1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <linux/inet.h>
45#include <rdma/ib_cache.h>
46#include <scsi/scsi_proto.h>
47#include <scsi/scsi_tcq.h>
48#include <target/target_core_base.h>
49#include <target/target_core_fabric.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME		"ib_srpt"
54
55#define SRPT_ID_STRING	"Linux SRP target"
56
57#undef pr_fmt
58#define pr_fmt(fmt) DRV_NAME " " fmt
59
60MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62MODULE_LICENSE("Dual BSD/GPL");
63
64/*
65 * Global Variables
66 */
67
68static u64 srpt_service_guid;
69static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
70static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
71
72static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73module_param(srp_max_req_size, int, 0444);
74MODULE_PARM_DESC(srp_max_req_size,
75		 "Maximum size of SRP request messages in bytes.");
76
77static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78module_param(srpt_srq_size, int, 0444);
79MODULE_PARM_DESC(srpt_srq_size,
80		 "Shared receive queue (SRQ) size.");
81
82static int srpt_set_u64_x(const char *buffer, const struct kernel_param *kp)
83{
84	return kstrtou64(buffer, 16, (u64 *)kp->arg);
85}
86static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
87{
88	return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
89}
90module_param_call(srpt_service_guid, srpt_set_u64_x, srpt_get_u64_x,
91		  &srpt_service_guid, 0444);
92MODULE_PARM_DESC(srpt_service_guid,
93		 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96/* Protects both rdma_cm_port and rdma_cm_id. */
97static DEFINE_MUTEX(rdma_cm_mutex);
98/* Port number RDMA/CM will bind to. */
99static u16 rdma_cm_port;
100static struct rdma_cm_id *rdma_cm_id;
101static void srpt_release_cmd(struct se_cmd *se_cmd);
102static void srpt_free_ch(struct kref *kref);
103static int srpt_queue_status(struct se_cmd *cmd);
104static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
105static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
106static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
107
108/*
109 * The only allowed channel state changes are those that change the channel
110 * state into a state with a higher numerical value. Hence the new > prev test.
111 */
112static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
113{
114	unsigned long flags;
115	enum rdma_ch_state prev;
116	bool changed = false;
117
118	spin_lock_irqsave(&ch->spinlock, flags);
119	prev = ch->state;
120	if (new > prev) {
121		ch->state = new;
122		changed = true;
123	}
124	spin_unlock_irqrestore(&ch->spinlock, flags);
125
126	return changed;
127}
128
129/**
130 * srpt_event_handler - asynchronous IB event callback function
131 * @handler: IB event handler registered by ib_register_event_handler().
132 * @event: Description of the event that occurred.
133 *
134 * Callback function called by the InfiniBand core when an asynchronous IB
135 * event occurs. This callback may occur in interrupt context. See also
136 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
137 * Architecture Specification.
138 */
139static void srpt_event_handler(struct ib_event_handler *handler,
140			       struct ib_event *event)
141{
142	struct srpt_device *sdev =
143		container_of(handler, struct srpt_device, event_handler);
144	struct srpt_port *sport;
145	u8 port_num;
146
147	pr_debug("ASYNC event= %d on device= %s\n", event->event,
148		 dev_name(&sdev->device->dev));
149
150	switch (event->event) {
151	case IB_EVENT_PORT_ERR:
152		port_num = event->element.port_num - 1;
153		if (port_num < sdev->device->phys_port_cnt) {
154			sport = &sdev->port[port_num];
155			sport->lid = 0;
156			sport->sm_lid = 0;
157		} else {
158			WARN(true, "event %d: port_num %d out of range 1..%d\n",
159			     event->event, port_num + 1,
160			     sdev->device->phys_port_cnt);
161		}
162		break;
163	case IB_EVENT_PORT_ACTIVE:
164	case IB_EVENT_LID_CHANGE:
165	case IB_EVENT_PKEY_CHANGE:
166	case IB_EVENT_SM_CHANGE:
167	case IB_EVENT_CLIENT_REREGISTER:
168	case IB_EVENT_GID_CHANGE:
169		/* Refresh port data asynchronously. */
170		port_num = event->element.port_num - 1;
171		if (port_num < sdev->device->phys_port_cnt) {
172			sport = &sdev->port[port_num];
173			if (!sport->lid && !sport->sm_lid)
174				schedule_work(&sport->work);
175		} else {
176			WARN(true, "event %d: port_num %d out of range 1..%d\n",
177			     event->event, port_num + 1,
178			     sdev->device->phys_port_cnt);
179		}
180		break;
181	default:
182		pr_err("received unrecognized IB event %d\n", event->event);
183		break;
184	}
185}
186
187/**
188 * srpt_srq_event - SRQ event callback function
189 * @event: Description of the event that occurred.
190 * @ctx: Context pointer specified at SRQ creation time.
191 */
192static void srpt_srq_event(struct ib_event *event, void *ctx)
193{
194	pr_debug("SRQ event %d\n", event->event);
195}
196
197static const char *get_ch_state_name(enum rdma_ch_state s)
198{
199	switch (s) {
200	case CH_CONNECTING:
201		return "connecting";
202	case CH_LIVE:
203		return "live";
204	case CH_DISCONNECTING:
205		return "disconnecting";
206	case CH_DRAINING:
207		return "draining";
208	case CH_DISCONNECTED:
209		return "disconnected";
210	}
211	return "???";
212}
213
214/**
215 * srpt_qp_event - QP event callback function
216 * @event: Description of the event that occurred.
217 * @ptr: SRPT RDMA channel.
218 */
219static void srpt_qp_event(struct ib_event *event, void *ptr)
220{
221	struct srpt_rdma_ch *ch = ptr;
222
223	pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
224		 event->event, ch, ch->sess_name, ch->qp->qp_num,
225		 get_ch_state_name(ch->state));
226
227	switch (event->event) {
228	case IB_EVENT_COMM_EST:
229		if (ch->using_rdma_cm)
230			rdma_notify(ch->rdma_cm.cm_id, event->event);
231		else
232			ib_cm_notify(ch->ib_cm.cm_id, event->event);
233		break;
234	case IB_EVENT_QP_LAST_WQE_REACHED:
235		pr_debug("%s-%d, state %s: received Last WQE event.\n",
236			 ch->sess_name, ch->qp->qp_num,
237			 get_ch_state_name(ch->state));
238		break;
239	default:
240		pr_err("received unrecognized IB QP event %d\n", event->event);
241		break;
242	}
243}
244
245/**
246 * srpt_set_ioc - initialize a IOUnitInfo structure
247 * @c_list: controller list.
248 * @slot: one-based slot number.
249 * @value: four-bit value.
250 *
251 * Copies the lowest four bits of value in element slot of the array of four
252 * bit elements called c_list (controller list). The index slot is one-based.
253 */
254static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
255{
256	u16 id;
257	u8 tmp;
258
259	id = (slot - 1) / 2;
260	if (slot & 0x1) {
261		tmp = c_list[id] & 0xf;
262		c_list[id] = (value << 4) | tmp;
263	} else {
264		tmp = c_list[id] & 0xf0;
265		c_list[id] = (value & 0xf) | tmp;
266	}
267}
268
269/**
270 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
271 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
272 *
273 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
274 * Specification.
275 */
276static void srpt_get_class_port_info(struct ib_dm_mad *mad)
277{
278	struct ib_class_port_info *cif;
279
280	cif = (struct ib_class_port_info *)mad->data;
281	memset(cif, 0, sizeof(*cif));
282	cif->base_version = 1;
283	cif->class_version = 1;
284
285	ib_set_cpi_resp_time(cif, 20);
286	mad->mad_hdr.status = 0;
287}
288
289/**
290 * srpt_get_iou - write IOUnitInfo to a management datagram
291 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
292 *
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
295 */
296static void srpt_get_iou(struct ib_dm_mad *mad)
297{
298	struct ib_dm_iou_info *ioui;
299	u8 slot;
300	int i;
301
302	ioui = (struct ib_dm_iou_info *)mad->data;
303	ioui->change_id = cpu_to_be16(1);
304	ioui->max_controllers = 16;
305
306	/* set present for slot 1 and empty for the rest */
307	srpt_set_ioc(ioui->controller_list, 1, 1);
308	for (i = 1, slot = 2; i < 16; i++, slot++)
309		srpt_set_ioc(ioui->controller_list, slot, 0);
310
311	mad->mad_hdr.status = 0;
312}
313
314/**
315 * srpt_get_ioc - write IOControllerprofile to a management datagram
316 * @sport: HCA port through which the MAD has been received.
317 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
318 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325			 struct ib_dm_mad *mad)
326{
327	struct srpt_device *sdev = sport->sdev;
328	struct ib_dm_ioc_profile *iocp;
329	int send_queue_depth;
330
331	iocp = (struct ib_dm_ioc_profile *)mad->data;
332
333	if (!slot || slot > 16) {
334		mad->mad_hdr.status
335			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336		return;
337	}
338
339	if (slot > 2) {
340		mad->mad_hdr.status
341			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342		return;
343	}
344
345	if (sdev->use_srq)
346		send_queue_depth = sdev->srq_size;
347	else
348		send_queue_depth = min(MAX_SRPT_RQ_SIZE,
349				       sdev->device->attrs.max_qp_wr);
350
351	memset(iocp, 0, sizeof(*iocp));
352	strcpy(iocp->id_string, SRPT_ID_STRING);
353	iocp->guid = cpu_to_be64(srpt_service_guid);
354	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
355	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
356	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
357	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
358	iocp->subsys_device_id = 0x0;
359	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
360	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
361	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
362	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
363	iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
364	iocp->rdma_read_depth = 4;
365	iocp->send_size = cpu_to_be32(srp_max_req_size);
366	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
367					  1U << 24));
368	iocp->num_svc_entries = 1;
369	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
370		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
371
372	mad->mad_hdr.status = 0;
373}
374
375/**
376 * srpt_get_svc_entries - write ServiceEntries to a management datagram
377 * @ioc_guid: I/O controller GUID to use in reply.
378 * @slot: I/O controller number.
379 * @hi: End of the range of service entries to be specified in the reply.
380 * @lo: Start of the range of service entries to be specified in the reply..
381 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
382 *
383 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
384 * Specification. See also section B.7, table B.8 in the SRP r16a document.
385 */
386static void srpt_get_svc_entries(u64 ioc_guid,
387				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
388{
389	struct ib_dm_svc_entries *svc_entries;
390
391	WARN_ON(!ioc_guid);
392
393	if (!slot || slot > 16) {
394		mad->mad_hdr.status
395			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
396		return;
397	}
398
399	if (slot > 2 || lo > hi || hi > 1) {
400		mad->mad_hdr.status
401			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
402		return;
403	}
404
405	svc_entries = (struct ib_dm_svc_entries *)mad->data;
406	memset(svc_entries, 0, sizeof(*svc_entries));
407	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
408	snprintf(svc_entries->service_entries[0].name,
409		 sizeof(svc_entries->service_entries[0].name),
410		 "%s%016llx",
411		 SRP_SERVICE_NAME_PREFIX,
412		 ioc_guid);
413
414	mad->mad_hdr.status = 0;
415}
416
417/**
418 * srpt_mgmt_method_get - process a received management datagram
419 * @sp:      HCA port through which the MAD has been received.
420 * @rq_mad:  received MAD.
421 * @rsp_mad: response MAD.
422 */
423static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
424				 struct ib_dm_mad *rsp_mad)
425{
426	u16 attr_id;
427	u32 slot;
428	u8 hi, lo;
429
430	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
431	switch (attr_id) {
432	case DM_ATTR_CLASS_PORT_INFO:
433		srpt_get_class_port_info(rsp_mad);
434		break;
435	case DM_ATTR_IOU_INFO:
436		srpt_get_iou(rsp_mad);
437		break;
438	case DM_ATTR_IOC_PROFILE:
439		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
440		srpt_get_ioc(sp, slot, rsp_mad);
441		break;
442	case DM_ATTR_SVC_ENTRIES:
443		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
444		hi = (u8) ((slot >> 8) & 0xff);
445		lo = (u8) (slot & 0xff);
446		slot = (u16) ((slot >> 16) & 0xffff);
447		srpt_get_svc_entries(srpt_service_guid,
448				     slot, hi, lo, rsp_mad);
449		break;
450	default:
451		rsp_mad->mad_hdr.status =
452		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
453		break;
454	}
455}
456
457/**
458 * srpt_mad_send_handler - MAD send completion callback
459 * @mad_agent: Return value of ib_register_mad_agent().
460 * @mad_wc: Work completion reporting that the MAD has been sent.
461 */
462static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
463				  struct ib_mad_send_wc *mad_wc)
464{
465	rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
466	ib_free_send_mad(mad_wc->send_buf);
467}
468
469/**
470 * srpt_mad_recv_handler - MAD reception callback function
471 * @mad_agent: Return value of ib_register_mad_agent().
472 * @send_buf: Not used.
473 * @mad_wc: Work completion reporting that a MAD has been received.
474 */
475static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
476				  struct ib_mad_send_buf *send_buf,
477				  struct ib_mad_recv_wc *mad_wc)
478{
479	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
480	struct ib_ah *ah;
481	struct ib_mad_send_buf *rsp;
482	struct ib_dm_mad *dm_mad;
483
484	if (!mad_wc || !mad_wc->recv_buf.mad)
485		return;
486
487	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
488				  mad_wc->recv_buf.grh, mad_agent->port_num);
489	if (IS_ERR(ah))
490		goto err;
491
492	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
493
494	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
495				 mad_wc->wc->pkey_index, 0,
496				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
497				 GFP_KERNEL,
498				 IB_MGMT_BASE_VERSION);
499	if (IS_ERR(rsp))
500		goto err_rsp;
501
502	rsp->ah = ah;
503
504	dm_mad = rsp->mad;
505	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
506	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
507	dm_mad->mad_hdr.status = 0;
508
509	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
510	case IB_MGMT_METHOD_GET:
511		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
512		break;
513	case IB_MGMT_METHOD_SET:
514		dm_mad->mad_hdr.status =
515		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
516		break;
517	default:
518		dm_mad->mad_hdr.status =
519		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
520		break;
521	}
522
523	if (!ib_post_send_mad(rsp, NULL)) {
524		ib_free_recv_mad(mad_wc);
525		/* will destroy_ah & free_send_mad in send completion */
526		return;
527	}
528
529	ib_free_send_mad(rsp);
530
531err_rsp:
532	rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
533err:
534	ib_free_recv_mad(mad_wc);
535}
536
537static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
538{
539	const __be16 *g = (const __be16 *)guid;
540
541	return snprintf(buf, size, "%04x:%04x:%04x:%04x",
542			be16_to_cpu(g[0]), be16_to_cpu(g[1]),
543			be16_to_cpu(g[2]), be16_to_cpu(g[3]));
544}
545
546/**
547 * srpt_refresh_port - configure a HCA port
548 * @sport: SRPT HCA port.
