1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
9#include <linux/debugfs.h>
10#include <linux/device.h>
11#include <linux/idr.h>
12#include <linux/init.h>
13#include <linux/interconnect.h>
14#include <linux/interconnect-provider.h>
15#include <linux/list.h>
16#include <linux/mutex.h>
17#include <linux/slab.h>
18#include <linux/of.h>
19#include <linux/overflow.h>
20
21#include "internal.h"
22
23#define CREATE_TRACE_POINTS
24#include "trace.h"
25
26static DEFINE_IDR(icc_idr);
27static LIST_HEAD(icc_providers);
28static int providers_count;
29static bool synced_state;
30static DEFINE_MUTEX(icc_lock);
31static DEFINE_MUTEX(icc_bw_lock);
32static struct dentry *icc_debugfs_dir;
33
34static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
35{
36	if (!n)
37		return;
38
39	seq_printf(s, "%-42s %12u %12u\n",
40		   n->name, n->avg_bw, n->peak_bw);
41}
42
43static int icc_summary_show(struct seq_file *s, void *data)
44{
45	struct icc_provider *provider;
46
47	seq_puts(s, " node                                  tag          avg         peak\n");
48	seq_puts(s, "--------------------------------------------------------------------\n");
49
50	mutex_lock(&icc_lock);
51
52	list_for_each_entry(provider, &icc_providers, provider_list) {
53		struct icc_node *n;
54
55		list_for_each_entry(n, &provider->nodes, node_list) {
56			struct icc_req *r;
57
58			icc_summary_show_one(s, n);
59			hlist_for_each_entry(r, &n->req_list, req_node) {
60				u32 avg_bw = 0, peak_bw = 0;
61
62				if (!r->dev)
63					continue;
64
65				if (r->enabled) {
66					avg_bw = r->avg_bw;
67					peak_bw = r->peak_bw;
68				}
69
70				seq_printf(s, "  %-27s %12u %12u %12u\n",
71					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
72			}
73		}
74	}
75
76	mutex_unlock(&icc_lock);
77
78	return 0;
79}
80DEFINE_SHOW_ATTRIBUTE(icc_summary);
81
82static void icc_graph_show_link(struct seq_file *s, int level,
83				struct icc_node *n, struct icc_node *m)
84{
85	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
86		   level == 2 ? "\t\t" : "\t",
87		   n->id, n->name, m->id, m->name);
88}
89
90static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
91{
92	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
93		   n->id, n->name, n->id, n->name);
94	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
95	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
96	seq_puts(s, "\"]\n");
97}
98
99static int icc_graph_show(struct seq_file *s, void *data)
100{
101	struct icc_provider *provider;
102	struct icc_node *n;
103	int cluster_index = 0;
104	int i;
105
106	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
107	mutex_lock(&icc_lock);
108
109	/* draw providers as cluster subgraphs */
110	cluster_index = 0;
111	list_for_each_entry(provider, &icc_providers, provider_list) {
112		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
113		if (provider->dev)
114			seq_printf(s, "\t\tlabel = \"%s\"\n",
115				   dev_name(provider->dev));
116
117		/* draw nodes */
118		list_for_each_entry(n, &provider->nodes, node_list)
119			icc_graph_show_node(s, n);
120
121		/* draw internal links */
122		list_for_each_entry(n, &provider->nodes, node_list)
123			for (i = 0; i < n->num_links; ++i)
124				if (n->provider == n->links[i]->provider)
125					icc_graph_show_link(s, 2, n,
126							    n->links[i]);
127
128		seq_puts(s, "\t}\n");
129	}
130
131	/* draw external links */
132	list_for_each_entry(provider, &icc_providers, provider_list)
133		list_for_each_entry(n, &provider->nodes, node_list)
134			for (i = 0; i < n->num_links; ++i)
135				if (n->provider != n->links[i]->provider)
136					icc_graph_show_link(s, 1, n,
137							    n->links[i]);
138
139	mutex_unlock(&icc_lock);
140	seq_puts(s, "}");
141
142	return 0;
143}
144DEFINE_SHOW_ATTRIBUTE(icc_graph);
145
146static struct icc_node *node_find(const int id)
147{
148	return idr_find(&icc_idr, id);
149}
150
151static struct icc_node *node_find_by_name(const char *name)
152{
153	struct icc_provider *provider;
154	struct icc_node *n;
155
156	list_for_each_entry(provider, &icc_providers, provider_list) {
157		list_for_each_entry(n, &provider->nodes, node_list) {
158			if (!strcmp(n->name, name))
159				return n;
160		}
161	}
162
163	return NULL;
164}
165
166static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
167				  ssize_t num_nodes)
