= 0xfffff000;
1839			exponent = (w_float >> 12) & 0x7;
1840			if (exponent) {
1841				mantissa ^= 0x1000;
1842				mantissa <<= (exponent - 1);
1843			}
1844
1845			/* store coefficient */
1846			coeff[co << 1] = mantissa;
1847
1848			/* read W(n) coefficient */
1849			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1850			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1851			if (debug & DEBUG_HFCMULTI_DTMF)
1852				printk(" %04x", w_float);
1853
1854			/* decode float (see chip doc) */
1855			mantissa = w_float & 0x0fff;
1856			if (w_float & 0x8000)
1857				mantissa |= 0xfffff000;
1858			exponent = (w_float >> 12) & 0x7;
1859			if (exponent) {
1860				mantissa ^= 0x1000;
1861				mantissa <<= (exponent - 1);
1862			}
1863
1864			/* store coefficient */
1865			coeff[(co << 1) | 1] = mantissa;
1866		}
1867		if (debug & DEBUG_HFCMULTI_DTMF)
1868			printk(" DTMF ready %08x %08x %08x %08x "
1869			       "%08x %08x %08x %08x\n",
1870			       coeff[0], coeff[1], coeff[2], coeff[3],
1871			       coeff[4], coeff[5], coeff[6], coeff[7]);
1872		hc->chan[ch].coeff_count++;
1873		if (hc->chan[ch].coeff_count == 8) {
1874			hc->chan[ch].coeff_count = 0;
1875			skb = mI_alloc_skb(512, GFP_ATOMIC);
1876			if (!skb) {
1877				printk(KERN_DEBUG "%s: No memory for skb\n",
1878				       __func__);
1879				continue;
1880			}
1881			hh = mISDN_HEAD_P(skb);
1882			hh->prim = PH_CONTROL_IND;
1883			hh->id = DTMF_HFC_COEF;
1884			skb_put_data(skb, hc->chan[ch].coeff, 512);
1885			recv_Bchannel_skb(bch, skb);
1886		}
1887	}
1888
1889	/* restart DTMF processing */
1890	hc->dtmf = dtmf;
1891	if (dtmf)
1892		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1893}
1894
1895
1896/*
1897 * fill fifo as much as possible
1898 */
1899
1900static void
1901hfcmulti_tx(struct hfc_multi *hc, int ch)
1902{
1903	int i, ii, temp, len = 0;
1904	int Zspace, z1, z2; /* must be int for calculation */
1905	int Fspace, f1, f2;
1906	u_char *d;
1907	int *txpending, slot_tx;
1908	struct	bchannel *bch;
1909	struct  dchannel *dch;
1910	struct  sk_buff **sp = NULL;
1911	int *idxp;
1912
1913	bch = hc->chan[ch].bch;
1914	dch = hc->chan[ch].dch;
1915	if ((!dch) && (!bch))
1916		return;
1917
1918	txpending = &hc->chan[ch].txpending;
1919	slot_tx = hc->chan[ch].slot_tx;
1920	if (dch) {
1921		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1922			return;
1923		sp = &dch->tx_skb;
1924		idxp = &dch->tx_idx;
1925	} else {
1926		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1927			return;
1928		sp = &bch->tx_skb;
1929		idxp = &bch->tx_idx;
1930	}
1931	if (*sp)
1932		len = (*sp)->len;
1933
1934	if ((!len) && *txpending != 1)
1935		return; /* no data */
1936
1937	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1938	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1939	    (hc->chan[ch].slot_rx < 0) &&
1940	    (hc->chan[ch].slot_tx < 0))
1941		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1942	else
1943		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1944	HFC_wait_nodebug(hc);
1945
1946	if (*txpending == 2) {
1947		/* reset fifo */
1948		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1949		HFC_wait_nodebug(hc);
1950		HFC_outb(hc, A_SUBCH_CFG, 0);
1951		*txpending = 1;
1952	}
1953next_frame:
1954	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1955		f1 = HFC_inb_nodebug(hc, A_F1);
1956		f2 = HFC_inb_nodebug(hc, A_F2);
1957		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1958			if (debug & DEBUG_HFCMULTI_FIFO)
1959				printk(KERN_DEBUG
1960				       "%s(card %d): reread f2 because %d!=%d\n",
1961				       __func__, hc->id + 1, temp, f2);
1962			f2 = temp; /* repeat until F2 is equal */
1963		}
1964		Fspace = f2 - f1 - 1;
1965		if (Fspace < 0)
1966			Fspace += hc->Flen;
1967		/*
1968		 * Old FIFO handling doesn't give us the current Z2 read
1969		 * pointer, so we cannot send the next frame before the fifo
1970		 * is empty. It makes no difference except for a slightly
1971		 * lower performance.
1972		 */
1973		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1974			if (f1 != f2)
1975				Fspace = 0;
1976			else
1977				Fspace = 1;
1978		}
1979		/* one frame only for ST D-channels, to allow resending */
1980		if (hc->ctype != HFC_TYPE_E1 && dch) {
1981			if (f1 != f2)
1982				Fspace = 0;
1983		}
1984		/* F-counter full condition */
1985		if (Fspace == 0)
1986			return;
1987	}
1988	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1989	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1990	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1991		if (debug & DEBUG_HFCMULTI_FIFO)
1992			printk(KERN_DEBUG "%s(card %d): reread z2 because "
1993			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1994		z2 = temp; /* repeat unti Z2 is equal */
1995	}
1996	hc->chan[ch].Zfill = z1 - z2;
1997	if (hc->chan[ch].Zfill < 0)
1998		hc->chan[ch].Zfill += hc->Zlen;
1999	Zspace = z2 - z1;
2000	if (Zspace <= 0)
2001		Zspace += hc->Zlen;
2002	Zspace -= 4; /* keep not too full, so pointers will not overrun */
2003	/* fill transparent data only to maxinum transparent load (minus 4) */
2004	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2005		Zspace = Zspace - hc->Zlen + hc->max_trans;
2006	if (Zspace <= 0) /* no space of 4 bytes */
2007		return;
2008
2009	/* if no data */
2010	if (!len) {
2011		if (z1 == z2) { /* empty */
2012			/* if done with FIFO audio data during PCM connection */
2013			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2014			    *txpending && slot_tx >= 0) {
2015				if (debug & DEBUG_HFCMULTI_MODE)
2016					printk(KERN_DEBUG
2017					       "%s: reconnecting PCM due to no "
2018					       "more FIFO data: channel %d "
2019					       "slot_tx %d\n",
2020					       __func__, ch, slot_tx);
2021				/* connect slot */
2022				if (hc->ctype == HFC_TYPE_XHFC)
2023					HFC_outb(hc, A_CON_HDLC, 0xc0
2024						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2025				/* Enable FIFO, no interrupt */
2026				else
2027					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2028						 V_HDLC_TRP | V_IFF);
2029				HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2030				HFC_wait_nodebug(hc);
2031				if (hc->ctype == HFC_TYPE_XHFC)
2032					HFC_outb(hc, A_CON_HDLC, 0xc0
2033						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2034				/* Enable FIFO, no interrupt */
2035				else
2036					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2037						 V_HDLC_TRP | V_IFF);
2038				HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2039				HFC_wait_nodebug(hc);
2040			}
2041			*txpending = 0;
2042		}
2043		return; /* no data */
2044	}
2045
2046	/* "fill fifo if empty" feature */
2047	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2048	    && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2049		if (debug & DEBUG_HFCMULTI_FILL)
2050			printk(KERN_DEBUG "%s: buffer empty, so we have "
2051			       "underrun\n", __func__);
2052		/* fill buffer, to prevent future underrun */
2053		hc->write_fifo(hc, hc->silence_data, poll >> 1);
2054		Zspace -= (poll >> 1);
2055	}
2056
2057	/* if audio data and connected slot */
2058	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2059	    && slot_tx >= 0) {
2060		if (debug & DEBUG_HFCMULTI_MODE)
2061			printk(KERN_DEBUG "%s: disconnecting PCM due to "
2062			       "FIFO data: channel %d slot_tx %d\n",
2063			       __func__, ch, slot_tx);
2064		/* disconnect slot */
2065		if (hc->ctype == HFC_TYPE_XHFC)
2066			HFC_outb(hc, A_CON_HDLC, 0x80
2067				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2068		/* Enable FIFO, no interrupt */
2069		else
2070			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2071				 V_HDLC_TRP | V_IFF);
2072		HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2073		HFC_wait_nodebug(hc);
2074		if (hc->ctype == HFC_TYPE_XHFC)
2075			HFC_outb(hc, A_CON_HDLC, 0x80
2076				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2077		/* Enable FIFO, no interrupt */
2078		else
2079			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2080				 V_HDLC_TRP | V_IFF);
2081		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2082		HFC_wait_nodebug(hc);
2083	}
2084	*txpending = 1;
2085
2086	/* show activity */
2087	if (dch)
2088		hc->activity_tx |= 1 << hc->chan[ch].port;
2089
2090	/* fill fifo to what we have left */
2091	ii = len;
2092	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2093		temp = 1;
2094	else
2095		temp = 0;
2096	i = *idxp;
2097	d = (*sp)->data + i;
2098	if (ii - i > Zspace)
2099		ii = Zspace + i;
2100	if (debug & DEBUG_HFCMULTI_FIFO)
2101		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2102		       "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2103		       __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2104		       temp ? "HDLC" : "TRANS");
2105
2106	/* Have to prep the audio data */
2107	hc->write_fifo(hc, d, ii - i);
2108	hc->chan[ch].Zfill += ii - i;
2109	*idxp = ii;
2110
2111	/* if not all data has been written */
2112	if (ii != len) {
2113		/* NOTE: fifo is started by the calling function */
2114		return;
2115	}
2116
2117	/* if all data has been written, terminate frame */
2118	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2119		/* increment f-counter */
2120		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2121		HFC_wait_nodebug(hc);
2122	}
2123
2124	dev_kfree_skb(*sp);
2125	/* check for next frame */
2126	if (bch && get_next_bframe(bch)) {
2127		len = (*sp)->len;
2128		goto next_frame;
2129	}
2130	if (dch && get_next_dframe(dch)) {
2131		len = (*sp)->len;
2132		goto next_frame;
2133	}
2134
2135	/*
2136	 * now we have no more data, so in case of transparent,
2137	 * we set the last byte in fifo to 'silence' in case we will get
2138	 * no more data at all. this prevents sending an undefined value.
2139	 */
2140	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2141		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2142}
2143
2144
2145/* NOTE: only called if E1 card is in active state */
2146static void
2147hfcmulti_rx(struct hfc_multi *hc, int ch)
2148{
2149	int temp;
2150	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2151	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2152	int again = 0;
2153	struct	bchannel *bch;
2154	struct  dchannel *dch = NULL;
2155	struct sk_buff	*skb, **sp = NULL;
2156	int	maxlen;
2157
2158	bch = hc->chan[ch].bch;
2159	if (bch) {
2160		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2161			return;
2162	} else if (hc->chan[ch].dch) {
2163		dch = hc->chan[ch].dch;
2164		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2165			return;
2166	} else {
2167		return;
2168	}
2169next_frame:
2170	/* on first AND before getting next valid frame, R_FIFO must be written
2171	   to. */
2172	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2173	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2174	    (hc->chan[ch].slot_rx < 0) &&
2175	    (hc->chan[ch].slot_tx < 0))
2176		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2177	else
2178		HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2179	HFC_wait_nodebug(hc);
2180
2181	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2182	if (hc->chan[ch].rx_off) {
2183		if (bch)
2184			bch->dropcnt += poll; /* not exact but fair enough */
2185		return;
2186	}
2187
2188	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2189		f1 = HFC_inb_nodebug(hc, A_F1);
2190		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2191			if (debug & DEBUG_HFCMULTI_FIFO)
2192				printk(KERN_DEBUG
2193				       "%s(card %d): reread f1 because %d!=%d\n",
2194				       __func__, hc->id + 1, temp, f1);
2195			f1 = temp; /* repeat until F1 is equal */
2196		}
2197		f2 = HFC_inb_nodebug(hc, A_F2);
2198	}
2199	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2200	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2201		if (debug & DEBUG_HFCMULTI_FIFO)
2202			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2203			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2204		z1 = temp; /* repeat until Z1 is equal */
2205	}
2206	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2207	Zsize = z1 - z2;
2208	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2209		/* complete hdlc frame */
2210		Zsize++;
2211	if (Zsize < 0)
2212		Zsize += hc->Zlen;
2213	/* if buffer is empty */
2214	if (Zsize <= 0)
2215		return;
2216
2217	if (bch) {
2218		maxlen = bchannel_get_rxbuf(bch, Zsize);
2219		if (maxlen < 0) {
2220			pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2221				hc->id + 1, bch->nr, Zsize);
2222			return;
2223		}
2224		sp = &bch->rx_skb;
2225		maxlen = bch->maxlen;
2226	} else { /* Dchannel */
2227		sp = &dch->rx_skb;
2228		maxlen = dch->maxlen + 3;
2229		if (*sp == NULL) {
2230			*sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2231			if (*sp == NULL) {
2232				pr_warn("card%d: No mem for dch rx_skb\n",
2233					hc->id + 1);
2234				return;
2235			}
2236		}
2237	}
2238	/* show activity */
2239	if (dch)
2240		hc->activity_rx |= 1 << hc->chan[ch].port;
2241
2242	/* empty fifo with what we have */
2243	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2244		if (debug & DEBUG_HFCMULTI_FIFO)
2245			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2246			       "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2247			       "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2248			       Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2249			       f1, f2, Zsize + (*sp)->len, again);
2250		/* HDLC */
2251		if ((Zsize + (*sp)->len) > maxlen) {
2252			if (debug & DEBUG_HFCMULTI_FIFO)
2253				printk(KERN_DEBUG
2254				       "%s(card %d): hdlc-frame too large.\n",
2255				       __func__, hc->id + 1);
2256			skb_trim(*sp, 0);
2257			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2258			HFC_wait_nodebug(hc);
2259			return;
2260		}
2261
2262		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2263
2264		if (f1 != f2) {
2265			/* increment Z2,F2-counter */
2266			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2267			HFC_wait_nodebug(hc);
2268			/* check size */
2269			if ((*sp)->len < 4) {
2270				if (debug & DEBUG_HFCMULTI_FIFO)
2271					printk(KERN_DEBUG
2272					       "%s(card %d): Frame below minimum "
2273					       "size\n", __func__, hc->id + 1);
2274				skb_trim(*sp, 0);
2275				goto next_frame;
2276			}
2277			/* there is at least one complete frame, check crc */
2278			if ((*sp)->data[(*sp)->len - 1]) {
2279				if (debug & DEBUG_HFCMULTI_CRC)
2280					printk(KERN_DEBUG
2281					       "%s: CRC-error\n", __func__);
2282				skb_trim(*sp, 0);
2283				goto next_frame;
2284			}
2285			skb_trim(*sp, (*sp)->len - 3);
2286			if ((*sp)->len < MISDN_COPY_SIZE) {
2287				skb = *sp;
2288				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2289				if (*sp) {
2290					skb_put_data(*sp, skb->data, skb->len);
2291					skb_trim(skb, 0);
2292				} else {
2293					printk(KERN_DEBUG "%s: No mem\n",
2294					       __func__);
2295					*sp = skb;
2296					skb = NULL;
2297				}
2298			} else {
2299				skb = NULL;
2300			}
2301			if (debug & DEBUG_HFCMULTI_FIFO) {
2302				printk(KERN_DEBUG "%s(card %d):",
2303				       __func__, hc->id + 1);
2304				temp = 0;
2305				while (temp < (*sp)->len)
2306					printk(" %02x", (*sp)->data[temp++]);
2307				printk("\n");
2308			}
2309			if (dch)
2310				recv_Dchannel(dch);
2311			else
2312				recv_Bchannel(bch, MISDN_ID_ANY, false);
2313			*sp = skb;
2314			again++;
2315			goto next_frame;
2316		}
2317		/* there is an incomplete frame */
2318	} else {
