1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#define pr_fmt(fmt)	"GICv3: " fmt
8
9#include <linux/acpi.h>
10#include <linux/cpu.h>
11#include <linux/cpu_pm.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/irqdomain.h>
15#include <linux/kstrtox.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/of_irq.h>
19#include <linux/percpu.h>
20#include <linux/refcount.h>
21#include <linux/slab.h>
22#include <linux/iopoll.h>
23
24#include <linux/irqchip.h>
25#include <linux/irqchip/arm-gic-common.h>
26#include <linux/irqchip/arm-gic-v3.h>
27#include <linux/irqchip/irq-partition-percpu.h>
28#include <linux/bitfield.h>
29#include <linux/bits.h>
30#include <linux/arm-smccc.h>
31
32#include <asm/cputype.h>
33#include <asm/exception.h>
34#include <asm/smp_plat.h>
35#include <asm/virt.h>
36
37#include "irq-gic-common.h"
38
39#define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
40
41#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
42#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
43#define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 2)
44
45#define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
46
47struct redist_region {
48	void __iomem		*redist_base;
49	phys_addr_t		phys_base;
50	bool			single_redist;
51};
52
53struct gic_chip_data {
54	struct fwnode_handle	*fwnode;
55	phys_addr_t		dist_phys_base;
56	void __iomem		*dist_base;
57	struct redist_region	*redist_regions;
58	struct rdists		rdists;
59	struct irq_domain	*domain;
60	u64			redist_stride;
61	u32			nr_redist_regions;
62	u64			flags;
63	bool			has_rss;
64	unsigned int		ppi_nr;
65	struct partition_desc	**ppi_descs;
66};
67
68#define T241_CHIPS_MAX		4
69static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
70static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
71
72static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
73
74static struct gic_chip_data gic_data __read_mostly;
75static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
76
77#define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
78#define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
79#define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
80
81/*
82 * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
83 * are potentially stolen by the secure side. Some code, especially code dealing
84 * with hwirq IDs, is simplified by accounting for all 16.
85 */
86#define SGI_NR		16
87
88/*
89 * The behaviours of RPR and PMR registers differ depending on the value of
90 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
91 * distributor and redistributors depends on whether security is enabled in the
92 * GIC.
93 *
94 * When security is enabled, non-secure priority values from the (re)distributor
95 * are presented to the GIC CPUIF as follow:
96 *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
97 *
98 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
99 * EL1 are subject to a similar operation thus matching the priorities presented
100 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
101 * these values are unchanged by the GIC.
102 *
103 * see GICv3/GICv4 Architecture Specification (IHI0069D):
104 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
105 *   priorities.
106 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
107 *   interrupt.
108 */
109static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
110
111DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
112EXPORT_SYMBOL(gic_nonsecure_priorities);
113
114/*
115 * When the Non-secure world has access to group 0 interrupts (as a
116 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
117 * return the Distributor's view of the interrupt priority.
118 *
119 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
120 * written by software is moved to the Non-secure range by the Distributor.
121 *
122 * If both are true (which is when gic_nonsecure_priorities gets enabled),
123 * we need to shift down the priority programmed by software to match it
124 * against the value returned by ICC_RPR_EL1.
125 */
126#define GICD_INT_RPR_PRI(priority)					\
127	({								\
128		u32 __priority = (priority);				\
129		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
130			__priority = 0x80 | (__priority >> 1);		\
131									\
132		__priority;						\
133	})
134
135/* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
136static refcount_t *rdist_nmi_refs;
137
138static struct gic_kvm_info gic_v3_kvm_info __initdata;
139static DEFINE_PER_CPU(bool, has_rss);
140
141#define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
142#define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
143#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
144#define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
145
146/* Our default, arbitrary priority value. Linux only uses one anyway. */
147#define DEFAULT_PMR_VALUE	0xf0
148
149enum gic_intid_range {
150	SGI_RANGE,
151	PPI_RANGE,
152	SPI_RANGE,
153	EPPI_RANGE,
154	ESPI_RANGE,
155	LPI_RANGE,
156	__INVALID_RANGE__
157};
158
159static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
160{
161	switch (hwirq) {
162	case 0 ... 15:
163		return SGI_RANGE;
164	case 16 ... 31:
165		return PPI_RANGE;
166	case 32 ... 1019:
167		return SPI_RANGE;
168	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
169		return EPPI_RANGE;
170	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
171		return ESPI_RANGE;
172	case 8192 ... GENMASK(23, 0):
173		return LPI_RANGE;
174	default:
175		return __INVALID_RANGE__;
176	}
177}
178
179static enum gic_intid_range get_intid_range(struct irq_data *d)
180{
181	return __get_intid_range(d->hwirq);
182}
183
184static inline bool gic_irq_in_rdist(struct irq_data *d)
185{
186	switch (get_intid_range(d)) {
187	case SGI_RANGE:
188	case PPI_RANGE:
189	case EPPI_RANGE:
190		return true;
191	default:
192		return false;
193	}
194}
195
196static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
197{
198	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
199		irq_hw_number_t hwirq = irqd_to_hwirq(d);
200		u32 chip;
201
202		/*
203		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
204		 * registers are directed to the chip that owns the SPI. The
205		 * the alias region can also be used for writes to the
206		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
207		 * for 320 {E}SPIs. Mappings for all 4 chips:
208		 *    Chip0 = 32-351
209		 *    Chip1 = 352-671
210		 *    Chip2 = 672-991
211		 *    Chip3 = 4096-4415
212		 */
213		switch (__get_intid_range(hwirq)) {
214		case SPI_RANGE:
215			chip = (hwirq - 32) / 320;
216			break;
217		case ESPI_RANGE:
218			chip = 3;
219			break;
220		default:
221			unreachable();
222		}
223		return t241_dist_base_alias[chip];
224	}
225
226	return gic_data.dist_base;
227}
228
229static inline void __iomem *gic_dist_base(struct irq_data *d)
230{
231	switch (get_intid_range(d)) {
232	case SGI_RANGE:
233	case PPI_RANGE:
234	case EPPI_RANGE:
235		/* SGI+PPI -> SGI_base for this CPU */
236		return gic_data_rdist_sgi_base();
237
238	case SPI_RANGE:
239	case ESPI_RANGE:
240		/* SPI -> dist_base */
241		return gic_data.dist_base;
242
243	default:
244		return NULL;
245	}
246}
247
248static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
249{
250	u32 val;
251	int ret;
252
253	ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
254						1, USEC_PER_SEC);
255	if (ret == -ETIMEDOUT)
256		pr_err_ratelimited("RWP timeout, gone fishing\n");
257}
258
259/* Wait for completion of a distributor change */
260static void gic_dist_wait_for_rwp(void)
261{
262	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
263}
264
265/* Wait for completion of a redistributor change */
266static void gic_redist_wait_for_rwp(void)
267{
268	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
269}
270
271static void gic_enable_redist(bool enable)
272{
273	void __iomem *rbase;
274	u32 val;
275	int ret;
276
277	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
278		return;
279
280	rbase = gic_data_rdist_rd_base();
281
282	val = readl_relaxed(rbase + GICR_WAKER);
283	if (enable)
284		/* Wake up this CPU redistributor */
285		val &= ~GICR_WAKER_ProcessorSleep;
286	else
287		val |= GICR_WAKER_ProcessorSleep;
288	writel_relaxed(val, rbase + GICR_WAKER);
289
290	if (!enable) {		/* Check that GICR_WAKER is writeable */
291		val = readl_relaxed(rbase + GICR_WAKER);
292		if (!(val & GICR_WAKER_ProcessorSleep))
293			return;	/* No PM support in this redistributor */
294	}
295
296	ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
297						enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
298						1, USEC_PER_SEC);
299	if (ret == -ETIMEDOUT) {
300		pr_err_ratelimited("redistributor failed to %s...\n",
301				   enable ? "wakeup" : "sleep");
302	}
303}
304
305/*
306 * Routines to disable, enable, EOI and route interrupts
307 */
308static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
309{
310	switch (get_intid_range(d)) {
311	case SGI_RANGE:
312	case PPI_RANGE:
313	case SPI_RANGE:
314		*index = d->hwirq;
315		return offset;
316	case EPPI_RANGE:
317		/*
318		 * Contrary to the ESPI range, the EPPI range is contiguous
319		 * to the PPI range in the registers, so let's adjust the
320		 * displacement accordingly. Consistency is overrated.