168{
169	struct icc_node *node = dst;
170	struct icc_path *path;
171	int i;
172
173	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
174	if (!path)
175		return ERR_PTR(-ENOMEM);
176
177	path->num_nodes = num_nodes;
178
179	mutex_lock(&icc_bw_lock);
180
181	for (i = num_nodes - 1; i >= 0; i--) {
182		node->provider->users++;
183		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
184		path->reqs[i].node = node;
185		path->reqs[i].dev = dev;
186		path->reqs[i].enabled = true;
187		/* reference to previous node was saved during path traversal */
188		node = node->reverse;
189	}
190
191	mutex_unlock(&icc_bw_lock);
192
193	return path;
194}
195
196static struct icc_path *path_find(struct device *dev, struct icc_node *src,
197				  struct icc_node *dst)
198{
199	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
200	struct icc_node *n, *node = NULL;
201	struct list_head traverse_list;
202	struct list_head edge_list;
203	struct list_head visited_list;
204	size_t i, depth = 1;
205	bool found = false;
206
207	INIT_LIST_HEAD(&traverse_list);
208	INIT_LIST_HEAD(&edge_list);
209	INIT_LIST_HEAD(&visited_list);
210
211	list_add(&src->search_list, &traverse_list);
212	src->reverse = NULL;
213
214	do {
215		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
216			if (node == dst) {
217				found = true;
218				list_splice_init(&edge_list, &visited_list);
219				list_splice_init(&traverse_list, &visited_list);
220				break;
221			}
222			for (i = 0; i < node->num_links; i++) {
223				struct icc_node *tmp = node->links[i];
224
225				if (!tmp) {
226					path = ERR_PTR(-ENOENT);
227					goto out;
228				}
229
230				if (tmp->is_traversed)
231					continue;
232
233				tmp->is_traversed = true;
234				tmp->reverse = node;
235				list_add_tail(&tmp->search_list, &edge_list);
236			}
237		}
238
239		if (found)
240			break;
241
242		list_splice_init(&traverse_list, &visited_list);
243		list_splice_init(&edge_list, &traverse_list);
244
245		/* count the hops including the source */
246		depth++;
247
248	} while (!list_empty(&traverse_list));
249
250out:
251
252	/* reset the traversed state */
253	list_for_each_entry_reverse(n, &visited_list, search_list)
254		n->is_traversed = false;
255
256	if (found)
257		path = path_init(dev, dst, depth);
258
259	return path;
260}
261
262/*
263 * We want the path to honor all bandwidth requests, so the average and peak
264 * bandwidth requirements from each consumer are aggregated at each node.
265 * The aggregation is platform specific, so each platform can customize it by
266 * implementing its own aggregate() function.
267 */
268
269static int aggregate_requests(struct icc_node *node)
270{
271	struct icc_provider *p = node->provider;
272	struct icc_req *r;
273	u32 avg_bw, peak_bw;
274
275	node->avg_bw = 0;
276	node->peak_bw = 0;
277
278	if (p->pre_aggregate)
279		p->pre_aggregate(node);
280
281	hlist_for_each_entry(r, &node->req_list, req_node) {
282		if (r->enabled) {
283			avg_bw = r->avg_bw;
284			peak_bw = r->peak_bw;
285		} else {
286			avg_bw = 0;
287			peak_bw = 0;
288		}
289		p->aggregate(node, r->tag, avg_bw, peak_bw,
290			     &node->avg_bw, &node->peak_bw);
291
292		/* during boot use the initial bandwidth as a floor value */
293		if (!synced_state) {
294			node->avg_bw = max(node->avg_bw, node->init_avg);
295			node->peak_bw = max(node->peak_bw, node->init_peak);
296		}
297	}
298
299	return 0;
300}
301
302static int apply_constraints(struct icc_path *path)
303{
304	struct icc_node *next, *prev = NULL;
305	struct icc_provider *p;
306	int ret = -EINVAL;
307	int i;
308
309	for (i = 0; i < path->num_nodes; i++) {
310		next = path->reqs[i].node;
311		p = next->provider;
312
313		/* both endpoints should be valid master-slave pairs */
314		if (!prev || (p != prev->provider && !p->inter_set)) {
315			prev = next;
316			continue;
317		}
318
319		/* set the constraints */
320		ret = p->set(prev, next);
321		if (ret)
322			goto out;
323
324		prev = next;
325	}
326out:
327	return ret;
328}
329
330int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
331		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
332{
333	*agg_avg += avg_bw;
334	*agg_peak = max(*agg_peak, peak_bw);
335
336	return 0;
337}
338EXPORT_SYMBOL_GPL(icc_std_aggregate);
339
340/* of_icc_xlate_onecell() - Translate function using a single index.