549 *
550 * Enable InfiniBand management datagram processing, update the cached sm_lid,
551 * lid and gid values, and register a callback function for processing MADs
552 * on the specified port.
553 *
554 * Note: It is safe to call this function more than once for the same port.
555 */
556static int srpt_refresh_port(struct srpt_port *sport)
557{
558	struct ib_mad_agent *mad_agent;
559	struct ib_mad_reg_req reg_req;
560	struct ib_port_modify port_modify;
561	struct ib_port_attr port_attr;
562	int ret;
563
564	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
565	if (ret)
566		return ret;
567
568	sport->sm_lid = port_attr.sm_lid;
569	sport->lid = port_attr.lid;
570
571	ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
572	if (ret)
573		return ret;
574
575	srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
576			 &sport->gid.global.interface_id);
577	snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
578		 "0x%016llx%016llx",
579		 be64_to_cpu(sport->gid.global.subnet_prefix),
580		 be64_to_cpu(sport->gid.global.interface_id));
581
582	if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
583		return 0;
584
585	memset(&port_modify, 0, sizeof(port_modify));
586	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
587	port_modify.clr_port_cap_mask = 0;
588
589	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
590	if (ret) {
591		pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
592			dev_name(&sport->sdev->device->dev), sport->port, ret);
593		return 0;
594	}
595
596	if (!sport->mad_agent) {
597		memset(&reg_req, 0, sizeof(reg_req));
598		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
599		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
600		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
601		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
602
603		mad_agent = ib_register_mad_agent(sport->sdev->device,
604						  sport->port,
605						  IB_QPT_GSI,
606						  &reg_req, 0,
607						  srpt_mad_send_handler,
608						  srpt_mad_recv_handler,
609						  sport, 0);
610		if (IS_ERR(mad_agent)) {
611			pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
612			       dev_name(&sport->sdev->device->dev), sport->port,
613			       PTR_ERR(mad_agent));
614			sport->mad_agent = NULL;
615			memset(&port_modify, 0, sizeof(port_modify));
616			port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
617			ib_modify_port(sport->sdev->device, sport->port, 0,
618				       &port_modify);
619			return 0;
620		}
621
622		sport->mad_agent = mad_agent;
623	}
624
625	return 0;
626}
627
628/**
629 * srpt_unregister_mad_agent - unregister MAD callback functions
630 * @sdev: SRPT HCA pointer.
631 * @port_cnt: number of ports with registered MAD
632 *
633 * Note: It is safe to call this function more than once for the same device.
634 */
635static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
636{
637	struct ib_port_modify port_modify = {
638		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
639	};
640	struct srpt_port *sport;
641	int i;
642
643	for (i = 1; i <= port_cnt; i++) {
644		sport = &sdev->port[i - 1];
645		WARN_ON(sport->port != i);
646		if (sport->mad_agent) {
647			ib_modify_port(sdev->device, i, 0, &port_modify);
648			ib_unregister_mad_agent(sport->mad_agent);
649			sport->mad_agent = NULL;
650		}
651	}
652}
653
654/**
655 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
656 * @sdev: SRPT HCA pointer.
657 * @ioctx_size: I/O context size.
658 * @buf_cache: I/O buffer cache.
659 * @dir: DMA data direction.
660 */
661static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
662					   int ioctx_size,
663					   struct kmem_cache *buf_cache,
664					   enum dma_data_direction dir)
665{
666	struct srpt_ioctx *ioctx;
667
668	ioctx = kzalloc(ioctx_size, GFP_KERNEL);
669	if (!ioctx)
670		goto err;
671
672	ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
673	if (!ioctx->buf)
674		goto err_free_ioctx;
675
676	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
677				       kmem_cache_size(buf_cache), dir);
678	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
679		goto err_free_buf;
680
681	return ioctx;
682
683err_free_buf:
684	kmem_cache_free(buf_cache, ioctx->buf);
685err_free_ioctx:
686	kfree(ioctx);
687err:
688	return NULL;
689}
690
691/**
692 * srpt_free_ioctx - free a SRPT I/O context structure
693 * @sdev: SRPT HCA pointer.
694 * @ioctx: I/O context pointer.
695 * @buf_cache: I/O buffer cache.
696 * @dir: DMA data direction.
697 */
698static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
699			    struct kmem_cache *buf_cache,
700			    enum dma_data_direction dir)
701{
702	if (!ioctx)
703		return;
704
705	ib_dma_unmap_single(sdev->device, ioctx->dma,
706			    kmem_cache_size(buf_cache), dir);
707	kmem_cache_free(buf_cache, ioctx->buf);
708	kfree(ioctx);
709}
710
711/**
712 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
713 * @sdev:       Device to allocate the I/O context ring for.
714 * @ring_size:  Number of elements in the I/O context ring.
715 * @ioctx_size: I/O context size.
716 * @buf_cache:  I/O buffer cache.
717 * @alignment_offset: Offset in each ring buffer at which the SRP information
718 *		unit starts.
719 * @dir:        DMA data direction.
720 */
721static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
722				int ring_size, int ioctx_size,
723				struct kmem_cache *buf_cache,
724				int alignment_offset,
725				enum dma_data_direction dir)
726{
727	struct srpt_ioctx **ring;
728	int i;
729
730	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
731		ioctx_size != sizeof(struct srpt_send_ioctx));
732
733	ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
734	if (!ring)
735		goto out;
736	for (i = 0; i < ring_size; ++i) {
737		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
738		if (!ring[i])
739			goto err;
740		ring[i]->index = i;
741		ring[i]->offset = alignment_offset;
742	}
743	goto out;
744
745err:
746	while (--i >= 0)
747		srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
748	kvfree(ring);
749	ring = NULL;
750out:
751	return ring;
752}
753
754/**
755 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
756 * @ioctx_ring: I/O context ring to be freed.
757 * @sdev: SRPT HCA pointer.
758 * @ring_size: Number of ring elements.
759 * @buf_cache: I/O buffer cache.
760 * @dir: DMA data direction.
761 */
762static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
763				 struct srpt_device *sdev, int ring_size,
764				 struct kmem_cache *buf_cache,
765				 enum dma_data_direction dir)
766{
767	int i;
768
769	if (!ioctx_ring)
770		return;
771
772	for (i = 0; i < ring_size; ++i)
773		srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
774	kvfree(ioctx_ring);
775}
776
777/**
778 * srpt_set_cmd_state - set the state of a SCSI command
779 * @ioctx: Send I/O context.
780 * @new: New I/O context state.
781 *
782 * Does not modify the state of aborted commands. Returns the previous command
783 * state.
784 */
785static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
786						  enum srpt_command_state new)
787{
788	enum srpt_command_state previous;
789
790	previous = ioctx->state;
791	if (previous != SRPT_STATE_DONE)
792		ioctx->state = new;
793
794	return previous;
795}
796
797/**
798 * srpt_test_and_set_cmd_state - test and set the state of a command
799 * @ioctx: Send I/O context.
800 * @old: Current I/O context state.
801 * @new: New I/O context state.
802 *
803 * Returns true if and only if the previous command state was equal to 'old'.
804 */
805static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
806					enum srpt_command_state old,
807					enum srpt_command_state new)
808{
809	enum srpt_command_state previous;
810
811	WARN_ON(!ioctx);
812	WARN_ON(old == SRPT_STATE_DONE);
813	WARN_ON(new == SRPT_STATE_NEW);
814
815	previous = ioctx->state;
816	if (previous == old)
817		ioctx->state = new;
818
819	return previous == old;
820}
821
822/**
823 * srpt_post_recv - post an IB receive request
824 * @sdev: SRPT HCA pointer.
825 * @ch: SRPT RDMA channel.
826 * @ioctx: Receive I/O context pointer.
827 */
828static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
829			  struct srpt_recv_ioctx *ioctx)
830{
831	struct ib_sge list;
832	struct ib_recv_wr wr;
833
834	BUG_ON(!sdev);
835	list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
836	list.length = srp_max_req_size;
837	list.lkey = sdev->lkey;
838
839	ioctx->ioctx.cqe.done = srpt_recv_done;
840	wr.wr_cqe = &ioctx->ioctx.cqe;
841	wr.next = NULL;
842	wr.sg_list = &list;
843	wr.num_sge = 1;
844
845	if (sdev->use_srq)
846		return ib_post_srq_recv(sdev->srq, &wr, NULL);
847	else
848		return ib_post_recv(ch->qp, &wr, NULL);
849}
850
851/**
852 * srpt_zerolength_write - perform a zero-length RDMA write
853 * @ch: SRPT RDMA channel.
854 *
855 * A quote from the InfiniBand specification: C9-88: For an HCA responder
856 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
857 * request, the R_Key shall not be validated, even if the request includes
858 * Immediate data.
859 */
860static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
861{
862	struct ib_rdma_wr wr = {
863		.wr = {
864			.next		= NULL,
865			{ .wr_cqe	= &ch->zw_cqe, },
866			.opcode		= IB_WR_RDMA_WRITE,
867			.send_flags	= IB_SEND_SIGNALED,
868		}
869	};
870
871	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
872		 ch->qp->qp_num);
873
874	return ib_post_send(ch->qp, &wr.wr, NULL);
875}
876
877static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
878{
879	struct srpt_rdma_ch *ch = wc->qp->qp_context;
880
881	pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
882		 wc->status);
883
884	if (wc->status == IB_WC_SUCCESS) {
885		srpt_process_wait_list(ch);
886	} else {
887		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
888			schedule_work(&ch->release_work);
889		else
890			pr_debug("%s-%d: already disconnected.\n",
891				 ch->sess_name, ch->qp->qp_num);
892	}
893}
894
895static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
896		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
897		unsigned *sg_cnt)
898{
899	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
900	struct srpt_rdma_ch *ch = ioctx->ch;
901	struct scatterlist *prev = NULL;
902	unsigned prev_nents;
903	int ret, i;
904
905	if (nbufs == 1) {
906		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
907	} else {
908		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
909			GFP_KERNEL);
910		if (!ioctx->rw_ctxs)
911			return -ENOMEM;
912	}
913
914	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
915		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
916		u64 remote_addr = be64_to_cpu(db->va);
917		u32 size = be32_to_cpu(db->len);
918		u32 rkey = be32_to_cpu(db->key);
919
920		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
921				i < nbufs - 1);
922		if (ret)
923			goto unwind;
924
925		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
926				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
927		if (ret < 0) {
928			target_free_sgl(ctx->sg, ctx->nents);
929			goto unwind;
930		}
931
932		ioctx->n_rdma += ret;
933		ioctx->n_rw_ctx++;
934
935		if (prev) {
936			sg_unmark_end(&prev[prev_nents - 1]);
937			sg_chain(prev, prev_nents + 1, ctx->sg);
938		} else {
939			*sg = ctx->sg;
940		}
941
942		prev = ctx->sg;
943		prev_nents = ctx->nents;
944
945		*sg_cnt += ctx->nents;
946	}
947
948	return 0;
949
950unwind:
951	while (--i >= 0) {
952		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
953
954		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
955				ctx->sg, ctx->nents, dir);
956		target_free_sgl(ctx->sg, ctx->nents);
957	}
958	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
959		kfree(ioctx->rw_ctxs);
960	return ret;
961}
962
963static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
964				    struct srpt_send_ioctx *ioctx)
965{
966	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
967	int i;
968
969	for (i = 0; i < ioctx->n_rw_ctx; i++) {
970		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
971
972		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
973				ctx->sg, ctx->nents, dir);
974		target_free_sgl(ctx->sg, ctx->nents);
975	}
976
977	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
978		kfree(ioctx->rw_ctxs);
979}
980
981static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
982{
983	/*
984	 * The pointer computations below will only be compiled correctly
985	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
986	 * whether srp_cmd::add_data has been declared as a byte pointer.
987	 */
988	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
989		     !__same_type(srp_cmd->add_data[0], (u8)0));
990
991	/*
992	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
993	 * CDB LENGTH' field are reserved and the size in bytes of this field
994	 * is four times the value specified in bits 3..7. Hence the "& ~3".
995	 */
996	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
997}
998
999/**
1000 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
1001 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
1002 * @ioctx: I/O context that will be used for responding to the initiator.
1003 * @srp_cmd: Pointer to the SRP_CMD request data.
1004 * @dir: Pointer to the variable to which the transfer direction will be
1005 *   written.
1006 * @sg: [out] scatterlist for the parsed SRP_CMD.
1007 * @sg_cnt: [out] length of @sg.
1008 * @data_len: Pointer to the variable to which the total data length of all
1009 *   descriptors in the SRP_CMD request will be written.
1010 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1011 *   starts.
1012 *
1013 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1014 *
1015 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1016 * -ENOMEM when memory allocation fails and zero upon success.
1017 */
1018static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1019		struct srpt_send_ioctx *ioctx,
1020		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1021		struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1022		u16 imm_data_offset)
1023{
1024	BUG_ON(!dir);
1025	BUG_ON(!data_len);
1026
1027	/*
1028	 * The lower four bits of the buffer format field contain the DATA-IN
1029	 * buffer descriptor format, and the highest four bits contain the
1030	 * DATA-OUT buffer descriptor format.
