1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2016 - 2020 Intel Corporation.
4 */
5
6#include <linux/hash.h>
7#include <linux/bitops.h>
8#include <linux/lockdep.h>
9#include <linux/vmalloc.h>
10#include <linux/slab.h>
11#include <rdma/ib_verbs.h>
12#include <rdma/ib_hdrs.h>
13#include <rdma/opa_addr.h>
14#include <rdma/uverbs_ioctl.h>
15#include "qp.h"
16#include "vt.h"
17#include "trace.h"
18
19#define RVT_RWQ_COUNT_THRESHOLD 16
20
21static void rvt_rc_timeout(struct timer_list *t);
22static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
23			 enum ib_qp_type type);
24
25/*
26 * Convert the AETH RNR timeout code into the number of microseconds.
27 */
28static const u32 ib_rvt_rnr_table[32] = {
29	655360, /* 00: 655.36 */
30	10,     /* 01:    .01 */
31	20,     /* 02     .02 */
32	30,     /* 03:    .03 */
33	40,     /* 04:    .04 */
34	60,     /* 05:    .06 */
35	80,     /* 06:    .08 */
36	120,    /* 07:    .12 */
37	160,    /* 08:    .16 */
38	240,    /* 09:    .24 */
39	320,    /* 0A:    .32 */
40	480,    /* 0B:    .48 */
41	640,    /* 0C:    .64 */
42	960,    /* 0D:    .96 */
43	1280,   /* 0E:   1.28 */
44	1920,   /* 0F:   1.92 */
45	2560,   /* 10:   2.56 */
46	3840,   /* 11:   3.84 */
47	5120,   /* 12:   5.12 */
48	7680,   /* 13:   7.68 */
49	10240,  /* 14:  10.24 */
50	15360,  /* 15:  15.36 */
51	20480,  /* 16:  20.48 */
52	30720,  /* 17:  30.72 */
53	40960,  /* 18:  40.96 */
54	61440,  /* 19:  61.44 */
55	81920,  /* 1A:  81.92 */
56	122880, /* 1B: 122.88 */
57	163840, /* 1C: 163.84 */
58	245760, /* 1D: 245.76 */
59	327680, /* 1E: 327.68 */
60	491520  /* 1F: 491.52 */
61};
62
63/*
64 * Note that it is OK to post send work requests in the SQE and ERR
65 * states; rvt_do_send() will process them and generate error
66 * completions as per IB 1.2 C10-96.
67 */
68const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
69	[IB_QPS_RESET] = 0,
70	[IB_QPS_INIT] = RVT_POST_RECV_OK,
71	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
72	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
73	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
74	    RVT_PROCESS_NEXT_SEND_OK,
75	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
76	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
77	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
78	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
79	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
80	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
81};
82EXPORT_SYMBOL(ib_rvt_state_ops);
83
84/* platform specific: return the last level cache (llc) size, in KiB */
85static int rvt_wss_llc_size(void)
86{
87	/* assume that the boot CPU value is universal for all CPUs */
88	return boot_cpu_data.x86_cache_size;
89}
90
91/* platform specific: cacheless copy */
92static void cacheless_memcpy(void *dst, void *src, size_t n)
93{
94	/*
95	 * Use the only available X64 cacheless copy.  Add a __user cast
96	 * to quiet sparse.  The src agument is already in the kernel so
97	 * there are no security issues.  The extra fault recovery machinery
98	 * is not invoked.
99	 */
100	__copy_user_nocache(dst, (void __user *)src, n);
101}
102
103void rvt_wss_exit(struct rvt_dev_info *rdi)
104{
105	struct rvt_wss *wss = rdi->wss;
106
107	if (!wss)
108		return;
109
110	/* coded to handle partially initialized and repeat callers */
111	kfree(wss->entries);
112	wss->entries = NULL;
113	kfree(rdi->wss);
114	rdi->wss = NULL;
115}
116
117/*
118 * rvt_wss_init - Init wss data structures
119 *
120 * Return: 0 on success
121 */
122int rvt_wss_init(struct rvt_dev_info *rdi)
123{
124	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
125	unsigned int wss_threshold = rdi->dparms.wss_threshold;
126	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
127	long llc_size;
128	long llc_bits;
129	long table_size;
130	long table_bits;
131	struct rvt_wss *wss;
132	int node = rdi->dparms.node;
133
134	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
135		rdi->wss = NULL;
136		return 0;
137	}
138
139	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
140	if (!rdi->wss)
141		return -ENOMEM;
142	wss = rdi->wss;
143
144	/* check for a valid percent range - default to 80 if none or invalid */
145	if (wss_threshold < 1 || wss_threshold > 100)
146		wss_threshold = 80;
147
148	/* reject a wildly large period */
149	if (wss_clean_period > 1000000)
150		wss_clean_period = 256;
151
152	/* reject a zero period */
153	if (wss_clean_period == 0)
154		wss_clean_period = 1;
155
156	/*
157	 * Calculate the table size - the next power of 2 larger than the
158	 * LLC size.  LLC size is in KiB.
159	 */
160	llc_size = rvt_wss_llc_size() * 1024;
161	table_size = roundup_pow_of_two(llc_size);
162
163	/* one bit per page in rounded up table */
164	llc_bits = llc_size / PAGE_SIZE;
165	table_bits = table_size / PAGE_SIZE;
166	wss->pages_mask = table_bits - 1;
167	wss->num_entries = table_bits / BITS_PER_LONG;
168
169	wss->threshold = (llc_bits * wss_threshold) / 100;
170	if (wss->threshold == 0)
171		wss->threshold = 1;
172
173	wss->clean_period = wss_clean_period;
174	atomic_set(&wss->clean_counter, wss_clean_period);
175
176	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
177				    GFP_KERNEL, node);
178	if (!wss->entries) {
179		rvt_wss_exit(rdi);
180		return -ENOMEM;
181	}
182
183	return 0;
184}
185
186/*
187 * Advance the clean counter.  When the clean period has expired,
188 * clean an entry.
189 *
190 * This is implemented in atomics to avoid locking.  Because multiple
191 * variables are involved, it can be racy which can lead to slightly
192 * inaccurate information.  Since this is only a heuristic, this is
193 * OK.  Any innaccuracies will clean themselves out as the counter
194 * advances.  That said, it is unlikely the entry clean operation will
195 * race - the next possible racer will not start until the next clean
196 * period.
197 *
198 * The clean counter is implemented as a decrement to zero.  When zero
199 * is reached an entry is cleaned.
200 */
201static void wss_advance_clean_counter(struct rvt_wss *wss)
202{
203	int entry;
204	int weight;
205	unsigned long bits;
206
207	/* become the cleaner if we decrement the counter to zero */
208	if (atomic_dec_and_test(&wss->clean_counter)) {
209		/*
210		 * Set, not add, the clean period.  This avoids an issue
211		 * where the counter could decrement below the clean period.