341 * @spec: OF phandle args to map into an interconnect node.
342 * @data: private data (pointer to struct icc_onecell_data)
343 *
344 * This is a generic translate function that can be used to model simple
345 * interconnect providers that have one device tree node and provide
346 * multiple interconnect nodes. A single cell is used as an index into
347 * an array of icc nodes specified in the icc_onecell_data struct when
348 * registering the provider.
349 */
350struct icc_node *of_icc_xlate_onecell(const struct of_phandle_args *spec,
351				      void *data)
352{
353	struct icc_onecell_data *icc_data = data;
354	unsigned int idx = spec->args[0];
355
356	if (idx >= icc_data->num_nodes) {
357		pr_err("%s: invalid index %u\n", __func__, idx);
358		return ERR_PTR(-EINVAL);
359	}
360
361	return icc_data->nodes[idx];
362}
363EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
364
365/**
366 * of_icc_get_from_provider() - Look-up interconnect node
367 * @spec: OF phandle args to use for look-up
368 *
369 * Looks for interconnect provider under the node specified by @spec and if
370 * found, uses xlate function of the provider to map phandle args to node.
371 *
372 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
373 * on failure.
374 */
375struct icc_node_data *of_icc_get_from_provider(const struct of_phandle_args *spec)
376{
377	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
378	struct icc_node_data *data = NULL;
379	struct icc_provider *provider;
380
381	if (!spec)
382		return ERR_PTR(-EINVAL);
383
384	mutex_lock(&icc_lock);
385	list_for_each_entry(provider, &icc_providers, provider_list) {
386		if (provider->dev->of_node == spec->np) {
387			if (provider->xlate_extended) {
388				data = provider->xlate_extended(spec, provider->data);
389				if (!IS_ERR(data)) {
390					node = data->node;
391					break;
392				}
393			} else {
394				node = provider->xlate(spec, provider->data);
395				if (!IS_ERR(node))
396					break;
397			}
398		}
399	}
400	mutex_unlock(&icc_lock);
401
402	if (!node)
403		return ERR_PTR(-EINVAL);
404
405	if (IS_ERR(node))
406		return ERR_CAST(node);
407
408	if (!data) {
409		data = kzalloc(sizeof(*data), GFP_KERNEL);
410		if (!data)
411			return ERR_PTR(-ENOMEM);
412		data->node = node;
413	}
414
415	return data;
416}
417EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
418
419static void devm_icc_release(struct device *dev, void *res)
420{
421	icc_put(*(struct icc_path **)res);
422}
423
424struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
425{
426	struct icc_path **ptr, *path;
427
428	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
429	if (!ptr)
430		return ERR_PTR(-ENOMEM);
431
432	path = of_icc_get(dev, name);
433	if (!IS_ERR(path)) {
434		*ptr = path;
435		devres_add(dev, ptr);
436	} else {
437		devres_free(ptr);
438	}
439
440	return path;
441}
442EXPORT_SYMBOL_GPL(devm_of_icc_get);
443
444/**
445 * of_icc_get_by_index() - get a path handle from a DT node based on index
446 * @dev: device pointer for the consumer device
447 * @idx: interconnect path index
448 *
449 * This function will search for a path between two endpoints and return an
450 * icc_path handle on success. Use icc_put() to release constraints when they
451 * are not needed anymore.