321		 */
322		*index = d->hwirq - EPPI_BASE_INTID + 32;
323		return offset;
324	case ESPI_RANGE:
325		*index = d->hwirq - ESPI_BASE_INTID;
326		switch (offset) {
327		case GICD_ISENABLER:
328			return GICD_ISENABLERnE;
329		case GICD_ICENABLER:
330			return GICD_ICENABLERnE;
331		case GICD_ISPENDR:
332			return GICD_ISPENDRnE;
333		case GICD_ICPENDR:
334			return GICD_ICPENDRnE;
335		case GICD_ISACTIVER:
336			return GICD_ISACTIVERnE;
337		case GICD_ICACTIVER:
338			return GICD_ICACTIVERnE;
339		case GICD_IPRIORITYR:
340			return GICD_IPRIORITYRnE;
341		case GICD_ICFGR:
342			return GICD_ICFGRnE;
343		case GICD_IROUTER:
344			return GICD_IROUTERnE;
345		default:
346			break;
347		}
348		break;
349	default:
350		break;
351	}
352
353	WARN_ON(1);
354	*index = d->hwirq;
355	return offset;
356}
357
358static int gic_peek_irq(struct irq_data *d, u32 offset)
359{
360	void __iomem *base;
361	u32 index, mask;
362
363	offset = convert_offset_index(d, offset, &index);
364	mask = 1 << (index % 32);
365
366	if (gic_irq_in_rdist(d))
367		base = gic_data_rdist_sgi_base();
368	else
369		base = gic_dist_base_alias(d);
370
371	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
372}
373
374static void gic_poke_irq(struct irq_data *d, u32 offset)
375{
376	void __iomem *base;
377	u32 index, mask;
378
379	offset = convert_offset_index(d, offset, &index);
380	mask = 1 << (index % 32);
381
382	if (gic_irq_in_rdist(d))
383		base = gic_data_rdist_sgi_base();
384	else
385		base = gic_data.dist_base;
386
387	writel_relaxed(mask, base + offset + (index / 32) * 4);
388}
389
390static void gic_mask_irq(struct irq_data *d)
391{
392	gic_poke_irq(d, GICD_ICENABLER);
393	if (gic_irq_in_rdist(d))
394		gic_redist_wait_for_rwp();
395	else
396		gic_dist_wait_for_rwp();
397}
398
399static void gic_eoimode1_mask_irq(struct irq_data *d)
400{
401	gic_mask_irq(d);
402	/*
403	 * When masking a forwarded interrupt, make sure it is
404	 * deactivated as well.
405	 *
406	 * This ensures that an interrupt that is getting
407	 * disabled/masked will not get "stuck", because there is
408	 * noone to deactivate it (guest is being terminated).
409	 */
410	if (irqd_is_forwarded_to_vcpu(d))
411		gic_poke_irq(d, GICD_ICACTIVER);
412}
413
414static void gic_unmask_irq(struct irq_data *d)
415{
416	gic_poke_irq(d, GICD_ISENABLER);
417}
418
419static inline bool gic_supports_nmi(void)
420{
421	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
422	       static_branch_likely(&supports_pseudo_nmis);
423}
424
425static int gic_irq_set_irqchip_state(struct irq_data *d,
426				     enum irqchip_irq_state which, bool val)
427{
428	u32 reg;
429
430	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
431		return -EINVAL;
432
433	switch (which) {
434	case IRQCHIP_STATE_PENDING:
435		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
436		break;
437
438	case IRQCHIP_STATE_ACTIVE:
439		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
440		break;
441
442	case IRQCHIP_STATE_MASKED:
443		if (val) {
444			gic_mask_irq(d);
445			return 0;
446		}
447		reg = GICD_ISENABLER;
448		break;
449
450	default:
451		return -EINVAL;
452	}
453
454	gic_poke_irq(d, reg);
455	return 0;
456}
457
458static int gic_irq_get_irqchip_state(struct irq_data *d,
459				     enum irqchip_irq_state which, bool *val)
460{
461	if (d->hwirq >= 8192) /* PPI/SPI only */
462		return -EINVAL;
463
464	switch (which) {
465	case IRQCHIP_STATE_PENDING:
466		*val = gic_peek_irq(d, GICD_ISPENDR);
467		break;
468
469	case IRQCHIP_STATE_ACTIVE:
470		*val = gic_peek_irq(d, GICD_ISACTIVER);
471		break;
472
473	case IRQCHIP_STATE_MASKED:
474		*val = !gic_peek_irq(d, GICD_ISENABLER);
475		break;
476
477	default:
478		return -EINVAL;
479	}
480
481	return 0;
482}
483
484static void gic_irq_set_prio(struct irq_data *d, u8 prio)
485{
486	void __iomem *base = gic_dist_base(d);
487	u32 offset, index;
488
489	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
490
491	writeb_relaxed(prio, base + offset + index);
492}
493
494static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
495{
496	switch (__get_intid_range(hwirq)) {
497	case PPI_RANGE:
498		return hwirq - 16;
499	case EPPI_RANGE:
500		return hwirq - EPPI_BASE_INTID + 16;
501	default:
502		unreachable();
503	}
504}
505
506static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
507{
508	switch (__get_intid_range(hwirq)) {
509	case SGI_RANGE:
510	case PPI_RANGE:
511		return hwirq;
512	case EPPI_RANGE:
513		return hwirq - EPPI_BASE_INTID + 32;
514	default:
515		unreachable();
516	}
517}
518
519static u32 gic_get_rdist_index(struct irq_data *d)
520{
521	return __gic_get_rdist_index(d->hwirq);
522}
523
524static int gic_irq_nmi_setup(struct irq_data *d)
525{
526	struct irq_desc *desc = irq_to_desc(d->irq);
527
528	if (!gic_supports_nmi())
529		return -EINVAL;
530
531	if (gic_peek_irq(d, GICD_ISENABLER)) {
532		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533		return -EINVAL;
534	}
535
536	/*
537	 * A secondary irq_chip should be in charge of LPI request,
538	 * it should not be possible to get there
539	 */
540	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
541		return -EINVAL;
542
543	/* desc lock should already be held */
544	if (gic_irq_in_rdist(d)) {
545		u32 idx = gic_get_rdist_index(d);
546
547		/*
548		 * Setting up a percpu interrupt as NMI, only switch handler
549		 * for first NMI
550		 */
551		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
552			refcount_set(&rdist_nmi_refs[idx], 1);
553			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
554		}
555	} else {
556		desc->handle_irq = handle_fasteoi_nmi;
557	}
558
559	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
560
561	return 0;
562}
563
564static void gic_irq_nmi_teardown(struct irq_data *d)
565{
566	struct irq_desc *desc = irq_to_desc(d->irq);
567
568	if (WARN_ON(!gic_supports_nmi()))
569		return;
570
571	if (gic_peek_irq(d, GICD_ISENABLER)) {
572		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
573		return;
574	}
575
576	/*
577	 * A secondary irq_chip should be in charge of LPI request,
578	 * it should not be possible to get there
579	 */
580	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
581		return;
582
583	/* desc lock should already be held */
584	if (gic_irq_in_rdist(d)) {
585		u32 idx = gic_get_rdist_index(d);
586
587		/* Tearing down NMI, only switch handler for last NMI */
588		if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
589			desc->handle_irq = handle_percpu_devid_irq;
590	} else {
591		desc->handle_irq = handle_fasteoi_irq;
592	}
593
594	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
595}
596
597static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
598{
599	enum gic_intid_range range;
600
601	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
602		return false;
603
604	range = get_intid_range(d);
605
606	/*
607	 * The workaround is needed if the IRQ is an SPI and
608	 * the target cpu is different from the one we are
609	 * executing on.
610	 */
611	return (range == SPI_RANGE || range == ESPI_RANGE) &&
612		!cpumask_test_cpu(raw_smp_processor_id(),
613				  irq_data_get_effective_affinity_mask(d));
614}
615
616static void gic_eoi_irq(struct irq_data *d)
617{
618	write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
619	isb();
620
621	if (gic_arm64_erratum_2941627_needed(d)) {
622		/*
623		 * Make sure the GIC stream deactivate packet
624		 * issued by ICC_EOIR1_EL1 has completed before
625		 * deactivating through GICD_IACTIVER.
626		 */
627		dsb(sy);
628		gic_poke_irq(d, GICD_ICACTIVER);
629	}
630}
631
632static void gic_eoimode1_eoi_irq(struct irq_data *d)
633{
634	/*
635	 * No need to deactivate an LPI, or an interrupt that
636	 * is is getting forwarded to a vcpu.
637	 */
638	if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
639		return;
640
641	if (!gic_arm64_erratum_2941627_needed(d))
642		gic_write_dir(irqd_to_hwirq(d));
643	else
644		gic_poke_irq(d, GICD_ICACTIVER);
645}
646
647static int gic_set_type(struct irq_data *d, unsigned int type)
648{
649	irq_hw_number_t irq = irqd_to_hwirq(d);
650	enum gic_intid_range range;
651	void __iomem *base;
652	u32 offset, index;
653	int ret;
654
655	range = get_intid_range(d);
656
657	/* Interrupt configuration for SGIs can't be changed */
658	if (range == SGI_RANGE)
659		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
660
661	/* SPIs have restrictions on the supported types */
662	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
663	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
664		return -EINVAL;
665
666	if (gic_irq_in_rdist(d))
667		base = gic_data_rdist_sgi_base();
668	else
669		base = gic_dist_base_alias(d);
670
671	offset = convert_offset_index(d, GICD_ICFGR, &index);
672
673	ret = gic_configure_irq(index, type, base + offset, NULL);
674	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
675		/* Misconfigured PPIs are usually not fatal */
676		pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
677		ret = 0;
678	}
679
680	return ret;
681}
682
683static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
684{
685	if (get_intid_range(d) == SGI_RANGE)
686		return -EINVAL;
687
688	if (vcpu)
689		irqd_set_forwarded_to_vcpu(d);
690	else
691		irqd_clr_forwarded_to_vcpu(d);
692	return 0;
693}
694
695static u64 gic_cpu_to_affinity(int cpu)
696{
697	u64 mpidr = cpu_logical_map(cpu);
698	u64 aff;
699
700	/* ASR8601 needs to have its affinities shifted down... */
701	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
702		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
703			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
704
705	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
706	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
707	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
708	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
709
710	return aff;
711}
712
713static void gic_deactivate_unhandled(u32 irqnr)
714{
715	if (static_branch_likely(&supports_deactivate_key)) {
716		if (irqnr < 8192)
717			gic_write_dir(irqnr);
718	} else {
719		write_gicreg(irqnr, ICC_EOIR1_EL1);
720		isb();
721	}
722}
723
724/*
725 * Follow a read of the IAR with any HW maintenance that needs to happen prior
726 * to invoking the relevant IRQ handler. We must do two things:
727 *
728 * (1) Ensure instruction ordering between a read of IAR and subsequent
729 *     instructions in the IRQ handler using an ISB.