212		 * Doing a set can result in lost decrements, slowing the
213		 * clean advance.  Since this a heuristic, this possible
214		 * slowdown is OK.
215		 *
216		 * An alternative is to loop, advancing the counter by a
217		 * clean period until the result is > 0. However, this could
218		 * lead to several threads keeping another in the clean loop.
219		 * This could be mitigated by limiting the number of times
220		 * we stay in the loop.
221		 */
222		atomic_set(&wss->clean_counter, wss->clean_period);
223
224		/*
225		 * Uniquely grab the entry to clean and move to next.
226		 * The current entry is always the lower bits of
227		 * wss.clean_entry.  The table size, wss.num_entries,
228		 * is always a power-of-2.
229		 */
230		entry = (atomic_inc_return(&wss->clean_entry) - 1)
231			& (wss->num_entries - 1);
232
233		/* clear the entry and count the bits */
234		bits = xchg(&wss->entries[entry], 0);
235		weight = hweight64((u64)bits);
236		/* only adjust the contended total count if needed */
237		if (weight)
238			atomic_sub(weight, &wss->total_count);
239	}
240}
241
242/*
243 * Insert the given address into the working set array.
244 */
245static void wss_insert(struct rvt_wss *wss, void *address)
246{
247	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
248	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
249	u32 nr = page & (BITS_PER_LONG - 1);
250
251	if (!test_and_set_bit(nr, &wss->entries[entry]))
252		atomic_inc(&wss->total_count);
253
254	wss_advance_clean_counter(wss);
255}
256
257/*
258 * Is the working set larger than the threshold?
259 */
260static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
261{
262	return atomic_read(&wss->total_count) >= wss->threshold;
263}
264
265static void get_map_page(struct rvt_qpn_table *qpt,
266			 struct rvt_qpn_map *map)
267{
268	unsigned long page = get_zeroed_page(GFP_KERNEL);
269
270	/*
271	 * Free the page if someone raced with us installing it.
272	 */
273
274	spin_lock(&qpt->lock);
275	if (map->page)
276		free_page(page);
277	else
278		map->page = (void *)page;
279	spin_unlock(&qpt->lock);
280}
281
282/**
283 * init_qpn_table - initialize the QP number table for a device
284 * @rdi: rvt dev struct
285 * @qpt: the QPN table
286 */
287static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
288{
289	u32 offset, i;
290	struct rvt_qpn_map *map;
291	int ret = 0;
292
293	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
294		return -EINVAL;
295
296	spin_lock_init(&qpt->lock);
297
298	qpt->last = rdi->dparms.qpn_start;
299	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
300
301	/*
302	 * Drivers may want some QPs beyond what we need for verbs let them use
303	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
304	 * for those. The reserved range must be *after* the range which verbs
305	 * will pick from.
306	 */
307
308	/* Figure out number of bit maps needed before reserved range */
309	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
310
311	/* This should always be zero */
312	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
313
314	/* Starting with the first reserved bit map */
315	map = &qpt->map[qpt->nmaps];
316
317	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
318		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
319	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
320		if (!map->page) {
321			get_map_page(qpt, map);
322			if (!map->page) {
323				ret = -ENOMEM;
324				break;
325			}
326		}
327		set_bit(offset, map->page);
328		offset++;
329		if (offset == RVT_BITS_PER_PAGE) {
330			/* next page */
331			qpt->nmaps++;
332			map++;
333			offset = 0;
334		}
335	}
336	return ret;
337}
338
339/**
340 * free_qpn_table - free the QP number table for a device
341 * @qpt: the QPN table
342 */
343static void free_qpn_table(struct rvt_qpn_table *qpt)
344{
345	int i;
346
347	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
348		free_page((unsigned long)qpt->map[i].page);
349}
350
351/**
352 * rvt_driver_qp_init - Init driver qp resources
353 * @rdi: rvt dev strucutre
354 *
355 * Return: 0 on success
356 */
357int rvt_driver_qp_init(struct rvt_dev_info *rdi)
358{
359	int i;
360	int ret = -ENOMEM;
361
362	if (!rdi->dparms.qp_table_size)
363		return -EINVAL;
364
365	/*
366	 * If driver is not doing any QP allocation then make sure it is
367	 * providing the necessary QP functions.
368	 */
369	if (!rdi->driver_f.free_all_qps ||
370	    !rdi->driver_f.qp_priv_alloc ||
371	    !rdi->driver_f.qp_priv_free ||
372	    !rdi->driver_f.notify_qp_reset ||
373	    !rdi->driver_f.notify_restart_rc)
374		return -EINVAL;
375
376	/* allocate parent object */
377	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
378				   rdi->dparms.node);
379	if (!rdi->qp_dev)
380		return -ENOMEM;
381
382	/* allocate hash table */
383	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
384	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
385	rdi->qp_dev->qp_table =
386		kmalloc_array_node(rdi->qp_dev->qp_table_size,
387			     sizeof(*rdi->qp_dev->qp_table),
388			     GFP_KERNEL, rdi->dparms.node);
389	if (!rdi->qp_dev->qp_table)
390		goto no_qp_table;
391
392	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
393		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
394
395	spin_lock_init(&rdi->qp_dev->qpt_lock);
396
397	/* initialize qpn map */
398	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
399		goto fail_table;
400
401	spin_lock_init(&rdi->n_qps_lock);
402
403	return 0;
404
405fail_table:
406	kfree(rdi->qp_dev->qp_table);
407	free_qpn_table(&rdi->qp_dev->qpn_table);
408
409no_qp_table:
410	kfree(rdi->qp_dev);
411
412	return ret;
413}
414
415/**
416 * rvt_free_qp_cb - callback function to reset a qp
417 * @qp: the qp to reset
418 * @v: a 64-bit value
419 *
420 * This function resets the qp and removes it from the
421 * qp hash table.
422 */
423static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
424{
425	unsigned int *qp_inuse = (unsigned int *)v;
426	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
427
428	/* Reset the qp and remove it from the qp hash list */
429	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
430
431	/* Increment the qp_inuse count */
432	(*qp_inuse)++;
433}
434
435/**
436 * rvt_free_all_qps - check for QPs still in use
437 * @rdi: rvt device info structure
438 *
439 * There should not be any QPs still in use.
440 * Free memory for table.
441 * Return the number of QPs still in use.
442 */
443static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
444{
445	unsigned int qp_inuse = 0;
446
447	qp_inuse += rvt_mcast_tree_empty(rdi);
448
449	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
450
451	return qp_inuse;
452}
453
454/**
455 * rvt_qp_exit - clean up qps on device exit
456 * @rdi: rvt dev structure
457 *
458 * Check for qp leaks and free resources.