2319		/* transparent */
2320		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2321		if (debug & DEBUG_HFCMULTI_FIFO)
2322			printk(KERN_DEBUG
2323			       "%s(card %d): fifo(%d) reading %d bytes "
2324			       "(z1=%04x, z2=%04x) TRANS\n",
2325			       __func__, hc->id + 1, ch, Zsize, z1, z2);
2326		/* only bch is transparent */
2327		recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2328	}
2329}
2330
2331
2332/*
2333 * Interrupt handler
2334 */
2335static void
2336signal_state_up(struct dchannel *dch, int info, char *msg)
2337{
2338	struct sk_buff	*skb;
2339	int		id, data = info;
2340
2341	if (debug & DEBUG_HFCMULTI_STATE)
2342		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2343
2344	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2345
2346	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2347			       GFP_ATOMIC);
2348	if (!skb)
2349		return;
2350	recv_Dchannel_skb(dch, skb);
2351}
2352
2353static inline void
2354handle_timer_irq(struct hfc_multi *hc)
2355{
2356	int		ch, temp;
2357	struct dchannel	*dch;
2358	u_long		flags;
2359
2360	/* process queued resync jobs */
2361	if (hc->e1_resync) {
2362		/* lock, so e1_resync gets not changed */
2363		spin_lock_irqsave(&HFClock, flags);
2364		if (hc->e1_resync & 1) {
2365			if (debug & DEBUG_HFCMULTI_PLXSD)
2366				printk(KERN_DEBUG "Enable SYNC_I\n");
2367			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2368			/* disable JATT, if RX_SYNC is set */
2369			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2370				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2371		}
2372		if (hc->e1_resync & 2) {
2373			if (debug & DEBUG_HFCMULTI_PLXSD)
2374				printk(KERN_DEBUG "Enable jatt PLL\n");
2375			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2376		}
2377		if (hc->e1_resync & 4) {
2378			if (debug & DEBUG_HFCMULTI_PLXSD)
2379				printk(KERN_DEBUG
2380				       "Enable QUARTZ for HFC-E1\n");
2381			/* set jatt to quartz */
2382			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2383				 | V_JATT_OFF);
2384			/* switch to JATT, in case it is not already */
2385			HFC_outb(hc, R_SYNC_OUT, 0);
2386		}
2387		hc->e1_resync = 0;
2388		spin_unlock_irqrestore(&HFClock, flags);
2389	}
2390
2391	if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2392		for (ch = 0; ch <= 31; ch++) {
2393			if (hc->created[hc->chan[ch].port]) {
2394				hfcmulti_tx(hc, ch);
2395				/* fifo is started when switching to rx-fifo */
2396				hfcmulti_rx(hc, ch);
2397				if (hc->chan[ch].dch &&
2398				    hc->chan[ch].nt_timer > -1) {
2399					dch = hc->chan[ch].dch;
2400					if (!(--hc->chan[ch].nt_timer)) {
2401						schedule_event(dch,
2402							       FLG_PHCHANGE);
2403						if (debug &
2404						    DEBUG_HFCMULTI_STATE)
2405							printk(KERN_DEBUG
2406							       "%s: nt_timer at "
2407							       "state %x\n",
2408							       __func__,
2409							       dch->state);
2410					}
2411				}
2412			}
2413		}
2414	if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2415		dch = hc->chan[hc->dnum[0]].dch;
2416		/* LOS */
2417		temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2418		hc->chan[hc->dnum[0]].los = temp;
2419		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2420			if (!temp && hc->chan[hc->dnum[0]].los)
2421				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2422						"LOS detected");
2423			if (temp && !hc->chan[hc->dnum[0]].los)
2424				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2425						"LOS gone");
2426		}
2427		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2428			/* AIS */
2429			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2430			if (!temp && hc->chan[hc->dnum[0]].ais)
2431				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2432						"AIS detected");
2433			if (temp && !hc->chan[hc->dnum[0]].ais)
2434				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2435						"AIS gone");
2436			hc->chan[hc->dnum[0]].ais = temp;
2437		}
2438		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2439			/* SLIP */
2440			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2441			if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2442				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2443						" bit SLIP detected RX");
2444			hc->chan[hc->dnum[0]].slip_rx = temp;
2445			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2446			if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2447				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2448						" bit SLIP detected TX");
2449			hc->chan[hc->dnum[0]].slip_tx = temp;
2450		}
2451		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2452			/* RDI */
2453			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2454			if (!temp && hc->chan[hc->dnum[0]].rdi)
2455				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2456						"RDI detected");
2457			if (temp && !hc->chan[hc->dnum[0]].rdi)
2458				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2459						"RDI gone");
2460			hc->chan[hc->dnum[0]].rdi = temp;
2461		}
2462		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2463		switch (hc->chan[hc->dnum[0]].sync) {
2464		case 0:
2465			if ((temp & 0x60) == 0x60) {
2466				if (debug & DEBUG_HFCMULTI_SYNC)
2467					printk(KERN_DEBUG
2468					       "%s: (id=%d) E1 now "
2469					       "in clock sync\n",
2470					       __func__, hc->id);
2471				HFC_outb(hc, R_RX_OFF,
2472				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2473				HFC_outb(hc, R_TX_OFF,
2474				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2475				hc->chan[hc->dnum[0]].sync = 1;
2476				goto check_framesync;
2477			}
2478			break;
2479		case 1:
2480			if ((temp & 0x60) != 0x60) {
2481				if (debug & DEBUG_HFCMULTI_SYNC)
2482					printk(KERN_DEBUG
2483					       "%s: (id=%d) E1 "
2484					       "lost clock sync\n",
2485					       __func__, hc->id);
2486				hc->chan[hc->dnum[0]].sync = 0;
2487				break;
2488			}
2489		check_framesync:
2490			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2491			if (temp == 0x27) {
2492				if (debug & DEBUG_HFCMULTI_SYNC)
2493					printk(KERN_DEBUG
2494					       "%s: (id=%d) E1 "
2495					       "now in frame sync\n",
2496					       __func__, hc->id);
2497				hc->chan[hc->dnum[0]].sync = 2;
2498			}
2499			break;
2500		case 2:
2501			if ((temp & 0x60) != 0x60) {
2502				if (debug & DEBUG_HFCMULTI_SYNC)
2503					printk(KERN_DEBUG
2504					       "%s: (id=%d) E1 lost "
2505					       "clock & frame sync\n",
2506					       __func__, hc->id);
2507				hc->chan[hc->dnum[0]].sync = 0;
2508				break;
2509			}
2510			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2511			if (temp != 0x27) {
2512				if (debug & DEBUG_HFCMULTI_SYNC)
2513					printk(KERN_DEBUG
2514					       "%s: (id=%d) E1 "
2515					       "lost frame sync\n",
2516					       __func__, hc->id);
2517				hc->chan[hc->dnum[0]].sync = 1;
2518			}
2519			break;
2520		}
2521	}
2522
2523	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2524		hfcmulti_watchdog(hc);
2525
2526	if (hc->leds)
2527		hfcmulti_leds(hc);
2528}
2529
2530static void
2531ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2532{
2533	struct dchannel	*dch;
2534	int		ch;
2535	int		active;
2536	u_char		st_status, temp;
2537
2538	/* state machine */
2539	for (ch = 0; ch <= 31; ch++) {
2540		if (hc->chan[ch].dch) {
2541			dch = hc->chan[ch].dch;
2542			if (r_irq_statech & 1) {
2543				HFC_outb_nodebug(hc, R_ST_SEL,
2544						 hc->chan[ch].port);
2545				/* undocumented: delay after R_ST_SEL */
2546				udelay(1);
2547				/* undocumented: status changes during read */
2548				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2549				while (st_status != (temp =
2550						     HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2551					if (debug & DEBUG_HFCMULTI_STATE)
2552						printk(KERN_DEBUG "%s: reread "
2553						       "STATE because %d!=%d\n",
2554						       __func__, temp,
2555						       st_status);
2556					st_status = temp; /* repeat */
2557				}
2558
2559				/* Speech Design TE-sync indication */
2560				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2561				    dch->dev.D.protocol == ISDN_P_TE_S0) {
2562					if (st_status & V_FR_SYNC_ST)
2563						hc->syncronized |=
2564							(1 << hc->chan[ch].port);
2565					else
2566						hc->syncronized &=
2567							~(1 << hc->chan[ch].port);
2568				}
2569				dch->state = st_status & 0x0f;
2570				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2571					active = 3;
2572				else
2573					active = 7;
2574				if (dch->state == active) {
2575					HFC_outb_nodebug(hc, R_FIFO,
2576							 (ch << 1) | 1);
2577					HFC_wait_nodebug(hc);
2578					HFC_outb_nodebug(hc,
2579							 R_INC_RES_FIFO, V_RES_F);
2580					HFC_wait_nodebug(hc);
2581					dch->tx_idx = 0;
2582				}
2583				schedule_event(dch, FLG_PHCHANGE);
2584				if (debug & DEBUG_HFCMULTI_STATE)
2585					printk(KERN_DEBUG
2586					       "%s: S/T newstate %x port %d\n",
2587					       __func__, dch->state,
2588					       hc->chan[ch].port);
2589			}
2590			r_irq_statech >>= 1;
2591		}
2592	}
2593	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2594		plxsd_checksync(hc, 0);
2595}
2596
2597static void
2598fifo_irq(struct hfc_multi *hc, int block)
2599{
2600	int	ch, j;
2601	struct dchannel	*dch;
2602	struct bchannel	*bch;
2603	u_char r_irq_fifo_bl;
2604
2605	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2606	j = 0;
2607	while (j < 8) {
2608		ch = (block << 2) + (j >> 1);
2609		dch = hc->chan[ch].dch;
2610		bch = hc->chan[ch].bch;
2611		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2612			j += 2;
2613			continue;
2614		}
2615		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2616		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2617			hfcmulti_tx(hc, ch);
2618			/* start fifo */
2619			HFC_outb_nodebug(hc, R_FIFO, 0);
2620			HFC_wait_nodebug(hc);
2621		}
2622		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2623		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2624			hfcmulti_tx(hc, ch);
2625			/* start fifo */
2626			HFC_outb_nodebug(hc, R_FIFO, 0);
2627			HFC_wait_nodebug(hc);
2628		}
2629		j++;
2630		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2631		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2632			hfcmulti_rx(hc, ch);
2633		}
2634		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2635		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2636			hfcmulti_rx(hc, ch);
2637		}
2638		j++;
2639	}
2640}
2641
2642#ifdef IRQ_DEBUG
2643int irqsem;
2644#endif
2645static irqreturn_t
2646hfcmulti_interrupt(int intno, void *dev_id)
2647{
2648#ifdef IRQCOUNT_DEBUG
2649	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2650		iq5 = 0, iq6 = 0, iqcnt = 0;
2651#endif
2652	struct hfc_multi	*hc = dev_id;
2653	struct dchannel		*dch;
2654	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2655	int			i;
2656	void __iomem		*plx_acc;
2657	u_short			wval;
2658	u_char			e1_syncsta, temp, temp2;
2659	u_long			flags;
2660
2661	if (!hc) {
2662		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2663		return IRQ_NONE;
2664	}
2665
2666	spin_lock(&hc->lock);
2667
2668#ifdef IRQ_DEBUG
2669	if (irqsem)
2670		printk(KERN_ERR "irq for card %d during irq from "
2671		       "card %d, this is no bug.\n", hc->id + 1, irqsem);
2672	irqsem = hc->id + 1;
2673#endif
2674#ifdef CONFIG_MISDN_HFCMULTI_8xx
2675	if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2676		goto irq_notforus;
2677#endif
2678	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2679		spin_lock_irqsave(&plx_lock, flags);
2680		plx_acc = hc->plx_membase + PLX_INTCSR;
2681		wval = readw(plx_acc);
2682		spin_unlock_irqrestore(&plx_lock, flags);
2683		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2684			goto irq_notforus;
2685	}
2686
2687	status = HFC_inb_nodebug(hc, R_STATUS);
2688	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2689#ifdef IRQCOUNT_DEBUG
2690	if (r_irq_statech)
2691		iq1++;
2692	if (status & V_DTMF_STA)
2693		iq2++;
2694	if (status & V_LOST_STA)
2695		iq3++;
2696	if (status & V_EXT_IRQSTA)
2697		iq4++;
2698	if (status & V_MISC_IRQSTA)
2699		iq5++;
2700	if (status & V_FR_IRQSTA)
2701		iq6++;
2702	if (iqcnt++ > 5000) {
2703		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2704		       iq1, iq2, iq3, iq4, iq5, iq6);
2705		iqcnt = 0;
2706	}
2707#endif
2708
2709	if (!r_irq_statech &&
2710	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2711			V_MISC_IRQSTA | V_FR_IRQSTA))) {
2712		/* irq is not for us */
2713		goto irq_notforus;
2714	}
2715	hc->irqcnt++;
2716	if (r_irq_statech) {
2717		if (hc->ctype != HFC_TYPE_E1)
2718			ph_state_irq(hc, r_irq_statech);
2719	}
2720	if (status & V_LOST_STA) {
2721		/* LOST IRQ */
2722		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2723	}
2724	if (status & V_MISC_IRQSTA) {
2725		/* misc IRQ */
2726		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2727		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2728		if (r_irq_misc & V_STA_IRQ) {
2729			if (hc->ctype == HFC_TYPE_E1) {
2730				/* state machine */
2731				dch = hc->chan[hc->dnum[0]].dch;
2732				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2733				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2734				    && hc->e1_getclock) {
2735					if (e1_syncsta & V_FR_SYNC_E1)
2736						hc->syncronized = 1;
2737					else
2738						hc->syncronized = 0;
2739				}
2740				/* undocumented: status changes during read */
2741				temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2742				while (temp != (temp2 =
2743						      HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2744					if (debug & DEBUG_HFCMULTI_STATE)
2745						printk(KERN_DEBUG "%s: reread "
2746						       "STATE because %d!=%d\n",
2747						    __func__, temp, temp2);
2748					temp = temp2; /* repeat */
2749				}
2750				/* broadcast state change to all fragments */
2751				if (debug & DEBUG_HFCMULTI_STATE)
2752					printk(KERN_DEBUG
2753					       "%s: E1 (id=%d) newstate %x\n",
2754					    __func__, hc->id, temp & 0x7);
2755				for (i = 0; i < hc->ports; i++) {
2756					dch = hc->chan[hc->dnum[i]].dch;
2757					dch->state = temp & 0x7;
2758					schedule_event(dch, FLG_PHCHANGE);
2759				}
2760
2761				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2762					plxsd_checksync(hc, 0);
2763			}
2764		}
2765		if (r_irq_misc & V_TI_IRQ) {
2766			if (hc->iclock_on)
2767				mISDN_clock_update(hc->iclock, poll, NULL);
2768			handle_timer_irq(hc);
2769		}
2770
2771		if (r_irq_misc & V_DTMF_IRQ)
2772			hfcmulti_dtmf(hc);
2773
2774		if (r_irq_misc & V_IRQ_PROC) {
2775			static int irq_proc_cnt;
2776			if (!irq_proc_cnt++)
2777				printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2778				       " this should not happen\n", __func__);
2779		}
2780
2781	}
2782	if (status & V_FR_IRQSTA) {
2783		/* FIFO IRQ */
2784		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2785		for (i = 0; i < 8; i++) {
2786			if (r_irq_oview & (1 << i))
2787				fifo_irq(hc, i);
2788		}
2789	}
2790
2791#ifdef IRQ_DEBUG
2792	irqsem = 0;
2793#endif
2794	spin_unlock(&hc->lock);
2795	return IRQ_HANDLED;
2796
2797irq_notforus:
2798#ifdef IRQ_DEBUG
2799	irqsem = 0;
2800#endif
2801	spin_unlock(&hc->lock);
2802	return IRQ_NONE;
2803}
2804
2805
2806/*
2807 * timer callback for D-chan busy resolution. Currently no function
2808 */
2809
2810static void
2811hfcmulti_dbusy_timer(struct timer_list *t)
2812{
2813}
2814
2815
2816/*
2817 * activate/deactivate hardware for selected channels and mode
2818 *
2819 * configure B-channel with the given protocol