730 *
731 *     It is possible for the IAR to report an IRQ which was signalled *after*
732 *     the CPU took an IRQ exception as multiple interrupts can race to be
733 *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
734 *     later interrupts could be prioritized by the GIC.
735 *
736 *     For devices which are tightly coupled to the CPU, such as PMUs, a
737 *     context synchronization event is necessary to ensure that system
738 *     register state is not stale, as these may have been indirectly written
739 *     *after* exception entry.
740 *
741 * (2) Deactivate the interrupt when EOI mode 1 is in use.
742 */
743static inline void gic_complete_ack(u32 irqnr)
744{
745	if (static_branch_likely(&supports_deactivate_key))
746		write_gicreg(irqnr, ICC_EOIR1_EL1);
747
748	isb();
749}
750
751static bool gic_rpr_is_nmi_prio(void)
752{
753	if (!gic_supports_nmi())
754		return false;
755
756	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
757}
758
759static bool gic_irqnr_is_special(u32 irqnr)
760{
761	return irqnr >= 1020 && irqnr <= 1023;
762}
763
764static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
765{
766	if (gic_irqnr_is_special(irqnr))
767		return;
768
769	gic_complete_ack(irqnr);
770
771	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
772		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
773		gic_deactivate_unhandled(irqnr);
774	}
775}
776
777static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
778{
779	if (gic_irqnr_is_special(irqnr))
780		return;
781
782	gic_complete_ack(irqnr);
783
784	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
785		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
786		gic_deactivate_unhandled(irqnr);
787	}
788}
789
790/*
791 * An exception has been taken from a context with IRQs enabled, and this could
792 * be an IRQ or an NMI.
793 *
794 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
795 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
796 * after handling any NMI but before handling any IRQ.
797 *
798 * The entry code has performed IRQ entry, and if an NMI is detected we must
799 * perform NMI entry/exit around invoking the handler.
800 */
801static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
802{
803	bool is_nmi;
804	u32 irqnr;
805
806	irqnr = gic_read_iar();
807
808	is_nmi = gic_rpr_is_nmi_prio();
809
810	if (is_nmi) {
811		nmi_enter();
812		__gic_handle_nmi(irqnr, regs);
813		nmi_exit();
814	}
815
816	if (gic_prio_masking_enabled()) {
817		gic_pmr_mask_irqs();
818		gic_arch_enable_irqs();
819	}
820
821	if (!is_nmi)
822		__gic_handle_irq(irqnr, regs);
823}
824
825/*
826 * An exception has been taken from a context with IRQs disabled, which can only
827 * be an NMI.
828 *
829 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
830 * DAIF.IF (and ICC_PMR_EL1) unchanged.
831 *
832 * The entry code has performed NMI entry.
833 */
834static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
835{
836	u64 pmr;
837	u32 irqnr;
838
839	/*
840	 * We were in a context with IRQs disabled. However, the
841	 * entry code has set PMR to a value that allows any
842	 * interrupt to be acknowledged, and not just NMIs. This can
843	 * lead to surprising effects if the NMI has been retired in
844	 * the meantime, and that there is an IRQ pending. The IRQ
845	 * would then be taken in NMI context, something that nobody
846	 * wants to debug twice.
847	 *
848	 * Until we sort this, drop PMR again to a level that will
849	 * actually only allow NMIs before reading IAR, and then
850	 * restore it to what it was.
851	 */
852	pmr = gic_read_pmr();
853	gic_pmr_mask_irqs();
854	isb();
855	irqnr = gic_read_iar();
856	gic_write_pmr(pmr);
857
858	__gic_handle_nmi(irqnr, regs);
859}
860
861static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
862{
863	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
864		__gic_handle_irq_from_irqsoff(regs);
865	else
866		__gic_handle_irq_from_irqson(regs);
867}
868
869static u32 gic_get_pribits(void)
870{
871	u32 pribits;
872
873	pribits = gic_read_ctlr();
874	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
875	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
876	pribits++;
877
878	return pribits;
879}
880
881static bool gic_has_group0(void)
882{
883	u32 val;
884	u32 old_pmr;
885
886	old_pmr = gic_read_pmr();
887
888	/*
889	 * Let's find out if Group0 is under control of EL3 or not by
890	 * setting the highest possible, non-zero priority in PMR.
891	 *
892	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
893	 * order for the CPU interface to set bit 7, and keep the
894	 * actual priority in the non-secure range. In the process, it
895	 * looses the least significant bit and the actual priority
896	 * becomes 0x80. Reading it back returns 0, indicating that
897	 * we're don't have access to Group0.
898	 */
899	gic_write_pmr(BIT(8 - gic_get_pribits()));
900	val = gic_read_pmr();
901
902	gic_write_pmr(old_pmr);
903
904	return val != 0;
905}
906
907static void __init gic_dist_init(void)
908{
909	unsigned int i;
910	u64 affinity;
911	void __iomem *base = gic_data.dist_base;
912	u32 val;
913
914	/* Disable the distributor */
915	writel_relaxed(0, base + GICD_CTLR);
916	gic_dist_wait_for_rwp();
917
918	/*
919	 * Configure SPIs as non-secure Group-1. This will only matter
920	 * if the GIC only has a single security state. This will not
921	 * do the right thing if the kernel is running in secure mode,
922	 * but that's not the intended use case anyway.
923	 */
924	for (i = 32; i < GIC_LINE_NR; i += 32)
925		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
926
927	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
928	for (i = 0; i < GIC_ESPI_NR; i += 32) {
929		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
930		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
931	}
932
933	for (i = 0; i < GIC_ESPI_NR; i += 32)
934		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
935
936	for (i = 0; i < GIC_ESPI_NR; i += 16)
937		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
938
939	for (i = 0; i < GIC_ESPI_NR; i += 4)
940		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
941
942	/* Now do the common stuff */
943	gic_dist_config(base, GIC_LINE_NR, NULL);
944
945	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
946	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
947		pr_info("Enabling SGIs without active state\n");
948		val |= GICD_CTLR_nASSGIreq;
949	}
950
951	/* Enable distributor with ARE, Group1, and wait for it to drain */
952	writel_relaxed(val, base + GICD_CTLR);
953	gic_dist_wait_for_rwp();
954
955	/*
956	 * Set all global interrupts to the boot CPU only. ARE must be
957	 * enabled.
958	 */
959	affinity = gic_cpu_to_affinity(smp_processor_id());
960	for (i = 32; i < GIC_LINE_NR; i++)
961		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
962
963	for (i = 0; i < GIC_ESPI_NR; i++)
964		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
965}
966
967static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
968{
969	int ret = -ENODEV;
970	int i;
971
972	for (i = 0; i < gic_data.nr_redist_regions; i++) {
973		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
974		u64 typer;
975		u32 reg;
976
977		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
978		if (reg != GIC_PIDR2_ARCH_GICv3 &&
979		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
980			pr_warn("No redistributor present @%p\n", ptr);
981			break;
982		}
983
984		do {
985			typer = gic_read_typer(ptr + GICR_TYPER);
986			ret = fn(gic_data.redist_regions + i, ptr);
987			if (!ret)
988				return 0;
989
990			if (gic_data.redist_regions[i].single_redist)
991				break;
992
993			if (gic_data.redist_stride) {
994				ptr += gic_data.redist_stride;
995			} else {
996				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
997				if (typer & GICR_TYPER_VLPIS)
998					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
999			}
1000		} while (!(typer & GICR_TYPER_LAST));
1001	}
1002
1003	return ret ? -ENODEV : 0;
1004}
1005
1006static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1007{
1008	unsigned long mpidr;
1009	u64 typer;
1010	u32 aff;
1011
1012	/*
1013	 * Convert affinity to a 32bit value that can be matched to
1014	 * GICR_TYPER bits [63:32].