452 * If the interconnect API is disabled, NULL is returned and the consumer
453 * drivers will still build. Drivers are free to handle this specifically,
454 * but they don't have to.
455 *
456 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
457 * when the API is disabled or the "interconnects" DT property is missing.
458 */
459struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
460{
461	struct icc_path *path;
462	struct icc_node_data *src_data, *dst_data;
463	struct device_node *np;
464	struct of_phandle_args src_args, dst_args;
465	int ret;
466
467	if (!dev || !dev->of_node)
468		return ERR_PTR(-ENODEV);
469
470	np = dev->of_node;
471
472	/*
473	 * When the consumer DT node do not have "interconnects" property
474	 * return a NULL path to skip setting constraints.
475	 */
476	if (!of_property_present(np, "interconnects"))
477		return NULL;
478
479	/*
480	 * We use a combination of phandle and specifier for endpoint. For now
481	 * lets support only global ids and extend this in the future if needed
482	 * without breaking DT compatibility.
483	 */
484	ret = of_parse_phandle_with_args(np, "interconnects",
485					 "#interconnect-cells", idx * 2,
486					 &src_args);
487	if (ret)
488		return ERR_PTR(ret);
489
490	of_node_put(src_args.np);
491
492	ret = of_parse_phandle_with_args(np, "interconnects",
493					 "#interconnect-cells", idx * 2 + 1,
494					 &dst_args);
495	if (ret)
496		return ERR_PTR(ret);
497
498	of_node_put(dst_args.np);
499
500	src_data = of_icc_get_from_provider(&src_args);
501
502	if (IS_ERR(src_data)) {
503		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
504		return ERR_CAST(src_data);
505	}
506
507	dst_data = of_icc_get_from_provider(&dst_args);
508
509	if (IS_ERR(dst_data)) {
510		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
511		kfree(src_data);
512		return ERR_CAST(dst_data);
513	}
514
515	mutex_lock(&icc_lock);
516	path = path_find(dev, src_data->node, dst_data->node);
517	mutex_unlock(&icc_lock);
518	if (IS_ERR(path)) {
519		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
520		goto free_icc_data;
521	}
522
523	if (src_data->tag && src_data->tag == dst_data->tag)
524		icc_set_tag(path, src_data->tag);
525
526	path->name = kasprintf(GFP_KERNEL, "%s-%s",
527			       src_data->node->name, dst_data->node->name);
528	if (!path->name) {
529		kfree(path);
530		path = ERR_PTR(-ENOMEM);
531	}
532
533free_icc_data:
534	kfree(src_data);
535	kfree(dst_data);
536	return path;
537}
538EXPORT_SYMBOL_GPL(of_icc_get_by_index);
539
540/**
541 * of_icc_get() - get a path handle from a DT node based on name
542 * @dev: device pointer for the consumer device
543 * @name: interconnect path name
544 *
545 * This function will search for a path between two endpoints and return an
546 * icc_path handle on success. Use icc_put() to release constraints when they
547 * are not needed anymore.
548 * If the interconnect API is disabled, NULL is returned and the consumer
549 * drivers will still build. Drivers are free to handle this specifically,
550 * but they don't have to.
551 *
552 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
553 * when the API is disabled or the "interconnects" DT property is missing.
554 */
555struct icc_path *of_icc_get(struct device *dev, const char *name)
556{
557	struct device_node *np;
558	int idx = 0;
559
560	if (!dev || !dev->of_node)
561		return ERR_PTR(-ENODEV);
562
563	np = dev->of_node;
564
565	/*
566	 * When the consumer DT node do not have "interconnects" property
567	 * return a NULL path to skip setting constraints.
568	 */
569	if (!of_property_present(np, "interconnects"))
570		return NULL;
571
572	/*
573	 * We use a combination of phandle and specifier for endpoint. For now
574	 * lets support only global ids and extend this in the future if needed
575	 * without breaking DT compatibility.