2820 * ch eqals to the HFC-channel (0-31)
2821 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2822 * for S/T, 1-31 for E1)
2823 * the hdlc interrupts will be set/unset
2824 */
2825static int
2826mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2827	      int bank_tx, int slot_rx, int bank_rx)
2828{
2829	int flow_tx = 0, flow_rx = 0, routing = 0;
2830	int oslot_tx, oslot_rx;
2831	int conf;
2832
2833	if (ch < 0 || ch > 31)
2834		return -EINVAL;
2835	oslot_tx = hc->chan[ch].slot_tx;
2836	oslot_rx = hc->chan[ch].slot_rx;
2837	conf = hc->chan[ch].conf;
2838
2839	if (debug & DEBUG_HFCMULTI_MODE)
2840		printk(KERN_DEBUG
2841		       "%s: card %d channel %d protocol %x slot old=%d new=%d "
2842		       "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2843		       __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2844		       bank_tx, oslot_rx, slot_rx, bank_rx);
2845
2846	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2847		/* remove from slot */
2848		if (debug & DEBUG_HFCMULTI_MODE)
2849			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2850			       __func__, oslot_tx);
2851		if (hc->slot_owner[oslot_tx << 1] == ch) {
2852			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2853			HFC_outb(hc, A_SL_CFG, 0);
2854			if (hc->ctype != HFC_TYPE_XHFC)
2855				HFC_outb(hc, A_CONF, 0);
2856			hc->slot_owner[oslot_tx << 1] = -1;
2857		} else {
2858			if (debug & DEBUG_HFCMULTI_MODE)
2859				printk(KERN_DEBUG
2860				       "%s: we are not owner of this tx slot "
2861				       "anymore, channel %d is.\n",
2862				       __func__, hc->slot_owner[oslot_tx << 1]);
2863		}
2864	}
2865
2866	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2867		/* remove from slot */
2868		if (debug & DEBUG_HFCMULTI_MODE)
2869			printk(KERN_DEBUG
2870			       "%s: remove from slot %d (RX)\n",
2871			       __func__, oslot_rx);
2872		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2873			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2874			HFC_outb(hc, A_SL_CFG, 0);
2875			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2876		} else {
2877			if (debug & DEBUG_HFCMULTI_MODE)
2878				printk(KERN_DEBUG
2879				       "%s: we are not owner of this rx slot "
2880				       "anymore, channel %d is.\n",
2881				       __func__,
2882				       hc->slot_owner[(oslot_rx << 1) | 1]);
2883		}
2884	}
2885
2886	if (slot_tx < 0) {
2887		flow_tx = 0x80; /* FIFO->ST */
2888		/* disable pcm slot */
2889		hc->chan[ch].slot_tx = -1;
2890		hc->chan[ch].bank_tx = 0;
2891	} else {
2892		/* set pcm slot */
2893		if (hc->chan[ch].txpending)
2894			flow_tx = 0x80; /* FIFO->ST */
2895		else
2896			flow_tx = 0xc0; /* PCM->ST */
2897		/* put on slot */
2898		routing = bank_tx ? 0xc0 : 0x80;
2899		if (conf >= 0 || bank_tx > 1)
2900			routing = 0x40; /* loop */
2901		if (debug & DEBUG_HFCMULTI_MODE)
2902			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2903			       " %d flow %02x routing %02x conf %d (TX)\n",
2904			       __func__, ch, slot_tx, bank_tx,
2905			       flow_tx, routing, conf);
2906		HFC_outb(hc, R_SLOT, slot_tx << 1);
2907		HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2908		if (hc->ctype != HFC_TYPE_XHFC)
2909			HFC_outb(hc, A_CONF,
2910				 (conf < 0) ? 0 : (conf | V_CONF_SL));
2911		hc->slot_owner[slot_tx << 1] = ch;
2912		hc->chan[ch].slot_tx = slot_tx;
2913		hc->chan[ch].bank_tx = bank_tx;
2914	}
2915	if (slot_rx < 0) {
2916		/* disable pcm slot */
2917		flow_rx = 0x80; /* ST->FIFO */
2918		hc->chan[ch].slot_rx = -1;
2919		hc->chan[ch].bank_rx = 0;
2920	} else {
2921		/* set pcm slot */
2922		if (hc->chan[ch].txpending)
2923			flow_rx = 0x80; /* ST->FIFO */
2924		else
2925			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2926		/* put on slot */
2927		routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2928		if (conf >= 0 || bank_rx > 1)
2929			routing = 0x40; /* loop */
2930		if (debug & DEBUG_HFCMULTI_MODE)
2931			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2932			       " %d flow %02x routing %02x conf %d (RX)\n",
2933			       __func__, ch, slot_rx, bank_rx,
2934			       flow_rx, routing, conf);
2935		HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2936		HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2937		hc->slot_owner[(slot_rx << 1) | 1] = ch;
2938		hc->chan[ch].slot_rx = slot_rx;
2939		hc->chan[ch].bank_rx = bank_rx;
2940	}
2941
2942	switch (protocol) {
2943	case (ISDN_P_NONE):
2944		/* disable TX fifo */
2945		HFC_outb(hc, R_FIFO, ch << 1);
2946		HFC_wait(hc);
2947		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2948		HFC_outb(hc, A_SUBCH_CFG, 0);
2949		HFC_outb(hc, A_IRQ_MSK, 0);
2950		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2951		HFC_wait(hc);
2952		/* disable RX fifo */
2953		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2954		HFC_wait(hc);
2955		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2956		HFC_outb(hc, A_SUBCH_CFG, 0);
2957		HFC_outb(hc, A_IRQ_MSK, 0);
2958		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2959		HFC_wait(hc);
2960		if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2961			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2962				((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2963			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2964			/* undocumented: delay after R_ST_SEL */
2965			udelay(1);
2966			HFC_outb(hc, A_ST_CTRL0,
2967				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2968		}
2969		if (hc->chan[ch].bch) {
2970			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2971			test_and_clear_bit(FLG_TRANSPARENT,
2972					   &hc->chan[ch].bch->Flags);
2973		}
2974		break;
2975	case (ISDN_P_B_RAW): /* B-channel */
2976
2977		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2978		    (hc->chan[ch].slot_rx < 0) &&
2979		    (hc->chan[ch].slot_tx < 0)) {
2980
2981			printk(KERN_DEBUG
2982			       "Setting B-channel %d to echo cancelable "
2983			       "state on PCM slot %d\n", ch,
2984			       ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2985			printk(KERN_DEBUG
2986			       "Enabling pass through for channel\n");
2987			vpm_out(hc, ch, ((ch / 4) * 8) +
2988				((ch % 4) * 4) + 1, 0x01);
2989			/* rx path */
2990			/* S/T -> PCM */
2991			HFC_outb(hc, R_FIFO, (ch << 1));
2992			HFC_wait(hc);
2993			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2994			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2995					      ((ch % 4) * 4) + 1) << 1);
2996			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2997
2998			/* PCM -> FIFO */
2999			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3000			HFC_wait(hc);
3001			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3002			HFC_outb(hc, A_SUBCH_CFG, 0);
3003			HFC_outb(hc, A_IRQ_MSK, 0);
3004			if (hc->chan[ch].protocol != protocol) {
3005				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3006				HFC_wait(hc);
3007			}
3008			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3009					       ((ch % 4) * 4) + 1) << 1) | 1);
3010			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3011
3012			/* tx path */
3013			/* PCM -> S/T */
3014			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3015			HFC_wait(hc);
3016			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3017			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3018					       ((ch % 4) * 4)) << 1) | 1);
3019			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3020
3021			/* FIFO -> PCM */
3022			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3023			HFC_wait(hc);
3024			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3025			HFC_outb(hc, A_SUBCH_CFG, 0);
3026			HFC_outb(hc, A_IRQ_MSK, 0);
3027			if (hc->chan[ch].protocol != protocol) {
3028				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3029				HFC_wait(hc);
3030			}
3031			/* tx silence */
3032			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3033			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3034					      ((ch % 4) * 4)) << 1);
3035			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3036		} else {
3037			/* enable TX fifo */
3038			HFC_outb(hc, R_FIFO, ch << 1);
3039			HFC_wait(hc);
3040			if (hc->ctype == HFC_TYPE_XHFC)
3041				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3042					 V_HDLC_TRP | V_IFF);
3043			/* Enable FIFO, no interrupt */
3044			else
3045				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3046					 V_HDLC_TRP | V_IFF);
3047			HFC_outb(hc, A_SUBCH_CFG, 0);
3048			HFC_outb(hc, A_IRQ_MSK, 0);
3049			if (hc->chan[ch].protocol != protocol) {
3050				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3051				HFC_wait(hc);
3052			}
3053			/* tx silence */
3054			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3055			/* enable RX fifo */
3056			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3057			HFC_wait(hc);
3058			if (hc->ctype == HFC_TYPE_XHFC)
3059				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3060					 V_HDLC_TRP);
3061			/* Enable FIFO, no interrupt*/
3062			else
3063				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3064					 V_HDLC_TRP);
3065			HFC_outb(hc, A_SUBCH_CFG, 0);
3066			HFC_outb(hc, A_IRQ_MSK, 0);
3067			if (hc->chan[ch].protocol != protocol) {
3068				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3069				HFC_wait(hc);
3070			}
3071		}
3072		if (hc->ctype != HFC_TYPE_E1) {
3073			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3074				((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3075			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3076			/* undocumented: delay after R_ST_SEL */
3077			udelay(1);
3078			HFC_outb(hc, A_ST_CTRL0,
3079				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3080		}
3081		if (hc->chan[ch].bch)
3082			test_and_set_bit(FLG_TRANSPARENT,
3083					 &hc->chan[ch].bch->Flags);
3084		break;
3085	case (ISDN_P_B_HDLC): /* B-channel */
3086	case (ISDN_P_TE_S0): /* D-channel */
3087	case (ISDN_P_NT_S0):
3088	case (ISDN_P_TE_E1):
3089	case (ISDN_P_NT_E1):
3090		/* enable TX fifo */
3091		HFC_outb(hc, R_FIFO, ch << 1);
3092		HFC_wait(hc);
3093		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3094			/* E1 or B-channel */
3095			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3096			HFC_outb(hc, A_SUBCH_CFG, 0);
3097		} else {
3098			/* D-Channel without HDLC fill flags */
3099			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3100			HFC_outb(hc, A_SUBCH_CFG, 2);
3101		}
3102		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3103		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3104		HFC_wait(hc);
3105		/* enable RX fifo */
3106		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3107		HFC_wait(hc);
3108		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3109		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3110			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3111		else
3112			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3113		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3114		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3115		HFC_wait(hc);
3116		if (hc->chan[ch].bch) {
3117			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3118			if (hc->ctype != HFC_TYPE_E1) {
3119				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3120					((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3121				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3122				/* undocumented: delay after R_ST_SEL */
3123				udelay(1);
3124				HFC_outb(hc, A_ST_CTRL0,
3125					 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3126			}
3127		}
3128		break;
3129	default:
3130		printk(KERN_DEBUG "%s: protocol not known %x\n",
3131		       __func__, protocol);
3132		hc->chan[ch].protocol = ISDN_P_NONE;
3133		return -ENOPROTOOPT;
3134	}
3135	hc->chan[ch].protocol = protocol;
3136	return 0;
3137}
3138
3139
3140/*
3141 * connect/disconnect PCM
3142 */
3143
3144static void
3145hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3146	     int slot_rx, int bank_rx)
3147{
3148	if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3149		/* disable PCM */
3150		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3151		return;
3152	}
3153
3154	/* enable pcm */
3155	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3156		      slot_rx, bank_rx);
3157}
3158
3159/*
3160 * set/disable conference
3161 */
3162
3163static void
3164hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3165{
3166	if (num >= 0 && num <= 7)
3167		hc->chan[ch].conf = num;
3168	else
3169		hc->chan[ch].conf = -1;
3170	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3171		      hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3172		      hc->chan[ch].bank_rx);
3173}
3174
3175
3176/*
3177 * set/disable sample loop
3178 */
3179
3180/* NOTE: this function is experimental and therefore disabled */
3181
3182/*
3183 * Layer 1 callback function
3184 */
3185static int
3186hfcm_l1callback(struct dchannel *dch, u_int cmd)
3187{
3188	struct hfc_multi	*hc = dch->hw;
3189	struct sk_buff_head	free_queue;
3190	u_long	flags;
3191
3192	switch (cmd) {
3193	case INFO3_P8:
3194	case INFO3_P10:
3195		break;
3196	case HW_RESET_REQ:
3197		/* start activation */
3198		spin_lock_irqsave(&hc->lock, flags);
3199		if (hc->ctype == HFC_TYPE_E1) {
3200			if (debug & DEBUG_HFCMULTI_MSG)
3201				printk(KERN_DEBUG
3202				       "%s: HW_RESET_REQ no BRI\n",
3203				       __func__);
3204		} else {
3205			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3206			/* undocumented: delay after R_ST_SEL */
3207			udelay(1);
3208			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3209			udelay(6); /* wait at least 5,21us */
3210			HFC_outb(hc, A_ST_WR_STATE, 3);
3211			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3212			/* activate */
3213		}
3214		spin_unlock_irqrestore(&hc->lock, flags);
3215		l1_event(dch->l1, HW_POWERUP_IND);
3216		break;
3217	case HW_DEACT_REQ:
3218		__skb_queue_head_init(&free_queue);
3219		/* start deactivation */
3220		spin_lock_irqsave(&hc->lock, flags);
3221		if (hc->ctype == HFC_TYPE_E1) {
3222			if (debug & DEBUG_HFCMULTI_MSG)
3223				printk(KERN_DEBUG
3224				       "%s: HW_DEACT_REQ no BRI\n",
3225				       __func__);
3226		} else {
3227			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3228			/* undocumented: delay after R_ST_SEL */
3229			udelay(1);
3230			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3231			/* deactivate */
3232			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3233				hc->syncronized &=
3234					~(1 << hc->chan[dch->slot].port);
3235				plxsd_checksync(hc, 0);
3236			}
3237		}
3238		skb_queue_splice_init(&dch->squeue, &free_queue);
3239		if (dch->tx_skb) {
3240			__skb_queue_tail(&free_queue, dch->tx_skb);
3241			dch->tx_skb = NULL;
3242		}
3243		dch->tx_idx = 0;
3244		if (dch->rx_skb) {
3245			__skb_queue_tail(&free_queue, dch->rx_skb);
3246			dch->rx_skb = NULL;
3247		}
3248		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3249		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3250			del_timer(&dch->timer);
3251		spin_unlock_irqrestore(&hc->lock, flags);
3252		__skb_queue_purge(&free_queue);
3253		break;
3254	case HW_POWERUP_REQ:
3255		spin_lock_irqsave(&hc->lock, flags);
3256		if (hc->ctype == HFC_TYPE_E1) {
3257			if (debug & DEBUG_HFCMULTI_MSG)
3258				printk(KERN_DEBUG
3259				       "%s: HW_POWERUP_REQ no BRI\n",
3260				       __func__);
3261		} else {
3262			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3263			/* undocumented: delay after R_ST_SEL */