1015	 */
1016	mpidr = gic_cpu_to_affinity(smp_processor_id());
1017
1018	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1019	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1020	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1021	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1022
1023	typer = gic_read_typer(ptr + GICR_TYPER);
1024	if ((typer >> 32) == aff) {
1025		u64 offset = ptr - region->redist_base;
1026		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1027		gic_data_rdist_rd_base() = ptr;
1028		gic_data_rdist()->phys_base = region->phys_base + offset;
1029
1030		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1031			smp_processor_id(), mpidr,
1032			(int)(region - gic_data.redist_regions),
1033			&gic_data_rdist()->phys_base);
1034		return 0;
1035	}
1036
1037	/* Try next one */
1038	return 1;
1039}
1040
1041static int gic_populate_rdist(void)
1042{
1043	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1044		return 0;
1045
1046	/* We couldn't even deal with ourselves... */
1047	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1048	     smp_processor_id(),
1049	     (unsigned long)cpu_logical_map(smp_processor_id()));
1050	return -ENODEV;
1051}
1052
1053static int __gic_update_rdist_properties(struct redist_region *region,
1054					 void __iomem *ptr)
1055{
1056	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1057	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1058
1059	/* Boot-time cleanup */
1060	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1061		u64 val;
1062
1063		/* Deactivate any present vPE */
1064		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1065		if (val & GICR_VPENDBASER_Valid)
1066			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1067					      ptr + SZ_128K + GICR_VPENDBASER);
1068
1069		/* Mark the VPE table as invalid */
1070		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1071		val &= ~GICR_VPROPBASER_4_1_VALID;
1072		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1073	}
1074
1075	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1076
1077	/*
1078	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1079	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1080	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1081	 *
1082	 * These are 3 different ways to express the same thing, depending
1083	 * on the revision of the architecture and its relaxations over
1084	 * time. Just group them under the 'direct_lpi' banner.
1085	 */
1086	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1087	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1088					   !!(ctlr & GICR_CTLR_IR) |
1089					   gic_data.rdists.has_rvpeid);
1090	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1091
1092	/* Detect non-sensical configurations */
1093	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1094		gic_data.rdists.has_direct_lpi = false;
1095		gic_data.rdists.has_vlpis = false;
1096		gic_data.rdists.has_rvpeid = false;
1097	}
1098
1099	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1100
1101	return 1;
1102}
1103
1104static void gic_update_rdist_properties(void)
1105{
1106	gic_data.ppi_nr = UINT_MAX;
1107	gic_iterate_rdists(__gic_update_rdist_properties);
1108	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1109		gic_data.ppi_nr = 0;
1110	pr_info("GICv3 features: %d PPIs%s%s\n",
1111		gic_data.ppi_nr,
1112		gic_data.has_rss ? ", RSS" : "",
1113		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1114
1115	if (gic_data.rdists.has_vlpis)
1116		pr_info("GICv4 features: %s%s%s\n",
1117			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1118			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1119			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1120}
1121
1122/* Check whether it's single security state view */
1123static inline bool gic_dist_security_disabled(void)
1124{
1125	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1126}
1127
1128static void gic_cpu_sys_reg_init(void)
1129{
1130	int i, cpu = smp_processor_id();
1131	u64 mpidr = gic_cpu_to_affinity(cpu);
1132	u64 need_rss = MPIDR_RS(mpidr);
1133	bool group0;
1134	u32 pribits;
1135
1136	/*
1137	 * Need to check that the SRE bit has actually been set. If
1138	 * not, it means that SRE is disabled at EL2. We're going to
1139	 * die painfully, and there is nothing we can do about it.
1140	 *
1141	 * Kindly inform the luser.
1142	 */
1143	if (!gic_enable_sre())
1144		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1145
1146	pribits = gic_get_pribits();
1147
1148	group0 = gic_has_group0();
1149
1150	/* Set priority mask register */
1151	if (!gic_prio_masking_enabled()) {
1152		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1153	} else if (gic_supports_nmi()) {
1154		/*
1155		 * Mismatch configuration with boot CPU, the system is likely
1156		 * to die as interrupt masking will not work properly on all
1157		 * CPUs
1158		 *
1159		 * The boot CPU calls this function before enabling NMI support,
1160		 * and as a result we'll never see this warning in the boot path
1161		 * for that CPU.
1162		 */
1163		if (static_branch_unlikely(&gic_nonsecure_priorities))
1164			WARN_ON(!group0 || gic_dist_security_disabled());
1165		else
1166			WARN_ON(group0 && !gic_dist_security_disabled());
1167	}
1168
1169	/*
1170	 * Some firmwares hand over to the kernel with the BPR changed from
1171	 * its reset value (and with a value large enough to prevent
1172	 * any pre-emptive interrupts from working at all). Writing a zero
1173	 * to BPR restores is reset value.
1174	 */
1175	gic_write_bpr1(0);
1176
1177	if (static_branch_likely(&supports_deactivate_key)) {
1178		/* EOI drops priority only (mode 1) */
1179		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1180	} else {
1181		/* EOI deactivates interrupt too (mode 0) */
1182		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1183	}
1184
1185	/* Always whack Group0 before Group1 */
1186	if (group0) {
1187		switch(pribits) {
1188		case 8:
1189		case 7:
1190			write_gicreg(0, ICC_AP0R3_EL1);
1191			write_gicreg(0, ICC_AP0R2_EL1);
1192			fallthrough;
1193		case 6:
1194			write_gicreg(0, ICC_AP0R1_EL1);
1195			fallthrough;
1196		case 5:
1197		case 4:
1198			write_gicreg(0, ICC_AP0R0_EL1);
1199		}
1200
1201		isb();
1202	}
1203
1204	switch(pribits) {
1205	case 8:
1206	case 7:
1207		write_gicreg(0, ICC_AP1R3_EL1);
1208		write_gicreg(0, ICC_AP1R2_EL1);
1209		fallthrough;
1210	case 6:
1211		write_gicreg(0, ICC_AP1R1_EL1);
1212		fallthrough;
1213	case 5:
1214	case 4:
1215		write_gicreg(0, ICC_AP1R0_EL1);
1216	}
1217
1218	isb();
1219
1220	/* ... and let's hit the road... */
1221	gic_write_grpen1(1);
1222
1223	/* Keep the RSS capability status in per_cpu variable */
1224	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1225
1226	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1227	for_each_online_cpu(i) {
1228		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1229
1230		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1231		if (need_rss && (!have_rss))
1232			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1233				cpu, (unsigned long)mpidr,
1234				i, (unsigned long)gic_cpu_to_affinity(i));
1235	}
1236
1237	/**
1238	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1239	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1240	 * UNPREDICTABLE choice of :
1241	 *   - The write is ignored.
1242	 *   - The RS field is treated as 0.
1243	 */
1244	if (need_rss && (!gic_data.has_rss))
1245		pr_crit_once("RSS is required but GICD doesn't support it\n");
1246}
1247
1248static bool gicv3_nolpi;
1249
1250static int __init gicv3_nolpi_cfg(char *buf)
1251{
1252	return kstrtobool(buf, &gicv3_nolpi);
1253}
1254early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1255
1256static int gic_dist_supports_lpis(void)
1257{
1258	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1259		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1260		!gicv3_nolpi);
1261}
1262
1263static void gic_cpu_init(void)
1264{
1265	void __iomem *rbase;
1266	int i;
1267
1268	/* Register ourselves with the rest of the world */
1269	if (gic_populate_rdist())
1270		return;
1271
1272	gic_enable_redist(true);
1273
1274	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1275	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1276	     "Distributor has extended ranges, but CPU%d doesn't\n",
1277	     smp_processor_id());
1278
1279	rbase = gic_data_rdist_sgi_base();
1280
1281	/* Configure SGIs/PPIs as non-secure Group-1 */
1282	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1283		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1284
1285	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, gic_redist_wait_for_rwp);
1286
1287	/* initialise system registers */
1288	gic_cpu_sys_reg_init();
1289}
1290
1291#ifdef CONFIG_SMP
1292
1293#define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1294#define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1295
1296static int gic_starting_cpu(unsigned int cpu)
1297{
1298	gic_cpu_init();
1299
1300	if (gic_dist_supports_lpis())
1301		its_cpu_init();
1302
1303	return 0;
1304}
1305
1306static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1307				   unsigned long cluster_id)
1308{
1309	int next_cpu, cpu = *base_cpu;
1310	unsigned long mpidr;
1311	u16 tlist = 0;
1312
1313	mpidr = gic_cpu_to_affinity(cpu);
1314
1315	while (cpu < nr_cpu_ids) {
1316		tlist |= 1 << (mpidr & 0xf);
1317
1318		next_cpu = cpumask_next(cpu, mask);
1319		if (next_cpu >= nr_cpu_ids)
1320			goto out;
1321		cpu = next_cpu;
1322
1323		mpidr = gic_cpu_to_affinity(cpu);
1324
1325		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1326			cpu--;
1327			goto out;
1328		}
1329	}
1330out:
1331	*base_cpu = cpu;
1332	return tlist;
1333}
1334
1335#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1336	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1337		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1338
1339static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1340{
1341	u64 val;
1342
1343	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1344	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1345	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1346	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1347	       MPIDR_TO_SGI_RS(cluster_id)		|
1348	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1349
1350	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1351	gic_write_sgi1r(val);
1352}
1353
1354static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1355{
1356	int cpu;
1357
1358	if (WARN_ON(d->hwirq >= 16))
1359		return;
1360
1361	/*
1362	 * Ensure that stores to Normal memory are visible to the
1363	 * other CPUs before issuing the IPI.