576	 */
577	if (name) {
578		idx = of_property_match_string(np, "interconnect-names", name);
579		if (idx < 0)
580			return ERR_PTR(idx);
581	}
582
583	return of_icc_get_by_index(dev, idx);
584}
585EXPORT_SYMBOL_GPL(of_icc_get);
586
587/**
588 * icc_get() - get a path handle between two endpoints
589 * @dev: device pointer for the consumer device
590 * @src: source node name
591 * @dst: destination node name
592 *
593 * This function will search for a path between two endpoints and return an
594 * icc_path handle on success. Use icc_put() to release constraints when they
595 * are not needed anymore.
596 *
597 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
598 * when the API is disabled.
599 */
600struct icc_path *icc_get(struct device *dev, const char *src, const char *dst)
601{
602	struct icc_node *src_node, *dst_node;
603	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
604
605	mutex_lock(&icc_lock);
606
607	src_node = node_find_by_name(src);
608	if (!src_node) {
609		dev_err(dev, "%s: invalid src=%s\n", __func__, src);
610		goto out;
611	}
612
613	dst_node = node_find_by_name(dst);
614	if (!dst_node) {
615		dev_err(dev, "%s: invalid dst=%s\n", __func__, dst);
616		goto out;
617	}
618
619	path = path_find(dev, src_node, dst_node);
620	if (IS_ERR(path)) {
621		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
622		goto out;
623	}
624
625	path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name);
626	if (!path->name) {
627		kfree(path);
628		path = ERR_PTR(-ENOMEM);
629	}
630out:
631	mutex_unlock(&icc_lock);
632	return path;
633}
634
635/**
636 * icc_set_tag() - set an optional tag on a path
637 * @path: the path we want to tag
638 * @tag: the tag value
639 *
640 * This function allows consumers to append a tag to the requests associated
641 * with a path, so that a different aggregation could be done based on this tag.
642 */
643void icc_set_tag(struct icc_path *path, u32 tag)
644{
645	int i;
646
647	if (!path)
648		return;
649
650	mutex_lock(&icc_lock);
651
652	for (i = 0; i < path->num_nodes; i++)
653		path->reqs[i].tag = tag;
654
655	mutex_unlock(&icc_lock);
656}
657EXPORT_SYMBOL_GPL(icc_set_tag);
658
659/**
660 * icc_get_name() - Get name of the icc path
661 * @path: interconnect path
662 *
663 * This function is used by an interconnect consumer to get the name of the icc
664 * path.
665 *
666 * Returns a valid pointer on success, or NULL otherwise.
667 */
668const char *icc_get_name(struct icc_path *path)
669{
670	if (!path)
671		return NULL;
672
673	return path->name;
674}
675EXPORT_SYMBOL_GPL(icc_get_name);
676
677/**
678 * icc_set_bw() - set bandwidth constraints on an interconnect path
679 * @path: interconnect path
680 * @avg_bw: average bandwidth in kilobytes per second
681 * @peak_bw: peak bandwidth in kilobytes per second
682 *
683 * This function is used by an interconnect consumer to express its own needs
684 * in terms of bandwidth for a previously requested path between two endpoints.
685 * The requests are aggregated and each node is updated accordingly. The entire
686 * path is locked by a mutex to ensure that the set() is completed.
687 * The @path can be NULL when the "interconnects" DT properties is missing,
688 * which will mean that no constraints will be set.
689 *
690 * Returns 0 on success, or an appropriate error code otherwise.