459 */
460void rvt_qp_exit(struct rvt_dev_info *rdi)
461{
462	u32 qps_inuse = rvt_free_all_qps(rdi);
463
464	if (qps_inuse)
465		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
466			   qps_inuse);
467
468	kfree(rdi->qp_dev->qp_table);
469	free_qpn_table(&rdi->qp_dev->qpn_table);
470	kfree(rdi->qp_dev);
471}
472
473static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
474			      struct rvt_qpn_map *map, unsigned off)
475{
476	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
477}
478
479/**
480 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
481 *	       IB_QPT_SMI/IB_QPT_GSI
482 * @rdi: rvt device info structure
483 * @qpt: queue pair number table pointer
484 * @type: the QP type
485 * @port_num: IB port number, 1 based, comes from core
486 * @exclude_prefix: prefix of special queue pair number being allocated
487 *
488 * Return: The queue pair number
489 */
490static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
491		     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
492{
493	u32 i, offset, max_scan, qpn;
494	struct rvt_qpn_map *map;
495	u32 ret;
496	u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
497		RVT_AIP_QPN_MAX : RVT_QPN_MAX;
498
499	if (rdi->driver_f.alloc_qpn)
500		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
501
502	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
503		unsigned n;
504
505		ret = type == IB_QPT_GSI;
506		n = 1 << (ret + 2 * (port_num - 1));
507		spin_lock(&qpt->lock);
508		if (qpt->flags & n)
509			ret = -EINVAL;
510		else
511			qpt->flags |= n;
512		spin_unlock(&qpt->lock);
513		goto bail;
514	}
515
516	qpn = qpt->last + qpt->incr;
517	if (qpn >= max_qpn)
518		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
519	/* offset carries bit 0 */
520	offset = qpn & RVT_BITS_PER_PAGE_MASK;
521	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
522	max_scan = qpt->nmaps - !offset;
523	for (i = 0;;) {
524		if (unlikely(!map->page)) {
525			get_map_page(qpt, map);
526			if (unlikely(!map->page))
527				break;
528		}
529		do {
530			if (!test_and_set_bit(offset, map->page)) {
531				qpt->last = qpn;
532				ret = qpn;
533				goto bail;
534			}
535			offset += qpt->incr;
536			/*
537			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
538			 * That is OK.   It gets re-assigned below
539			 */
540			qpn = mk_qpn(qpt, map, offset);
541		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
542		/*
543		 * In order to keep the number of pages allocated to a
544		 * minimum, we scan the all existing pages before increasing
545		 * the size of the bitmap table.
546		 */
547		if (++i > max_scan) {
548			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
549				break;
550			map = &qpt->map[qpt->nmaps++];
551			/* start at incr with current bit 0 */
552			offset = qpt->incr | (offset & 1);
553		} else if (map < &qpt->map[qpt->nmaps]) {
554			++map;
555			/* start at incr with current bit 0 */
556			offset = qpt->incr | (offset & 1);
557		} else {
558			map = &qpt->map[0];
559			/* wrap to first map page, invert bit 0 */
560			offset = qpt->incr | ((offset & 1) ^ 1);
561		}
562		/* there can be no set bits in low-order QoS bits */
563		WARN_ON(rdi->dparms.qos_shift > 1 &&
564			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
565		qpn = mk_qpn(qpt, map, offset);
566	}
567
568	ret = -ENOMEM;
569
570bail:
571	return ret;
572}
573
574/**
575 * rvt_clear_mr_refs - Drop help mr refs
576 * @qp: rvt qp data structure
577 * @clr_sends: If shoudl clear send side or not
578 */
579static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
580{
581	unsigned n;
582	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
583
584	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
585		rvt_put_ss(&qp->s_rdma_read_sge);
586
587	rvt_put_ss(&qp->r_sge);
588
589	if (clr_sends) {
590		while (qp->s_last != qp->s_head) {
591			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
592
593			rvt_put_qp_swqe(qp, wqe);
594			if (++qp->s_last >= qp->s_size)
595				qp->s_last = 0;
596			smp_wmb(); /* see qp_set_savail */
597		}
598		if (qp->s_rdma_mr) {
599			rvt_put_mr(qp->s_rdma_mr);
600			qp->s_rdma_mr = NULL;
601		}
602	}
603
604	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
605		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
606
607		if (e->rdma_sge.mr) {
608			rvt_put_mr(e->rdma_sge.mr);
609			e->rdma_sge.mr = NULL;
610		}
611	}
612}
613
614/**
615 * rvt_swqe_has_lkey - return true if lkey is used by swqe
616 * @wqe: the send wqe
617 * @lkey: the lkey
618 *
619 * Test the swqe for using lkey
620 */
621static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
622{
623	int i;
624
625	for (i = 0; i < wqe->wr.num_sge; i++) {
626		struct rvt_sge *sge = &wqe->sg_list[i];
627
628		if (rvt_mr_has_lkey(sge->mr, lkey))
629			return true;
630	}
631	return false;
632}
633
634/**
635 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
636 * @qp: the rvt_qp
637 * @lkey: the lkey
638 */
639static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
640{
641	u32 s_last = qp->s_last;
642
643	while (s_last != qp->s_head) {
644		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
645
646		if (rvt_swqe_has_lkey(wqe, lkey))
647			return true;
648
649		if (++s_last >= qp->s_size)
650			s_last = 0;
651	}
652	if (qp->s_rdma_mr)
653		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
654			return true;
655	return false;
656}
657
658/**
659 * rvt_qp_acks_has_lkey - return true if acks have lkey
660 * @qp: the qp
661 * @lkey: the lkey
662 */
663static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
664{
665	int i;
666	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
667
668	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
669		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
670
671		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
672			return true;
673	}
674	return false;
675}
676
677/**
678 * rvt_qp_mr_clean - clean up remote ops for lkey
679 * @qp: the qp
680 * @lkey: the lkey that is being de-registered
681 *
682 * This routine checks if the lkey is being used by
683 * the qp.
684 *
685 * If so, the qp is put into an error state to elminate
686 * any references from the qp.
687 */
688void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
689{
690	bool lastwqe = false;
691
692	if (qp->ibqp.qp_type == IB_QPT_SMI ||
693	    qp->ibqp.qp_type == IB_QPT_GSI)
694		/* avoid special QPs */
695		return;
696	spin_lock_irq(&qp->r_lock);
697	spin_lock(&qp->s_hlock);
698	spin_lock(&qp->s_lock);
699
700	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
701		goto check_lwqe;
702
703	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
704	    rvt_qp_sends_has_lkey(qp, lkey) ||
705	    rvt_qp_acks_has_lkey(qp, lkey))
706		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
707check_lwqe:
708	spin_unlock(&qp->s_lock);
709	spin_unlock(&qp->s_hlock);
710	spin_unlock_irq(&qp->r_lock);
711	if (lastwqe) {
712		struct ib_event ev;
713
714		ev.device = qp->ibqp.device;
715		ev.element.qp = &qp->ibqp;
716		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
717		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
718	}
719}
720
721/**
722 * rvt_remove_qp - remove qp form table
723 * @rdi: rvt dev struct
724 * @qp: qp to remove
725 *
726 * Remove the QP from the table so it can't be found asynchronously by
727 * the receive routine.