1364	 */
1365	dsb(ishst);
1366
1367	for_each_cpu(cpu, mask) {
1368		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1369		u16 tlist;
1370
1371		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1372		gic_send_sgi(cluster_id, tlist, d->hwirq);
1373	}
1374
1375	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1376	isb();
1377}
1378
1379static void __init gic_smp_init(void)
1380{
1381	struct irq_fwspec sgi_fwspec = {
1382		.fwnode		= gic_data.fwnode,
1383		.param_count	= 1,
1384	};
1385	int base_sgi;
1386
1387	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1388				  "irqchip/arm/gicv3:starting",
1389				  gic_starting_cpu, NULL);
1390
1391	/* Register all 8 non-secure SGIs */
1392	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1393	if (WARN_ON(base_sgi <= 0))
1394		return;
1395
1396	set_smp_ipi_range(base_sgi, 8);
1397}
1398
1399static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1400			    bool force)
1401{
1402	unsigned int cpu;
1403	u32 offset, index;
1404	void __iomem *reg;
1405	int enabled;
1406	u64 val;
1407
1408	if (force)
1409		cpu = cpumask_first(mask_val);
1410	else
1411		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1412
1413	if (cpu >= nr_cpu_ids)
1414		return -EINVAL;
1415
1416	if (gic_irq_in_rdist(d))
1417		return -EINVAL;
1418
1419	/* If interrupt was enabled, disable it first */
1420	enabled = gic_peek_irq(d, GICD_ISENABLER);
1421	if (enabled)
1422		gic_mask_irq(d);
1423
1424	offset = convert_offset_index(d, GICD_IROUTER, &index);
1425	reg = gic_dist_base(d) + offset + (index * 8);
1426	val = gic_cpu_to_affinity(cpu);
1427
1428	gic_write_irouter(val, reg);
1429
1430	/*
1431	 * If the interrupt was enabled, enabled it again. Otherwise,
1432	 * just wait for the distributor to have digested our changes.
1433	 */
1434	if (enabled)
1435		gic_unmask_irq(d);
1436
1437	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1438
1439	return IRQ_SET_MASK_OK_DONE;
1440}
1441#else
1442#define gic_set_affinity	NULL
1443#define gic_ipi_send_mask	NULL
1444#define gic_smp_init()		do { } while(0)
1445#endif
1446
1447static int gic_retrigger(struct irq_data *data)
1448{
1449	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1450}
1451
1452#ifdef CONFIG_CPU_PM
1453static int gic_cpu_pm_notifier(struct notifier_block *self,
1454			       unsigned long cmd, void *v)
1455{
1456	if (cmd == CPU_PM_EXIT) {
1457		if (gic_dist_security_disabled())
1458			gic_enable_redist(true);
1459		gic_cpu_sys_reg_init();
1460	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1461		gic_write_grpen1(0);
1462		gic_enable_redist(false);
1463	}
1464	return NOTIFY_OK;
1465}
1466
1467static struct notifier_block gic_cpu_pm_notifier_block = {
1468	.notifier_call = gic_cpu_pm_notifier,
1469};
1470
1471static void gic_cpu_pm_init(void)
1472{
1473	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1474}
1475
1476#else
1477static inline void gic_cpu_pm_init(void) { }
1478#endif /* CONFIG_CPU_PM */
1479
1480static struct irq_chip gic_chip = {
1481	.name			= "GICv3",
1482	.irq_mask		= gic_mask_irq,
1483	.irq_unmask		= gic_unmask_irq,
1484	.irq_eoi		= gic_eoi_irq,
1485	.irq_set_type		= gic_set_type,
1486	.irq_set_affinity	= gic_set_affinity,
1487	.irq_retrigger          = gic_retrigger,
1488	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1489	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1490	.irq_nmi_setup		= gic_irq_nmi_setup,
1491	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1492	.ipi_send_mask		= gic_ipi_send_mask,
1493	.flags			= IRQCHIP_SET_TYPE_MASKED |
1494				  IRQCHIP_SKIP_SET_WAKE |
1495				  IRQCHIP_MASK_ON_SUSPEND,
1496};
1497
1498static struct irq_chip gic_eoimode1_chip = {
1499	.name			= "GICv3",
1500	.irq_mask		= gic_eoimode1_mask_irq,
1501	.irq_unmask		= gic_unmask_irq,
1502	.irq_eoi		= gic_eoimode1_eoi_irq,
1503	.irq_set_type		= gic_set_type,
1504	.irq_set_affinity	= gic_set_affinity,
1505	.irq_retrigger          = gic_retrigger,
1506	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1507	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1508	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1509	.irq_nmi_setup		= gic_irq_nmi_setup,
1510	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1511	.ipi_send_mask		= gic_ipi_send_mask,
1512	.flags			= IRQCHIP_SET_TYPE_MASKED |
1513				  IRQCHIP_SKIP_SET_WAKE |
1514				  IRQCHIP_MASK_ON_SUSPEND,
1515};
1516
1517static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1518			      irq_hw_number_t hw)
1519{
1520	struct irq_chip *chip = &gic_chip;
1521	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1522
1523	if (static_branch_likely(&supports_deactivate_key))
1524		chip = &gic_eoimode1_chip;
1525
1526	switch (__get_intid_range(hw)) {
1527	case SGI_RANGE:
1528	case PPI_RANGE:
1529	case EPPI_RANGE:
1530		irq_set_percpu_devid(irq);
1531		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1532				    handle_percpu_devid_irq, NULL, NULL);
1533		break;
1534
1535	case SPI_RANGE:
1536	case ESPI_RANGE:
1537		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1538				    handle_fasteoi_irq, NULL, NULL);
1539		irq_set_probe(irq);
1540		irqd_set_single_target(irqd);
1541		break;
1542
1543	case LPI_RANGE:
1544		if (!gic_dist_supports_lpis())
1545			return -EPERM;
1546		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1547				    handle_fasteoi_irq, NULL, NULL);
1548		break;
1549
1550	default:
1551		return -EPERM;
1552	}
1553
1554	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1555	irqd_set_handle_enforce_irqctx(irqd);
1556	return 0;
1557}
1558
1559static int gic_irq_domain_translate(struct irq_domain *d,
1560				    struct irq_fwspec *fwspec,
1561				    unsigned long *hwirq,
1562				    unsigned int *type)
1563{
1564	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1565		*hwirq = fwspec->param[0];
1566		*type = IRQ_TYPE_EDGE_RISING;
1567		return 0;
1568	}
1569
1570	if (is_of_node(fwspec->fwnode)) {
1571		if (fwspec->param_count < 3)
1572			return -EINVAL;
1573
1574		switch (fwspec->param[0]) {
1575		case 0:			/* SPI */
1576			*hwirq = fwspec->param[1] + 32;
1577			break;
1578		case 1:			/* PPI */
1579			*hwirq = fwspec->param[1] + 16;
1580			break;
1581		case 2:			/* ESPI */
1582			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1583			break;
1584		case 3:			/* EPPI */
1585			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1586			break;
1587		case GIC_IRQ_TYPE_LPI:	/* LPI */
1588			*hwirq = fwspec->param[1];
1589			break;
1590		case GIC_IRQ_TYPE_PARTITION:
1591			*hwirq = fwspec->param[1];
1592			if (fwspec->param[1] >= 16)
1593				*hwirq += EPPI_BASE_INTID - 16;
1594			else
1595				*hwirq += 16;
1596			break;
1597		default:
1598			return -EINVAL;
1599		}
1600
1601		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1602
1603		/*
1604		 * Make it clear that broken DTs are... broken.
1605		 * Partitioned PPIs are an unfortunate exception.
1606		 */
1607		WARN_ON(*type == IRQ_TYPE_NONE &&
1608			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1609		return 0;
1610	}
1611
1612	if (is_fwnode_irqchip(fwspec->fwnode)) {
1613		if(fwspec->param_count != 2)
1614			return -EINVAL;
1615
1616		if (fwspec->param[0] < 16) {
1617			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1618			       fwspec->param[0]);
1619			return -EINVAL;
1620		}
1621
1622		*hwirq = fwspec->param[0];
1623		*type = fwspec->param[1];
1624
1625		WARN_ON(*type == IRQ_TYPE_NONE);
1626		return 0;
1627	}
1628
1629	return -EINVAL;
1630}
1631
1632static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1633				unsigned int nr_irqs, void *arg)
1634{
1635	int i, ret;
1636	irq_hw_number_t hwirq;
1637	unsigned int type = IRQ_TYPE_NONE;
1638	struct irq_fwspec *fwspec = arg;
1639
1640	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1641	if (ret)
1642		return ret;
1643
1644	for (i = 0; i < nr_irqs; i++) {
1645		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1646		if (ret)
1647			return ret;
1648	}
1649
1650	return 0;
1651}
1652
1653static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1654				unsigned int nr_irqs)
1655{
1656	int i;
1657
1658	for (i = 0; i < nr_irqs; i++) {
1659		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1660		irq_set_handler(virq + i, NULL);
1661		irq_domain_reset_irq_data(d);
1662	}
1663}
1664
1665static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1666				      irq_hw_number_t hwirq)
1667{
1668	enum gic_intid_range range;
1669
1670	if (!gic_data.ppi_descs)
1671		return false;
1672
1673	if (!is_of_node(fwspec->fwnode))
1674		return false;
1675
1676	if (fwspec->param_count < 4 || !fwspec->param[3])
1677		return false;
1678
1679	range = __get_intid_range(hwirq);
1680	if (range != PPI_RANGE && range != EPPI_RANGE)
1681		return false;
1682
1683	return true;
1684}
1685
1686static int gic_irq_domain_select(struct irq_domain *d,
1687				 struct irq_fwspec *fwspec,
1688				 enum irq_domain_bus_token bus_token)
1689{
1690	unsigned int type, ret, ppi_idx;
1691	irq_hw_number_t hwirq;
1692
1693	/* Not for us */
1694	if (fwspec->fwnode != d->fwnode)
1695		return 0;
1696
1697	/* Handle pure domain searches */
1698	if (!fwspec->param_count)
1699		return d->bus_token == bus_token;
1700
1701	/* If this is not DT, then we have a single domain */
1702	if (!is_of_node(fwspec->fwnode))
1703		return 1;
1704
1705	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1706	if (WARN_ON_ONCE(ret))
1707		return 0;
1708
1709	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1710		return d == gic_data.domain;
1711
1712	/*
1713	 * If this is a PPI and we have a 4th (non-null) parameter,
1714	 * then we need to match the partition domain.