3264			udelay(1);
3265			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3266			udelay(6); /* wait at least 5,21us */
3267			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3268		}
3269		spin_unlock_irqrestore(&hc->lock, flags);
3270		break;
3271	case PH_ACTIVATE_IND:
3272		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3273		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3274			    GFP_ATOMIC);
3275		break;
3276	case PH_DEACTIVATE_IND:
3277		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3278		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3279			    GFP_ATOMIC);
3280		break;
3281	default:
3282		if (dch->debug & DEBUG_HW)
3283			printk(KERN_DEBUG "%s: unknown command %x\n",
3284			       __func__, cmd);
3285		return -1;
3286	}
3287	return 0;
3288}
3289
3290/*
3291 * Layer2 -> Layer 1 Transfer
3292 */
3293
3294static int
3295handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3296{
3297	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3298	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3299	struct hfc_multi	*hc = dch->hw;
3300	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3301	int			ret = -EINVAL;
3302	unsigned int		id;
3303	u_long			flags;
3304
3305	switch (hh->prim) {
3306	case PH_DATA_REQ:
3307		if (skb->len < 1)
3308			break;
3309		spin_lock_irqsave(&hc->lock, flags);
3310		ret = dchannel_senddata(dch, skb);
3311		if (ret > 0) { /* direct TX */
3312			id = hh->id; /* skb can be freed */
3313			hfcmulti_tx(hc, dch->slot);
3314			ret = 0;
3315			/* start fifo */
3316			HFC_outb(hc, R_FIFO, 0);
3317			HFC_wait(hc);
3318			spin_unlock_irqrestore(&hc->lock, flags);
3319			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3320		} else
3321			spin_unlock_irqrestore(&hc->lock, flags);
3322		return ret;
3323	case PH_ACTIVATE_REQ:
3324		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3325			spin_lock_irqsave(&hc->lock, flags);
3326			ret = 0;
3327			if (debug & DEBUG_HFCMULTI_MSG)
3328				printk(KERN_DEBUG
3329				       "%s: PH_ACTIVATE port %d (0..%d)\n",
3330				       __func__, hc->chan[dch->slot].port,
3331				       hc->ports - 1);
3332			/* start activation */
3333			if (hc->ctype == HFC_TYPE_E1) {
3334				ph_state_change(dch);
3335				if (debug & DEBUG_HFCMULTI_STATE)
3336					printk(KERN_DEBUG
3337					       "%s: E1 report state %x \n",
3338					       __func__, dch->state);
3339			} else {
3340				HFC_outb(hc, R_ST_SEL,
3341					 hc->chan[dch->slot].port);
3342				/* undocumented: delay after R_ST_SEL */
3343				udelay(1);
3344				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3345				/* G1 */
3346				udelay(6); /* wait at least 5,21us */
3347				HFC_outb(hc, A_ST_WR_STATE, 1);
3348				HFC_outb(hc, A_ST_WR_STATE, 1 |
3349					 (V_ST_ACT * 3)); /* activate */
3350				dch->state = 1;
3351			}
3352			spin_unlock_irqrestore(&hc->lock, flags);
3353		} else
3354			ret = l1_event(dch->l1, hh->prim);
3355		break;
3356	case PH_DEACTIVATE_REQ:
3357		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3358		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3359			struct sk_buff_head free_queue;
3360
3361			__skb_queue_head_init(&free_queue);
3362			spin_lock_irqsave(&hc->lock, flags);
3363			if (debug & DEBUG_HFCMULTI_MSG)
3364				printk(KERN_DEBUG
3365				       "%s: PH_DEACTIVATE port %d (0..%d)\n",
3366				       __func__, hc->chan[dch->slot].port,
3367				       hc->ports - 1);
3368			/* start deactivation */
3369			if (hc->ctype == HFC_TYPE_E1) {
3370				if (debug & DEBUG_HFCMULTI_MSG)
3371					printk(KERN_DEBUG
3372					       "%s: PH_DEACTIVATE no BRI\n",
3373					       __func__);
3374			} else {
3375				HFC_outb(hc, R_ST_SEL,
3376					 hc->chan[dch->slot].port);
3377				/* undocumented: delay after R_ST_SEL */
3378				udelay(1);
3379				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3380				/* deactivate */
3381				dch->state = 1;
3382			}
3383			skb_queue_splice_init(&dch->squeue, &free_queue);
3384			if (dch->tx_skb) {
3385				__skb_queue_tail(&free_queue, dch->tx_skb);
3386				dch->tx_skb = NULL;
3387			}
3388			dch->tx_idx = 0;
3389			if (dch->rx_skb) {
3390				__skb_queue_tail(&free_queue, dch->rx_skb);
3391				dch->rx_skb = NULL;
3392			}
3393			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3394			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3395				del_timer(&dch->timer);
3396#ifdef FIXME
3397			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3398				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3399#endif
3400			ret = 0;
3401			spin_unlock_irqrestore(&hc->lock, flags);
3402			__skb_queue_purge(&free_queue);
3403		} else
3404			ret = l1_event(dch->l1, hh->prim);
3405		break;
3406	}
3407	if (!ret)
3408		dev_kfree_skb(skb);
3409	return ret;
3410}
3411
3412static void
3413deactivate_bchannel(struct bchannel *bch)
3414{
3415	struct hfc_multi	*hc = bch->hw;
3416	u_long			flags;
3417
3418	spin_lock_irqsave(&hc->lock, flags);
3419	mISDN_clear_bchannel(bch);
3420	hc->chan[bch->slot].coeff_count = 0;
3421	hc->chan[bch->slot].rx_off = 0;
3422	hc->chan[bch->slot].conf = -1;
3423	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3424	spin_unlock_irqrestore(&hc->lock, flags);
3425}
3426
3427static int
3428handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3429{
3430	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3431	struct hfc_multi	*hc = bch->hw;
3432	int			ret = -EINVAL;
3433	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3434	unsigned long		flags;
3435
3436	switch (hh->prim) {
3437	case PH_DATA_REQ:
3438		if (!skb->len)
3439			break;
3440		spin_lock_irqsave(&hc->lock, flags);
3441		ret = bchannel_senddata(bch, skb);
3442		if (ret > 0) { /* direct TX */
3443			hfcmulti_tx(hc, bch->slot);
3444			ret = 0;
3445			/* start fifo */
3446			HFC_outb_nodebug(hc, R_FIFO, 0);
3447			HFC_wait_nodebug(hc);
3448		}
3449		spin_unlock_irqrestore(&hc->lock, flags);
3450		return ret;
3451	case PH_ACTIVATE_REQ:
3452		if (debug & DEBUG_HFCMULTI_MSG)
3453			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3454			       __func__, bch->slot);
3455		spin_lock_irqsave(&hc->lock, flags);
3456		/* activate B-channel if not already activated */
3457		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3458			hc->chan[bch->slot].txpending = 0;
3459			ret = mode_hfcmulti(hc, bch->slot,
3460					    ch->protocol,
3461					    hc->chan[bch->slot].slot_tx,
3462					    hc->chan[bch->slot].bank_tx,
3463					    hc->chan[bch->slot].slot_rx,
3464					    hc->chan[bch->slot].bank_rx);
3465			if (!ret) {
3466				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3467				    && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3468					/* start decoder */
3469					hc->dtmf = 1;
3470					if (debug & DEBUG_HFCMULTI_DTMF)
3471						printk(KERN_DEBUG
3472						       "%s: start dtmf decoder\n",
3473						       __func__);
3474					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3475						 V_RST_DTMF);
3476				}
3477			}
3478		} else
3479			ret = 0;
3480		spin_unlock_irqrestore(&hc->lock, flags);
3481		if (!ret)
3482			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3483				    GFP_KERNEL);
3484		break;
3485	case PH_CONTROL_REQ:
3486		spin_lock_irqsave(&hc->lock, flags);
3487		switch (hh->id) {
3488		case HFC_SPL_LOOP_ON: /* set sample loop */
3489			if (debug & DEBUG_HFCMULTI_MSG)
3490				printk(KERN_DEBUG
3491				       "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3492				       __func__, skb->len);
3493			ret = 0;
3494			break;
3495		case HFC_SPL_LOOP_OFF: /* set silence */
3496			if (debug & DEBUG_HFCMULTI_MSG)
3497				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3498				       __func__);
3499			ret = 0;
3500			break;
3501		default:
3502			printk(KERN_ERR
3503			       "%s: unknown PH_CONTROL_REQ info %x\n",
3504			       __func__, hh->id);
3505			ret = -EINVAL;
3506		}
3507		spin_unlock_irqrestore(&hc->lock, flags);
3508		break;
3509	case PH_DEACTIVATE_REQ:
3510		deactivate_bchannel(bch); /* locked there */
3511		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3512			    GFP_KERNEL);
3513		ret = 0;
3514		break;
3515	}
3516	if (!ret)
3517		dev_kfree_skb(skb);
3518	return ret;
3519}
3520
3521/*
3522 * bchannel control function
3523 */
3524static int
3525channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3526{
3527	int			ret = 0;
3528	struct dsp_features	*features =
3529		(struct dsp_features *)(*((u_long *)&cq->p1));
3530	struct hfc_multi	*hc = bch->hw;
3531	int			slot_tx;
3532	int			bank_tx;
3533	int			slot_rx;
3534	int			bank_rx;
3535	int			num;
3536
3537	switch (cq->op) {
3538	case MISDN_CTRL_GETOP:
3539		ret = mISDN_ctrl_bchannel(bch, cq);
3540		cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3541		break;
3542	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3543		ret = mISDN_ctrl_bchannel(bch, cq);
3544		hc->chan[bch->slot].rx_off = !!cq->p1;
3545		if (!hc->chan[bch->slot].rx_off) {
3546			/* reset fifo on rx on */
3547			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3548			HFC_wait_nodebug(hc);
3549			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3550			HFC_wait_nodebug(hc);
3551		}
3552		if (debug & DEBUG_HFCMULTI_MSG)
3553			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3554			       __func__, bch->nr, hc->chan[bch->slot].rx_off);
3555		break;
3556	case MISDN_CTRL_FILL_EMPTY:
3557		ret = mISDN_ctrl_bchannel(bch, cq);
3558		hc->silence = bch->fill[0];
3559		memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3560		break;
3561	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3562		if (debug & DEBUG_HFCMULTI_MSG)
3563			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3564			       __func__);
3565		/* create confirm */
3566		features->hfc_id = hc->id;
3567		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3568			features->hfc_dtmf = 1;
3569		if (test_bit(HFC_CHIP_CONF, &hc->chip))
3570			features->hfc_conf = 1;
3571		features->hfc_loops = 0;
3572		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3573			features->hfc_echocanhw = 1;
3574		} else {
3575			features->pcm_id = hc->pcm;
3576			features->pcm_slots = hc->slots;
3577			features->pcm_banks = 2;
3578		}
3579		break;
3580	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3581		slot_tx = cq->p1 & 0xff;
3582		bank_tx = cq->p1 >> 8;
3583		slot_rx = cq->p2 & 0xff;
3584		bank_rx = cq->p2 >> 8;
3585		if (debug & DEBUG_HFCMULTI_MSG)
3586			printk(KERN_DEBUG
3587			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3588			       "slot %d bank %d (RX)\n",
3589			       __func__, slot_tx, bank_tx,
3590			       slot_rx, bank_rx);
3591		if (slot_tx < hc->slots && bank_tx <= 2 &&
3592		    slot_rx < hc->slots && bank_rx <= 2)
3593			hfcmulti_pcm(hc, bch->slot,
3594				     slot_tx, bank_tx, slot_rx, bank_rx);
3595		else {
3596			printk(KERN_WARNING
3597			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3598			       "slot %d bank %d (RX) out of range\n",
3599			       __func__, slot_tx, bank_tx,
3600			       slot_rx, bank_rx);
3601			ret = -EINVAL;
3602		}
3603		break;
3604	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3605		if (debug & DEBUG_HFCMULTI_MSG)
3606			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3607			       __func__);
3608		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3609		break;
3610	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3611		num = cq->p1 & 0xff;
3612		if (debug & DEBUG_HFCMULTI_MSG)
3613			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3614			       __func__, num);
3615		if (num <= 7)
3616			hfcmulti_conf(hc, bch->slot, num);
3617		else {
3618			printk(KERN_WARNING
3619			       "%s: HW_CONF_JOIN conf %d out of range\n",
3620			       __func__, num);
3621			ret = -EINVAL;
3622		}
3623		break;
3624	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3625		if (debug & DEBUG_HFCMULTI_MSG)
3626			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3627		hfcmulti_conf(hc, bch->slot, -1);
3628		break;
3629	case MISDN_CTRL_HFC_ECHOCAN_ON:
3630		if (debug & DEBUG_HFCMULTI_MSG)
3631			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3632		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3633			vpm_echocan_on(hc, bch->slot, cq->p1);
3634		else
3635			ret = -EINVAL;
3636		break;
3637
3638	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3639		if (debug & DEBUG_HFCMULTI_MSG)
3640			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3641			       __func__);
3642		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3643			vpm_echocan_off(hc, bch->slot);
3644		else
3645			ret = -EINVAL;
3646		break;
3647	default:
3648		ret = mISDN_ctrl_bchannel(bch, cq);
3649		break;
3650	}
3651	return ret;
3652}
3653
3654static int
3655hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3656{
3657	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3658	struct hfc_multi	*hc = bch->hw;
3659	int			err = -EINVAL;
3660	u_long	flags;
3661
3662	if (bch->debug & DEBUG_HW)
3663		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3664		       __func__, cmd, arg);
3665	switch (cmd) {
3666	case CLOSE_CHANNEL:
3667		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3668		deactivate_bchannel(bch); /* locked there */
3669		ch->protocol = ISDN_P_NONE;
3670		ch->peer = NULL;
3671		module_put(THIS_MODULE);
3672		err = 0;
3673		break;
3674	case CONTROL_CHANNEL:
3675		spin_lock_irqsave(&hc->lock, flags);
3676		err = channel_bctrl(bch, arg);
3677		spin_unlock_irqrestore(&hc->lock, flags);
3678		break;
3679	default:
3680		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3681		       __func__, cmd);
3682	}
3683	return err;
3684}
3685
3686/*
3687 * handle D-channel events
3688 *
3689 * handle state change event
3690 */
3691static void
3692ph_state_change(struct dchannel *dch)
3693{
3694	struct hfc_multi *hc;
3695	int ch, i;
3696
3697	if (!dch) {
3698		printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3699		return;
3700	}
3701	hc = dch->hw;
3702	ch = dch->slot;
3703
3704	if (hc->ctype == HFC_TYPE_E1) {
3705		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3706			if (debug & DEBUG_HFCMULTI_STATE)
3707				printk(KERN_DEBUG
3708				       "%s: E1 TE (id=%d) newstate %x\n",
3709				       __func__, hc->id, dch->state);
3710		} else {
3711			if (debug & DEBUG_HFCMULTI_STATE)
3712				printk(KERN_DEBUG
3713				       "%s: E1 NT (id=%d) newstate %x\n",
3714				       __func__, hc->id, dch->state);
3715		}
3716		switch (dch->state) {
3717		case (1):
3718			if (hc->e1_state != 1) {
3719				for (i = 1; i <= 31; i++) {
3720					/* reset fifos on e1 activation */
3721					HFC_outb_nodebug(hc, R_FIFO,
3722							 (i << 1) | 1);
3723					HFC_wait_nodebug(hc);
3724					HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3725							 V_RES_F);
3726					HFC_wait_nodebug(hc);
3727				}
3728			}
3729			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3730			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3731				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3732			break;
3733
3734		default:
3735			if (hc->e1_state != 1)
3736				return;
3737			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3738			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3739				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3740		}
3741		hc->e1_state = dch->state;
3742	} else {
3743		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3744			if (debug & DEBUG_HFCMULTI_STATE)
3745				printk(KERN_DEBUG
3746				       "%s: S/T TE newstate %x\n",
3747				       __func__, dch->state);
3748			switch (dch->state) {