1031	 */
1032	if (srp_cmd->buf_fmt & 0xf)
1033		/* DATA-IN: transfer data from target to initiator (read). */
1034		*dir = DMA_FROM_DEVICE;
1035	else if (srp_cmd->buf_fmt >> 4)
1036		/* DATA-OUT: transfer data from initiator to target (write). */
1037		*dir = DMA_TO_DEVICE;
1038	else
1039		*dir = DMA_NONE;
1040
1041	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1042	ioctx->cmd.data_direction = *dir;
1043
1044	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1045	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1046		struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1047
1048		*data_len = be32_to_cpu(db->len);
1049		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1050	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1051		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1052		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1053		int nbufs = be32_to_cpu(idb->table_desc.len) /
1054				sizeof(struct srp_direct_buf);
1055
1056		if (nbufs >
1057		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1058			pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1059			       srp_cmd->data_out_desc_cnt,
1060			       srp_cmd->data_in_desc_cnt,
1061			       be32_to_cpu(idb->table_desc.len),
1062			       sizeof(struct srp_direct_buf));
1063			return -EINVAL;
1064		}
1065
1066		*data_len = be32_to_cpu(idb->len);
1067		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1068				sg, sg_cnt);
1069	} else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1070		struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1071		void *data = (void *)srp_cmd + imm_data_offset;
1072		uint32_t len = be32_to_cpu(imm_buf->len);
1073		uint32_t req_size = imm_data_offset + len;
1074
1075		if (req_size > srp_max_req_size) {
1076			pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1077			       imm_data_offset, len, srp_max_req_size);
1078			return -EINVAL;
1079		}
1080		if (recv_ioctx->byte_len < req_size) {
1081			pr_err("Received too few data - %d < %d\n",
1082			       recv_ioctx->byte_len, req_size);
1083			return -EIO;
1084		}
1085		/*
1086		 * The immediate data buffer descriptor must occur before the
1087		 * immediate data itself.
1088		 */
1089		if ((void *)(imm_buf + 1) > (void *)data) {
1090			pr_err("Received invalid write request\n");
1091			return -EINVAL;
1092		}
1093		*data_len = len;
1094		ioctx->recv_ioctx = recv_ioctx;
1095		if ((uintptr_t)data & 511) {
1096			pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1097			return -EINVAL;
1098		}
1099		sg_init_one(&ioctx->imm_sg, data, len);
1100		*sg = &ioctx->imm_sg;
1101		*sg_cnt = 1;
1102		return 0;
1103	} else {
1104		*data_len = 0;
1105		return 0;
1106	}
1107}
1108
1109/**
1110 * srpt_init_ch_qp - initialize queue pair attributes
1111 * @ch: SRPT RDMA channel.
1112 * @qp: Queue pair pointer.
1113 *
1114 * Initialized the attributes of queue pair 'qp' by allowing local write,
1115 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1116 */
1117static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1118{
1119	struct ib_qp_attr *attr;
1120	int ret;
1121
1122	WARN_ON_ONCE(ch->using_rdma_cm);
1123
1124	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1125	if (!attr)
1126		return -ENOMEM;
1127
1128	attr->qp_state = IB_QPS_INIT;
1129	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1130	attr->port_num = ch->sport->port;
1131
1132	ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1133				  ch->pkey, &attr->pkey_index);
1134	if (ret < 0)
1135		pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1136		       ch->pkey, ret);
1137
1138	ret = ib_modify_qp(qp, attr,
1139			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1140			   IB_QP_PKEY_INDEX);
1141
1142	kfree(attr);
1143	return ret;
1144}
1145
1146/**
1147 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1148 * @ch: channel of the queue pair.
1149 * @qp: queue pair to change the state of.
1150 *
1151 * Returns zero upon success and a negative value upon failure.
1152 *
1153 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1154 * If this structure ever becomes larger, it might be necessary to allocate
1155 * it dynamically instead of on the stack.
1156 */
1157static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1158{
1159	struct ib_qp_attr qp_attr;
1160	int attr_mask;
1161	int ret;
1162
1163	WARN_ON_ONCE(ch->using_rdma_cm);
1164
1165	qp_attr.qp_state = IB_QPS_RTR;
1166	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1167	if (ret)
1168		goto out;
1169
1170	qp_attr.max_dest_rd_atomic = 4;
1171
1172	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1173
1174out:
1175	return ret;
1176}
1177
1178/**
1179 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1180 * @ch: channel of the queue pair.
1181 * @qp: queue pair to change the state of.
1182 *
1183 * Returns zero upon success and a negative value upon failure.
1184 *
1185 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1186 * If this structure ever becomes larger, it might be necessary to allocate
1187 * it dynamically instead of on the stack.
1188 */
1189static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1190{
1191	struct ib_qp_attr qp_attr;
1192	int attr_mask;
1193	int ret;
1194
1195	qp_attr.qp_state = IB_QPS_RTS;
1196	ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1197	if (ret)
1198		goto out;
1199
1200	qp_attr.max_rd_atomic = 4;
1201
1202	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1203
1204out:
1205	return ret;
1206}
1207
1208/**
1209 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1210 * @ch: SRPT RDMA channel.
1211 */
1212static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1213{
1214	struct ib_qp_attr qp_attr;
1215
1216	qp_attr.qp_state = IB_QPS_ERR;
1217	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1218}
1219
1220/**
1221 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1222 * @ch: SRPT RDMA channel.
1223 */
1224static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1225{
1226	struct srpt_send_ioctx *ioctx;
1227	int tag, cpu;
1228
1229	BUG_ON(!ch);
1230
1231	tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1232	if (tag < 0)
1233		return NULL;
1234
1235	ioctx = ch->ioctx_ring[tag];
1236	BUG_ON(ioctx->ch != ch);
1237	ioctx->state = SRPT_STATE_NEW;
1238	WARN_ON_ONCE(ioctx->recv_ioctx);
1239	ioctx->n_rdma = 0;
1240	ioctx->n_rw_ctx = 0;
1241	ioctx->queue_status_only = false;
1242	/*
1243	 * transport_init_se_cmd() does not initialize all fields, so do it
1244	 * here.
1245	 */
1246	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1247	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1248	ioctx->cmd.map_tag = tag;
1249	ioctx->cmd.map_cpu = cpu;
1250
1251	return ioctx;
1252}
1253
1254/**
1255 * srpt_abort_cmd - abort a SCSI command
1256 * @ioctx:   I/O context associated with the SCSI command.
1257 */
1258static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1259{
1260	enum srpt_command_state state;
1261
1262	BUG_ON(!ioctx);
1263
1264	/*
1265	 * If the command is in a state where the target core is waiting for
1266	 * the ib_srpt driver, change the state to the next state.
1267	 */
1268
1269	state = ioctx->state;
1270	switch (state) {
1271	case SRPT_STATE_NEED_DATA:
1272		ioctx->state = SRPT_STATE_DATA_IN;
1273		break;
1274	case SRPT_STATE_CMD_RSP_SENT:
1275	case SRPT_STATE_MGMT_RSP_SENT:
1276		ioctx->state = SRPT_STATE_DONE;
1277		break;
1278	default:
1279		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1280			  __func__, state);
1281		break;
1282	}
1283
1284	pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1285		 ioctx->state, ioctx->cmd.tag);
1286
1287	switch (state) {
1288	case SRPT_STATE_NEW:
1289	case SRPT_STATE_DATA_IN:
1290	case SRPT_STATE_MGMT:
1291	case SRPT_STATE_DONE:
1292		/*
1293		 * Do nothing - defer abort processing until
1294		 * srpt_queue_response() is invoked.
1295		 */
1296		break;
1297	case SRPT_STATE_NEED_DATA:
1298		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1299		transport_generic_request_failure(&ioctx->cmd,
1300					TCM_CHECK_CONDITION_ABORT_CMD);
1301		break;
1302	case SRPT_STATE_CMD_RSP_SENT:
1303		/*
1304		 * SRP_RSP sending failed or the SRP_RSP send completion has
1305		 * not been received in time.
1306		 */
1307		transport_generic_free_cmd(&ioctx->cmd, 0);
1308		break;
1309	case SRPT_STATE_MGMT_RSP_SENT:
1310		transport_generic_free_cmd(&ioctx->cmd, 0);
1311		break;
1312	default:
1313		WARN(1, "Unexpected command state (%d)", state);
1314		break;
1315	}
1316
1317	return state;
1318}
1319
1320/**
1321 * srpt_rdma_read_done - RDMA read completion callback
1322 * @cq: Completion queue.
1323 * @wc: Work completion.
1324 *
1325 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1326 * the data that has been transferred via IB RDMA had to be postponed until the
1327 * check_stop_free() callback.  None of this is necessary anymore and needs to
1328 * be cleaned up.
1329 */
1330static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1331{
1332	struct srpt_rdma_ch *ch = wc->qp->qp_context;
1333	struct srpt_send_ioctx *ioctx =
1334		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1335
1336	WARN_ON(ioctx->n_rdma <= 0);
1337	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1338	ioctx->n_rdma = 0;
1339
1340	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1341		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1342			ioctx, wc->status);
1343		srpt_abort_cmd(ioctx);
1344		return;
1345	}
1346
1347	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1348					SRPT_STATE_DATA_IN))
1349		target_execute_cmd(&ioctx->cmd);
1350	else
1351		pr_err("%s[%d]: wrong state = %d\n", __func__,
1352		       __LINE__, ioctx->state);
1353}
1354
1355/**
1356 * srpt_build_cmd_rsp - build a SRP_RSP response
1357 * @ch: RDMA channel through which the request has been received.
1358 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1359 *   be built in the buffer ioctx->buf points at and hence this function will
1360 *   overwrite the request data.
1361 * @tag: tag of the request for which this response is being generated.
1362 * @status: value for the STATUS field of the SRP_RSP information unit.
1363 *
1364 * Returns the size in bytes of the SRP_RSP response.
1365 *
1366 * An SRP_RSP response contains a SCSI status or service response. See also
1367 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1368 * response. See also SPC-2 for more information about sense data.
1369 */
1370static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1371			      struct srpt_send_ioctx *ioctx, u64 tag,
1372			      int status)
1373{
1374	struct se_cmd *cmd = &ioctx->cmd;
1375	struct srp_rsp *srp_rsp;
1376	const u8 *sense_data;
1377	int sense_data_len, max_sense_len;
1378	u32 resid = cmd->residual_count;
1379
1380	/*
1381	 * The lowest bit of all SAM-3 status codes is zero (see also
1382	 * paragraph 5.3 in SAM-3).
1383	 */
1384	WARN_ON(status & 1);
1385
1386	srp_rsp = ioctx->ioctx.buf;
1387	BUG_ON(!srp_rsp);
1388
1389	sense_data = ioctx->sense_data;
1390	sense_data_len = ioctx->cmd.scsi_sense_length;
1391	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1392
1393	memset(srp_rsp, 0, sizeof(*srp_rsp));
1394	srp_rsp->opcode = SRP_RSP;
1395	srp_rsp->req_lim_delta =
1396		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1397	srp_rsp->tag = tag;
1398	srp_rsp->status = status;
1399
1400	if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1401		if (cmd->data_direction == DMA_TO_DEVICE) {
1402			/* residual data from an underflow write */
1403			srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1404			srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1405		} else if (cmd->data_direction == DMA_FROM_DEVICE) {
1406			/* residual data from an underflow read */
1407			srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1408			srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1409		}
1410	} else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1411		if (cmd->data_direction == DMA_TO_DEVICE) {
1412			/* residual data from an overflow write */
1413			srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1414			srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1415		} else if (cmd->data_direction == DMA_FROM_DEVICE) {
1416			/* residual data from an overflow read */
1417			srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1418			srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1419		}
1420	}
1421
1422	if (sense_data_len) {
1423		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1424		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1425		if (sense_data_len > max_sense_len) {
1426			pr_warn("truncated sense data from %d to %d bytes\n",
1427				sense_data_len, max_sense_len);
1428			sense_data_len = max_sense_len;
1429		}
1430
1431		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1432		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1433		memcpy(srp_rsp->data, sense_data, sense_data_len);
1434	}
1435
1436	return sizeof(*srp_rsp) + sense_data_len;
1437}
1438
1439/**
1440 * srpt_build_tskmgmt_rsp - build a task management response
1441 * @ch:       RDMA channel through which the request has been received.
1442 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1443 * @rsp_code: RSP_CODE that will be stored in the response.
1444 * @tag:      Tag of the request for which this response is being generated.
1445 *
1446 * Returns the size in bytes of the SRP_RSP response.
1447 *
1448 * An SRP_RSP response contains a SCSI status or service response. See also
1449 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1450 * response.
1451 */
1452static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1453				  struct srpt_send_ioctx *ioctx,
1454				  u8 rsp_code, u64 tag)
1455{
1456	struct srp_rsp *srp_rsp;
1457	int resp_data_len;
1458	int resp_len;
1459
1460	resp_data_len = 4;
1461	resp_len = sizeof(*srp_rsp) + resp_data_len;
1462
1463	srp_rsp = ioctx->ioctx.buf;
1464	BUG_ON(!srp_rsp);
1465	memset(srp_rsp, 0, sizeof(*srp_rsp));
1466
1467	srp_rsp->opcode = SRP_RSP;
1468	srp_rsp->req_lim_delta =
1469		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1470	srp_rsp->tag = tag;
1471
1472	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1473	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1474	srp_rsp->data[3] = rsp_code;
1475
1476	return resp_len;
1477}
1478
1479static int srpt_check_stop_free(struct se_cmd *cmd)
1480{
1481	struct srpt_send_ioctx *ioctx = container_of(cmd,
1482				struct srpt_send_ioctx, cmd);
1483
1484	return target_put_sess_cmd(&ioctx->cmd);
1485}
1486
1487/**
1488 * srpt_handle_cmd - process a SRP_CMD information unit
1489 * @ch: SRPT RDMA channel.
1490 * @recv_ioctx: Receive I/O context.
1491 * @send_ioctx: Send I/O context.
1492 */
1493static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1494			    struct srpt_recv_ioctx *recv_ioctx,
1495			    struct srpt_send_ioctx *send_ioctx)
1496{
1497	struct se_cmd *cmd;
1498	struct srp_cmd *srp_cmd;
1499	struct scatterlist *sg = NULL;
1500	unsigned sg_cnt = 0;
1501	u64 data_len;
1502	enum dma_data_direction dir;
1503	int rc;
1504
1505	BUG_ON(!send_ioctx);
1506
1507	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1508	cmd = &send_ioctx->cmd;
1509	cmd->tag = srp_cmd->tag;
1510
1511	switch (srp_cmd->task_attr) {
1512	case SRP_CMD_SIMPLE_Q:
1513		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1514		break;
1515	case SRP_CMD_ORDERED_Q:
1516	default:
1517		cmd->sam_task_attr = TCM_ORDERED_TAG;
1518		break;
1519	case SRP_CMD_HEAD_OF_Q:
1520		cmd->sam_task_attr = TCM_HEAD_TAG;
1521		break;
1522	case SRP_CMD_ACA:
1523		cmd->sam_task_attr = TCM_ACA_TAG;
1524		break;
1525	}
1526
1527	rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1528			       &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1529	if (rc) {
1530		if (rc != -EAGAIN) {
1531			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1532			       srp_cmd->tag);
1533		}
1534		goto busy;
1535	}
1536
1537	rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0],
1538			     scsilun_to_int(&srp_cmd->lun), data_len,
1539			     TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1540	if (rc != 0) {
1541		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1542			 srp_cmd->tag);
1543		goto busy;
1544	}
1545
1546	if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0,
1547			       GFP_KERNEL))
1548		return;
1549
1550	target_submit(cmd);
1551	return;
1552
1553busy:
1554	target_send_busy(cmd);
1555}
1556
1557static int srp_tmr_to_tcm(int fn)
1558{
1559	switch (fn) {
1560	case SRP_TSK_ABORT_TASK:
1561		return TMR_ABORT_TASK;
1562	case SRP_TSK_ABORT_TASK_SET:
1563		return TMR_ABORT_TASK_SET;
1564	case SRP_TSK_CLEAR_TASK_SET:
1565		return TMR_CLEAR_TASK_SET;
1566	case SRP_TSK_LUN_RESET:
1567		return TMR_LUN_RESET;
1568	case SRP_TSK_CLEAR_ACA:
1569		return TMR_CLEAR_ACA;
1570	default:
1571		return -1;
1572	}
1573}
1574
1575/**
1576 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1577 * @ch: SRPT RDMA channel.