1715	 */
1716	ppi_idx = __gic_get_ppi_index(hwirq);
1717	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1718}
1719
1720static const struct irq_domain_ops gic_irq_domain_ops = {
1721	.translate = gic_irq_domain_translate,
1722	.alloc = gic_irq_domain_alloc,
1723	.free = gic_irq_domain_free,
1724	.select = gic_irq_domain_select,
1725};
1726
1727static int partition_domain_translate(struct irq_domain *d,
1728				      struct irq_fwspec *fwspec,
1729				      unsigned long *hwirq,
1730				      unsigned int *type)
1731{
1732	unsigned long ppi_intid;
1733	struct device_node *np;
1734	unsigned int ppi_idx;
1735	int ret;
1736
1737	if (!gic_data.ppi_descs)
1738		return -ENOMEM;
1739
1740	np = of_find_node_by_phandle(fwspec->param[3]);
1741	if (WARN_ON(!np))
1742		return -EINVAL;
1743
1744	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1745	if (WARN_ON_ONCE(ret))
1746		return 0;
1747
1748	ppi_idx = __gic_get_ppi_index(ppi_intid);
1749	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1750				     of_node_to_fwnode(np));
1751	if (ret < 0)
1752		return ret;
1753
1754	*hwirq = ret;
1755	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1756
1757	return 0;
1758}
1759
1760static const struct irq_domain_ops partition_domain_ops = {
1761	.translate = partition_domain_translate,
1762	.select = gic_irq_domain_select,
1763};
1764
1765static bool gic_enable_quirk_msm8996(void *data)
1766{
1767	struct gic_chip_data *d = data;
1768
1769	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1770
1771	return true;
1772}
1773
1774static bool gic_enable_quirk_cavium_38539(void *data)
1775{
1776	struct gic_chip_data *d = data;
1777
1778	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1779
1780	return true;
1781}
1782
1783static bool gic_enable_quirk_hip06_07(void *data)
1784{
1785	struct gic_chip_data *d = data;
1786
1787	/*
1788	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1789	 * not being an actual ARM implementation). The saving grace is
1790	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1791	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1792	 * have ESPI. In both cases, put them right.
1793	 */
1794	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1795		/* Zero both ESPI and the RES0 field next to it... */
1796		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1797		return true;
1798	}
1799
1800	return false;
1801}
1802
1803#define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1804#define T241_CHIP_GICDA_OFFSET	0x1580000
1805#define SMCCC_SOC_ID_T241	0x036b0241
1806
1807static bool gic_enable_quirk_nvidia_t241(void *data)
1808{
1809	s32 soc_id = arm_smccc_get_soc_id_version();
1810	unsigned long chip_bmask = 0;
1811	phys_addr_t phys;
1812	u32 i;
1813
1814	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1815	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1816		return false;
1817
1818	/* Find the chips based on GICR regions PHYS addr */
1819	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1820		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1821				  (u64)gic_data.redist_regions[i].phys_base));
1822	}
1823
1824	if (hweight32(chip_bmask) < 3)
1825		return false;
1826
1827	/* Setup GICD alias regions */
1828	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1829		if (chip_bmask & BIT(i)) {
1830			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1831			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1832			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1833			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1834		}
1835	}
1836	static_branch_enable(&gic_nvidia_t241_erratum);
1837	return true;
1838}
1839
1840static bool gic_enable_quirk_asr8601(void *data)
1841{
1842	struct gic_chip_data *d = data;
1843
1844	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1845
1846	return true;
1847}
1848
1849static bool gic_enable_quirk_arm64_2941627(void *data)
1850{
1851	static_branch_enable(&gic_arm64_2941627_erratum);
1852	return true;
1853}
1854
1855static bool rd_set_non_coherent(void *data)
1856{
1857	struct gic_chip_data *d = data;
1858
1859	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1860	return true;
1861}
1862
1863static const struct gic_quirk gic_quirks[] = {
1864	{
1865		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1866		.compatible = "qcom,msm8996-gic-v3",
1867		.init	= gic_enable_quirk_msm8996,
1868	},
1869	{
1870		.desc	= "GICv3: ASR erratum 8601001",
1871		.compatible = "asr,asr8601-gic-v3",
1872		.init	= gic_enable_quirk_asr8601,
1873	},
1874	{
1875		.desc	= "GICv3: HIP06 erratum 161010803",
1876		.iidr	= 0x0204043b,
1877		.mask	= 0xffffffff,
1878		.init	= gic_enable_quirk_hip06_07,
1879	},
1880	{
1881		.desc	= "GICv3: HIP07 erratum 161010803",
1882		.iidr	= 0x00000000,
1883		.mask	= 0xffffffff,
1884		.init	= gic_enable_quirk_hip06_07,
1885	},
1886	{
1887		/*
1888		 * Reserved register accesses generate a Synchronous
1889		 * External Abort. This erratum applies to:
1890		 * - ThunderX: CN88xx
1891		 * - OCTEON TX: CN83xx, CN81xx
1892		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1893		 */
1894		.desc	= "GICv3: Cavium erratum 38539",
1895		.iidr	= 0xa000034c,
1896		.mask	= 0xe8f00fff,
1897		.init	= gic_enable_quirk_cavium_38539,
1898	},
1899	{
1900		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1901		.iidr	= 0x0402043b,
1902		.mask	= 0xffffffff,
1903		.init	= gic_enable_quirk_nvidia_t241,
1904	},
1905	{
1906		/*
1907		 * GIC-700: 2941627 workaround - IP variant [0,1]
1908		 *
1909		 */
1910		.desc	= "GICv3: ARM64 erratum 2941627",
1911		.iidr	= 0x0400043b,
1912		.mask	= 0xff0e0fff,
1913		.init	= gic_enable_quirk_arm64_2941627,
1914	},
1915	{
1916		/*
1917		 * GIC-700: 2941627 workaround - IP variant [2]
1918		 */
1919		.desc	= "GICv3: ARM64 erratum 2941627",
1920		.iidr	= 0x0402043b,
1921		.mask	= 0xff0f0fff,
1922		.init	= gic_enable_quirk_arm64_2941627,
1923	},
1924	{
1925		.desc   = "GICv3: non-coherent attribute",
1926		.property = "dma-noncoherent",
1927		.init   = rd_set_non_coherent,
1928	},
1929	{
1930	}
1931};
1932
1933static void gic_enable_nmi_support(void)
1934{
1935	int i;
1936
1937	if (!gic_prio_masking_enabled())
1938		return;
1939
1940	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
1941				 sizeof(*rdist_nmi_refs), GFP_KERNEL);
1942	if (!rdist_nmi_refs)
1943		return;
1944
1945	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
1946		refcount_set(&rdist_nmi_refs[i], 0);
1947
1948	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1949		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1950
1951	/*
1952	 * How priority values are used by the GIC depends on two things:
1953	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1954	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1955	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1956	 * ICC_PMR_EL1 register and the priority that software assigns to
1957	 * interrupts:
1958	 *
1959	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1960	 * -----------------------------------------------------------
1961	 *      1       |      -      |  unchanged  |    unchanged
1962	 * -----------------------------------------------------------
1963	 *      0       |      1      |  non-secure |    non-secure
1964	 * -----------------------------------------------------------
1965	 *      0       |      0      |  unchanged  |    non-secure
1966	 *
1967	 * where non-secure means that the value is right-shifted by one and the
1968	 * MSB bit set, to make it fit in the non-secure priority range.
1969	 *
1970	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1971	 * are both either modified or unchanged, we can use the same set of
1972	 * priorities.
1973	 *
1974	 * In the last case, where only the interrupt priorities are modified to
1975	 * be in the non-secure range, we use a different PMR value to mask IRQs
1976	 * and the rest of the values that we use remain unchanged.