728 */
729static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
730{
731	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
732	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
733	unsigned long flags;
734	int removed = 1;
735
736	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
737
738	if (rcu_dereference_protected(rvp->qp[0],
739			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
740		RCU_INIT_POINTER(rvp->qp[0], NULL);
741	} else if (rcu_dereference_protected(rvp->qp[1],
742			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
743		RCU_INIT_POINTER(rvp->qp[1], NULL);
744	} else {
745		struct rvt_qp *q;
746		struct rvt_qp __rcu **qpp;
747
748		removed = 0;
749		qpp = &rdi->qp_dev->qp_table[n];
750		for (; (q = rcu_dereference_protected(*qpp,
751			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
752			qpp = &q->next) {
753			if (q == qp) {
754				RCU_INIT_POINTER(*qpp,
755				     rcu_dereference_protected(qp->next,
756				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
757				removed = 1;
758				trace_rvt_qpremove(qp, n);
759				break;
760			}
761		}
762	}
763
764	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
765	if (removed) {
766		synchronize_rcu();
767		rvt_put_qp(qp);
768	}
769}
770
771/**
772 * rvt_alloc_rq - allocate memory for user or kernel buffer
773 * @rq: receive queue data structure
774 * @size: number of request queue entries
775 * @node: The NUMA node
776 * @udata: True if user data is available or not false
777 *
778 * Return: If memory allocation failed, return -ENONEM
779 * This function is used by both shared receive
780 * queues and non-shared receive queues to allocate
781 * memory.
782 */
783int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
784		 struct ib_udata *udata)
785{
786	if (udata) {
787		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
788		if (!rq->wq)
789			goto bail;
790		/* need kwq with no buffers */
791		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
792		if (!rq->kwq)
793			goto bail;
794		rq->kwq->curr_wq = rq->wq->wq;
795	} else {
796		/* need kwq with buffers */
797		rq->kwq =
798			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
799		if (!rq->kwq)
800			goto bail;
801		rq->kwq->curr_wq = rq->kwq->wq;
802	}
803
804	spin_lock_init(&rq->kwq->p_lock);
805	spin_lock_init(&rq->kwq->c_lock);
806	return 0;
807bail:
808	rvt_free_rq(rq);
809	return -ENOMEM;
810}
811
812/**
813 * rvt_init_qp - initialize the QP state to the reset state
814 * @rdi: rvt dev struct
815 * @qp: the QP to init or reinit
816 * @type: the QP type
817 *
818 * This function is called from both rvt_create_qp() and
819 * rvt_reset_qp().   The difference is that the reset
820 * patch the necessary locks to protect against concurent
821 * access.
822 */
823static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
824			enum ib_qp_type type)
825{
826	qp->remote_qpn = 0;
827	qp->qkey = 0;
828	qp->qp_access_flags = 0;
829	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
830	qp->s_hdrwords = 0;
831	qp->s_wqe = NULL;
832	qp->s_draining = 0;
833	qp->s_next_psn = 0;
834	qp->s_last_psn = 0;
835	qp->s_sending_psn = 0;
836	qp->s_sending_hpsn = 0;
837	qp->s_psn = 0;
838	qp->r_psn = 0;
839	qp->r_msn = 0;
840	if (type == IB_QPT_RC) {
841		qp->s_state = IB_OPCODE_RC_SEND_LAST;
842		qp->r_state = IB_OPCODE_RC_SEND_LAST;
843	} else {
844		qp->s_state = IB_OPCODE_UC_SEND_LAST;
845		qp->r_state = IB_OPCODE_UC_SEND_LAST;
846	}
847	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
848	qp->r_nak_state = 0;
849	qp->r_aflags = 0;
850	qp->r_flags = 0;
851	qp->s_head = 0;
852	qp->s_tail = 0;
853	qp->s_cur = 0;
854	qp->s_acked = 0;
855	qp->s_last = 0;
856	qp->s_ssn = 1;
857	qp->s_lsn = 0;
858	qp->s_mig_state = IB_MIG_MIGRATED;
859	qp->r_head_ack_queue = 0;
860	qp->s_tail_ack_queue = 0;
861	qp->s_acked_ack_queue = 0;
862	qp->s_num_rd_atomic = 0;
863	qp->r_sge.num_sge = 0;
864	atomic_set(&qp->s_reserved_used, 0);
865}
866
867/**
868 * _rvt_reset_qp - initialize the QP state to the reset state
869 * @rdi: rvt dev struct
870 * @qp: the QP to reset
871 * @type: the QP type
872 *
873 * r_lock, s_hlock, and s_lock are required to be held by the caller
874 */
875static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
876			  enum ib_qp_type type)
877	__must_hold(&qp->s_lock)
878	__must_hold(&qp->s_hlock)
879	__must_hold(&qp->r_lock)
880{
881	lockdep_assert_held(&qp->r_lock);
882	lockdep_assert_held(&qp->s_hlock);
883	lockdep_assert_held(&qp->s_lock);
884	if (qp->state != IB_QPS_RESET) {
885		qp->state = IB_QPS_RESET;
886
887		/* Let drivers flush their waitlist */
888		rdi->driver_f.flush_qp_waiters(qp);
889		rvt_stop_rc_timers(qp);
890		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
891		spin_unlock(&qp->s_lock);
892		spin_unlock(&qp->s_hlock);
893		spin_unlock_irq(&qp->r_lock);
894
895		/* Stop the send queue and the retry timer */
896		rdi->driver_f.stop_send_queue(qp);
897		rvt_del_timers_sync(qp);
898		/* Wait for things to stop */
899		rdi->driver_f.quiesce_qp(qp);
900
901		/* take qp out the hash and wait for it to be unused */
902		rvt_remove_qp(rdi, qp);
903
904		/* grab the lock b/c it was locked at call time */
905		spin_lock_irq(&qp->r_lock);
906		spin_lock(&qp->s_hlock);
907		spin_lock(&qp->s_lock);
908
909		rvt_clear_mr_refs(qp, 1);
910		/*
911		 * Let the driver do any tear down or re-init it needs to for
912		 * a qp that has been reset
913		 */
914		rdi->driver_f.notify_qp_reset(qp);
915	}
916	rvt_init_qp(rdi, qp, type);
917	lockdep_assert_held(&qp->r_lock);
918	lockdep_assert_held(&qp->s_hlock);
919	lockdep_assert_held(&qp->s_lock);
920}
921
922/**
923 * rvt_reset_qp - initialize the QP state to the reset state
924 * @rdi: the device info
925 * @qp: the QP to reset
926 * @type: the QP type
927 *
928 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
929 * before calling _rvt_reset_qp().