1578 * @recv_ioctx: Receive I/O context.
1579 * @send_ioctx: Send I/O context.
1580 *
1581 * Returns 0 if and only if the request will be processed by the target core.
1582 *
1583 * For more information about SRP_TSK_MGMT information units, see also section
1584 * 6.7 in the SRP r16a document.
1585 */
1586static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1587				 struct srpt_recv_ioctx *recv_ioctx,
1588				 struct srpt_send_ioctx *send_ioctx)
1589{
1590	struct srp_tsk_mgmt *srp_tsk;
1591	struct se_cmd *cmd;
1592	struct se_session *sess = ch->sess;
1593	int tcm_tmr;
1594	int rc;
1595
1596	BUG_ON(!send_ioctx);
1597
1598	srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1599	cmd = &send_ioctx->cmd;
1600
1601	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1602		 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1603		 ch->sess);
1604
1605	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1606	send_ioctx->cmd.tag = srp_tsk->tag;
1607	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1608	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1609			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1610			       GFP_KERNEL, srp_tsk->task_tag,
1611			       TARGET_SCF_ACK_KREF);
1612	if (rc != 0) {
1613		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1614		cmd->se_tfo->queue_tm_rsp(cmd);
1615	}
1616	return;
1617}
1618
1619/**
1620 * srpt_handle_new_iu - process a newly received information unit
1621 * @ch:    RDMA channel through which the information unit has been received.
1622 * @recv_ioctx: Receive I/O context associated with the information unit.
1623 */
1624static bool
1625srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1626{
1627	struct srpt_send_ioctx *send_ioctx = NULL;
1628	struct srp_cmd *srp_cmd;
1629	bool res = false;
1630	u8 opcode;
1631
1632	BUG_ON(!ch);
1633	BUG_ON(!recv_ioctx);
1634
1635	if (unlikely(ch->state == CH_CONNECTING))
1636		goto push;
1637
1638	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1639				   recv_ioctx->ioctx.dma,
1640				   recv_ioctx->ioctx.offset + srp_max_req_size,
1641				   DMA_FROM_DEVICE);
1642
1643	srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1644	opcode = srp_cmd->opcode;
1645	if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1646		send_ioctx = srpt_get_send_ioctx(ch);
1647		if (unlikely(!send_ioctx))
1648			goto push;
1649	}
1650
1651	if (!list_empty(&recv_ioctx->wait_list)) {
1652		WARN_ON_ONCE(!ch->processing_wait_list);
1653		list_del_init(&recv_ioctx->wait_list);
1654	}
1655
1656	switch (opcode) {
1657	case SRP_CMD:
1658		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1659		break;
1660	case SRP_TSK_MGMT:
1661		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1662		break;
1663	case SRP_I_LOGOUT:
1664		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1665		break;
1666	case SRP_CRED_RSP:
1667		pr_debug("received SRP_CRED_RSP\n");
1668		break;
1669	case SRP_AER_RSP:
1670		pr_debug("received SRP_AER_RSP\n");
1671		break;
1672	case SRP_RSP:
1673		pr_err("Received SRP_RSP\n");
1674		break;
1675	default:
1676		pr_err("received IU with unknown opcode 0x%x\n", opcode);
1677		break;
1678	}
1679
1680	if (!send_ioctx || !send_ioctx->recv_ioctx)
1681		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1682	res = true;
1683
1684out:
1685	return res;
1686
1687push:
1688	if (list_empty(&recv_ioctx->wait_list)) {
1689		WARN_ON_ONCE(ch->processing_wait_list);
1690		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1691	}
1692	goto out;
1693}
1694
1695static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1696{
1697	struct srpt_rdma_ch *ch = wc->qp->qp_context;
1698	struct srpt_recv_ioctx *ioctx =
1699		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1700
1701	if (wc->status == IB_WC_SUCCESS) {
1702		int req_lim;
1703
1704		req_lim = atomic_dec_return(&ch->req_lim);
1705		if (unlikely(req_lim < 0))
1706			pr_err("req_lim = %d < 0\n", req_lim);
1707		ioctx->byte_len = wc->byte_len;
1708		srpt_handle_new_iu(ch, ioctx);
1709	} else {
1710		pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1711				    ioctx, wc->status);
1712	}
1713}
1714
1715/*
1716 * This function must be called from the context in which RDMA completions are
1717 * processed because it accesses the wait list without protection against
1718 * access from other threads.
1719 */
1720static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1721{
1722	struct srpt_recv_ioctx *recv_ioctx, *tmp;
1723
1724	WARN_ON_ONCE(ch->state == CH_CONNECTING);
1725
1726	if (list_empty(&ch->cmd_wait_list))
1727		return;
1728
1729	WARN_ON_ONCE(ch->processing_wait_list);
1730	ch->processing_wait_list = true;
1731	list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1732				 wait_list) {
1733		if (!srpt_handle_new_iu(ch, recv_ioctx))
1734			break;
1735	}
1736	ch->processing_wait_list = false;
1737}
1738
1739/**
1740 * srpt_send_done - send completion callback
1741 * @cq: Completion queue.
1742 * @wc: Work completion.
1743 *
1744 * Note: Although this has not yet been observed during tests, at least in
1745 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1746 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1747 * value in each response is set to one, and it is possible that this response
1748 * makes the initiator send a new request before the send completion for that
1749 * response has been processed. This could e.g. happen if the call to
1750 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1751 * if IB retransmission causes generation of the send completion to be
1752 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1753 * are queued on cmd_wait_list. The code below processes these delayed
1754 * requests one at a time.
1755 */
1756static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1757{
1758	struct srpt_rdma_ch *ch = wc->qp->qp_context;
1759	struct srpt_send_ioctx *ioctx =
1760		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1761	enum srpt_command_state state;
1762
1763	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1764
1765	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1766		state != SRPT_STATE_MGMT_RSP_SENT);
1767
1768	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1769
1770	if (wc->status != IB_WC_SUCCESS)
1771		pr_info("sending response for ioctx 0x%p failed with status %d\n",
1772			ioctx, wc->status);
1773
1774	if (state != SRPT_STATE_DONE) {
1775		transport_generic_free_cmd(&ioctx->cmd, 0);
1776	} else {
1777		pr_err("IB completion has been received too late for wr_id = %u.\n",
1778		       ioctx->ioctx.index);
1779	}
1780
1781	srpt_process_wait_list(ch);
1782}
1783
1784/**
1785 * srpt_create_ch_ib - create receive and send completion queues
1786 * @ch: SRPT RDMA channel.
1787 */
1788static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1789{
1790	struct ib_qp_init_attr *qp_init;
1791	struct srpt_port *sport = ch->sport;
1792	struct srpt_device *sdev = sport->sdev;
1793	const struct ib_device_attr *attrs = &sdev->device->attrs;
1794	int sq_size = sport->port_attrib.srp_sq_size;
1795	int i, ret;
1796
1797	WARN_ON(ch->rq_size < 1);
1798
1799	ret = -ENOMEM;
1800	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1801	if (!qp_init)
1802		goto out;
1803
1804retry:
1805	ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1806				 IB_POLL_WORKQUEUE);
1807	if (IS_ERR(ch->cq)) {
1808		ret = PTR_ERR(ch->cq);
1809		pr_err("failed to create CQ cqe= %d ret= %d\n",
1810		       ch->rq_size + sq_size, ret);
1811		goto out;
1812	}
1813	ch->cq_size = ch->rq_size + sq_size;
1814
1815	qp_init->qp_context = (void *)ch;
1816	qp_init->event_handler = srpt_qp_event;
1817	qp_init->send_cq = ch->cq;
1818	qp_init->recv_cq = ch->cq;
1819	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1820	qp_init->qp_type = IB_QPT_RC;
1821	/*
1822	 * We divide up our send queue size into half SEND WRs to send the
1823	 * completions, and half R/W contexts to actually do the RDMA
1824	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1825	 * both both, as RDMA contexts will also post completions for the
1826	 * RDMA READ case.
1827	 */
1828	qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1829	qp_init->cap.max_rdma_ctxs = sq_size / 2;
1830	qp_init->cap.max_send_sge = attrs->max_send_sge;
1831	qp_init->cap.max_recv_sge = 1;
1832	qp_init->port_num = ch->sport->port;
1833	if (sdev->use_srq)
1834		qp_init->srq = sdev->srq;
1835	else
1836		qp_init->cap.max_recv_wr = ch->rq_size;
1837
1838	if (ch->using_rdma_cm) {
1839		ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1840		ch->qp = ch->rdma_cm.cm_id->qp;
1841	} else {
1842		ch->qp = ib_create_qp(sdev->pd, qp_init);
1843		if (!IS_ERR(ch->qp)) {
1844			ret = srpt_init_ch_qp(ch, ch->qp);
1845			if (ret)
1846				ib_destroy_qp(ch->qp);
1847		} else {
1848			ret = PTR_ERR(ch->qp);
1849		}
1850	}
1851	if (ret) {
1852		bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1853
1854		if (retry) {
1855			pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1856				 sq_size, ret);
1857			ib_cq_pool_put(ch->cq, ch->cq_size);
1858			sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1859			goto retry;
1860		} else {
1861			pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1862			       sq_size, ret);
1863			goto err_destroy_cq;
1864		}
1865	}
1866
1867	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1868
1869	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1870		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1871		 qp_init->cap.max_send_wr, ch);
1872
1873	if (!sdev->use_srq)
1874		for (i = 0; i < ch->rq_size; i++)
1875			srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1876
1877out:
1878	kfree(qp_init);
1879	return ret;
1880
1881err_destroy_cq:
1882	ch->qp = NULL;
1883	ib_cq_pool_put(ch->cq, ch->cq_size);
1884	goto out;
1885}
1886
1887static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1888{
1889	ib_destroy_qp(ch->qp);
1890	ib_cq_pool_put(ch->cq, ch->cq_size);
1891}
1892
1893/**
1894 * srpt_close_ch - close a RDMA channel
1895 * @ch: SRPT RDMA channel.
1896 *
1897 * Make sure all resources associated with the channel will be deallocated at
1898 * an appropriate time.
1899 *
1900 * Returns true if and only if the channel state has been modified into
1901 * CH_DRAINING.
1902 */
1903static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1904{
1905	int ret;
1906
1907	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1908		pr_debug("%s: already closed\n", ch->sess_name);
1909		return false;
1910	}
1911
1912	kref_get(&ch->kref);
1913
1914	ret = srpt_ch_qp_err(ch);
1915	if (ret < 0)
1916		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1917		       ch->sess_name, ch->qp->qp_num, ret);
1918
1919	ret = srpt_zerolength_write(ch);
1920	if (ret < 0) {
1921		pr_err("%s-%d: queuing zero-length write failed: %d\n",
1922		       ch->sess_name, ch->qp->qp_num, ret);
1923		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1924			schedule_work(&ch->release_work);
1925		else
1926			WARN_ON_ONCE(true);
1927	}
1928
1929	kref_put(&ch->kref, srpt_free_ch);
1930
1931	return true;
1932}
1933
1934/*
1935 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1936 * reached the connected state, close it. If a channel is in the connected
1937 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1938 * the responsibility of the caller to ensure that this function is not
1939 * invoked concurrently with the code that accepts a connection. This means
1940 * that this function must either be invoked from inside a CM callback
1941 * function or that it must be invoked with the srpt_port.mutex held.
1942 */
1943static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1944{
1945	int ret;
1946
1947	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1948		return -ENOTCONN;
1949
1950	if (ch->using_rdma_cm) {
1951		ret = rdma_disconnect(ch->rdma_cm.cm_id);
1952	} else {
1953		ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1954		if (ret < 0)
1955			ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1956	}
1957
1958	if (ret < 0 && srpt_close_ch(ch))
1959		ret = 0;
1960
1961	return ret;
1962}
1963
1964/* Send DREQ and wait for DREP. */
1965static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1966{
1967	DECLARE_COMPLETION_ONSTACK(closed);
1968	struct srpt_port *sport = ch->sport;
1969
1970	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1971		 ch->state);
1972
1973	ch->closed = &closed;
1974
1975	mutex_lock(&sport->mutex);
1976	srpt_disconnect_ch(ch);
1977	mutex_unlock(&sport->mutex);
1978
1979	while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1980		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1981			ch->sess_name, ch->qp->qp_num, ch->state);
1982
1983}
1984
1985static void __srpt_close_all_ch(struct srpt_port *sport)
1986{
1987	struct srpt_nexus *nexus;
1988	struct srpt_rdma_ch *ch;
1989
1990	lockdep_assert_held(&sport->mutex);
1991
1992	list_for_each_entry(nexus, &sport->nexus_list, entry) {
1993		list_for_each_entry(ch, &nexus->ch_list, list) {
1994			if (srpt_disconnect_ch(ch) >= 0)
1995				pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1996					ch->sess_name, ch->qp->qp_num,
1997					dev_name(&sport->sdev->device->dev),
1998					sport->port);
1999			srpt_close_ch(ch);
2000		}
2001	}
2002}
2003
2004/*
2005 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
2006 * it does not yet exist.