1977	 */
1978	if (gic_has_group0() && !gic_dist_security_disabled())
1979		static_branch_enable(&gic_nonsecure_priorities);
1980
1981	static_branch_enable(&supports_pseudo_nmis);
1982
1983	if (static_branch_likely(&supports_deactivate_key))
1984		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1985	else
1986		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1987}
1988
1989static int __init gic_init_bases(phys_addr_t dist_phys_base,
1990				 void __iomem *dist_base,
1991				 struct redist_region *rdist_regs,
1992				 u32 nr_redist_regions,
1993				 u64 redist_stride,
1994				 struct fwnode_handle *handle)
1995{
1996	u32 typer;
1997	int err;
1998
1999	if (!is_hyp_mode_available())
2000		static_branch_disable(&supports_deactivate_key);
2001
2002	if (static_branch_likely(&supports_deactivate_key))
2003		pr_info("GIC: Using split EOI/Deactivate mode\n");
2004
2005	gic_data.fwnode = handle;
2006	gic_data.dist_phys_base = dist_phys_base;
2007	gic_data.dist_base = dist_base;
2008	gic_data.redist_regions = rdist_regs;
2009	gic_data.nr_redist_regions = nr_redist_regions;
2010	gic_data.redist_stride = redist_stride;
2011
2012	/*
2013	 * Find out how many interrupts are supported.
2014	 */
2015	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2016	gic_data.rdists.gicd_typer = typer;
2017
2018	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2019			  gic_quirks, &gic_data);
2020
2021	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2022	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2023
2024	/*
2025	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2026	 * architecture spec (which says that reserved registers are RES0).
2027	 */
2028	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2029		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2030
2031	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2032						 &gic_data);
2033	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2034	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2035		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2036		gic_data.rdists.has_rvpeid = true;
2037		gic_data.rdists.has_vlpis = true;
2038		gic_data.rdists.has_direct_lpi = true;
2039		gic_data.rdists.has_vpend_valid_dirty = true;
2040	}
2041
2042	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2043		err = -ENOMEM;
2044		goto out_free;
2045	}
2046
2047	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2048
2049	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2050
2051	if (typer & GICD_TYPER_MBIS) {
2052		err = mbi_init(handle, gic_data.domain);
2053		if (err)
2054			pr_err("Failed to initialize MBIs\n");
2055	}
2056
2057	set_handle_irq(gic_handle_irq);
2058
2059	gic_update_rdist_properties();
2060
2061	gic_dist_init();
2062	gic_cpu_init();
2063	gic_enable_nmi_support();
2064	gic_smp_init();
2065	gic_cpu_pm_init();
2066
2067	if (gic_dist_supports_lpis()) {
2068		its_init(handle, &gic_data.rdists, gic_data.domain);
2069		its_cpu_init();
2070		its_lpi_memreserve_init();
2071	} else {
2072		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2073			gicv2m_init(handle, gic_data.domain);
2074	}
2075
2076	return 0;
2077
2078out_free:
2079	if (gic_data.domain)
2080		irq_domain_remove(gic_data.domain);
2081	free_percpu(gic_data.rdists.rdist);
2082	return err;
2083}
2084
2085static int __init gic_validate_dist_version(void __iomem *dist_base)
2086{
2087	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2088
2089	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2090		return -ENODEV;
2091
2092	return 0;
2093}
2094
2095/* Create all possible partitions at boot time */
2096static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2097{
2098	struct device_node *parts_node, *child_part;
2099	int part_idx = 0, i;
2100	int nr_parts;
2101	struct partition_affinity *parts;
2102
2103	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2104	if (!parts_node)
2105		return;
2106
2107	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2108	if (!gic_data.ppi_descs)
2109		goto out_put_node;
2110
2111	nr_parts = of_get_child_count(parts_node);
2112
2113	if (!nr_parts)
2114		goto out_put_node;
2115
2116	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2117	if (WARN_ON(!parts))
2118		goto out_put_node;
2119
2120	for_each_child_of_node(parts_node, child_part) {
2121		struct partition_affinity *part;
2122		int n;
2123
2124		part = &parts[part_idx];
2125
2126		part->partition_id = of_node_to_fwnode(child_part);
2127
2128		pr_info("GIC: PPI partition %pOFn[%d] { ",
2129			child_part, part_idx);
2130
2131		n = of_property_count_elems_of_size(child_part, "affinity",
2132						    sizeof(u32));
2133		WARN_ON(n <= 0);
2134
2135		for (i = 0; i < n; i++) {
2136			int err, cpu;
2137			u32 cpu_phandle;
2138			struct device_node *cpu_node;
2139
2140			err = of_property_read_u32_index(child_part, "affinity",
2141							 i, &cpu_phandle);
2142			if (WARN_ON(err))
2143				continue;
2144
2145			cpu_node = of_find_node_by_phandle(cpu_phandle);
2146			if (WARN_ON(!cpu_node))
2147				continue;
2148
2149			cpu = of_cpu_node_to_id(cpu_node);
2150			if (WARN_ON(cpu < 0)) {
2151				of_node_put(cpu_node);
2152				continue;
2153			}
2154
2155			pr_cont("%pOF[%d] ", cpu_node, cpu);
2156
2157			cpumask_set_cpu(cpu, &part->mask);
2158			of_node_put(cpu_node);
2159		}
2160
2161		pr_cont("}\n");
2162		part_idx++;
2163	}
2164
2165	for (i = 0; i < gic_data.ppi_nr; i++) {
2166		unsigned int irq;
2167		struct partition_desc *desc;
2168		struct irq_fwspec ppi_fwspec = {
2169			.fwnode		= gic_data.fwnode,
2170			.param_count	= 3,
2171			.param		= {
2172				[0]	= GIC_IRQ_TYPE_PARTITION,
2173				[1]	= i,
2174				[2]	= IRQ_TYPE_NONE,
2175			},
2176		};
2177
2178		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2179		if (WARN_ON(!irq))
2180			continue;
2181		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2182					     irq, &partition_domain_ops);
2183		if (WARN_ON(!desc))
2184			continue;
2185
2186		gic_data.ppi_descs[i] = desc;
2187	}
2188
2189out_put_node:
2190	of_node_put(parts_node);
2191}
2192
2193static void __init gic_of_setup_kvm_info(struct device_node *node)
2194{
2195	int ret;
2196	struct resource r;
2197	u32 gicv_idx;
2198
2199	gic_v3_kvm_info.type = GIC_V3;
2200
2201	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2202	if (!gic_v3_kvm_info.maint_irq)
2203		return;
2204
2205	if (of_property_read_u32(node, "#redistributor-regions",
2206				 &gicv_idx))
2207		gicv_idx = 1;
2208
2209	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2210	ret = of_address_to_resource(node, gicv_idx, &r);
2211	if (!ret)
2212		gic_v3_kvm_info.vcpu = r;
2213
2214	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2215	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2216	vgic_set_kvm_info(&gic_v3_kvm_info);
2217}
2218
2219static void gic_request_region(resource_size_t base, resource_size_t size,
2220			       const char *name)
2221{
2222	if (!request_mem_region(base, size, name))
2223		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2224			     name, &base);
2225}
2226
2227static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2228				  const char *name, struct resource *res)
2229{
2230	void __iomem *base;
2231	int ret;
2232
2233	ret = of_address_to_resource(node, idx, res);
2234	if (ret)
2235		return IOMEM_ERR_PTR(ret);
2236
2237	gic_request_region(res->start, resource_size(res), name);
2238	base = of_iomap(node, idx);
2239
2240	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2241}
2242
2243static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2244{
2245	phys_addr_t dist_phys_base;
2246	void __iomem *dist_base;
2247	struct redist_region *rdist_regs;
2248	struct resource res;
2249	u64 redist_stride;
2250	u32 nr_redist_regions;
2251	int err, i;
2252
2253	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2254	if (IS_ERR(dist_base)) {
2255		pr_err("%pOF: unable to map gic dist registers\n", node);
2256		return PTR_ERR(dist_base);
2257	}
2258
2259	dist_phys_base = res.start;
2260
2261	err = gic_validate_dist_version(dist_base);
2262	if (err) {
2263		pr_err("%pOF: no distributor detected, giving up\n", node);
2264		goto out_unmap_dist;
2265	}
2266
2267	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2268		nr_redist_regions = 1;
2269
2270	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2271			     GFP_KERNEL);
2272	if (!rdist_regs) {
2273		err = -ENOMEM;
2274		goto out_unmap_dist;
2275	}
2276
2277	for (i = 0; i < nr_redist_regions; i++) {
2278		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2279		if (IS_ERR(rdist_regs[i].redist_base)) {
2280			pr_err("%pOF: couldn't map region %d\n", node, i);
2281			err = -ENODEV;
2282			goto out_unmap_rdist;
2283		}
2284		rdist_regs[i].phys_base = res.start;
2285	}
2286
2287	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2288		redist_stride = 0;
2289
2290	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2291
2292	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2293			     nr_redist_regions, redist_stride, &node->fwnode);
2294	if (err)
2295		goto out_unmap_rdist;
2296
2297	gic_populate_ppi_partitions(node);
2298
2299	if (static_branch_likely(&supports_deactivate_key))
2300		gic_of_setup_kvm_info(node);
2301	return 0;
2302
2303out_unmap_rdist:
2304	for (i = 0; i < nr_redist_regions; i++)
2305		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2306			iounmap(rdist_regs[i].redist_base);
2307	kfree(rdist_regs);
2308out_unmap_dist:
2309	iounmap(dist_base);
2310	return err;
2311}
2312
2313IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2314
2315#ifdef CONFIG_ACPI