930 */
931static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
932			 enum ib_qp_type type)
933{
934	spin_lock_irq(&qp->r_lock);
935	spin_lock(&qp->s_hlock);
936	spin_lock(&qp->s_lock);
937	_rvt_reset_qp(rdi, qp, type);
938	spin_unlock(&qp->s_lock);
939	spin_unlock(&qp->s_hlock);
940	spin_unlock_irq(&qp->r_lock);
941}
942
943/**
944 * rvt_free_qpn - Free a qpn from the bit map
945 * @qpt: QP table
946 * @qpn: queue pair number to free
947 */
948static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
949{
950	struct rvt_qpn_map *map;
951
952	if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
953		qpn &= RVT_AIP_QP_SUFFIX;
954
955	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
956	if (map->page)
957		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
958}
959
960/**
961 * get_allowed_ops - Given a QP type return the appropriate allowed OP
962 * @type: valid, supported, QP type
963 */
964static u8 get_allowed_ops(enum ib_qp_type type)
965{
966	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
967		IB_OPCODE_UC : IB_OPCODE_UD;
968}
969
970/**
971 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
972 * @qp: Valid QP with allowed_ops set
973 *
974 * The rvt_swqe data structure being used is a union, so this is
975 * only valid for UD QPs.
976 */
977static void free_ud_wq_attr(struct rvt_qp *qp)
978{
979	struct rvt_swqe *wqe;
980	int i;
981
982	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
983		wqe = rvt_get_swqe_ptr(qp, i);
984		kfree(wqe->ud_wr.attr);
985		wqe->ud_wr.attr = NULL;
986	}
987}
988
989/**
990 * alloc_ud_wq_attr - AH attribute cache for UD QPs
991 * @qp: Valid QP with allowed_ops set
992 * @node: Numa node for allocation
993 *
994 * The rvt_swqe data structure being used is a union, so this is
995 * only valid for UD QPs.
996 */
997static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
998{
999	struct rvt_swqe *wqe;
1000	int i;
1001
1002	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1003		wqe = rvt_get_swqe_ptr(qp, i);
1004		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1005					       GFP_KERNEL, node);
1006		if (!wqe->ud_wr.attr) {
1007			free_ud_wq_attr(qp);
1008			return -ENOMEM;
1009		}
1010	}
1011
1012	return 0;
1013}
1014
1015/**
1016 * rvt_create_qp - create a queue pair for a device
1017 * @ibqp: the queue pair
1018 * @init_attr: the attributes of the queue pair
1019 * @udata: user data for libibverbs.so
1020 *
1021 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1022 * unique idea of what queue pair numbers mean. For instance there is a reserved
1023 * range for PSM.
1024 *
1025 * Return: 0 on success, otherwise returns an errno.
1026 *
1027 * Called by the ib_create_qp() core verbs function.
1028 */
1029int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1030		  struct ib_udata *udata)
1031{
1032	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1033	int ret = -ENOMEM;
1034	struct rvt_swqe *swq = NULL;
1035	size_t sz;
1036	size_t sg_list_sz = 0;
1037	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1038	void *priv = NULL;
1039	size_t sqsize;
1040	u8 exclude_prefix = 0;
1041
1042	if (!rdi)
1043		return -EINVAL;
1044
1045	if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1046		return -EOPNOTSUPP;
1047
1048	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1049	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1050		return -EINVAL;
1051
1052	/* Check receive queue parameters if no SRQ is specified. */
1053	if (!init_attr->srq) {
1054		if (init_attr->cap.max_recv_sge >
1055		    rdi->dparms.props.max_recv_sge ||
1056		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1057			return -EINVAL;
1058
1059		if (init_attr->cap.max_send_sge +
1060		    init_attr->cap.max_send_wr +
1061		    init_attr->cap.max_recv_sge +
1062		    init_attr->cap.max_recv_wr == 0)
1063			return -EINVAL;
1064	}
1065	sqsize =
1066		init_attr->cap.max_send_wr + 1 +
1067		rdi->dparms.reserved_operations;
1068	switch (init_attr->qp_type) {
1069	case IB_QPT_SMI:
1070	case IB_QPT_GSI:
1071		if (init_attr->port_num == 0 ||
1072		    init_attr->port_num > ibqp->device->phys_port_cnt)
1073			return -EINVAL;
1074		fallthrough;
1075	case IB_QPT_UC:
1076	case IB_QPT_RC:
1077	case IB_QPT_UD:
1078		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1079		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1080		if (!swq)
1081			return -ENOMEM;
1082
1083		if (init_attr->srq) {
1084			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1085
1086			if (srq->rq.max_sge > 1)
1087				sg_list_sz = sizeof(*qp->r_sg_list) *
1088					(srq->rq.max_sge - 1);
1089		} else if (init_attr->cap.max_recv_sge > 1)
1090			sg_list_sz = sizeof(*qp->r_sg_list) *
1091				(init_attr->cap.max_recv_sge - 1);
1092		qp->r_sg_list =
1093			kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1094		if (!qp->r_sg_list)
1095			goto bail_qp;
1096		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1097
1098		RCU_INIT_POINTER(qp->next, NULL);
1099		if (init_attr->qp_type == IB_QPT_RC) {
1100			qp->s_ack_queue =
1101				kcalloc_node(rvt_max_atomic(rdi),
1102					     sizeof(*qp->s_ack_queue),
1103					     GFP_KERNEL,
1104					     rdi->dparms.node);
1105			if (!qp->s_ack_queue)
1106				goto bail_qp;
1107		}
1108		/* initialize timers needed for rc qp */
1109		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1110		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1111			     HRTIMER_MODE_REL);
1112		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1113
1114		/*
1115		 * Driver needs to set up it's private QP structure and do any
1116		 * initialization that is needed.
1117		 */
1118		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1119		if (IS_ERR(priv)) {
1120			ret = PTR_ERR(priv);
1121			goto bail_qp;
1122		}
1123		qp->priv = priv;
1124		qp->timeout_jiffies =
1125			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1126				1000UL);
1127		if (init_attr->srq) {
1128			sz = 0;
1129		} else {
1130			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1131			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1132			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1133				sizeof(struct rvt_rwqe);
1134			ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1135					   rdi->dparms.node, udata);
1136			if (ret)
1137				goto bail_driver_priv;
1138		}
1139
1140		/*
1141		 * ib_create_qp() will initialize qp->ibqp
1142		 * except for qp->ibqp.qp_num.