2007 */
2008static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2009					 const u8 i_port_id[16],
2010					 const u8 t_port_id[16])
2011{
2012	struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2013
2014	for (;;) {
2015		mutex_lock(&sport->mutex);
2016		list_for_each_entry(n, &sport->nexus_list, entry) {
2017			if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2018			    memcmp(n->t_port_id, t_port_id, 16) == 0) {
2019				nexus = n;
2020				break;
2021			}
2022		}
2023		if (!nexus && tmp_nexus) {
2024			list_add_tail_rcu(&tmp_nexus->entry,
2025					  &sport->nexus_list);
2026			swap(nexus, tmp_nexus);
2027		}
2028		mutex_unlock(&sport->mutex);
2029
2030		if (nexus)
2031			break;
2032		tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2033		if (!tmp_nexus) {
2034			nexus = ERR_PTR(-ENOMEM);
2035			break;
2036		}
2037		INIT_LIST_HEAD(&tmp_nexus->ch_list);
2038		memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2039		memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2040	}
2041
2042	kfree(tmp_nexus);
2043
2044	return nexus;
2045}
2046
2047static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2048	__must_hold(&sport->mutex)
2049{
2050	lockdep_assert_held(&sport->mutex);
2051
2052	if (sport->enabled == enabled)
2053		return;
2054	sport->enabled = enabled;
2055	if (!enabled)
2056		__srpt_close_all_ch(sport);
2057}
2058
2059static void srpt_drop_sport_ref(struct srpt_port *sport)
2060{
2061	if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2062		complete(sport->freed_channels);
2063}
2064
2065static void srpt_free_ch(struct kref *kref)
2066{
2067	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2068
2069	srpt_drop_sport_ref(ch->sport);
2070	kfree_rcu(ch, rcu);
2071}
2072
2073/*
2074 * Shut down the SCSI target session, tell the connection manager to
2075 * disconnect the associated RDMA channel, transition the QP to the error
2076 * state and remove the channel from the channel list. This function is
2077 * typically called from inside srpt_zerolength_write_done(). Concurrent
2078 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2079 * as long as the channel is on sport->nexus_list.
2080 */
2081static void srpt_release_channel_work(struct work_struct *w)
2082{
2083	struct srpt_rdma_ch *ch;
2084	struct srpt_device *sdev;
2085	struct srpt_port *sport;
2086	struct se_session *se_sess;
2087
2088	ch = container_of(w, struct srpt_rdma_ch, release_work);
2089	pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2090
2091	sdev = ch->sport->sdev;
2092	BUG_ON(!sdev);
2093
2094	se_sess = ch->sess;
2095	BUG_ON(!se_sess);
2096
2097	target_stop_session(se_sess);
2098	target_wait_for_sess_cmds(se_sess);
2099
2100	target_remove_session(se_sess);
2101	ch->sess = NULL;
2102
2103	if (ch->using_rdma_cm)
2104		rdma_destroy_id(ch->rdma_cm.cm_id);
2105	else
2106		ib_destroy_cm_id(ch->ib_cm.cm_id);
2107
2108	sport = ch->sport;
2109	mutex_lock(&sport->mutex);
2110	list_del_rcu(&ch->list);
2111	mutex_unlock(&sport->mutex);
2112
2113	if (ch->closed)
2114		complete(ch->closed);
2115
2116	srpt_destroy_ch_ib(ch);
2117
2118	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2119			     ch->sport->sdev, ch->rq_size,
2120			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2121
2122	kmem_cache_destroy(ch->rsp_buf_cache);
2123
2124	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2125			     sdev, ch->rq_size,
2126			     ch->req_buf_cache, DMA_FROM_DEVICE);
2127
2128	kmem_cache_destroy(ch->req_buf_cache);
2129
2130	kref_put(&ch->kref, srpt_free_ch);
2131}
2132
2133/**
2134 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2135 * @sdev: HCA through which the login request was received.
2136 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2137 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2138 * @port_num: Port through which the REQ message was received.
2139 * @pkey: P_Key of the incoming connection.
2140 * @req: SRP login request.
2141 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2142 * the login request.
2143 *
2144 * Ownership of the cm_id is transferred to the target session if this
2145 * function returns zero. Otherwise the caller remains the owner of cm_id.
2146 */
2147static int srpt_cm_req_recv(struct srpt_device *const sdev,
2148			    struct ib_cm_id *ib_cm_id,
2149			    struct rdma_cm_id *rdma_cm_id,
2150			    u8 port_num, __be16 pkey,
2151			    const struct srp_login_req *req,
2152			    const char *src_addr)
2153{
2154	struct srpt_port *sport = &sdev->port[port_num - 1];
2155	struct srpt_nexus *nexus;
2156	struct srp_login_rsp *rsp = NULL;
2157	struct srp_login_rej *rej = NULL;
2158	union {
2159		struct rdma_conn_param rdma_cm;
2160		struct ib_cm_rep_param ib_cm;
2161	} *rep_param = NULL;
2162	struct srpt_rdma_ch *ch = NULL;
2163	char i_port_id[36];
2164	u32 it_iu_len;
2165	int i, tag_num, tag_size, ret;
2166	struct srpt_tpg *stpg;
2167
2168	WARN_ON_ONCE(irqs_disabled());
2169
2170	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2171
2172	pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2173		req->initiator_port_id, req->target_port_id, it_iu_len,
2174		port_num, &sport->gid, be16_to_cpu(pkey));
2175
2176	nexus = srpt_get_nexus(sport, req->initiator_port_id,
2177			       req->target_port_id);
2178	if (IS_ERR(nexus)) {
2179		ret = PTR_ERR(nexus);
2180		goto out;
2181	}
2182
2183	ret = -ENOMEM;
2184	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2185	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2186	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2187	if (!rsp || !rej || !rep_param)
2188		goto out;
2189
2190	ret = -EINVAL;
2191	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2192		rej->reason = cpu_to_be32(
2193				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2194		pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2195		       it_iu_len, 64, srp_max_req_size);
2196		goto reject;
2197	}
2198
2199	if (!sport->enabled) {
2200		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2201		pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2202			dev_name(&sport->sdev->device->dev), port_num);
2203		goto reject;
2204	}
2205
2206	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2207	    || *(__be64 *)(req->target_port_id + 8) !=
2208	       cpu_to_be64(srpt_service_guid)) {
2209		rej->reason = cpu_to_be32(
2210				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2211		pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2212		goto reject;
2213	}
2214
2215	ret = -ENOMEM;
2216	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2217	if (!ch) {
2218		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2219		pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2220		goto reject;
2221	}
2222
2223	kref_init(&ch->kref);
2224	ch->pkey = be16_to_cpu(pkey);
2225	ch->nexus = nexus;
2226	ch->zw_cqe.done = srpt_zerolength_write_done;
2227	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2228	ch->sport = sport;
2229	if (rdma_cm_id) {
2230		ch->using_rdma_cm = true;
2231		ch->rdma_cm.cm_id = rdma_cm_id;
2232		rdma_cm_id->context = ch;
2233	} else {
2234		ch->ib_cm.cm_id = ib_cm_id;
2235		ib_cm_id->context = ch;
2236	}
2237	/*
2238	 * ch->rq_size should be at least as large as the initiator queue
2239	 * depth to avoid that the initiator driver has to report QUEUE_FULL
2240	 * to the SCSI mid-layer.
2241	 */
2242	ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2243	spin_lock_init(&ch->spinlock);
2244	ch->state = CH_CONNECTING;
2245	INIT_LIST_HEAD(&ch->cmd_wait_list);
2246	ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2247
2248	ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2249					      512, 0, NULL);
2250	if (!ch->rsp_buf_cache)
2251		goto free_ch;
2252
2253	ch->ioctx_ring = (struct srpt_send_ioctx **)
2254		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2255				      sizeof(*ch->ioctx_ring[0]),
2256				      ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2257	if (!ch->ioctx_ring) {
2258		pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2259		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2260		goto free_rsp_cache;
2261	}
2262
2263	for (i = 0; i < ch->rq_size; i++)
2264		ch->ioctx_ring[i]->ch = ch;
2265	if (!sdev->use_srq) {
2266		u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2267			be16_to_cpu(req->imm_data_offset) : 0;
2268		u16 alignment_offset;
2269		u32 req_sz;
2270
2271		if (req->req_flags & SRP_IMMED_REQUESTED)
2272			pr_debug("imm_data_offset = %d\n",
2273				 be16_to_cpu(req->imm_data_offset));
2274		if (imm_data_offset >= sizeof(struct srp_cmd)) {
2275			ch->imm_data_offset = imm_data_offset;
2276			rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2277		} else {
2278			ch->imm_data_offset = 0;
2279		}
2280		alignment_offset = round_up(imm_data_offset, 512) -
2281			imm_data_offset;
2282		req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2283		ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2284						      512, 0, NULL);
2285		if (!ch->req_buf_cache)
2286			goto free_rsp_ring;
2287
2288		ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2289			srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2290					      sizeof(*ch->ioctx_recv_ring[0]),
2291					      ch->req_buf_cache,
2292					      alignment_offset,
2293					      DMA_FROM_DEVICE);
2294		if (!ch->ioctx_recv_ring) {
2295			pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2296			rej->reason =
2297			    cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2298			goto free_recv_cache;
2299		}
2300		for (i = 0; i < ch->rq_size; i++)
2301			INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2302	}
2303
2304	ret = srpt_create_ch_ib(ch);
2305	if (ret) {
2306		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2307		pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2308		goto free_recv_ring;
2309	}
2310
2311	strscpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2312	snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2313			be64_to_cpu(*(__be64 *)nexus->i_port_id),
2314			be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2315
2316	pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2317		 i_port_id);
2318
2319	tag_num = ch->rq_size;
2320	tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2321
2322	if (sport->guid_id) {
2323		mutex_lock(&sport->guid_id->mutex);
2324		list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2325			if (!IS_ERR_OR_NULL(ch->sess))
2326				break;
2327			ch->sess = target_setup_session(&stpg->tpg, tag_num,
2328						tag_size, TARGET_PROT_NORMAL,
2329						ch->sess_name, ch, NULL);
2330		}
2331		mutex_unlock(&sport->guid_id->mutex);
2332	}
2333
2334	if (sport->gid_id) {
2335		mutex_lock(&sport->gid_id->mutex);
2336		list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2337			if (!IS_ERR_OR_NULL(ch->sess))
2338				break;
2339			ch->sess = target_setup_session(&stpg->tpg, tag_num,
2340					tag_size, TARGET_PROT_NORMAL, i_port_id,
2341					ch, NULL);
2342			if (!IS_ERR_OR_NULL(ch->sess))
2343				break;
2344			/* Retry without leading "0x" */
2345			ch->sess = target_setup_session(&stpg->tpg, tag_num,
2346						tag_size, TARGET_PROT_NORMAL,
2347						i_port_id + 2, ch, NULL);
2348		}
2349		mutex_unlock(&sport->gid_id->mutex);
2350	}
2351
2352	if (IS_ERR_OR_NULL(ch->sess)) {
2353		WARN_ON_ONCE(ch->sess == NULL);
2354		ret = PTR_ERR(ch->sess);
2355		ch->sess = NULL;
2356		pr_info("Rejected login for initiator %s: ret = %d.\n",
2357			ch->sess_name, ret);
2358		rej->reason = cpu_to_be32(ret == -ENOMEM ?
2359				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2360				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2361		goto destroy_ib;
2362	}
2363
2364	/*
2365	 * Once a session has been created destruction of srpt_rdma_ch objects
2366	 * will decrement sport->refcount. Hence increment sport->refcount now.
2367	 */
2368	atomic_inc(&sport->refcount);
2369
2370	mutex_lock(&sport->mutex);
2371
2372	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2373		struct srpt_rdma_ch *ch2;
2374
2375		list_for_each_entry(ch2, &nexus->ch_list, list) {
2376			if (srpt_disconnect_ch(ch2) < 0)
2377				continue;
2378			pr_info("Relogin - closed existing channel %s\n",
2379				ch2->sess_name);
2380			rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2381		}
2382	} else {
2383		rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2384	}
2385
2386	list_add_tail_rcu(&ch->list, &nexus->ch_list);
2387
2388	if (!sport->enabled) {
2389		rej->reason = cpu_to_be32(
2390				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2391		pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2392			dev_name(&sdev->device->dev), port_num);
2393		mutex_unlock(&sport->mutex);
2394		ret = -EINVAL;
2395		goto reject;
2396	}
2397
2398	mutex_unlock(&sport->mutex);
2399
2400	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2401	if (ret) {
2402		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2403		pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2404		       ret);
2405		goto reject;
2406	}
2407
2408	pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2409		 ch->sess_name, ch);
2410
2411	/* create srp_login_response */
2412	rsp->opcode = SRP_LOGIN_RSP;
2413	rsp->tag = req->tag;
2414	rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2415	rsp->max_ti_iu_len = req->req_it_iu_len;
2416	ch->max_ti_iu_len = it_iu_len;
2417	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2418				   SRP_BUF_FORMAT_INDIRECT);
2419	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2420	atomic_set(&ch->req_lim, ch->rq_size);
2421	atomic_set(&ch->req_lim_delta, 0);
2422
2423	/* create cm reply */
2424	if (ch->using_rdma_cm) {
2425		rep_param->rdma_cm.private_data = (void *)rsp;
2426		rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2427		rep_param->rdma_cm.rnr_retry_count = 7;
2428		rep_param->rdma_cm.flow_control = 1;
2429		rep_param->rdma_cm.responder_resources = 4;
2430		rep_param->rdma_cm.initiator_depth = 4;
2431	} else {
2432		rep_param->ib_cm.qp_num = ch->qp->qp_num;
2433		rep_param->ib_cm.private_data = (void *)rsp;
2434		rep_param->ib_cm.private_data_len = sizeof(*rsp);
2435		rep_param->ib_cm.rnr_retry_count = 7;
2436		rep_param->ib_cm.flow_control = 1;
2437		rep_param->ib_cm.failover_accepted = 0;
2438		rep_param->ib_cm.srq = 1;
2439		rep_param->ib_cm.responder_resources = 4;
2440		rep_param->ib_cm.initiator_depth = 4;
2441	}
2442
2443	/*
2444	 * Hold the sport mutex while accepting a connection to avoid that
2445	 * srpt_disconnect_ch() is invoked concurrently with this code.