691 */
692int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
693{
694	struct icc_node *node;
695	u32 old_avg, old_peak;
696	size_t i;
697	int ret;
698
699	if (!path)
700		return 0;
701
702	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
703		return -EINVAL;
704
705	mutex_lock(&icc_bw_lock);
706
707	old_avg = path->reqs[0].avg_bw;
708	old_peak = path->reqs[0].peak_bw;
709
710	for (i = 0; i < path->num_nodes; i++) {
711		node = path->reqs[i].node;
712
713		/* update the consumer request for this path */
714		path->reqs[i].avg_bw = avg_bw;
715		path->reqs[i].peak_bw = peak_bw;
716
717		/* aggregate requests for this node */
718		aggregate_requests(node);
719
720		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
721	}
722
723	ret = apply_constraints(path);
724	if (ret) {
725		pr_debug("interconnect: error applying constraints (%d)\n",
726			 ret);
727
728		for (i = 0; i < path->num_nodes; i++) {
729			node = path->reqs[i].node;
730			path->reqs[i].avg_bw = old_avg;
731			path->reqs[i].peak_bw = old_peak;
732			aggregate_requests(node);
733		}
734		apply_constraints(path);
735	}
736
737	mutex_unlock(&icc_bw_lock);
738
739	trace_icc_set_bw_end(path, ret);
740
741	return ret;
742}
743EXPORT_SYMBOL_GPL(icc_set_bw);
744
745static int __icc_enable(struct icc_path *path, bool enable)
746{
747	int i;
748
749	if (!path)
750		return 0;
751
752	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
753		return -EINVAL;
754
755	mutex_lock(&icc_lock);
756
757	for (i = 0; i < path->num_nodes; i++)
758		path->reqs[i].enabled = enable;
759
760	mutex_unlock(&icc_lock);
761
762	return icc_set_bw(path, path->reqs[0].avg_bw,
763			  path->reqs[0].peak_bw);
764}
765
766int icc_enable(struct icc_path *path)
767{
768	return __icc_enable(path, true);
769}
770EXPORT_SYMBOL_GPL(icc_enable);
771
772int icc_disable(struct icc_path *path)
773{
774	return __icc_enable(path, false);
775}
776EXPORT_SYMBOL_GPL(icc_disable);
777
778/**
779 * icc_put() - release the reference to the icc_path
780 * @path: interconnect path
781 *
782 * Use this function to release the constraints on a path when the path is
783 * no longer needed. The constraints will be re-aggregated.
784 */
785void icc_put(struct icc_path *path)
786{
787	struct icc_node *node;
788	size_t i;
789	int ret;
790
791	if (!path || WARN_ON(IS_ERR(path)))
792		return;
793
794	ret = icc_set_bw(path, 0, 0);
795	if (ret)
796		pr_err("%s: error (%d)\n", __func__, ret);
797
798	mutex_lock(&icc_lock);
799	mutex_lock(&icc_bw_lock);
800
801	for (i = 0; i < path->num_nodes; i++) {
802		node = path->reqs[i].node;
803		hlist_del(&path->reqs[i].req_node);
804		if (!WARN_ON(!node->provider->users))
805			node->provider->users--;
806	}
807
808	mutex_unlock(&icc_bw_lock);
809	mutex_unlock(&icc_lock);
810
811	kfree_const(path->name);
812	kfree(path);
813}
814EXPORT_SYMBOL_GPL(icc_put);
815
816static struct icc_node *icc_node_create_nolock(int id)
817{
818	struct icc_node *node;
819
820	/* check if node already exists */
821	node = node_find(id);
822	if (node)
823		return node;
824
825	node = kzalloc(sizeof(*node), GFP_KERNEL);
826	if (!node)
827		return ERR_PTR(-ENOMEM);
828
829	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
830	if (id < 0) {
831		WARN(1, "%s: couldn't get idr\n", __func__);
832		kfree(node);
833		return ERR_PTR(id);
834	}
835
836	node->id = id;
837
838	return node;
839}
840
841/**
842 * icc_node_create() - create a node
843 * @id: node id
844 *
845 * Return: icc_node pointer on success, or ERR_PTR() on error
846 */
847struct icc_node *icc_node_create(int id)
848{
849	struct icc_node *node;
850
851	mutex_lock(&icc_lock);
852
853	node = icc_node_create_nolock(id);
854
855	mutex_unlock(&icc_lock);
856
857	return node;
858}
859EXPORT_SYMBOL_GPL(icc_node_create);
860
861/**
862 * icc_node_destroy() - destroy a node
863 * @id: node id
864 */
865void icc_node_destroy(int id)
866{
867	struct icc_node *node;
868
869	mutex_lock(&icc_lock);
870
871	node = node_find(id);
872	if (node) {
873		idr_remove(&icc_idr, node->id);
874		WARN_ON(!hlist_empty(&node->req_list));
875	}
876
877	mutex_unlock(&icc_lock);
878
879	if (!node)
880		return;
881
882	kfree(node->links);
883	kfree(node);
884}
885EXPORT_SYMBOL_GPL(icc_node_destroy);
886
887/**
888 * icc_link_create() - create a link between two nodes
889 * @node: source node id
890 * @dst_id: destination node id
891 *
892 * Create a link between two nodes. The nodes might belong to different
893 * interconnect providers and the @dst_id node might not exist (if the
894 * provider driver has not probed yet). So just create the @dst_id node
895 * and when the actual provider driver is probed, the rest of the node
896 * data is filled.