3749			case (0):
3750				l1_event(dch->l1, HW_RESET_IND);
3751				break;
3752			case (3):
3753				l1_event(dch->l1, HW_DEACT_IND);
3754				break;
3755			case (5):
3756			case (8):
3757				l1_event(dch->l1, ANYSIGNAL);
3758				break;
3759			case (6):
3760				l1_event(dch->l1, INFO2);
3761				break;
3762			case (7):
3763				l1_event(dch->l1, INFO4_P8);
3764				break;
3765			}
3766		} else {
3767			if (debug & DEBUG_HFCMULTI_STATE)
3768				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3769				       __func__, dch->state);
3770			switch (dch->state) {
3771			case (2):
3772				if (hc->chan[ch].nt_timer == 0) {
3773					hc->chan[ch].nt_timer = -1;
3774					HFC_outb(hc, R_ST_SEL,
3775						 hc->chan[ch].port);
3776					/* undocumented: delay after R_ST_SEL */
3777					udelay(1);
3778					HFC_outb(hc, A_ST_WR_STATE, 4 |
3779						 V_ST_LD_STA); /* G4 */
3780					udelay(6); /* wait at least 5,21us */
3781					HFC_outb(hc, A_ST_WR_STATE, 4);
3782					dch->state = 4;
3783				} else {
3784					/* one extra count for the next event */
3785					hc->chan[ch].nt_timer =
3786						nt_t1_count[poll_timer] + 1;
3787					HFC_outb(hc, R_ST_SEL,
3788						 hc->chan[ch].port);
3789					/* undocumented: delay after R_ST_SEL */
3790					udelay(1);
3791					/* allow G2 -> G3 transition */
3792					HFC_outb(hc, A_ST_WR_STATE, 2 |
3793						 V_SET_G2_G3);
3794				}
3795				break;
3796			case (1):
3797				hc->chan[ch].nt_timer = -1;
3798				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3799				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3800					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3801				break;
3802			case (4):
3803				hc->chan[ch].nt_timer = -1;
3804				break;
3805			case (3):
3806				hc->chan[ch].nt_timer = -1;
3807				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3808				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3809					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3810				break;
3811			}
3812		}
3813	}
3814}
3815
3816/*
3817 * called for card mode init message
3818 */
3819
3820static void
3821hfcmulti_initmode(struct dchannel *dch)
3822{
3823	struct hfc_multi *hc = dch->hw;
3824	u_char		a_st_wr_state, r_e1_wr_sta;
3825	int		i, pt;
3826
3827	if (debug & DEBUG_HFCMULTI_INIT)
3828		printk(KERN_DEBUG "%s: entered\n", __func__);
3829
3830	i = dch->slot;
3831	pt = hc->chan[i].port;
3832	if (hc->ctype == HFC_TYPE_E1) {
3833		/* E1 */
3834		hc->chan[hc->dnum[pt]].slot_tx = -1;
3835		hc->chan[hc->dnum[pt]].slot_rx = -1;
3836		hc->chan[hc->dnum[pt]].conf = -1;
3837		if (hc->dnum[pt]) {
3838			mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3839				      -1, 0, -1, 0);
3840			timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3841		}
3842		for (i = 1; i <= 31; i++) {
3843			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3844				continue;
3845			hc->chan[i].slot_tx = -1;
3846			hc->chan[i].slot_rx = -1;
3847			hc->chan[i].conf = -1;
3848			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3849		}
3850	}
3851	if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3852		/* E1, port 0 */
3853		dch = hc->chan[hc->dnum[0]].dch;
3854		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3855			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3856			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3857		}
3858		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3859			HFC_outb(hc, R_RX0, 0);
3860			hc->hw.r_tx0 = 0 | V_OUT_EN;
3861		} else {
3862			HFC_outb(hc, R_RX0, 1);
3863			hc->hw.r_tx0 = 1 | V_OUT_EN;
3864		}
3865		hc->hw.r_tx1 = V_ATX | V_NTRI;
3866		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3867		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3868		HFC_outb(hc, R_TX_FR0, 0x00);
3869		HFC_outb(hc, R_TX_FR1, 0xf8);
3870
3871		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3872			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3873
3874		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3875
3876		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3877			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3878
3879		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3880			if (debug & DEBUG_HFCMULTI_INIT)
3881				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3882				       __func__);
3883			r_e1_wr_sta = 0; /* G0 */
3884			hc->e1_getclock = 0;
3885		} else {
3886			if (debug & DEBUG_HFCMULTI_INIT)
3887				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3888				       __func__);
3889			r_e1_wr_sta = 0; /* F0 */
3890			hc->e1_getclock = 1;
3891		}
3892		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3893			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3894		else
3895			HFC_outb(hc, R_SYNC_OUT, 0);
3896		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3897			hc->e1_getclock = 1;
3898		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3899			hc->e1_getclock = 0;
3900		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3901			/* SLAVE (clock master) */
3902			if (debug & DEBUG_HFCMULTI_INIT)
3903				printk(KERN_DEBUG
3904				       "%s: E1 port is clock master "
3905				       "(clock from PCM)\n", __func__);
3906			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3907		} else {
3908			if (hc->e1_getclock) {
3909				/* MASTER (clock slave) */
3910				if (debug & DEBUG_HFCMULTI_INIT)
3911					printk(KERN_DEBUG
3912					       "%s: E1 port is clock slave "
3913					       "(clock to PCM)\n", __func__);
3914				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3915			} else {
3916				/* MASTER (clock master) */
3917				if (debug & DEBUG_HFCMULTI_INIT)
3918					printk(KERN_DEBUG "%s: E1 port is "
3919					       "clock master "
3920					       "(clock from QUARTZ)\n",
3921					       __func__);
3922				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3923					 V_PCM_SYNC | V_JATT_OFF);
3924				HFC_outb(hc, R_SYNC_OUT, 0);
3925			}
3926		}
3927		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3928		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3929		HFC_outb(hc, R_PWM0, 0x50);
3930		HFC_outb(hc, R_PWM1, 0xff);
3931		/* state machine setup */
3932		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3933		udelay(6); /* wait at least 5,21us */
3934		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3935		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3936			hc->syncronized = 0;
3937			plxsd_checksync(hc, 0);
3938		}
3939	}
3940	if (hc->ctype != HFC_TYPE_E1) {
3941		/* ST */
3942		hc->chan[i].slot_tx = -1;
3943		hc->chan[i].slot_rx = -1;
3944		hc->chan[i].conf = -1;
3945		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3946		timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3947		hc->chan[i - 2].slot_tx = -1;
3948		hc->chan[i - 2].slot_rx = -1;
3949		hc->chan[i - 2].conf = -1;
3950		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3951		hc->chan[i - 1].slot_tx = -1;
3952		hc->chan[i - 1].slot_rx = -1;
3953		hc->chan[i - 1].conf = -1;
3954		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3955		/* select interface */
3956		HFC_outb(hc, R_ST_SEL, pt);
3957		/* undocumented: delay after R_ST_SEL */
3958		udelay(1);
3959		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3960			if (debug & DEBUG_HFCMULTI_INIT)
3961				printk(KERN_DEBUG
3962				       "%s: ST port %d is NT-mode\n",
3963				       __func__, pt);
3964			/* clock delay */
3965			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3966			a_st_wr_state = 1; /* G1 */
3967			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3968		} else {
3969			if (debug & DEBUG_HFCMULTI_INIT)
3970				printk(KERN_DEBUG
3971				       "%s: ST port %d is TE-mode\n",
3972				       __func__, pt);
3973			/* clock delay */
3974			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3975			a_st_wr_state = 2; /* F2 */
3976			hc->hw.a_st_ctrl0[pt] = 0;
3977		}
3978		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3979			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3980		if (hc->ctype == HFC_TYPE_XHFC) {
3981			hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3982			HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3983				 0x7c << 1 /* V_ST_PULSE */);
3984		}
3985		/* line setup */
3986		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3987		/* disable E-channel */
3988		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3989		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3990			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3991		else
3992			HFC_outb(hc, A_ST_CTRL1, 0);
3993		/* enable B-channel receive */
3994		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3995		/* state machine setup */
3996		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3997		udelay(6); /* wait at least 5,21us */
3998		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3999		hc->hw.r_sci_msk |= 1 << pt;
4000		/* state machine interrupts */
4001		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4002		/* unset sync on port */
4003		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4004			hc->syncronized &=
4005				~(1 << hc->chan[dch->slot].port);
4006			plxsd_checksync(hc, 0);
4007		}
4008	}
4009	if (debug & DEBUG_HFCMULTI_INIT)
4010		printk("%s: done\n", __func__);
4011}
4012
4013
4014static int
4015open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4016	      struct channel_req *rq)
4017{
4018	int	err = 0;
4019	u_long	flags;
4020
4021	if (debug & DEBUG_HW_OPEN)
4022		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4023		       dch->dev.id, __builtin_return_address(0));
4024	if (rq->protocol == ISDN_P_NONE)
4025		return -EINVAL;
4026	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4027	    (dch->dev.D.protocol != rq->protocol)) {
4028		if (debug & DEBUG_HFCMULTI_MODE)
4029			printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4030			       __func__, dch->dev.D.protocol, rq->protocol);
4031	}
4032	if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4033	    (rq->protocol != ISDN_P_TE_S0))
4034		l1_event(dch->l1, CLOSE_CHANNEL);
4035	if (dch->dev.D.protocol != rq->protocol) {
4036		if (rq->protocol == ISDN_P_TE_S0) {
4037			err = create_l1(dch, hfcm_l1callback);
4038			if (err)
4039				return err;
4040		}
4041		dch->dev.D.protocol = rq->protocol;
4042		spin_lock_irqsave(&hc->lock, flags);
4043		hfcmulti_initmode(dch);
4044		spin_unlock_irqrestore(&hc->lock, flags);
4045	}
4046	if (test_bit(FLG_ACTIVE, &dch->Flags))
4047		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4048			    0, NULL, GFP_KERNEL);
4049	rq->ch = &dch->dev.D;
4050	if (!try_module_get(THIS_MODULE))
4051		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4052	return 0;
4053}
4054
4055static int
4056open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4057	      struct channel_req *rq)
4058{
4059	struct bchannel	*bch;
4060	int		ch;
4061
4062	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4063		return -EINVAL;
4064	if (rq->protocol == ISDN_P_NONE)
4065		return -EINVAL;
4066	if (hc->ctype == HFC_TYPE_E1)
4067		ch = rq->adr.channel;
4068	else
4069		ch = (rq->adr.channel - 1) + (dch->slot - 2);
4070	bch = hc->chan[ch].bch;
4071	if (!bch) {
4072		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4073		       __func__, ch);
4074		return -EINVAL;
4075	}
4076	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4077		return -EBUSY; /* b-channel can be only open once */
4078	bch->ch.protocol = rq->protocol;
4079	hc->chan[ch].rx_off = 0;
4080	rq->ch = &bch->ch;
4081	if (!try_module_get(THIS_MODULE))
4082		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4083	return 0;
4084}
4085
4086/*
4087 * device control function
4088 */
4089static int
4090channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4091{
4092	struct hfc_multi	*hc = dch->hw;
4093	int	ret = 0;
4094	int	wd_mode, wd_cnt;
4095
4096	switch (cq->op) {
4097	case MISDN_CTRL_GETOP:
4098		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4099		break;
4100	case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4101		wd_cnt = cq->p1 & 0xf;
4102		wd_mode = !!(cq->p1 >> 4);
4103		if (debug & DEBUG_HFCMULTI_MSG)
4104			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4105			       ", counter 0x%x\n", __func__,
4106			       wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4107		/* set the watchdog timer */
4108		HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4109		hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4110		if (hc->ctype == HFC_TYPE_XHFC)
4111			hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4112		/* init the watchdog register and reset the counter */
4113		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4114		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4115			/* enable the watchdog output for Speech-Design */
4116			HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4117			HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4118			HFC_outb(hc, R_GPIO_OUT1, 0);
4119			HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4120		}
4121		break;
4122	case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4123		if (debug & DEBUG_HFCMULTI_MSG)
4124			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4125			       __func__);
4126		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4127		break;
4128	case MISDN_CTRL_L1_TIMER3:
4129		ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4130		break;
4131	default:
4132		printk(KERN_WARNING "%s: unknown Op %x\n",
4133		       __func__, cq->op);
4134		ret = -EINVAL;
4135		break;
4136	}
4137	return ret;
4138}
4139
4140static int
4141hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4142{
4143	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4144	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4145	struct hfc_multi	*hc = dch->hw;
4146	struct channel_req	*rq;
4147	int			err = 0;
4148	u_long			flags;
4149
4150	if (dch->debug & DEBUG_HW)
4151		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4152		       __func__, cmd, arg);
4153	switch (cmd) {
4154	case OPEN_CHANNEL:
4155		rq = arg;
4156		switch (rq->protocol) {
4157		case ISDN_P_TE_S0:
4158		case ISDN_P_NT_S0:
4159			if (hc->ctype == HFC_TYPE_E1) {
4160				err = -EINVAL;
4161				break;
4162			}
4163			err = open_dchannel(hc, dch, rq); /* locked there */
4164			break;
4165		case ISDN_P_TE_E1:
4166		case ISDN_P_NT_E1:
4167			if (hc->ctype != HFC_TYPE_E1) {
4168				err = -EINVAL;
4169				break;
4170			}
4171			err = open_dchannel(hc, dch, rq); /* locked there */
4172			break;
4173		default:
4174			spin_lock_irqsave(&hc->lock, flags);
4175			err = open_bchannel(hc, dch, rq);
4176			spin_unlock_irqrestore(&hc->lock, flags);
4177		}
4178		break;
4179	case CLOSE_CHANNEL:
4180		if (debug & DEBUG_HW_OPEN)
4181			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4182			       __func__, dch->dev.id,
4183			       __builtin_return_address(0));
4184		module_put(THIS_MODULE);
4185		break;
4186	case CONTROL_CHANNEL:
4187		spin_lock_irqsave(&hc->lock, flags);
4188		err = channel_dctrl(dch, arg);
4189		spin_unlock_irqrestore(&hc->lock, flags);
4190		break;
4191	default:
4192		if (dch->debug & DEBUG_HW)
4193			printk(KERN_DEBUG "%s: unknown command %x\n",
4194			       __func__, cmd);
4195		err = -EINVAL;
4196	}
4197	return err;
4198}
4199
4200static int
4201clockctl(void *priv, int enable)
4202{
4203	struct hfc_multi *hc = priv;
4204
4205	hc->iclock_on = enable;
4206	return 0;
4207}
4208
4209/*
4210 * initialize the card
4211 */
4212
4213/*
4214 * start timer irq, wait some time and check if we have interrupts.