2446	 */
2447	mutex_lock(&sport->mutex);
2448	if (sport->enabled && ch->state == CH_CONNECTING) {
2449		if (ch->using_rdma_cm)
2450			ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2451		else
2452			ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2453	} else {
2454		ret = -EINVAL;
2455	}
2456	mutex_unlock(&sport->mutex);
2457
2458	switch (ret) {
2459	case 0:
2460		break;
2461	case -EINVAL:
2462		goto reject;
2463	default:
2464		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2465		pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2466		       ret);
2467		goto reject;
2468	}
2469
2470	goto out;
2471
2472destroy_ib:
2473	srpt_destroy_ch_ib(ch);
2474
2475free_recv_ring:
2476	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2477			     ch->sport->sdev, ch->rq_size,
2478			     ch->req_buf_cache, DMA_FROM_DEVICE);
2479
2480free_recv_cache:
2481	kmem_cache_destroy(ch->req_buf_cache);
2482
2483free_rsp_ring:
2484	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2485			     ch->sport->sdev, ch->rq_size,
2486			     ch->rsp_buf_cache, DMA_TO_DEVICE);
2487
2488free_rsp_cache:
2489	kmem_cache_destroy(ch->rsp_buf_cache);
2490
2491free_ch:
2492	if (rdma_cm_id)
2493		rdma_cm_id->context = NULL;
2494	else
2495		ib_cm_id->context = NULL;
2496	kfree(ch);
2497	ch = NULL;
2498
2499	WARN_ON_ONCE(ret == 0);
2500
2501reject:
2502	pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2503	rej->opcode = SRP_LOGIN_REJ;
2504	rej->tag = req->tag;
2505	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2506				   SRP_BUF_FORMAT_INDIRECT);
2507
2508	if (rdma_cm_id)
2509		rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2510			    IB_CM_REJ_CONSUMER_DEFINED);
2511	else
2512		ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2513			       rej, sizeof(*rej));
2514
2515	if (ch && ch->sess) {
2516		srpt_close_ch(ch);
2517		/*
2518		 * Tell the caller not to free cm_id since
2519		 * srpt_release_channel_work() will do that.
2520		 */
2521		ret = 0;
2522	}
2523
2524out:
2525	kfree(rep_param);
2526	kfree(rsp);
2527	kfree(rej);
2528
2529	return ret;
2530}
2531
2532static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2533			       const struct ib_cm_req_event_param *param,
2534			       void *private_data)
2535{
2536	char sguid[40];
2537
2538	srpt_format_guid(sguid, sizeof(sguid),
2539			 &param->primary_path->dgid.global.interface_id);
2540
2541	return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2542				param->primary_path->pkey,
2543				private_data, sguid);
2544}
2545
2546static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2547				 struct rdma_cm_event *event)
2548{
2549	struct srpt_device *sdev;
2550	struct srp_login_req req;
2551	const struct srp_login_req_rdma *req_rdma;
2552	struct sa_path_rec *path_rec = cm_id->route.path_rec;
2553	char src_addr[40];
2554
2555	sdev = ib_get_client_data(cm_id->device, &srpt_client);
2556	if (!sdev)
2557		return -ECONNREFUSED;
2558
2559	if (event->param.conn.private_data_len < sizeof(*req_rdma))
2560		return -EINVAL;
2561
2562	/* Transform srp_login_req_rdma into srp_login_req. */
2563	req_rdma = event->param.conn.private_data;
2564	memset(&req, 0, sizeof(req));
2565	req.opcode		= req_rdma->opcode;
2566	req.tag			= req_rdma->tag;
2567	req.req_it_iu_len	= req_rdma->req_it_iu_len;
2568	req.req_buf_fmt		= req_rdma->req_buf_fmt;
2569	req.req_flags		= req_rdma->req_flags;
2570	memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2571	memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2572	req.imm_data_offset	= req_rdma->imm_data_offset;
2573
2574	snprintf(src_addr, sizeof(src_addr), "%pIS",
2575		 &cm_id->route.addr.src_addr);
2576
2577	return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2578				path_rec ? path_rec->pkey : 0, &req, src_addr);
2579}
2580
2581static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2582			     enum ib_cm_rej_reason reason,
2583			     const u8 *private_data,
2584			     u8 private_data_len)
2585{
2586	char *priv = NULL;
2587	int i;
2588
2589	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2590						GFP_KERNEL))) {
2591		for (i = 0; i < private_data_len; i++)
2592			sprintf(priv + 3 * i, " %02x", private_data[i]);
2593	}
2594	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2595		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2596		"; private data" : "", priv ? priv : " (?)");
2597	kfree(priv);
2598}
2599
2600/**
2601 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2602 * @ch: SRPT RDMA channel.
2603 *
2604 * An RTU (ready to use) message indicates that the connection has been
2605 * established and that the recipient may begin transmitting.
2606 */
2607static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2608{
2609	int ret;
2610
2611	ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2612	if (ret < 0) {
2613		pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2614		       ch->qp->qp_num);
2615		srpt_close_ch(ch);
2616		return;
2617	}
2618
2619	/*
2620	 * Note: calling srpt_close_ch() if the transition to the LIVE state
2621	 * fails is not necessary since that means that that function has
2622	 * already been invoked from another thread.
2623	 */
2624	if (!srpt_set_ch_state(ch, CH_LIVE)) {
2625		pr_err("%s-%d: channel transition to LIVE state failed\n",
2626		       ch->sess_name, ch->qp->qp_num);
2627		return;
2628	}
2629
2630	/* Trigger wait list processing. */
2631	ret = srpt_zerolength_write(ch);
2632	WARN_ONCE(ret < 0, "%d\n", ret);
2633}
2634
2635/**
2636 * srpt_cm_handler - IB connection manager callback function
2637 * @cm_id: IB/CM connection identifier.
2638 * @event: IB/CM event.
2639 *
2640 * A non-zero return value will cause the caller destroy the CM ID.
2641 *
2642 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2643 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2644 * a non-zero value in any other case will trigger a race with the
2645 * ib_destroy_cm_id() call in srpt_release_channel().
2646 */
2647static int srpt_cm_handler(struct ib_cm_id *cm_id,
2648			   const struct ib_cm_event *event)
2649{
2650	struct srpt_rdma_ch *ch = cm_id->context;
2651	int ret;
2652
2653	ret = 0;
2654	switch (event->event) {
2655	case IB_CM_REQ_RECEIVED:
2656		ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2657					  event->private_data);
2658		break;
2659	case IB_CM_REJ_RECEIVED:
2660		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2661				 event->private_data,
2662				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2663		break;
2664	case IB_CM_RTU_RECEIVED:
2665	case IB_CM_USER_ESTABLISHED:
2666		srpt_cm_rtu_recv(ch);
2667		break;
2668	case IB_CM_DREQ_RECEIVED:
2669		srpt_disconnect_ch(ch);
2670		break;
2671	case IB_CM_DREP_RECEIVED:
2672		pr_info("Received CM DREP message for ch %s-%d.\n",
2673			ch->sess_name, ch->qp->qp_num);
2674		srpt_close_ch(ch);
2675		break;
2676	case IB_CM_TIMEWAIT_EXIT:
2677		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2678			ch->sess_name, ch->qp->qp_num);
2679		srpt_close_ch(ch);
2680		break;
2681	case IB_CM_REP_ERROR:
2682		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2683			ch->qp->qp_num);
2684		break;
2685	case IB_CM_DREQ_ERROR:
2686		pr_info("Received CM DREQ ERROR event.\n");
2687		break;
2688	case IB_CM_MRA_RECEIVED:
2689		pr_info("Received CM MRA event\n");
2690		break;
2691	default:
2692		pr_err("received unrecognized CM event %d\n", event->event);
2693		break;
2694	}
2695
2696	return ret;
2697}
2698
2699static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2700				struct rdma_cm_event *event)
2701{
2702	struct srpt_rdma_ch *ch = cm_id->context;
2703	int ret = 0;
2704
2705	switch (event->event) {
2706	case RDMA_CM_EVENT_CONNECT_REQUEST:
2707		ret = srpt_rdma_cm_req_recv(cm_id, event);
2708		break;
2709	case RDMA_CM_EVENT_REJECTED:
2710		srpt_cm_rej_recv(ch, event->status,
2711				 event->param.conn.private_data,
2712				 event->param.conn.private_data_len);
2713		break;
2714	case RDMA_CM_EVENT_ESTABLISHED:
2715		srpt_cm_rtu_recv(ch);
2716		break;
2717	case RDMA_CM_EVENT_DISCONNECTED:
2718		if (ch->state < CH_DISCONNECTING)
2719			srpt_disconnect_ch(ch);
2720		else
2721			srpt_close_ch(ch);
2722		break;
2723	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2724		srpt_close_ch(ch);
2725		break;
2726	case RDMA_CM_EVENT_UNREACHABLE:
2727		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2728			ch->qp->qp_num);
2729		break;
2730	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2731	case RDMA_CM_EVENT_ADDR_CHANGE:
2732		break;
2733	default:
2734		pr_err("received unrecognized RDMA CM event %d\n",
2735		       event->event);
2736		break;
2737	}
2738
2739	return ret;
2740}
2741
2742/*
2743 * srpt_write_pending - Start data transfer from initiator to target (write).
2744 */
2745static int srpt_write_pending(struct se_cmd *se_cmd)
2746{
2747	struct srpt_send_ioctx *ioctx =
2748		container_of(se_cmd, struct srpt_send_ioctx, cmd);
2749	struct srpt_rdma_ch *ch = ioctx->ch;
2750	struct ib_send_wr *first_wr = NULL;
2751	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2752	enum srpt_command_state new_state;
2753	int ret, i;
2754
2755	if (ioctx->recv_ioctx) {
2756		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2757		target_execute_cmd(&ioctx->cmd);
2758		return 0;
2759	}
2760
2761	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2762	WARN_ON(new_state == SRPT_STATE_DONE);
2763
2764	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2765		pr_warn("%s: IB send queue full (needed %d)\n",
2766				__func__, ioctx->n_rdma);
2767		ret = -ENOMEM;
2768		goto out_undo;
2769	}
2770
2771	cqe->done = srpt_rdma_read_done;
2772	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2773		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2774
2775		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2776				cqe, first_wr);
2777		cqe = NULL;
2778	}
2779
2780	ret = ib_post_send(ch->qp, first_wr, NULL);
2781	if (ret) {
2782		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2783			 __func__, ret, ioctx->n_rdma,
2784			 atomic_read(&ch->sq_wr_avail));
2785		goto out_undo;
2786	}
2787
2788	return 0;
2789out_undo:
2790	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2791	return ret;
2792}
2793
2794static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2795{
2796	switch (tcm_mgmt_status) {
2797	case TMR_FUNCTION_COMPLETE:
2798		return SRP_TSK_MGMT_SUCCESS;
2799	case TMR_FUNCTION_REJECTED:
2800		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2801	}
2802	return SRP_TSK_MGMT_FAILED;
2803}
2804
2805/**
2806 * srpt_queue_response - transmit the response to a SCSI command
2807 * @cmd: SCSI target command.
2808 *
2809 * Callback function called by the TCM core. Must not block since it can be
2810 * invoked on the context of the IB completion handler.
2811 */
2812static void srpt_queue_response(struct se_cmd *cmd)
2813{
2814	struct srpt_send_ioctx *ioctx =
2815		container_of(cmd, struct srpt_send_ioctx, cmd);
2816	struct srpt_rdma_ch *ch = ioctx->ch;
2817	struct srpt_device *sdev = ch->sport->sdev;
2818	struct ib_send_wr send_wr, *first_wr = &send_wr;
2819	struct ib_sge sge;
2820	enum srpt_command_state state;
2821	int resp_len, ret, i;
2822	u8 srp_tm_status;
2823
2824	state = ioctx->state;
2825	switch (state) {
2826	case SRPT_STATE_NEW:
2827	case SRPT_STATE_DATA_IN:
2828		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2829		break;
2830	case SRPT_STATE_MGMT:
2831		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2832		break;
2833	default:
2834		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2835			ch, ioctx->ioctx.index, ioctx->state);
2836		break;
2837	}
2838
2839	if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2840		return;
2841
2842	/* For read commands, transfer the data to the initiator. */
2843	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2844	    ioctx->cmd.data_length &&
2845	    !ioctx->queue_status_only) {
2846		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2847			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2848
2849			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2850					ch->sport->port, NULL, first_wr);
2851		}
2852	}
2853
2854	if (state != SRPT_STATE_MGMT)
2855		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2856					      cmd->scsi_status);
2857	else {
2858		srp_tm_status
2859			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2860		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2861						 ioctx->cmd.tag);
2862	}
2863
2864	atomic_inc(&ch->req_lim);
2865
2866	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2867			&ch->sq_wr_avail) < 0)) {
2868		pr_warn("%s: IB send queue full (needed %d)\n",
2869				__func__, ioctx->n_rdma);
2870		goto out;
2871	}
2872
2873	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2874				      DMA_TO_DEVICE);
2875
2876	sge.addr = ioctx->ioctx.dma;
2877	sge.length = resp_len;
2878	sge.lkey = sdev->lkey;
2879
2880	ioctx->ioctx.cqe.done = srpt_send_done;
2881	send_wr.next = NULL;
2882	send_wr.wr_cqe = &ioctx->ioctx.cqe;
2883	send_wr.sg_list = &sge;
2884	send_wr.num_sge = 1;
2885	send_wr.opcode = IB_WR_SEND;
2886	send_wr.send_flags = IB_SEND_SIGNALED;
2887
2888	ret = ib_post_send(ch->qp, first_wr, NULL);
2889	if (ret < 0) {
2890		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2891			__func__, ioctx->cmd.tag, ret);
2892		goto out;
2893	}
2894
2895	return;
2896
2897out:
2898	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2899	atomic_dec(&ch->req_lim);
2900	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2901	target_put_sess_cmd(&ioctx->cmd);
2902}
2903
2904static int srpt_queue_data_in(struct se_cmd *cmd)
2905{
2906	srpt_queue_response(cmd);
2907	return 0;
2908}
2909
2910static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2911{
2912	srpt_queue_response(cmd);
2913}
2914
2915/*
2916 * This function is called for aborted commands if no response is sent to the
2917 * initiator. Make sure that the credits freed by aborting a command are
2918 * returned to the initiator the next time a response is sent by incrementing
2919 * ch->req_lim_delta.