1143		 */
1144		spin_lock_init(&qp->r_lock);
1145		spin_lock_init(&qp->s_hlock);
1146		spin_lock_init(&qp->s_lock);
1147		atomic_set(&qp->refcount, 0);
1148		atomic_set(&qp->local_ops_pending, 0);
1149		init_waitqueue_head(&qp->wait);
1150		INIT_LIST_HEAD(&qp->rspwait);
1151		qp->state = IB_QPS_RESET;
1152		qp->s_wq = swq;
1153		qp->s_size = sqsize;
1154		qp->s_avail = init_attr->cap.max_send_wr;
1155		qp->s_max_sge = init_attr->cap.max_send_sge;
1156		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1157			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1158		ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1159		if (ret)
1160			goto bail_rq_rvt;
1161
1162		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1163			exclude_prefix = RVT_AIP_QP_PREFIX;
1164
1165		ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1166				init_attr->qp_type,
1167				init_attr->port_num,
1168				exclude_prefix);
1169		if (ret < 0)
1170			goto bail_rq_wq;
1171
1172		qp->ibqp.qp_num = ret;
1173		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1174			qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1175		qp->port_num = init_attr->port_num;
1176		rvt_init_qp(rdi, qp, init_attr->qp_type);
1177		if (rdi->driver_f.qp_priv_init) {
1178			ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1179			if (ret)
1180				goto bail_rq_wq;
1181		}
1182		break;
1183
1184	default:
1185		/* Don't support raw QPs */
1186		return -EOPNOTSUPP;
1187	}
1188
1189	init_attr->cap.max_inline_data = 0;
1190
1191	/*
1192	 * Return the address of the RWQ as the offset to mmap.
1193	 * See rvt_mmap() for details.
1194	 */
1195	if (udata && udata->outlen >= sizeof(__u64)) {
1196		if (!qp->r_rq.wq) {
1197			__u64 offset = 0;
1198
1199			ret = ib_copy_to_udata(udata, &offset,
1200					       sizeof(offset));
1201			if (ret)
1202				goto bail_qpn;
1203		} else {
1204			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1205
1206			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1207						      qp->r_rq.wq);
1208			if (IS_ERR(qp->ip)) {
1209				ret = PTR_ERR(qp->ip);
1210				goto bail_qpn;
1211			}
1212
1213			ret = ib_copy_to_udata(udata, &qp->ip->offset,
1214					       sizeof(qp->ip->offset));
1215			if (ret)
1216				goto bail_ip;
1217		}
1218		qp->pid = current->pid;
1219	}
1220
1221	spin_lock(&rdi->n_qps_lock);
1222	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1223		spin_unlock(&rdi->n_qps_lock);
1224		ret = -ENOMEM;
1225		goto bail_ip;
1226	}
1227
1228	rdi->n_qps_allocated++;
1229	/*
1230	 * Maintain a busy_jiffies variable that will be added to the timeout
1231	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1232	 * is scaled by the number of rc qps created for the device to reduce
1233	 * the number of timeouts occurring when there is a large number of
1234	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1235	 * The scaling interval is selected based on extensive performance
1236	 * evaluation of targeted workloads.
1237	 */
1238	if (init_attr->qp_type == IB_QPT_RC) {
1239		rdi->n_rc_qps++;
1240		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1241	}
1242	spin_unlock(&rdi->n_qps_lock);
1243
1244	if (qp->ip) {
1245		spin_lock_irq(&rdi->pending_lock);
1246		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1247		spin_unlock_irq(&rdi->pending_lock);
1248	}
1249
1250	return 0;
1251
1252bail_ip:
1253	if (qp->ip)
1254		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1255
1256bail_qpn:
1257	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1258
1259bail_rq_wq:
1260	free_ud_wq_attr(qp);
1261
1262bail_rq_rvt:
1263	rvt_free_rq(&qp->r_rq);
1264
1265bail_driver_priv:
1266	rdi->driver_f.qp_priv_free(rdi, qp);
1267
1268bail_qp:
1269	kfree(qp->s_ack_queue);
1270	kfree(qp->r_sg_list);
1271	vfree(swq);
1272	return ret;
1273}
1274
1275/**
1276 * rvt_error_qp - put a QP into the error state
1277 * @qp: the QP to put into the error state
1278 * @err: the receive completion error to signal if a RWQE is active
1279 *
1280 * Flushes both send and receive work queues.
1281 *
1282 * Return: true if last WQE event should be generated.
1283 * The QP r_lock and s_lock should be held and interrupts disabled.
1284 * If we are already in error state, just return.
1285 */
1286int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1287{
1288	struct ib_wc wc;
1289	int ret = 0;
1290	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1291
1292	lockdep_assert_held(&qp->r_lock);
1293	lockdep_assert_held(&qp->s_lock);
1294	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1295		goto bail;
1296
1297	qp->state = IB_QPS_ERR;
1298
1299	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1300		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1301		del_timer(&qp->s_timer);
1302	}
1303
1304	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1305		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1306
1307	rdi->driver_f.notify_error_qp(qp);
1308
1309	/* Schedule the sending tasklet to drain the send work queue. */
1310	if (READ_ONCE(qp->s_last) != qp->s_head)
1311		rdi->driver_f.schedule_send(qp);
1312
1313	rvt_clear_mr_refs(qp, 0);
1314
1315	memset(&wc, 0, sizeof(wc));
1316	wc.qp = &qp->ibqp;
1317	wc.opcode = IB_WC_RECV;
1318
1319	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1320		wc.wr_id = qp->r_wr_id;
1321		wc.status = err;
1322		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1323	}
1324	wc.status = IB_WC_WR_FLUSH_ERR;
1325
1326	if (qp->r_rq.kwq) {
1327		u32 head;
1328		u32 tail;
1329		struct rvt_rwq *wq = NULL;
1330		struct rvt_krwq *kwq = NULL;
1331
1332		spin_lock(&qp->r_rq.kwq->c_lock);
1333		/* qp->ip used to validate if there is a  user buffer mmaped */
1334		if (qp->ip) {
1335			wq = qp->r_rq.wq;
1336			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1337			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1338		} else {
1339			kwq = qp->r_rq.kwq;
1340			head = kwq->head;
1341			tail = kwq->tail;
1342		}
1343		/* sanity check pointers before trusting them */
1344		if (head >= qp->r_rq.size)
1345			head = 0;
1346		if (tail >= qp->r_rq.size)
1347			tail = 0;
1348		while (tail != head) {
1349			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1350			if (++tail >= qp->r_rq.size)
1351				tail = 0;
1352			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1353		}
1354		if (qp->ip)
1355			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1356		else
1357			kwq->tail = tail;
1358		spin_unlock(&qp->r_rq.kwq->c_lock);
1359	} else if (qp->ibqp.event_handler) {
1360		ret = 1;
1361	}
1362
1363bail:
1364	return ret;
1365}
1366EXPORT_SYMBOL(rvt_error_qp);
1367
1368/*
1369 * Put the QP into the hash table.