4215 * if not, reset chip and try again.
4216 */
4217static int
4218init_card(struct hfc_multi *hc)
4219{
4220	int	err = -EIO;
4221	u_long	flags;
4222	void	__iomem *plx_acc;
4223	u_long	plx_flags;
4224
4225	if (debug & DEBUG_HFCMULTI_INIT)
4226		printk(KERN_DEBUG "%s: entered\n", __func__);
4227
4228	spin_lock_irqsave(&hc->lock, flags);
4229	/* set interrupts but leave global interrupt disabled */
4230	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4231	disable_hwirq(hc);
4232	spin_unlock_irqrestore(&hc->lock, flags);
4233
4234	if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4235			"HFC-multi", hc)) {
4236		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4237		       hc->irq);
4238		hc->irq = 0;
4239		return -EIO;
4240	}
4241
4242	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4243		spin_lock_irqsave(&plx_lock, plx_flags);
4244		plx_acc = hc->plx_membase + PLX_INTCSR;
4245		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4246		       plx_acc); /* enable PCI & LINT1 irq */
4247		spin_unlock_irqrestore(&plx_lock, plx_flags);
4248	}
4249
4250	if (debug & DEBUG_HFCMULTI_INIT)
4251		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4252		       __func__, hc->irq, hc->irqcnt);
4253	err = init_chip(hc);
4254	if (err)
4255		goto error;
4256	/*
4257	 * Finally enable IRQ output
4258	 * this is only allowed, if an IRQ routine is already
4259	 * established for this HFC, so don't do that earlier
4260	 */
4261	spin_lock_irqsave(&hc->lock, flags);
4262	enable_hwirq(hc);
4263	spin_unlock_irqrestore(&hc->lock, flags);
4264	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4265	set_current_state(TASK_UNINTERRUPTIBLE);
4266	schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4267	/* turn IRQ off until chip is completely initialized */
4268	spin_lock_irqsave(&hc->lock, flags);
4269	disable_hwirq(hc);
4270	spin_unlock_irqrestore(&hc->lock, flags);
4271	if (debug & DEBUG_HFCMULTI_INIT)
4272		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4273		       __func__, hc->irq, hc->irqcnt);
4274	if (hc->irqcnt) {
4275		if (debug & DEBUG_HFCMULTI_INIT)
4276			printk(KERN_DEBUG "%s: done\n", __func__);
4277
4278		return 0;
4279	}
4280	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4281		printk(KERN_INFO "ignoring missing interrupts\n");
4282		return 0;
4283	}
4284
4285	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4286	       hc->irq);
4287
4288	err = -EIO;
4289
4290error:
4291	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4292		spin_lock_irqsave(&plx_lock, plx_flags);
4293		plx_acc = hc->plx_membase + PLX_INTCSR;
4294		writew(0x00, plx_acc); /*disable IRQs*/
4295		spin_unlock_irqrestore(&plx_lock, plx_flags);
4296	}
4297
4298	if (debug & DEBUG_HFCMULTI_INIT)
4299		printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4300	if (hc->irq) {
4301		free_irq(hc->irq, hc);
4302		hc->irq = 0;
4303	}
4304
4305	if (debug & DEBUG_HFCMULTI_INIT)
4306		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4307	return err;
4308}
4309
4310/*
4311 * find pci device and set it up
4312 */
4313
4314static int
4315setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4316	  const struct pci_device_id *ent)
4317{
4318	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4319
4320	printk(KERN_INFO
4321	       "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4322	       m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4323
4324	hc->pci_dev = pdev;
4325	if (m->clock2)
4326		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4327
4328	if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4329	    ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4330		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4331		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4332		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4333		hc->slots = 32;
4334	}
4335
4336	if (hc->pci_dev->irq <= 0) {
4337		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4338		return -EIO;
4339	}
4340	if (pci_enable_device(hc->pci_dev)) {
4341		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4342		return -EIO;
4343	}
4344	hc->leds = m->leds;
4345	hc->ledstate = 0xAFFEAFFE;
4346	hc->opticalsupport = m->opticalsupport;
4347
4348	hc->pci_iobase = 0;
4349	hc->pci_membase = NULL;
4350	hc->plx_membase = NULL;
4351
4352	/* set memory access methods */
4353	if (m->io_mode) /* use mode from card config */
4354		hc->io_mode = m->io_mode;
4355	switch (hc->io_mode) {
4356	case HFC_IO_MODE_PLXSD:
4357		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4358		hc->slots = 128; /* required */
4359		hc->HFC_outb = HFC_outb_pcimem;
4360		hc->HFC_inb = HFC_inb_pcimem;
4361		hc->HFC_inw = HFC_inw_pcimem;
4362		hc->HFC_wait = HFC_wait_pcimem;
4363		hc->read_fifo = read_fifo_pcimem;
4364		hc->write_fifo = write_fifo_pcimem;
4365		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4366		/* MEMBASE 1 is PLX PCI Bridge */
4367
4368		if (!hc->plx_origmembase) {
4369			printk(KERN_WARNING
4370			       "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4371			pci_disable_device(hc->pci_dev);
4372			return -EIO;
4373		}
4374
4375		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4376		if (!hc->plx_membase) {
4377			printk(KERN_WARNING
4378			       "HFC-multi: failed to remap plx address space. "
4379			       "(internal error)\n");
4380			pci_disable_device(hc->pci_dev);
4381			return -EIO;
4382		}
4383		printk(KERN_INFO
4384		       "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4385		       (u_long)hc->plx_membase, hc->plx_origmembase);
4386
4387		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4388		/* MEMBASE 1 is PLX PCI Bridge */
4389		if (!hc->pci_origmembase) {
4390			printk(KERN_WARNING
4391			       "HFC-multi: No IO-Memory for PCI card found\n");
4392			pci_disable_device(hc->pci_dev);
4393			return -EIO;
4394		}
4395
4396		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4397		if (!hc->pci_membase) {
4398			printk(KERN_WARNING "HFC-multi: failed to remap io "
4399			       "address space. (internal error)\n");
4400			pci_disable_device(hc->pci_dev);
4401			return -EIO;
4402		}
4403
4404		printk(KERN_INFO
4405		       "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4406		       "leds-type %d\n",
4407		       hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4408		       hc->pci_dev->irq, HZ, hc->leds);
4409		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4410		break;
4411	case HFC_IO_MODE_PCIMEM:
4412		hc->HFC_outb = HFC_outb_pcimem;
4413		hc->HFC_inb = HFC_inb_pcimem;
4414		hc->HFC_inw = HFC_inw_pcimem;
4415		hc->HFC_wait = HFC_wait_pcimem;
4416		hc->read_fifo = read_fifo_pcimem;
4417		hc->write_fifo = write_fifo_pcimem;
4418		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4419		if (!hc->pci_origmembase) {
4420			printk(KERN_WARNING
4421			       "HFC-multi: No IO-Memory for PCI card found\n");
4422			pci_disable_device(hc->pci_dev);
4423			return -EIO;
4424		}
4425
4426		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4427		if (!hc->pci_membase) {
4428			printk(KERN_WARNING
4429			       "HFC-multi: failed to remap io address space. "
4430			       "(internal error)\n");
4431			pci_disable_device(hc->pci_dev);
4432			return -EIO;
4433		}
4434		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4435		       "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4436		       hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4437		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4438		break;
4439	case HFC_IO_MODE_REGIO:
4440		hc->HFC_outb = HFC_outb_regio;
4441		hc->HFC_inb = HFC_inb_regio;
4442		hc->HFC_inw = HFC_inw_regio;
4443		hc->HFC_wait = HFC_wait_regio;
4444		hc->read_fifo = read_fifo_regio;
4445		hc->write_fifo = write_fifo_regio;
4446		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4447		if (!hc->pci_iobase) {
4448			printk(KERN_WARNING
4449			       "HFC-multi: No IO for PCI card found\n");
4450			pci_disable_device(hc->pci_dev);
4451			return -EIO;
4452		}
4453
4454		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4455			printk(KERN_WARNING "HFC-multi: failed to request "
4456			       "address space at 0x%08lx (internal error)\n",
4457			       hc->pci_iobase);
4458			pci_disable_device(hc->pci_dev);
4459			return -EIO;
4460		}
4461
4462		printk(KERN_INFO
4463		       "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4464		       m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4465		       hc->pci_dev->irq, HZ, hc->leds);
4466		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4467		break;
4468	default:
4469		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4470		pci_disable_device(hc->pci_dev);
4471		return -EIO;
4472	}
4473
4474	pci_set_drvdata(hc->pci_dev, hc);
4475
4476	/* At this point the needed PCI config is done */
4477	/* fifos are still not enabled */
4478	return 0;
4479}
4480
4481
4482/*
4483 * remove port
4484 */
4485
4486static void
4487release_port(struct hfc_multi *hc, struct dchannel *dch)
4488{
4489	int	pt, ci, i = 0;
4490	u_long	flags;
4491	struct bchannel *pb;
4492
4493	ci = dch->slot;
4494	pt = hc->chan[ci].port;
4495
4496	if (debug & DEBUG_HFCMULTI_INIT)
4497		printk(KERN_DEBUG "%s: entered for port %d\n",
4498		       __func__, pt + 1);
4499
4500	if (pt >= hc->ports) {
4501		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4502		       __func__, pt + 1);
4503		return;
4504	}
4505
4506	if (debug & DEBUG_HFCMULTI_INIT)
4507		printk(KERN_DEBUG "%s: releasing port=%d\n",
4508		       __func__, pt + 1);
4509
4510	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4511		l1_event(dch->l1, CLOSE_CHANNEL);
4512
4513	hc->chan[ci].dch = NULL;
4514
4515	if (hc->created[pt]) {
4516		hc->created[pt] = 0;
4517		mISDN_unregister_device(&dch->dev);
4518	}
4519
4520	spin_lock_irqsave(&hc->lock, flags);
4521
4522	if (dch->timer.function) {
4523		del_timer(&dch->timer);
4524		dch->timer.function = NULL;
4525	}
4526
4527	if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4528		/* remove sync */
4529		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4530			hc->syncronized = 0;
4531			plxsd_checksync(hc, 1);
4532		}
4533		/* free channels */
4534		for (i = 0; i <= 31; i++) {
4535			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4536				continue;
4537			if (hc->chan[i].bch) {
4538				if (debug & DEBUG_HFCMULTI_INIT)
4539					printk(KERN_DEBUG
4540					       "%s: free port %d channel %d\n",
4541					       __func__, hc->chan[i].port + 1, i);
4542				pb = hc->chan[i].bch;
4543				hc->chan[i].bch = NULL;
4544				spin_unlock_irqrestore(&hc->lock, flags);
4545				mISDN_freebchannel(pb);
4546				kfree(pb);
4547				kfree(hc->chan[i].coeff);
4548				spin_lock_irqsave(&hc->lock, flags);
4549			}
4550		}
4551	} else {
4552		/* remove sync */
4553		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4554			hc->syncronized &=
4555				~(1 << hc->chan[ci].port);
4556			plxsd_checksync(hc, 1);
4557		}
4558		/* free channels */
4559		if (hc->chan[ci - 2].bch) {
4560			if (debug & DEBUG_HFCMULTI_INIT)
4561				printk(KERN_DEBUG
4562				       "%s: free port %d channel %d\n",
4563				       __func__, hc->chan[ci - 2].port + 1,
4564				       ci - 2);
4565			pb = hc->chan[ci - 2].bch;
4566			hc->chan[ci - 2].bch = NULL;
4567			spin_unlock_irqrestore(&hc->lock, flags);
4568			mISDN_freebchannel(pb);
4569			kfree(pb);
4570			kfree(hc->chan[ci - 2].coeff);
4571			spin_lock_irqsave(&hc->lock, flags);
4572		}
4573		if (hc->chan[ci - 1].bch) {
4574			if (debug & DEBUG_HFCMULTI_INIT)
4575				printk(KERN_DEBUG
4576				       "%s: free port %d channel %d\n",
4577				       __func__, hc->chan[ci - 1].port + 1,
4578				       ci - 1);
4579			pb = hc->chan[ci - 1].bch;
4580			hc->chan[ci - 1].bch = NULL;
4581			spin_unlock_irqrestore(&hc->lock, flags);
4582			mISDN_freebchannel(pb);
4583			kfree(pb);
4584			kfree(hc->chan[ci - 1].coeff);
4585			spin_lock_irqsave(&hc->lock, flags);
4586		}
4587	}
4588
4589	spin_unlock_irqrestore(&hc->lock, flags);
4590
4591	if (debug & DEBUG_HFCMULTI_INIT)
4592		printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4593			pt+1, ci);
4594	mISDN_freedchannel(dch);
4595	kfree(dch);
4596
4597	if (debug & DEBUG_HFCMULTI_INIT)
4598		printk(KERN_DEBUG "%s: done!\n", __func__);
4599}
4600
4601static void
4602release_card(struct hfc_multi *hc)
4603{
4604	u_long	flags;
4605	int	ch;
4606
4607	if (debug & DEBUG_HFCMULTI_INIT)
4608		printk(KERN_DEBUG "%s: release card (%d) entered\n",
4609		       __func__, hc->id);
4610
4611	/* unregister clock source */
4612	if (hc->iclock)
4613		mISDN_unregister_clock(hc->iclock);
4614
4615	/* disable and free irq */
4616	spin_lock_irqsave(&hc->lock, flags);
4617	disable_hwirq(hc);
4618	spin_unlock_irqrestore(&hc->lock, flags);
4619	udelay(1000);
4620	if (hc->irq) {
4621		if (debug & DEBUG_HFCMULTI_INIT)
4622			printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4623			    __func__, hc->irq, hc);
4624		free_irq(hc->irq, hc);
4625		hc->irq = 0;
4626
4627	}
4628
4629	/* disable D-channels & B-channels */
4630	if (debug & DEBUG_HFCMULTI_INIT)
4631		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4632		       __func__);
4633	for (ch = 0; ch <= 31; ch++) {
4634		if (hc->chan[ch].dch)
4635			release_port(hc, hc->chan[ch].dch);
4636	}
4637
4638	/* dimm leds */
4639	if (hc->leds)
4640		hfcmulti_leds(hc);
4641
4642	/* release hardware */
4643	release_io_hfcmulti(hc);
4644
4645	if (debug & DEBUG_HFCMULTI_INIT)
4646		printk(KERN_DEBUG "%s: remove instance from list\n",
4647		       __func__);
4648	list_del(&hc->list);
4649
4650	if (debug & DEBUG_HFCMULTI_INIT)
4651		printk(KERN_DEBUG "%s: delete instance\n", __func__);
4652	if (hc == syncmaster)
4653		syncmaster = NULL;
4654	kfree(hc);
4655	if (debug & DEBUG_HFCMULTI_INIT)
4656		printk(KERN_DEBUG "%s: card successfully removed\n",
4657		       __func__);
4658}
4659
4660static void
4661init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4662{
4663	/* set optical line type */
4664	if (port[Port_cnt] & 0x001) {
4665		if (!m->opticalsupport)  {
4666			printk(KERN_INFO
4667			       "This board has no optical "
4668			       "support\n");
4669		} else {
4670			if (debug & DEBUG_HFCMULTI_INIT)
4671				printk(KERN_DEBUG
4672				       "%s: PORT set optical "
4673				       "interfacs: card(%d) "
4674				       "port(%d)\n",
4675				       __func__,
4676				       HFC_cnt + 1, 1);
4677			test_and_set_bit(HFC_CFG_OPTICAL,
4678			    &hc->chan[hc->dnum[0]].cfg);
4679		}
4680	}
4681	/* set LOS report */
4682	if (port[Port_cnt] & 0x004) {