2920 */
2921static void srpt_aborted_task(struct se_cmd *cmd)
2922{
2923	struct srpt_send_ioctx *ioctx = container_of(cmd,
2924				struct srpt_send_ioctx, cmd);
2925	struct srpt_rdma_ch *ch = ioctx->ch;
2926
2927	atomic_inc(&ch->req_lim_delta);
2928}
2929
2930static int srpt_queue_status(struct se_cmd *cmd)
2931{
2932	struct srpt_send_ioctx *ioctx;
2933
2934	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2935	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2936	if (cmd->se_cmd_flags &
2937	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2938		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2939	ioctx->queue_status_only = true;
2940	srpt_queue_response(cmd);
2941	return 0;
2942}
2943
2944static void srpt_refresh_port_work(struct work_struct *work)
2945{
2946	struct srpt_port *sport = container_of(work, struct srpt_port, work);
2947
2948	srpt_refresh_port(sport);
2949}
2950
2951/**
2952 * srpt_release_sport - disable login and wait for associated channels
2953 * @sport: SRPT HCA port.
2954 */
2955static int srpt_release_sport(struct srpt_port *sport)
2956{
2957	DECLARE_COMPLETION_ONSTACK(c);
2958	struct srpt_nexus *nexus, *next_n;
2959	struct srpt_rdma_ch *ch;
2960
2961	WARN_ON_ONCE(irqs_disabled());
2962
2963	sport->freed_channels = &c;
2964
2965	mutex_lock(&sport->mutex);
2966	srpt_set_enabled(sport, false);
2967	mutex_unlock(&sport->mutex);
2968
2969	while (atomic_read(&sport->refcount) > 0 &&
2970	       wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2971		pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2972			dev_name(&sport->sdev->device->dev), sport->port,
2973			atomic_read(&sport->refcount));
2974		rcu_read_lock();
2975		list_for_each_entry(nexus, &sport->nexus_list, entry) {
2976			list_for_each_entry(ch, &nexus->ch_list, list) {
2977				pr_info("%s-%d: state %s\n",
2978					ch->sess_name, ch->qp->qp_num,
2979					get_ch_state_name(ch->state));
2980			}
2981		}
2982		rcu_read_unlock();
2983	}
2984
2985	mutex_lock(&sport->mutex);
2986	list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2987		list_del(&nexus->entry);
2988		kfree_rcu(nexus, rcu);
2989	}
2990	mutex_unlock(&sport->mutex);
2991
2992	return 0;
2993}
2994
2995struct port_and_port_id {
2996	struct srpt_port *sport;
2997	struct srpt_port_id **port_id;
2998};
2999
3000static struct port_and_port_id __srpt_lookup_port(const char *name)
3001{
3002	struct ib_device *dev;
3003	struct srpt_device *sdev;
3004	struct srpt_port *sport;
3005	int i;
3006
3007	list_for_each_entry(sdev, &srpt_dev_list, list) {
3008		dev = sdev->device;
3009		if (!dev)
3010			continue;
3011
3012		for (i = 0; i < dev->phys_port_cnt; i++) {
3013			sport = &sdev->port[i];
3014
3015			if (strcmp(sport->guid_name, name) == 0) {
3016				kref_get(&sdev->refcnt);
3017				return (struct port_and_port_id){
3018					sport, &sport->guid_id};
3019			}
3020			if (strcmp(sport->gid_name, name) == 0) {
3021				kref_get(&sdev->refcnt);
3022				return (struct port_and_port_id){
3023					sport, &sport->gid_id};
3024			}
3025		}
3026	}
3027
3028	return (struct port_and_port_id){};
3029}
3030
3031/**
3032 * srpt_lookup_port() - Look up an RDMA port by name
3033 * @name: ASCII port name
3034 *
3035 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3036 * The caller must drop that reference count by calling srpt_port_put_ref().
3037 */
3038static struct port_and_port_id srpt_lookup_port(const char *name)
3039{
3040	struct port_and_port_id papi;
3041
3042	spin_lock(&srpt_dev_lock);
3043	papi = __srpt_lookup_port(name);
3044	spin_unlock(&srpt_dev_lock);
3045
3046	return papi;
3047}
3048
3049static void srpt_free_srq(struct srpt_device *sdev)
3050{
3051	if (!sdev->srq)
3052		return;
3053
3054	ib_destroy_srq(sdev->srq);
3055	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3056			     sdev->srq_size, sdev->req_buf_cache,
3057			     DMA_FROM_DEVICE);
3058	kmem_cache_destroy(sdev->req_buf_cache);
3059	sdev->srq = NULL;
3060}
3061
3062static int srpt_alloc_srq(struct srpt_device *sdev)
3063{
3064	struct ib_srq_init_attr srq_attr = {
3065		.event_handler = srpt_srq_event,
3066		.srq_context = (void *)sdev,
3067		.attr.max_wr = sdev->srq_size,
3068		.attr.max_sge = 1,
3069		.srq_type = IB_SRQT_BASIC,
3070	};
3071	struct ib_device *device = sdev->device;
3072	struct ib_srq *srq;
3073	int i;
3074
3075	WARN_ON_ONCE(sdev->srq);
3076	srq = ib_create_srq(sdev->pd, &srq_attr);
3077	if (IS_ERR(srq)) {
3078		pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3079		return PTR_ERR(srq);
3080	}
3081
3082	pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3083		 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3084
3085	sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3086						srp_max_req_size, 0, 0, NULL);
3087	if (!sdev->req_buf_cache)
3088		goto free_srq;
3089
3090	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3091		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3092				      sizeof(*sdev->ioctx_ring[0]),
3093				      sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3094	if (!sdev->ioctx_ring)
3095		goto free_cache;
3096
3097	sdev->use_srq = true;
3098	sdev->srq = srq;
3099
3100	for (i = 0; i < sdev->srq_size; ++i) {
3101		INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3102		srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3103	}
3104
3105	return 0;
3106
3107free_cache:
3108	kmem_cache_destroy(sdev->req_buf_cache);
3109
3110free_srq:
3111	ib_destroy_srq(srq);
3112	return -ENOMEM;
3113}
3114
3115static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3116{
3117	struct ib_device *device = sdev->device;
3118	int ret = 0;
3119
3120	if (!use_srq) {
3121		srpt_free_srq(sdev);
3122		sdev->use_srq = false;
3123	} else if (use_srq && !sdev->srq) {
3124		ret = srpt_alloc_srq(sdev);
3125	}
3126	pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3127		 dev_name(&device->dev), sdev->use_srq, ret);
3128	return ret;
3129}
3130
3131static void srpt_free_sdev(struct kref *refcnt)
3132{
3133	struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3134
3135	kfree(sdev);
3136}
3137
3138static void srpt_sdev_put(struct srpt_device *sdev)
3139{
3140	kref_put(&sdev->refcnt, srpt_free_sdev);
3141}
3142
3143/**
3144 * srpt_add_one - InfiniBand device addition callback function
3145 * @device: Describes a HCA.
3146 */
3147static int srpt_add_one(struct ib_device *device)
3148{
3149	struct srpt_device *sdev;
3150	struct srpt_port *sport;
3151	int ret;
3152	u32 i;
3153
3154	pr_debug("device = %p\n", device);
3155
3156	sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3157		       GFP_KERNEL);
3158	if (!sdev)
3159		return -ENOMEM;
3160
3161	kref_init(&sdev->refcnt);
3162	sdev->device = device;
3163	mutex_init(&sdev->sdev_mutex);
3164
3165	sdev->pd = ib_alloc_pd(device, 0);
3166	if (IS_ERR(sdev->pd)) {
3167		ret = PTR_ERR(sdev->pd);
3168		goto free_dev;
3169	}
3170
3171	sdev->lkey = sdev->pd->local_dma_lkey;
3172
3173	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3174
3175	srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3176
3177	if (!srpt_service_guid)
3178		srpt_service_guid = be64_to_cpu(device->node_guid);
3179
3180	if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3181		sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3182	if (IS_ERR(sdev->cm_id)) {
3183		pr_info("ib_create_cm_id() failed: %ld\n",
3184			PTR_ERR(sdev->cm_id));
3185		ret = PTR_ERR(sdev->cm_id);
3186		sdev->cm_id = NULL;
3187		if (!rdma_cm_id)
3188			goto err_ring;
3189	}
3190
3191	/* print out target login information */
3192	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3193		 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3194
3195	/*
3196	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3197	 * to identify this target. We currently use the guid of the first HCA
3198	 * in the system as service_id; therefore, the target_id will change
3199	 * if this HCA is gone bad and replaced by different HCA
3200	 */
3201	ret = sdev->cm_id ?
3202		ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid)) :
3203		0;
3204	if (ret < 0) {
3205		pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3206		       sdev->cm_id->state);
3207		goto err_cm;
3208	}
3209
3210	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3211			      srpt_event_handler);
3212
3213	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3214		sport = &sdev->port[i - 1];
3215		INIT_LIST_HEAD(&sport->nexus_list);
3216		mutex_init(&sport->mutex);
3217		sport->sdev = sdev;
3218		sport->port = i;
3219		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3220		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3221		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3222		sport->port_attrib.use_srq = false;
3223		INIT_WORK(&sport->work, srpt_refresh_port_work);
3224
3225		ret = srpt_refresh_port(sport);
3226		if (ret) {
3227			pr_err("MAD registration failed for %s-%d.\n",
3228			       dev_name(&sdev->device->dev), i);
3229			i--;
3230			goto err_port;
3231		}
3232	}
3233
3234	ib_register_event_handler(&sdev->event_handler);
3235	spin_lock(&srpt_dev_lock);
3236	list_add_tail(&sdev->list, &srpt_dev_list);
3237	spin_unlock(&srpt_dev_lock);
3238
3239	ib_set_client_data(device, &srpt_client, sdev);
3240	pr_debug("added %s.\n", dev_name(&device->dev));
3241	return 0;
3242
3243err_port:
3244	srpt_unregister_mad_agent(sdev, i);
3245err_cm:
3246	if (sdev->cm_id)
3247		ib_destroy_cm_id(sdev->cm_id);
3248err_ring:
3249	srpt_free_srq(sdev);
3250	ib_dealloc_pd(sdev->pd);
3251free_dev:
3252	srpt_sdev_put(sdev);
3253	pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3254	return ret;
3255}
3256
3257/**
3258 * srpt_remove_one - InfiniBand device removal callback function
3259 * @device: Describes a HCA.
3260 * @client_data: The value passed as the third argument to ib_set_client_data().
3261 */
3262static void srpt_remove_one(struct ib_device *device, void *client_data)
3263{
3264	struct srpt_device *sdev = client_data;
3265	int i;
3266
3267	srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3268
3269	ib_unregister_event_handler(&sdev->event_handler);
3270
3271	/* Cancel any work queued by the just unregistered IB event handler. */
3272	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3273		cancel_work_sync(&sdev->port[i].work);
3274
3275	if (sdev->cm_id)
3276		ib_destroy_cm_id(sdev->cm_id);
3277
3278	ib_set_client_data(device, &srpt_client, NULL);
3279
3280	/*
3281	 * Unregistering a target must happen after destroying sdev->cm_id
3282	 * such that no new SRP_LOGIN_REQ information units can arrive while
3283	 * destroying the target.
3284	 */
3285	spin_lock(&srpt_dev_lock);
3286	list_del(&sdev->list);
3287	spin_unlock(&srpt_dev_lock);
3288
3289	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3290		srpt_release_sport(&sdev->port[i]);
3291
3292	srpt_free_srq(sdev);
3293
3294	ib_dealloc_pd(sdev->pd);
3295
3296	srpt_sdev_put(sdev);
3297}
3298
3299static struct ib_client srpt_client = {
3300	.name = DRV_NAME,
3301	.add = srpt_add_one,
3302	.remove = srpt_remove_one
3303};
3304
3305static int srpt_check_true(struct se_portal_group *se_tpg)
3306{
3307	return 1;
3308}
3309
3310static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3311{
3312	return tpg->se_tpg_wwn->priv;
3313}
3314
3315static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3316{
3317	struct srpt_port *sport = wwn->priv;
3318
3319	if (sport->guid_id && &sport->guid_id->wwn == wwn)
3320		return sport->guid_id;
3321	if (sport->gid_id && &sport->gid_id->wwn == wwn)
3322		return sport->gid_id;
3323	WARN_ON_ONCE(true);
3324	return NULL;
3325}
3326
3327static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3328{
3329	struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3330
3331	return stpg->sport_id->name;
3332}
3333
3334static u16 srpt_get_tag(struct se_portal_group *tpg)
3335{
3336	return 1;
3337}
3338
3339static void srpt_release_cmd(struct se_cmd *se_cmd)
3340{
3341	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3342				struct srpt_send_ioctx, cmd);
3343	struct srpt_rdma_ch *ch = ioctx->ch;
3344	struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3345
3346	WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3347		     !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3348
3349	if (recv_ioctx) {
3350		WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3351		ioctx->recv_ioctx = NULL;
3352		srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3353	}
3354
3355	if (ioctx->n_rw_ctx) {
3356		srpt_free_rw_ctxs(ch, ioctx);
3357		ioctx->n_rw_ctx = 0;
3358	}
3359
3360	target_free_tag(se_cmd->se_sess, se_cmd);
3361}
3362
3363/**
3364 * srpt_close_session - forcibly close a session
3365 * @se_sess: SCSI target session.
3366 *
3367 * Callback function invoked by the TCM core to clean up sessions associated
3368 * with a node ACL when the user invokes
3369 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3370 */
3371static void srpt_close_session(struct se_session *se_sess)
3372{
3373	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3374
3375	srpt_disconnect_ch_sync(ch);
3376}
3377
3378/* Note: only used from inside debug printk's by the TCM core. */
3379static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3380{
3381	struct srpt_send_ioctx *ioctx;
3382
3383	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3384	return ioctx->state;
3385}
3386
3387static int srpt_parse_guid(u64 *guid, const char *name)
3388{
3389	u16 w[4];
3390	int ret = -EINVAL;
3391
3392	if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3393		goto out;
3394	*guid = get_unaligned_be64(w);
3395	ret = 0;
3396out:
3397	return ret;
3398}
3399
3400/**
3401 * srpt_parse_i_port_id - parse an initiator port ID
3402 * @name: ASCII representation of a 128-bit initiator port ID.
3403 * @i_port_id: Binary 128-bit port ID.