1370 * The hash table holds a reference to the QP.
1371 */
1372static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1373{
1374	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1375	unsigned long flags;
1376
1377	rvt_get_qp(qp);
1378	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1379
1380	if (qp->ibqp.qp_num <= 1) {
1381		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1382	} else {
1383		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1384
1385		qp->next = rdi->qp_dev->qp_table[n];
1386		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1387		trace_rvt_qpinsert(qp, n);
1388	}
1389
1390	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1391}
1392
1393/**
1394 * rvt_modify_qp - modify the attributes of a queue pair
1395 * @ibqp: the queue pair who's attributes we're modifying
1396 * @attr: the new attributes
1397 * @attr_mask: the mask of attributes to modify
1398 * @udata: user data for libibverbs.so
1399 *
1400 * Return: 0 on success, otherwise returns an errno.
1401 */
1402int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1403		  int attr_mask, struct ib_udata *udata)
1404{
1405	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1406	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1407	enum ib_qp_state cur_state, new_state;
1408	struct ib_event ev;
1409	int lastwqe = 0;
1410	int mig = 0;
1411	int pmtu = 0; /* for gcc warning only */
1412	int opa_ah;
1413
1414	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1415		return -EOPNOTSUPP;
1416
1417	spin_lock_irq(&qp->r_lock);
1418	spin_lock(&qp->s_hlock);
1419	spin_lock(&qp->s_lock);
1420
1421	cur_state = attr_mask & IB_QP_CUR_STATE ?
1422		attr->cur_qp_state : qp->state;
1423	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1424	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1425
1426	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1427				attr_mask))
1428		goto inval;
1429
1430	if (rdi->driver_f.check_modify_qp &&
1431	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1432		goto inval;
1433
1434	if (attr_mask & IB_QP_AV) {
1435		if (opa_ah) {
1436			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1437				opa_get_mcast_base(OPA_MCAST_NR))
1438				goto inval;
1439		} else {
1440			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1441				be16_to_cpu(IB_MULTICAST_LID_BASE))
1442				goto inval;
1443		}
1444
1445		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1446			goto inval;
1447	}
1448
1449	if (attr_mask & IB_QP_ALT_PATH) {
1450		if (opa_ah) {
1451			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1452				opa_get_mcast_base(OPA_MCAST_NR))
1453				goto inval;
1454		} else {
1455			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1456				be16_to_cpu(IB_MULTICAST_LID_BASE))
1457				goto inval;
1458		}
1459
1460		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1461			goto inval;
1462		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1463			goto inval;
1464	}
1465
1466	if (attr_mask & IB_QP_PKEY_INDEX)
1467		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1468			goto inval;
1469
1470	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1471		if (attr->min_rnr_timer > 31)
1472			goto inval;
1473
1474	if (attr_mask & IB_QP_PORT)
1475		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1476		    qp->ibqp.qp_type == IB_QPT_GSI ||
1477		    attr->port_num == 0 ||
1478		    attr->port_num > ibqp->device->phys_port_cnt)
1479			goto inval;
1480
1481	if (attr_mask & IB_QP_DEST_QPN)
1482		if (attr->dest_qp_num > RVT_QPN_MASK)
1483			goto inval;
1484
1485	if (attr_mask & IB_QP_RETRY_CNT)
1486		if (attr->retry_cnt > 7)
1487			goto inval;
1488
1489	if (attr_mask & IB_QP_RNR_RETRY)
1490		if (attr->rnr_retry > 7)
1491			goto inval;
1492
1493	/*
1494	 * Don't allow invalid path_mtu values.  OK to set greater
1495	 * than the active mtu (or even the max_cap, if we have tuned
1496	 * that to a small mtu.  We'll set qp->path_mtu
1497	 * to the lesser of requested attribute mtu and active,
1498	 * for packetizing messages.
1499	 * Note that the QP port has to be set in INIT and MTU in RTR.
1500	 */
1501	if (attr_mask & IB_QP_PATH_MTU) {
1502		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1503		if (pmtu < 0)
1504			goto inval;
1505	}
1506
1507	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1508		if (attr->path_mig_state == IB_MIG_REARM) {
1509			if (qp->s_mig_state == IB_MIG_ARMED)
1510				goto inval;
1511			if (new_state != IB_QPS_RTS)
1512				goto inval;
1513		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1514			if (qp->s_mig_state == IB_MIG_REARM)
1515				goto inval;
1516			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1517				goto inval;
1518			if (qp->s_mig_state == IB_MIG_ARMED)
1519				mig = 1;
1520		} else {
1521			goto inval;
1522		}
1523	}
1524
1525	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1526		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1527			goto inval;
1528
1529	switch (new_state) {
1530	case IB_QPS_RESET:
1531		if (qp->state != IB_QPS_RESET)
1532			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1533		break;
1534
1535	case IB_QPS_RTR:
1536		/* Allow event to re-trigger if QP set to RTR more than once */
1537		qp->r_flags &= ~RVT_R_COMM_EST;
1538		qp->state = new_state;
1539		break;
1540
1541	case IB_QPS_SQD:
1542		qp->s_draining = qp->s_last != qp->s_cur;
1543		qp->state = new_state;
1544		break;
1545
1546	case IB_QPS_SQE:
1547		if (qp->ibqp.qp_type == IB_QPT_RC)
1548			goto inval;
1549		qp->state = new_state;
1550		break;
1551
1552	case IB_QPS_ERR:
1553		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1554		break;
1555
1556	default:
1557		qp->state = new_state;
1558		break;
1559	}
1560
1561	if (attr_mask & IB_QP_PKEY_INDEX)
1562		qp->s_pkey_index = attr->pkey_index;
1563
1564	if (attr_mask & IB_QP_PORT)
1565		qp->port_num = attr->port_num;
1566
1567	if (attr_mask & IB_QP_DEST_QPN)
1568		qp->remote_qpn = attr->dest_qp_num;
1569
1570	if (attr_mask & IB_QP_SQ_PSN) {
1571		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1572		qp->s_psn = qp->s_next_psn;
1573		qp->s_sending_psn = qp->s_next_psn;
1574		qp->s_last_psn = qp->s_next_psn - 1;
1575		qp->s_sending_hpsn = qp->s_last_psn;
1576	}
1577
1578	if (attr_mask & IB_QP_RQ_PSN)
1579		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1580
1581	if (attr_mask & IB_QP_ACCESS_FLAGS)
1582		qp->qp_access_flags = attr->qp_access_flags;
1583
1584	if (attr_mask & IB_QP_AV) {