2316static struct
2317{
2318	void __iomem *dist_base;
2319	struct redist_region *redist_regs;
2320	u32 nr_redist_regions;
2321	bool single_redist;
2322	int enabled_rdists;
2323	u32 maint_irq;
2324	int maint_irq_mode;
2325	phys_addr_t vcpu_base;
2326} acpi_data __initdata;
2327
2328static void __init
2329gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2330{
2331	static int count = 0;
2332
2333	acpi_data.redist_regs[count].phys_base = phys_base;
2334	acpi_data.redist_regs[count].redist_base = redist_base;
2335	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2336	count++;
2337}
2338
2339static int __init
2340gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2341			   const unsigned long end)
2342{
2343	struct acpi_madt_generic_redistributor *redist =
2344			(struct acpi_madt_generic_redistributor *)header;
2345	void __iomem *redist_base;
2346
2347	redist_base = ioremap(redist->base_address, redist->length);
2348	if (!redist_base) {
2349		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2350		return -ENOMEM;
2351	}
2352	gic_request_region(redist->base_address, redist->length, "GICR");
2353
2354	gic_acpi_register_redist(redist->base_address, redist_base);
2355	return 0;
2356}
2357
2358static int __init
2359gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2360			 const unsigned long end)
2361{
2362	struct acpi_madt_generic_interrupt *gicc =
2363				(struct acpi_madt_generic_interrupt *)header;
2364	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2365	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2366	void __iomem *redist_base;
2367
2368	if (!acpi_gicc_is_usable(gicc))
2369		return 0;
2370
2371	redist_base = ioremap(gicc->gicr_base_address, size);
2372	if (!redist_base)
2373		return -ENOMEM;
2374	gic_request_region(gicc->gicr_base_address, size, "GICR");
2375
2376	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2377	return 0;
2378}
2379
2380static int __init gic_acpi_collect_gicr_base(void)
2381{
2382	acpi_tbl_entry_handler redist_parser;
2383	enum acpi_madt_type type;
2384
2385	if (acpi_data.single_redist) {
2386		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2387		redist_parser = gic_acpi_parse_madt_gicc;
2388	} else {
2389		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2390		redist_parser = gic_acpi_parse_madt_redist;
2391	}
2392
2393	/* Collect redistributor base addresses in GICR entries */
2394	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2395		return 0;
2396
2397	pr_info("No valid GICR entries exist\n");
2398	return -ENODEV;
2399}
2400
2401static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2402				  const unsigned long end)
2403{
2404	/* Subtable presence means that redist exists, that's it */
2405	return 0;
2406}
2407
2408static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2409				      const unsigned long end)
2410{
2411	struct acpi_madt_generic_interrupt *gicc =
2412				(struct acpi_madt_generic_interrupt *)header;
2413
2414	/*
2415	 * If GICC is enabled and has valid gicr base address, then it means
2416	 * GICR base is presented via GICC
2417	 */
2418	if (acpi_gicc_is_usable(gicc) && gicc->gicr_base_address) {
2419		acpi_data.enabled_rdists++;
2420		return 0;
2421	}
2422
2423	/*
2424	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2425	 * should not treat as errors, skip the entry instead of probe fail.
2426	 */
2427	if (!acpi_gicc_is_usable(gicc))
2428		return 0;
2429
2430	return -ENODEV;
2431}
2432
2433static int __init gic_acpi_count_gicr_regions(void)
2434{
2435	int count;
2436
2437	/*
2438	 * Count how many redistributor regions we have. It is not allowed
2439	 * to mix redistributor description, GICR and GICC subtables have to be
2440	 * mutually exclusive.
2441	 */
2442	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2443				      gic_acpi_match_gicr, 0);
2444	if (count > 0) {
2445		acpi_data.single_redist = false;
2446		return count;
2447	}
2448
2449	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2450				      gic_acpi_match_gicc, 0);
2451	if (count > 0) {
2452		acpi_data.single_redist = true;
2453		count = acpi_data.enabled_rdists;
2454	}
2455
2456	return count;
2457}
2458
2459static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2460					   struct acpi_probe_entry *ape)
2461{
2462	struct acpi_madt_generic_distributor *dist;
2463	int count;
2464
2465	dist = (struct acpi_madt_generic_distributor *)header;
2466	if (dist->version != ape->driver_data)
2467		return false;
2468
2469	/* We need to do that exercise anyway, the sooner the better */
2470	count = gic_acpi_count_gicr_regions();
2471	if (count <= 0)
2472		return false;
2473
2474	acpi_data.nr_redist_regions = count;
2475	return true;
2476}
2477
2478static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2479						const unsigned long end)
2480{
2481	struct acpi_madt_generic_interrupt *gicc =
2482		(struct acpi_madt_generic_interrupt *)header;
2483	int maint_irq_mode;
2484	static int first_madt = true;
2485
2486	if (!acpi_gicc_is_usable(gicc))
2487		return 0;
2488
2489	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2490		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2491
2492	if (first_madt) {
2493		first_madt = false;
2494
2495		acpi_data.maint_irq = gicc->vgic_interrupt;
2496		acpi_data.maint_irq_mode = maint_irq_mode;
2497		acpi_data.vcpu_base = gicc->gicv_base_address;
2498
2499		return 0;
2500	}
2501
2502	/*
2503	 * The maintenance interrupt and GICV should be the same for every CPU
2504	 */
2505	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2506	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2507	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2508		return -EINVAL;
2509
2510	return 0;
2511}
2512
2513static bool __init gic_acpi_collect_virt_info(void)
2514{
2515	int count;
2516
2517	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2518				      gic_acpi_parse_virt_madt_gicc, 0);
2519
2520	return (count > 0);
2521}
2522
2523#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2524#define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2525#define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2526
2527static void __init gic_acpi_setup_kvm_info(void)
2528{
2529	int irq;
2530
2531	if (!gic_acpi_collect_virt_info()) {
2532		pr_warn("Unable to get hardware information used for virtualization\n");
2533		return;
2534	}
2535
2536	gic_v3_kvm_info.type = GIC_V3;
2537
2538	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2539				acpi_data.maint_irq_mode,
2540				ACPI_ACTIVE_HIGH);
2541	if (irq <= 0)
2542		return;
2543
2544	gic_v3_kvm_info.maint_irq = irq;
2545
2546	if (acpi_data.vcpu_base) {
2547		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2548
2549		vcpu->flags = IORESOURCE_MEM;
2550		vcpu->start = acpi_data.vcpu_base;
2551		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2552	}
2553
2554	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2555	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2556	vgic_set_kvm_info(&gic_v3_kvm_info);
2557}
2558
2559static struct fwnode_handle *gsi_domain_handle;
2560
2561static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2562{
2563	return gsi_domain_handle;
2564}
2565
2566static int __init
2567gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2568{
2569	struct acpi_madt_generic_distributor *dist;
2570	size_t size;
2571	int i, err;
2572
2573	/* Get distributor base address */
2574	dist = (struct acpi_madt_generic_distributor *)header;
2575	acpi_data.dist_base = ioremap(dist->base_address,
2576				      ACPI_GICV3_DIST_MEM_SIZE);
2577	if (!acpi_data.dist_base) {
2578		pr_err("Unable to map GICD registers\n");
2579		return -ENOMEM;
2580	}
2581	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2582
2583	err = gic_validate_dist_version(acpi_data.dist_base);
2584	if (err) {
2585		pr_err("No distributor detected at @%p, giving up\n",
2586		       acpi_data.dist_base);
2587		goto out_dist_unmap;
2588	}
2589
2590	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2591	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2592	if (!acpi_data.redist_regs) {
2593		err = -ENOMEM;
2594		goto out_dist_unmap;
2595	}
2596
2597	err = gic_acpi_collect_gicr_base();
2598	if (err)
2599		goto out_redist_unmap;
2600
2601	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2602	if (!gsi_domain_handle) {
2603		err = -ENOMEM;
2604		goto out_redist_unmap;
2605	}
2606
2607	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2608			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2609			     0, gsi_domain_handle);
2610	if (err)
2611		goto out_fwhandle_free;
2612
2613	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2614
2615	if (static_branch_likely(&supports_deactivate_key))
2616		gic_acpi_setup_kvm_info();
2617
2618	return 0;
2619
2620out_fwhandle_free:
2621	irq_domain_free_fwnode(gsi_domain_handle);
2622out_redist_unmap:
2623	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2624		if (acpi_data.redist_regs[i].redist_base)
2625			iounmap(acpi_data.redist_regs[i].redist_base);
2626	kfree(acpi_data.redist_regs);
2627out_dist_unmap:
2628	iounmap(acpi_data.dist_base);
2629	return err;
2630}
2631IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2632		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2633		     gic_acpi_init);
2634IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2635		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2636		     gic_acpi_init);
2637IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2638		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2639		     gic_acpi_init);
2640#endif
2641