4683		if (debug & DEBUG_HFCMULTI_INIT)
4684			printk(KERN_DEBUG "%s: PORT set "
4685			       "LOS report: card(%d) port(%d)\n",
4686			       __func__, HFC_cnt + 1, 1);
4687		test_and_set_bit(HFC_CFG_REPORT_LOS,
4688		    &hc->chan[hc->dnum[0]].cfg);
4689	}
4690	/* set AIS report */
4691	if (port[Port_cnt] & 0x008) {
4692		if (debug & DEBUG_HFCMULTI_INIT)
4693			printk(KERN_DEBUG "%s: PORT set "
4694			       "AIS report: card(%d) port(%d)\n",
4695			       __func__, HFC_cnt + 1, 1);
4696		test_and_set_bit(HFC_CFG_REPORT_AIS,
4697		    &hc->chan[hc->dnum[0]].cfg);
4698	}
4699	/* set SLIP report */
4700	if (port[Port_cnt] & 0x010) {
4701		if (debug & DEBUG_HFCMULTI_INIT)
4702			printk(KERN_DEBUG
4703			       "%s: PORT set SLIP report: "
4704			       "card(%d) port(%d)\n",
4705			       __func__, HFC_cnt + 1, 1);
4706		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4707		    &hc->chan[hc->dnum[0]].cfg);
4708	}
4709	/* set RDI report */
4710	if (port[Port_cnt] & 0x020) {
4711		if (debug & DEBUG_HFCMULTI_INIT)
4712			printk(KERN_DEBUG
4713			       "%s: PORT set RDI report: "
4714			       "card(%d) port(%d)\n",
4715			       __func__, HFC_cnt + 1, 1);
4716		test_and_set_bit(HFC_CFG_REPORT_RDI,
4717		    &hc->chan[hc->dnum[0]].cfg);
4718	}
4719	/* set CRC-4 Mode */
4720	if (!(port[Port_cnt] & 0x100)) {
4721		if (debug & DEBUG_HFCMULTI_INIT)
4722			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4723			       " card(%d) port(%d)\n",
4724			       __func__, HFC_cnt + 1, 1);
4725		test_and_set_bit(HFC_CFG_CRC4,
4726		    &hc->chan[hc->dnum[0]].cfg);
4727	} else {
4728		if (debug & DEBUG_HFCMULTI_INIT)
4729			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4730			       " report: card(%d) port(%d)\n",
4731			       __func__, HFC_cnt + 1, 1);
4732	}
4733	/* set forced clock */
4734	if (port[Port_cnt] & 0x0200) {
4735		if (debug & DEBUG_HFCMULTI_INIT)
4736			printk(KERN_DEBUG "%s: PORT force getting clock from "
4737			       "E1: card(%d) port(%d)\n",
4738			       __func__, HFC_cnt + 1, 1);
4739		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4740	} else
4741		if (port[Port_cnt] & 0x0400) {
4742			if (debug & DEBUG_HFCMULTI_INIT)
4743				printk(KERN_DEBUG "%s: PORT force putting clock to "
4744				       "E1: card(%d) port(%d)\n",
4745				       __func__, HFC_cnt + 1, 1);
4746			test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4747		}
4748	/* set JATT PLL */
4749	if (port[Port_cnt] & 0x0800) {
4750		if (debug & DEBUG_HFCMULTI_INIT)
4751			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4752			       "E1: card(%d) port(%d)\n",
4753			       __func__, HFC_cnt + 1, 1);
4754		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4755	}
4756	/* set elastic jitter buffer */
4757	if (port[Port_cnt] & 0x3000) {
4758		hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4759		if (debug & DEBUG_HFCMULTI_INIT)
4760			printk(KERN_DEBUG
4761			       "%s: PORT set elastic "
4762			       "buffer to %d: card(%d) port(%d)\n",
4763			    __func__, hc->chan[hc->dnum[0]].jitter,
4764			       HFC_cnt + 1, 1);
4765	} else
4766		hc->chan[hc->dnum[0]].jitter = 2; /* default */
4767}
4768
4769static int
4770init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4771{
4772	struct dchannel	*dch;
4773	struct bchannel	*bch;
4774	int		ch, ret = 0;
4775	char		name[MISDN_MAX_IDLEN];
4776	int		bcount = 0;
4777
4778	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4779	if (!dch)
4780		return -ENOMEM;
4781	dch->debug = debug;
4782	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4783	dch->hw = hc;
4784	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4785	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4786	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4787	dch->dev.D.send = handle_dmsg;
4788	dch->dev.D.ctrl = hfcm_dctrl;
4789	dch->slot = hc->dnum[pt];
4790	hc->chan[hc->dnum[pt]].dch = dch;
4791	hc->chan[hc->dnum[pt]].port = pt;
4792	hc->chan[hc->dnum[pt]].nt_timer = -1;
4793	for (ch = 1; ch <= 31; ch++) {
4794		if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4795			continue;
4796		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4797		if (!bch) {
4798			printk(KERN_ERR "%s: no memory for bchannel\n",
4799			    __func__);
4800			ret = -ENOMEM;
4801			goto free_chan;
4802		}
4803		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4804		if (!hc->chan[ch].coeff) {
4805			printk(KERN_ERR "%s: no memory for coeffs\n",
4806			    __func__);
4807			ret = -ENOMEM;
4808			kfree(bch);
4809			goto free_chan;
4810		}
4811		bch->nr = ch;
4812		bch->slot = ch;
4813		bch->debug = debug;
4814		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4815		bch->hw = hc;
4816		bch->ch.send = handle_bmsg;
4817		bch->ch.ctrl = hfcm_bctrl;
4818		bch->ch.nr = ch;
4819		list_add(&bch->ch.list, &dch->dev.bchannels);
4820		hc->chan[ch].bch = bch;
4821		hc->chan[ch].port = pt;
4822		set_channelmap(bch->nr, dch->dev.channelmap);
4823		bcount++;
4824	}
4825	dch->dev.nrbchan = bcount;
4826	if (pt == 0)
4827		init_e1_port_hw(hc, m);
4828	if (hc->ports > 1)
4829		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4830				HFC_cnt + 1, pt+1);
4831	else
4832		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4833	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4834	if (ret)
4835		goto free_chan;
4836	hc->created[pt] = 1;
4837	return ret;
4838free_chan:
4839	release_port(hc, dch);
4840	return ret;
4841}
4842
4843static int
4844init_multi_port(struct hfc_multi *hc, int pt)
4845{
4846	struct dchannel	*dch;
4847	struct bchannel	*bch;
4848	int		ch, i, ret = 0;
4849	char		name[MISDN_MAX_IDLEN];
4850
4851	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4852	if (!dch)
4853		return -ENOMEM;
4854	dch->debug = debug;
4855	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4856	dch->hw = hc;
4857	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4858	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4859		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4860	dch->dev.D.send = handle_dmsg;
4861	dch->dev.D.ctrl = hfcm_dctrl;
4862	dch->dev.nrbchan = 2;
4863	i = pt << 2;
4864	dch->slot = i + 2;
4865	hc->chan[i + 2].dch = dch;
4866	hc->chan[i + 2].port = pt;
4867	hc->chan[i + 2].nt_timer = -1;
4868	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4869		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4870		if (!bch) {
4871			printk(KERN_ERR "%s: no memory for bchannel\n",
4872			       __func__);
4873			ret = -ENOMEM;
4874			goto free_chan;
4875		}
4876		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4877		if (!hc->chan[i + ch].coeff) {
4878			printk(KERN_ERR "%s: no memory for coeffs\n",
4879			       __func__);
4880			ret = -ENOMEM;
4881			kfree(bch);
4882			goto free_chan;
4883		}
4884		bch->nr = ch + 1;
4885		bch->slot = i + ch;
4886		bch->debug = debug;
4887		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4888		bch->hw = hc;
4889		bch->ch.send = handle_bmsg;
4890		bch->ch.ctrl = hfcm_bctrl;
4891		bch->ch.nr = ch + 1;
4892		list_add(&bch->ch.list, &dch->dev.bchannels);
4893		hc->chan[i + ch].bch = bch;
4894		hc->chan[i + ch].port = pt;
4895		set_channelmap(bch->nr, dch->dev.channelmap);
4896	}
4897	/* set master clock */
4898	if (port[Port_cnt] & 0x001) {
4899		if (debug & DEBUG_HFCMULTI_INIT)
4900			printk(KERN_DEBUG
4901			       "%s: PROTOCOL set master clock: "
4902			       "card(%d) port(%d)\n",
4903			       __func__, HFC_cnt + 1, pt + 1);
4904		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4905			printk(KERN_ERR "Error: Master clock "
4906			       "for port(%d) of card(%d) is only"
4907			       " possible with TE-mode\n",
4908			       pt + 1, HFC_cnt + 1);
4909			ret = -EINVAL;
4910			goto free_chan;
4911		}
4912		if (hc->masterclk >= 0) {
4913			printk(KERN_ERR "Error: Master clock "
4914			       "for port(%d) of card(%d) already "
4915			       "defined for port(%d)\n",
4916			       pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4917			ret = -EINVAL;
4918			goto free_chan;
4919		}
4920		hc->masterclk = pt;
4921	}
4922	/* set transmitter line to non capacitive */
4923	if (port[Port_cnt] & 0x002) {
4924		if (debug & DEBUG_HFCMULTI_INIT)
4925			printk(KERN_DEBUG
4926			       "%s: PROTOCOL set non capacitive "
4927			       "transmitter: card(%d) port(%d)\n",
4928			       __func__, HFC_cnt + 1, pt + 1);
4929		test_and_set_bit(HFC_CFG_NONCAP_TX,
4930				 &hc->chan[i + 2].cfg);
4931	}
4932	/* disable E-channel */
4933	if (port[Port_cnt] & 0x004) {
4934		if (debug & DEBUG_HFCMULTI_INIT)
4935			printk(KERN_DEBUG
4936			       "%s: PROTOCOL disable E-channel: "
4937			       "card(%d) port(%d)\n",
4938			       __func__, HFC_cnt + 1, pt + 1);
4939		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4940				 &hc->chan[i + 2].cfg);
4941	}
4942	if (hc->ctype == HFC_TYPE_XHFC) {
4943		snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4944			 HFC_cnt + 1, pt + 1);
4945		ret = mISDN_register_device(&dch->dev, NULL, name);
4946	} else {
4947		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4948			 hc->ctype, HFC_cnt + 1, pt + 1);
4949		ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4950	}
4951	if (ret)
4952		goto free_chan;
4953	hc->created[pt] = 1;
4954	return ret;
4955free_chan:
4956	release_port(hc, dch);
4957	return ret;
4958}
4959
4960static int
4961hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4962	      const struct pci_device_id *ent)
4963{
4964	int		ret_err = 0;
4965	int		pt;
4966	struct hfc_multi	*hc;
4967	u_long		flags;
4968	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4969	int		i, ch;
4970	u_int		maskcheck;
4971
4972	if (HFC_cnt >= MAX_CARDS) {
4973		printk(KERN_ERR "too many cards (max=%d).\n",
4974		       MAX_CARDS);
4975		return -EINVAL;
4976	}
4977	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4978		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4979		       "type[%d] %d was supplied as module parameter\n",
4980		       m->vendor_name, m->card_name, m->type, HFC_cnt,
4981		       type[HFC_cnt] & 0xff);
4982		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4983		       "first, to see cards and their types.");
4984		return -EINVAL;
4985	}
4986	if (debug & DEBUG_HFCMULTI_INIT)
4987		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4988		       __func__, m->vendor_name, m->card_name, m->type,
4989		       type[HFC_cnt]);
4990
4991	/* allocate card+fifo structure */
4992	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4993	if (!hc) {
4994		printk(KERN_ERR "No kmem for HFC-Multi card\n");
4995		return -ENOMEM;
4996	}
4997	spin_lock_init(&hc->lock);
4998	hc->mtyp = m;
4999	hc->ctype =  m->type;
5000	hc->ports = m->ports;
5001	hc->id = HFC_cnt;
5002	hc->pcm = pcm[HFC_cnt];
5003	hc->io_mode = iomode[HFC_cnt];
5004	if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5005		/* fragment card */
5006		pt = 0;
5007		maskcheck = 0;
5008		for (ch = 0; ch <= 31; ch++) {
5009			if (!((1 << ch) & dmask[E1_cnt]))
5010				continue;
5011			hc->dnum[pt] = ch;
5012			hc->bmask[pt] = bmask[bmask_cnt++];
5013			if ((maskcheck & hc->bmask[pt])
5014			 || (dmask[E1_cnt] & hc->bmask[pt])) {
5015				printk(KERN_INFO
5016				       "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5017				       E1_cnt + 1, pt);
5018				kfree(hc);
5019				return -EINVAL;
5020			}
5021			maskcheck |= hc->bmask[pt];
5022			printk(KERN_INFO
5023			       "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5024				E1_cnt + 1, ch, hc->bmask[pt]);
5025			pt++;
5026		}
5027		hc->ports = pt;
5028	}
5029	if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5030		/* default card layout */
5031		hc->dnum[0] = 16;
5032		hc->bmask[0] = 0xfffefffe;
5033		hc->ports = 1;
5034	}
5035
5036	/* set chip specific features */
5037	hc->masterclk = -1;
5038	if (type[HFC_cnt] & 0x100) {
5039		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5040		hc->silence = 0xff; /* ulaw silence */
5041	} else
5042		hc->silence = 0x2a; /* alaw silence */
5043	if ((poll >> 1) > sizeof(hc->silence_data)) {
5044		printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5045		       "please fix\n");
5046		kfree(hc);
5047		return -EINVAL;
5048	}
5049	for (i = 0; i < (poll >> 1); i++)
5050		hc->silence_data[i] = hc->silence;
5051
5052	if (hc->ctype != HFC_TYPE_XHFC) {
5053		if (!(type[HFC_cnt] & 0x200))
5054			test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5055		test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5056	}
5057
5058	if (type[HFC_cnt] & 0x800)
5059		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5060	if (type[HFC_cnt] & 0x1000) {
5061		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5062		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5063	}
5064	if (type[HFC_cnt] & 0x4000)
5065		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5066	if (type[HFC_cnt] & 0x8000)
5067		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5068	hc->slots = 32;
5069	if (type[HFC_cnt] & 0x10000)
5070		hc->slots = 64;
5071	if (type[HFC_cnt] & 0x20000)
5072		hc->slots = 128;
5073	if (type[HFC_cnt] & 0x80000) {
5074		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5075		hc->wdcount = 0;
5076		hc->wdbyte = V_GPIO_OUT2;
5077		printk(KERN_NOTICE "Watchdog enabled\n");
5078	}
5079
5080	if (pdev && ent)
5081		/* setup pci, hc->slots may change due to PLXSD */
5082		ret_err = setup_pci(hc, pdev, ent);
5083	else
5084#ifdef CONFIG_MISDN_HFCMULTI_8xx
5085		ret_err = setup_embedded(hc, m);
5086#else
5087	{
5088		printk(KERN_WARNING "Embedded IO Mode not selected\n");
5089		ret_err = -EIO;
5090	}
5091#endif
5092	if (ret_err) {
5093		if (hc == syncmaster)
5094			syncmaster = NULL;
5095		kfree(hc);
5096		return ret_err;
5097	}
5098
5099	hc->HFC_outb_nodebug = hc->HFC_outb;
5100	hc->HFC_inb_nodebug = hc->HFC_inb;
5101	hc->HFC_inw_nodebug = hc->HFC_inw;
5102	hc->HFC_wait_nodebug = hc->HFC_wait;
5103#ifdef HFC_REGISTER_DEBUG
5104	hc->HFC_outb = HFC_outb_debug;
5105	hc->HFC_inb = HFC_inb_debug;
5106	hc->HFC_inw = HFC_inw_debug;
5107	hc->HFC_wait = HFC_wait_debug;
5108#endif
5109	/* create channels */
5110	for (pt = 0; pt < hc->ports; pt++) {
5111		if (Port_cnt >= MAX_PORTS) {
5112			printk(KERN_ERR "too many ports (max=%d).\n",
5113			       MAX_PORTS);
5114			ret_err = -EINVAL;
5115			goto free_card;
5116		}
5117		if (hc->ctype == HFC_TYPE_E1)
5118			ret_err = init_e1_port(hc, m, pt);
5119		else
5120			ret_err = init_multi_port(hc, pt);
5121		if (debug & DEBUG_HFCMULTI_INIT)
5122			printk(KERN_DEBUG
5123			    "%s: Registering D-channel, card(%d) port(%d) "