897 *
898 * Return: 0 on success, or an error code otherwise
899 */
900int icc_link_create(struct icc_node *node, const int dst_id)
901{
902	struct icc_node *dst;
903	struct icc_node **new;
904	int ret = 0;
905
906	if (!node->provider)
907		return -EINVAL;
908
909	mutex_lock(&icc_lock);
910
911	dst = node_find(dst_id);
912	if (!dst) {
913		dst = icc_node_create_nolock(dst_id);
914
915		if (IS_ERR(dst)) {
916			ret = PTR_ERR(dst);
917			goto out;
918		}
919	}
920
921	new = krealloc(node->links,
922		       (node->num_links + 1) * sizeof(*node->links),
923		       GFP_KERNEL);
924	if (!new) {
925		ret = -ENOMEM;
926		goto out;
927	}
928
929	node->links = new;
930	node->links[node->num_links++] = dst;
931
932out:
933	mutex_unlock(&icc_lock);
934
935	return ret;
936}
937EXPORT_SYMBOL_GPL(icc_link_create);
938
939/**
940 * icc_node_add() - add interconnect node to interconnect provider
941 * @node: pointer to the interconnect node
942 * @provider: pointer to the interconnect provider
943 */
944void icc_node_add(struct icc_node *node, struct icc_provider *provider)
945{
946	if (WARN_ON(node->provider))
947		return;
948
949	mutex_lock(&icc_lock);
950	mutex_lock(&icc_bw_lock);
951
952	node->provider = provider;
953	list_add_tail(&node->node_list, &provider->nodes);
954
955	/* get the initial bandwidth values and sync them with hardware */
956	if (provider->get_bw) {
957		provider->get_bw(node, &node->init_avg, &node->init_peak);
958	} else {
959		node->init_avg = INT_MAX;
960		node->init_peak = INT_MAX;
961	}
962	node->avg_bw = node->init_avg;
963	node->peak_bw = node->init_peak;
964
965	if (node->avg_bw || node->peak_bw) {
966		if (provider->pre_aggregate)
967			provider->pre_aggregate(node);
968
969		if (provider->aggregate)
970			provider->aggregate(node, 0, node->init_avg, node->init_peak,
971					    &node->avg_bw, &node->peak_bw);
972		if (provider->set)
973			provider->set(node, node);
974	}
975
976	node->avg_bw = 0;
977	node->peak_bw = 0;
978
979	mutex_unlock(&icc_bw_lock);
980	mutex_unlock(&icc_lock);
981}
982EXPORT_SYMBOL_GPL(icc_node_add);
983
984/**
985 * icc_node_del() - delete interconnect node from interconnect provider
986 * @node: pointer to the interconnect node
987 */
988void icc_node_del(struct icc_node *node)
989{
990	mutex_lock(&icc_lock);
991
992	list_del(&node->node_list);
993
994	mutex_unlock(&icc_lock);
995}
996EXPORT_SYMBOL_GPL(icc_node_del);
997
998/**
999 * icc_nodes_remove() - remove all previously added nodes from provider
1000 * @provider: the interconnect provider we are removing nodes from
1001 *
1002 * Return: 0 on success, or an error code otherwise
1003 */
1004int icc_nodes_remove(struct icc_provider *provider)
1005{
1006	struct icc_node *n, *tmp;
1007
1008	if (WARN_ON(IS_ERR_OR_NULL(provider)))
1009		return -EINVAL;
1010
1011	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1012		icc_node_del(n);
1013		icc_node_destroy(n->id);
1014	}
1015
1016	return 0;
1017}
1018EXPORT_SYMBOL_GPL(icc_nodes_remove);
1019
1020/**
1021 * icc_provider_init() - initialize a new interconnect provider
1022 * @provider: the interconnect provider to initialize
1023 *
1024 * Must be called before adding nodes to the provider.