3404 */
3405static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3406{
3407	const char *p;
3408	unsigned len, count, leading_zero_bytes;
3409	int ret;
3410
3411	p = name;
3412	if (strncasecmp(p, "0x", 2) == 0)
3413		p += 2;
3414	ret = -EINVAL;
3415	len = strlen(p);
3416	if (len % 2)
3417		goto out;
3418	count = min(len / 2, 16U);
3419	leading_zero_bytes = 16 - count;
3420	memset(i_port_id, 0, leading_zero_bytes);
3421	ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3422
3423out:
3424	return ret;
3425}
3426
3427/*
3428 * configfs callback function invoked for mkdir
3429 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3430 *
3431 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3432 * target_alloc_session() calls in this driver. Examples of valid initiator
3433 * port IDs:
3434 * 0x0000000000000000505400fffe4a0b7b
3435 * 0000000000000000505400fffe4a0b7b
3436 * 5054:00ff:fe4a:0b7b
3437 * 192.168.122.76
3438 */
3439static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3440{
3441	struct sockaddr_storage sa;
3442	u64 guid;
3443	u8 i_port_id[16];
3444	int ret;
3445
3446	ret = srpt_parse_guid(&guid, name);
3447	if (ret < 0)
3448		ret = srpt_parse_i_port_id(i_port_id, name);
3449	if (ret < 0)
3450		ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3451					   &sa);
3452	if (ret < 0)
3453		pr_err("invalid initiator port ID %s\n", name);
3454	return ret;
3455}
3456
3457static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3458		char *page)
3459{
3460	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3461	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3462
3463	return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3464}
3465
3466static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3467		const char *page, size_t count)
3468{
3469	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3470	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3471	unsigned long val;
3472	int ret;
3473
3474	ret = kstrtoul(page, 0, &val);
3475	if (ret < 0) {
3476		pr_err("kstrtoul() failed with ret: %d\n", ret);
3477		return -EINVAL;
3478	}
3479	if (val > MAX_SRPT_RDMA_SIZE) {
3480		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3481			MAX_SRPT_RDMA_SIZE);
3482		return -EINVAL;
3483	}
3484	if (val < DEFAULT_MAX_RDMA_SIZE) {
3485		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3486			val, DEFAULT_MAX_RDMA_SIZE);
3487		return -EINVAL;
3488	}
3489	sport->port_attrib.srp_max_rdma_size = val;
3490
3491	return count;
3492}
3493
3494static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3495		char *page)
3496{
3497	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3498	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3499
3500	return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3501}
3502
3503static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3504		const char *page, size_t count)
3505{
3506	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3507	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3508	unsigned long val;
3509	int ret;
3510
3511	ret = kstrtoul(page, 0, &val);
3512	if (ret < 0) {
3513		pr_err("kstrtoul() failed with ret: %d\n", ret);
3514		return -EINVAL;
3515	}
3516	if (val > MAX_SRPT_RSP_SIZE) {
3517		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3518			MAX_SRPT_RSP_SIZE);
3519		return -EINVAL;
3520	}
3521	if (val < MIN_MAX_RSP_SIZE) {
3522		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3523			MIN_MAX_RSP_SIZE);
3524		return -EINVAL;
3525	}
3526	sport->port_attrib.srp_max_rsp_size = val;
3527
3528	return count;
3529}
3530
3531static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3532		char *page)
3533{
3534	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3535	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3536
3537	return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size);
3538}
3539
3540static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3541		const char *page, size_t count)
3542{
3543	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3544	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3545	unsigned long val;
3546	int ret;
3547
3548	ret = kstrtoul(page, 0, &val);
3549	if (ret < 0) {
3550		pr_err("kstrtoul() failed with ret: %d\n", ret);
3551		return -EINVAL;
3552	}
3553	if (val > MAX_SRPT_SRQ_SIZE) {
3554		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3555			MAX_SRPT_SRQ_SIZE);
3556		return -EINVAL;
3557	}
3558	if (val < MIN_SRPT_SRQ_SIZE) {
3559		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3560			MIN_SRPT_SRQ_SIZE);
3561		return -EINVAL;
3562	}
3563	sport->port_attrib.srp_sq_size = val;
3564
3565	return count;
3566}
3567
3568static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3569					    char *page)
3570{
3571	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3572	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3573
3574	return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq);
3575}
3576
3577static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3578					     const char *page, size_t count)
3579{
3580	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3581	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3582	struct srpt_device *sdev = sport->sdev;
3583	unsigned long val;
3584	bool enabled;
3585	int ret;
3586
3587	ret = kstrtoul(page, 0, &val);
3588	if (ret < 0)
3589		return ret;
3590	if (val != !!val)
3591		return -EINVAL;
3592
3593	ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3594	if (ret < 0)
3595		return ret;
3596	ret = mutex_lock_interruptible(&sport->mutex);
3597	if (ret < 0)
3598		goto unlock_sdev;
3599	enabled = sport->enabled;
3600	/* Log out all initiator systems before changing 'use_srq'. */
3601	srpt_set_enabled(sport, false);
3602	sport->port_attrib.use_srq = val;
3603	srpt_use_srq(sdev, sport->port_attrib.use_srq);
3604	srpt_set_enabled(sport, enabled);
3605	ret = count;
3606	mutex_unlock(&sport->mutex);
3607unlock_sdev:
3608	mutex_unlock(&sdev->sdev_mutex);
3609
3610	return ret;
3611}
3612
3613CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
3614CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
3615CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3616CONFIGFS_ATTR(srpt_tpg_attrib_,  use_srq);
3617
3618static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3619	&srpt_tpg_attrib_attr_srp_max_rdma_size,
3620	&srpt_tpg_attrib_attr_srp_max_rsp_size,
3621	&srpt_tpg_attrib_attr_srp_sq_size,
3622	&srpt_tpg_attrib_attr_use_srq,
3623	NULL,
3624};
3625
3626static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3627{
3628	struct rdma_cm_id *rdma_cm_id;
3629	int ret;
3630
3631	rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3632				    NULL, RDMA_PS_TCP, IB_QPT_RC);
3633	if (IS_ERR(rdma_cm_id)) {
3634		pr_err("RDMA/CM ID creation failed: %ld\n",
3635		       PTR_ERR(rdma_cm_id));
3636		goto out;
3637	}
3638
3639	ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3640	if (ret) {
3641		char addr_str[64];
3642
3643		snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3644		pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3645		       addr_str, ret);
3646		rdma_destroy_id(rdma_cm_id);
3647		rdma_cm_id = ERR_PTR(ret);
3648		goto out;
3649	}
3650
3651	ret = rdma_listen(rdma_cm_id, 128);
3652	if (ret) {
3653		pr_err("rdma_listen() failed: %d\n", ret);
3654		rdma_destroy_id(rdma_cm_id);
3655		rdma_cm_id = ERR_PTR(ret);
3656	}
3657
3658out:
3659	return rdma_cm_id;
3660}
3661
3662static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3663{
3664	return sysfs_emit(page, "%d\n", rdma_cm_port);
3665}
3666
3667static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3668				       const char *page, size_t count)
3669{
3670	struct sockaddr_in  addr4 = { .sin_family  = AF_INET  };
3671	struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3672	struct rdma_cm_id *new_id = NULL;
3673	u16 val;
3674	int ret;
3675
3676	ret = kstrtou16(page, 0, &val);
3677	if (ret < 0)
3678		return ret;
3679	ret = count;
3680	if (rdma_cm_port == val)
3681		goto out;
3682
3683	if (val) {
3684		addr6.sin6_port = cpu_to_be16(val);
3685		new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3686		if (IS_ERR(new_id)) {
3687			addr4.sin_port = cpu_to_be16(val);
3688			new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3689			if (IS_ERR(new_id)) {
3690				ret = PTR_ERR(new_id);
3691				goto out;
3692			}
3693		}
3694	}
3695
3696	mutex_lock(&rdma_cm_mutex);
3697	rdma_cm_port = val;
3698	swap(rdma_cm_id, new_id);
3699	mutex_unlock(&rdma_cm_mutex);
3700
3701	if (new_id)
3702		rdma_destroy_id(new_id);
3703	ret = count;
3704out:
3705	return ret;
3706}
3707
3708CONFIGFS_ATTR(srpt_, rdma_cm_port);
3709
3710static struct configfs_attribute *srpt_da_attrs[] = {
3711	&srpt_attr_rdma_cm_port,
3712	NULL,
3713};
3714
3715static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable)
3716{
3717	struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3718
3719	mutex_lock(&sport->mutex);
3720	srpt_set_enabled(sport, enable);
3721	mutex_unlock(&sport->mutex);
3722
3723	return 0;
3724}
3725
3726/**
3727 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3728 * @wwn: Corresponds to $driver/$port.
3729 * @name: $tpg.
3730 */
3731static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3732					     const char *name)
3733{
3734	struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3735	struct srpt_tpg *stpg;
3736	int res = -ENOMEM;
3737
3738	stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3739	if (!stpg)
3740		return ERR_PTR(res);
3741	stpg->sport_id = sport_id;
3742	res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3743	if (res) {
3744		kfree(stpg);
3745		return ERR_PTR(res);
3746	}
3747
3748	mutex_lock(&sport_id->mutex);
3749	list_add_tail(&stpg->entry, &sport_id->tpg_list);
3750	mutex_unlock(&sport_id->mutex);
3751
3752	return &stpg->tpg;
3753}
3754
3755/**
3756 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3757 * @tpg: Target portal group to deregister.
3758 */
3759static void srpt_drop_tpg(struct se_portal_group *tpg)
3760{
3761	struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3762	struct srpt_port_id *sport_id = stpg->sport_id;
3763	struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3764
3765	mutex_lock(&sport_id->mutex);
3766	list_del(&stpg->entry);
3767	mutex_unlock(&sport_id->mutex);
3768
3769	sport->enabled = false;
3770	core_tpg_deregister(tpg);
3771	kfree(stpg);
3772}
3773
3774/**
3775 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3776 * @tf: Not used.
3777 * @group: Not used.
3778 * @name: $port.
3779 */
3780static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3781				      struct config_group *group,
3782				      const char *name)
3783{
3784	struct port_and_port_id papi = srpt_lookup_port(name);
3785	struct srpt_port *sport = papi.sport;
3786	struct srpt_port_id *port_id;
3787
3788	if (!papi.port_id)
3789		return ERR_PTR(-EINVAL);
3790	if (*papi.port_id) {
3791		/* Attempt to create a directory that already exists. */
3792		WARN_ON_ONCE(true);
3793		return &(*papi.port_id)->wwn;
3794	}
3795	port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3796	if (!port_id) {
3797		srpt_sdev_put(sport->sdev);
3798		return ERR_PTR(-ENOMEM);
3799	}
3800	mutex_init(&port_id->mutex);
3801	INIT_LIST_HEAD(&port_id->tpg_list);
3802	port_id->wwn.priv = sport;
3803	memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3804	       sport->gid_name, ARRAY_SIZE(port_id->name));
3805
3806	*papi.port_id = port_id;
3807
3808	return &port_id->wwn;
3809}
3810
3811/**
3812 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3813 * @wwn: $port.
3814 */
3815static void srpt_drop_tport(struct se_wwn *wwn)
3816{
3817	struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3818	struct srpt_port *sport = wwn->priv;
3819
3820	if (sport->guid_id == port_id)
3821		sport->guid_id = NULL;
3822	else if (sport->gid_id == port_id)
3823		sport->gid_id = NULL;
3824	else
3825		WARN_ON_ONCE(true);
3826
3827	srpt_sdev_put(sport->sdev);
3828	kfree(port_id);
3829}
3830
3831static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3832{
3833	return sysfs_emit(buf, "\n");
3834}
3835
3836CONFIGFS_ATTR_RO(srpt_wwn_, version);
3837
3838static struct configfs_attribute *srpt_wwn_attrs[] = {
3839	&srpt_wwn_attr_version,
3840	NULL,
3841};
3842
3843static const struct target_core_fabric_ops srpt_template = {
3844	.module				= THIS_MODULE,
3845	.fabric_name			= "srpt",
3846	.tpg_get_wwn			= srpt_get_fabric_wwn,
3847	.tpg_get_tag			= srpt_get_tag,
3848	.tpg_check_demo_mode_cache	= srpt_check_true,
3849	.tpg_check_demo_mode_write_protect = srpt_check_true,
3850	.release_cmd			= srpt_release_cmd,
3851	.check_stop_free		= srpt_check_stop_free,
3852	.close_session			= srpt_close_session,
3853	.sess_get_initiator_sid		= NULL,
3854	.write_pending			= srpt_write_pending,
3855	.get_cmd_state			= srpt_get_tcm_cmd_state,
3856	.queue_data_in			= srpt_queue_data_in,
3857	.queue_status			= srpt_queue_status,
3858	.queue_tm_rsp			= srpt_queue_tm_rsp,
3859	.aborted_task			= srpt_aborted_task,
3860	/*
3861	 * Setup function pointers for generic logic in
3862	 * target_core_fabric_configfs.c
3863	 */
3864	.fabric_make_wwn		= srpt_make_tport,
3865	.fabric_drop_wwn		= srpt_drop_tport,
3866	.fabric_make_tpg		= srpt_make_tpg,
3867	.fabric_enable_tpg		= srpt_enable_tpg,
3868	.fabric_drop_tpg		= srpt_drop_tpg,
3869	.fabric_init_nodeacl		= srpt_init_nodeacl,
3870
3871	.tfc_discovery_attrs		= srpt_da_attrs,
3872	.tfc_wwn_attrs			= srpt_wwn_attrs,
3873	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3874
3875	.default_submit_type		= TARGET_DIRECT_SUBMIT,
3876	.direct_submit_supp		= 1,
3877};
3878
3879/**
3880 * srpt_init_module - kernel module initialization
3881 *
3882 * Note: Since ib_register_client() registers callback functions, and since at
3883 * least one of these callback functions (srpt_add_one()) calls target core
3884 * functions, this driver must be registered with the target core before
3885 * ib_register_client() is called.
3886 */
3887static int __init srpt_init_module(void)
3888{
3889	int ret;
3890
3891	ret = -EINVAL;
3892	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3893		pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3894		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3895		goto out;
3896	}
3897
3898	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3899	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3900		pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3901		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3902		goto out;
3903	}
3904
3905	ret = target_register_template(&srpt_template);
3906	if (ret)
3907		goto out;
3908
3909	ret = ib_register_client(&srpt_client);
3910	if (ret) {
3911		pr_err("couldn't register IB client\n");
3912		goto out_unregister_target;
3913	}
3914
3915	return 0;
3916
3917out_unregister_target:
3918	target_unregister_template(&srpt_template);
3919out:
3920	return ret;
3921}
3922
3923static void __exit srpt_cleanup_module(void)
3924{
3925	if (rdma_cm_id)
3926		rdma_destroy_id(rdma_cm_id);
3927	ib_unregister_client(&srpt_client);
3928	target_unregister_template(&srpt_template);
3929}
3930
3931module_init(srpt_init_module);
3932module_exit(srpt_cleanup_module);
3933