5124			       "result %d\n",
5125			    __func__, HFC_cnt + 1, pt + 1, ret_err);
5126
5127		if (ret_err) {
5128			while (pt) { /* release already registered ports */
5129				pt--;
5130				if (hc->ctype == HFC_TYPE_E1)
5131					release_port(hc,
5132						hc->chan[hc->dnum[pt]].dch);
5133				else
5134					release_port(hc,
5135						hc->chan[(pt << 2) + 2].dch);
5136			}
5137			goto free_card;
5138		}
5139		if (hc->ctype != HFC_TYPE_E1)
5140			Port_cnt++; /* for each S0 port */
5141	}
5142	if (hc->ctype == HFC_TYPE_E1) {
5143		Port_cnt++; /* for each E1 port */
5144		E1_cnt++;
5145	}
5146
5147	/* disp switches */
5148	switch (m->dip_type) {
5149	case DIP_4S:
5150		/*
5151		 * Get DIP setting for beroNet 1S/2S/4S cards
5152		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5153		 * GPI 19/23 (R_GPI_IN2))
5154		 */
5155		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5156			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5157			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
5158
5159		/* Port mode (TE/NT) jumpers */
5160		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5161
5162		if (test_bit(HFC_CHIP_B410P, &hc->chip))
5163			pmj = ~pmj & 0xf;
5164
5165		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5166		       m->vendor_name, m->card_name, dips, pmj);
5167		break;
5168	case DIP_8S:
5169		/*
5170		 * Get DIP Setting for beroNet 8S0+ cards
5171		 * Enable PCI auxbridge function
5172		 */
5173		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5174		/* prepare access to auxport */
5175		outw(0x4000, hc->pci_iobase + 4);
5176		/*
5177		 * some dummy reads are required to
5178		 * read valid DIP switch data
5179		 */
5180		dips = inb(hc->pci_iobase);
5181		dips = inb(hc->pci_iobase);
5182		dips = inb(hc->pci_iobase);
5183		dips = ~inb(hc->pci_iobase) & 0x3F;
5184		outw(0x0, hc->pci_iobase + 4);
5185		/* disable PCI auxbridge function */
5186		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5187		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5188		       m->vendor_name, m->card_name, dips);
5189		break;
5190	case DIP_E1:
5191		/*
5192		 * get DIP Setting for beroNet E1 cards
5193		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5194		 */
5195		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5196		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5197		       m->vendor_name, m->card_name, dips);
5198		break;
5199	}
5200
5201	/* add to list */
5202	spin_lock_irqsave(&HFClock, flags);
5203	list_add_tail(&hc->list, &HFClist);
5204	spin_unlock_irqrestore(&HFClock, flags);
5205
5206	/* use as clock source */
5207	if (clock == HFC_cnt + 1)
5208		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5209
5210	/* initialize hardware */
5211	hc->irq = (m->irq) ? : hc->pci_dev->irq;
5212	ret_err = init_card(hc);
5213	if (ret_err) {
5214		printk(KERN_ERR "init card returns %d\n", ret_err);
5215		release_card(hc);
5216		return ret_err;
5217	}
5218
5219	/* start IRQ and return */
5220	spin_lock_irqsave(&hc->lock, flags);
5221	enable_hwirq(hc);
5222	spin_unlock_irqrestore(&hc->lock, flags);
5223	return 0;
5224
5225free_card:
5226	release_io_hfcmulti(hc);
5227	if (hc == syncmaster)
5228		syncmaster = NULL;
5229	kfree(hc);
5230	return ret_err;
5231}
5232
5233static void hfc_remove_pci(struct pci_dev *pdev)
5234{
5235	struct hfc_multi	*card = pci_get_drvdata(pdev);
5236	u_long			flags;
5237
5238	if (debug)
5239		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5240		       "device:%x subvendor:%x subdevice:%x\n",
5241		       pdev->vendor, pdev->device,
5242		       pdev->subsystem_vendor, pdev->subsystem_device);
5243
5244	if (card) {
5245		spin_lock_irqsave(&HFClock, flags);
5246		release_card(card);
5247		spin_unlock_irqrestore(&HFClock, flags);
5248	}  else {
5249		if (debug)
5250			printk(KERN_DEBUG "%s: drvdata already removed\n",
5251			       __func__);
5252	}
5253}
5254
5255#define	VENDOR_CCD	"Cologne Chip AG"
5256#define	VENDOR_BN	"beroNet GmbH"
5257#define	VENDOR_DIG	"Digium Inc."
5258#define VENDOR_JH	"Junghanns.NET GmbH"
5259#define VENDOR_PRIM	"PrimuX"
5260
5261static const struct hm_map hfcm_map[] = {
5262	/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5263	/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5264	/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5265	/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5266	/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5267	/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5268	/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5269	/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5270	/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5271	/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5272	/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5273	/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5274
5275	/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5276	/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5277		 HFC_IO_MODE_REGIO, 0},
5278	/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5279	/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5280
5281	/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5282	/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5283	/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5284
5285	/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5286	/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5287	/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5288	/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5289
5290	/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5291	/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5292	/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5293
5294	/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5295		 HFC_IO_MODE_PLXSD, 0},
5296	/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5297		 HFC_IO_MODE_PLXSD, 0},
5298	/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5299	/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5300	/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5301	/*31*/	{VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5302		 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5303	/*32*/	{VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5304	/*33*/	{VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5305	/*34*/	{VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5306};
5307
5308#undef H
5309#define H(x)	((unsigned long)&hfcm_map[x])
5310static const struct pci_device_id hfmultipci_ids[] = {
5311
5312	/* Cards with HFC-4S Chip */
5313	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5314	  PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5315	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5316	  PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5317	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5318	  PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5319	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5320	  PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5321	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5322	  PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5323	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5324	  PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5325	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5326	  PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5327	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5328	  PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5329	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5330	  PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5331	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5332	  PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5333	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5334	  PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5335	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5336	  PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5337	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5338	  PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5339	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5340	  PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5341	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5342	  0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5343	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5344	  0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5345
5346	/* Cards with HFC-8S Chip */
5347	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5348	  PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5349	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5350	  PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5351	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5352	  PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5353	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5354	  PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5355	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5356	  PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5357	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5358	  PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5359	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5360	  PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5361	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5362	  PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5363	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5364	  PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5365
5366
5367	/* Cards with HFC-E1 Chip */
5368	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5369	  PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5370	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5371	  PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5372	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5373	  PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5374	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5375	  PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5376
5377	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5378	  PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5379	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5380	  PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5381	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5382	  PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5383
5384	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5385	  PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5386	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5387	  PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5388
5389	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5390	  PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5391
5392	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5393	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5394	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5395	{0, }
5396};
5397#undef H
5398
5399MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5400
5401static int
5402hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5403{
5404	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5405	int		ret;
5406
5407	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5408		    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5409		    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5410		    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5411		printk(KERN_ERR
5412		       "Unknown HFC multiport controller (vendor:%04x device:%04x "
5413		       "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5414		       pdev->device, pdev->subsystem_vendor,
5415		       pdev->subsystem_device);
5416		printk(KERN_ERR
5417		       "Please contact the driver maintainer for support.\n");
5418		return -ENODEV;
5419	}
5420	ret = hfcmulti_init(m, pdev, ent);
5421	if (ret)
5422		return ret;
5423	HFC_cnt++;
5424	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5425	return 0;
5426}
5427
5428static struct pci_driver hfcmultipci_driver = {
5429	.name		= "hfc_multi",
5430	.probe		= hfcmulti_probe,
5431	.remove		= hfc_remove_pci,
5432	.id_table	= hfmultipci_ids,
5433};
5434
5435static void __exit
5436HFCmulti_cleanup(void)
5437{
5438	struct hfc_multi *card, *next;
5439
5440	/* get rid of all devices of this driver */
5441	list_for_each_entry_safe(card, next, &HFClist, list)
5442		release_card(card);
5443	pci_unregister_driver(&hfcmultipci_driver);
5444}
5445
5446static int __init
5447HFCmulti_init(void)
5448{
5449	int err;
5450	int i, xhfc = 0;
5451	struct hm_map m;
5452
5453	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5454
5455#ifdef IRQ_DEBUG
5456	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5457#endif
5458
5459	if (debug & DEBUG_HFCMULTI_INIT)
5460		printk(KERN_DEBUG "%s: init entered\n", __func__);
5461
5462	switch (poll) {
5463	case 0:
5464		poll_timer = 6;
5465		poll = 128;
5466		break;
5467	case 8:
5468		poll_timer = 2;
5469		break;
5470	case 16:
5471		poll_timer = 3;
5472		break;
5473	case 32:
5474		poll_timer = 4;
5475		break;
5476	case 64:
5477		poll_timer = 5;
5478		break;
5479	case 128:
5480		poll_timer = 6;
5481		break;
5482	case 256:
5483		poll_timer = 7;
5484		break;
5485	default:
5486		printk(KERN_ERR
5487		       "%s: Wrong poll value (%d).\n", __func__, poll);
5488		err = -EINVAL;
5489		return err;
5490
5491	}
5492
5493	if (!clock)
5494		clock = 1;
5495
5496	/* Register the embedded devices.
5497	 * This should be done before the PCI cards registration */
5498	switch (hwid) {
5499	case HWID_MINIP4:
5500		xhfc = 1;
5501		m = hfcm_map[31];
5502		break;
5503	case HWID_MINIP8:
5504		xhfc = 2;
5505		m = hfcm_map[31];
5506		break;
5507	case HWID_MINIP16:
5508		xhfc = 4;
5509		m = hfcm_map[31];
5510		break;
5511	default:
5512		xhfc = 0;
5513	}
5514
5515	for (i = 0; i < xhfc; ++i) {
5516		err = hfcmulti_init(&m, NULL, NULL);
5517		if (err) {
5518			printk(KERN_ERR "error registering embedded driver: "
5519			       "%x\n", err);
5520			return err;
5521		}
5522		HFC_cnt++;
5523		printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5524	}
5525
5526	/* Register the PCI cards */
5527	err = pci_register_driver(&hfcmultipci_driver);
5528	if (err < 0) {
5529		printk(KERN_ERR "error registering pci driver: %x\n", err);
5530		return err;
5531	}
5532
5533	return 0;
5534}
5535
5536
5537module_init(HFCmulti_init);
5538module_exit(HFCmulti_cleanup);
5539