1025 */
1026void icc_provider_init(struct icc_provider *provider)
1027{
1028	WARN_ON(!provider->set);
1029
1030	INIT_LIST_HEAD(&provider->nodes);
1031}
1032EXPORT_SYMBOL_GPL(icc_provider_init);
1033
1034/**
1035 * icc_provider_register() - register a new interconnect provider
1036 * @provider: the interconnect provider to register
1037 *
1038 * Return: 0 on success, or an error code otherwise
1039 */
1040int icc_provider_register(struct icc_provider *provider)
1041{
1042	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1043		return -EINVAL;
1044
1045	mutex_lock(&icc_lock);
1046	list_add_tail(&provider->provider_list, &icc_providers);
1047	mutex_unlock(&icc_lock);
1048
1049	dev_dbg(provider->dev, "interconnect provider registered\n");
1050
1051	return 0;
1052}
1053EXPORT_SYMBOL_GPL(icc_provider_register);
1054
1055/**
1056 * icc_provider_deregister() - deregister an interconnect provider
1057 * @provider: the interconnect provider to deregister
1058 */
1059void icc_provider_deregister(struct icc_provider *provider)
1060{
1061	mutex_lock(&icc_lock);
1062	WARN_ON(provider->users);
1063
1064	list_del(&provider->provider_list);
1065	mutex_unlock(&icc_lock);
1066}
1067EXPORT_SYMBOL_GPL(icc_provider_deregister);
1068
1069static const struct of_device_id __maybe_unused ignore_list[] = {
1070	{ .compatible = "qcom,sc7180-ipa-virt" },
1071	{ .compatible = "qcom,sc8180x-ipa-virt" },
1072	{ .compatible = "qcom,sdx55-ipa-virt" },
1073	{ .compatible = "qcom,sm8150-ipa-virt" },
1074	{ .compatible = "qcom,sm8250-ipa-virt" },
1075	{}
1076};
1077
1078static int of_count_icc_providers(struct device_node *np)
1079{
1080	struct device_node *child;
1081	int count = 0;
1082
1083	for_each_available_child_of_node(np, child) {
1084		if (of_property_read_bool(child, "#interconnect-cells") &&
1085		    likely(!of_match_node(ignore_list, child)))
1086			count++;
1087		count += of_count_icc_providers(child);
1088	}
1089
1090	return count;
1091}
1092
1093void icc_sync_state(struct device *dev)
1094{
1095	struct icc_provider *p;
1096	struct icc_node *n;
1097	static int count;
1098
1099	count++;
1100
1101	if (count < providers_count)
1102		return;
1103
1104	mutex_lock(&icc_lock);
1105	mutex_lock(&icc_bw_lock);
1106	synced_state = true;
1107	list_for_each_entry(p, &icc_providers, provider_list) {
1108		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1109		list_for_each_entry(n, &p->nodes, node_list) {
1110			if (n->init_avg || n->init_peak) {
1111				n->init_avg = 0;
1112				n->init_peak = 0;
1113				aggregate_requests(n);
1114				p->set(n, n);
1115			}
1116		}
1117	}
1118	mutex_unlock(&icc_bw_lock);
1119	mutex_unlock(&icc_lock);
1120}
1121EXPORT_SYMBOL_GPL(icc_sync_state);
1122
1123static int __init icc_init(void)
1124{
1125	struct device_node *root;
1126
1127	/* Teach lockdep about lock ordering wrt. shrinker: */
1128	fs_reclaim_acquire(GFP_KERNEL);
1129	might_lock(&icc_bw_lock);
1130	fs_reclaim_release(GFP_KERNEL);
1131
1132	root = of_find_node_by_path("/");
1133
1134	providers_count = of_count_icc_providers(root);
1135	of_node_put(root);
1136
1137	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1138	debugfs_create_file("interconnect_summary", 0444,
1139			    icc_debugfs_dir, NULL, &icc_summary_fops);
1140	debugfs_create_file("interconnect_graph", 0444,
1141			    icc_debugfs_dir, NULL, &icc_graph_fops);
1142
1143	icc_debugfs_client_init(icc_debugfs_dir);
1144
1145	return 0;
1146}
1147
1148device_initcall(icc_init);
1149