1585		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1586		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1587		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1588	}
1589
1590	if (attr_mask & IB_QP_ALT_PATH) {
1591		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1592		qp->s_alt_pkey_index = attr->alt_pkey_index;
1593	}
1594
1595	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1596		qp->s_mig_state = attr->path_mig_state;
1597		if (mig) {
1598			qp->remote_ah_attr = qp->alt_ah_attr;
1599			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1600			qp->s_pkey_index = qp->s_alt_pkey_index;
1601		}
1602	}
1603
1604	if (attr_mask & IB_QP_PATH_MTU) {
1605		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1606		qp->log_pmtu = ilog2(qp->pmtu);
1607	}
1608
1609	if (attr_mask & IB_QP_RETRY_CNT) {
1610		qp->s_retry_cnt = attr->retry_cnt;
1611		qp->s_retry = attr->retry_cnt;
1612	}
1613
1614	if (attr_mask & IB_QP_RNR_RETRY) {
1615		qp->s_rnr_retry_cnt = attr->rnr_retry;
1616		qp->s_rnr_retry = attr->rnr_retry;
1617	}
1618
1619	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1620		qp->r_min_rnr_timer = attr->min_rnr_timer;
1621
1622	if (attr_mask & IB_QP_TIMEOUT) {
1623		qp->timeout = attr->timeout;
1624		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1625	}
1626
1627	if (attr_mask & IB_QP_QKEY)
1628		qp->qkey = attr->qkey;
1629
1630	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1631		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1632
1633	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1634		qp->s_max_rd_atomic = attr->max_rd_atomic;
1635
1636	if (rdi->driver_f.modify_qp)
1637		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1638
1639	spin_unlock(&qp->s_lock);
1640	spin_unlock(&qp->s_hlock);
1641	spin_unlock_irq(&qp->r_lock);
1642
1643	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1644		rvt_insert_qp(rdi, qp);
1645
1646	if (lastwqe) {
1647		ev.device = qp->ibqp.device;
1648		ev.element.qp = &qp->ibqp;
1649		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1650		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1651	}
1652	if (mig) {
1653		ev.device = qp->ibqp.device;
1654		ev.element.qp = &qp->ibqp;
1655		ev.event = IB_EVENT_PATH_MIG;
1656		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1657	}
1658	return 0;
1659
1660inval:
1661	spin_unlock(&qp->s_lock);
1662	spin_unlock(&qp->s_hlock);
1663	spin_unlock_irq(&qp->r_lock);
1664	return -EINVAL;
1665}
1666
1667/**
1668 * rvt_destroy_qp - destroy a queue pair
1669 * @ibqp: the queue pair to destroy
1670 * @udata: unused by the driver
1671 *
1672 * Note that this can be called while the QP is actively sending or
1673 * receiving!
1674 *
1675 * Return: 0 on success.
1676 */
1677int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1678{
1679	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1680	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1681
1682	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1683
1684	wait_event(qp->wait, !atomic_read(&qp->refcount));
1685	/* qpn is now available for use again */
1686	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1687
1688	spin_lock(&rdi->n_qps_lock);
1689	rdi->n_qps_allocated--;
1690	if (qp->ibqp.qp_type == IB_QPT_RC) {
1691		rdi->n_rc_qps--;
1692		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1693	}
1694	spin_unlock(&rdi->n_qps_lock);
1695
1696	if (qp->ip)
1697		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1698	kvfree(qp->r_rq.kwq);
1699	rdi->driver_f.qp_priv_free(rdi, qp);
1700	kfree(qp->s_ack_queue);
1701	kfree(qp->r_sg_list);
1702	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1703	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1704	free_ud_wq_attr(qp);
1705	vfree(qp->s_wq);
1706	return 0;
1707}
1708
1709/**
1710 * rvt_query_qp - query an ipbq
1711 * @ibqp: IB qp to query
1712 * @attr: attr struct to fill in
1713 * @attr_mask: attr mask ignored
1714 * @init_attr: struct to fill in
1715 *
1716 * Return: always 0
1717 */
1718int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1719		 int attr_mask, struct ib_qp_init_attr *init_attr)
1720{
1721	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1722	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1723
1724	attr->qp_state = qp->state;
1725	attr->cur_qp_state = attr->qp_state;
1726	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1727	attr->path_mig_state = qp->s_mig_state;
1728	attr->qkey = qp->qkey;
1729	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1730	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1731	attr->dest_qp_num = qp->remote_qpn;
1732	attr->qp_access_flags = qp->qp_access_flags;
1733	attr->cap.max_send_wr = qp->s_size - 1 -
1734		rdi->dparms.reserved_operations;
1735	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1736	attr->cap.max_send_sge = qp->s_max_sge;
1737	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1738	attr->cap.max_inline_data = 0;
1739	attr->ah_attr = qp->remote_ah_attr;
1740	attr->alt_ah_attr = qp->alt_ah_attr;
1741	attr->pkey_index = qp->s_pkey_index;
1742	attr->alt_pkey_index = qp->s_alt_pkey_index;
1743	attr->en_sqd_async_notify = 0;
1744	attr->sq_draining = qp->s_draining;
1745	attr->max_rd_atomic = qp->s_max_rd_atomic;
1746	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1747	attr->min_rnr_timer = qp->r_min_rnr_timer;
1748	attr->port_num = qp->port_num;
1749	attr->timeout = qp->timeout;
1750	attr->retry_cnt = qp->s_retry_cnt;
1751	attr->rnr_retry = qp->s_rnr_retry_cnt;
1752	attr->alt_port_num =
1753		rdma_ah_get_port_num(&qp->alt_ah_attr);
1754	attr->alt_timeout = qp->alt_timeout;
1755
1756	init_attr->event_handler = qp->ibqp.event_handler;
1757	init_attr->qp_context = qp->ibqp.qp_context;
1758	init_attr->send_cq = qp->ibqp.send_cq;
1759	init_attr->recv_cq = qp->ibqp.recv_cq;
1760	init_attr->srq = qp->ibqp.srq;
1761	init_attr->cap = attr->cap;
1762	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1763		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1764	else
1765		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1766	init_attr->qp_type = qp->ibqp.qp_type;
1767	init_attr->port_num = qp->port_num;
1768	return 0;
1769}
1770
1771/**
1772 * rvt_post_recv - post a receive on a QP
1773 * @ibqp: the QP to post the receive on
1774 * @wr: the WR to post
1775 * @bad_wr: the first bad WR is put here
1776 *
1777 * This may be called from interrupt context.
1778 *
1779 * Return: 0 on success otherwise errno
1780 */
1781int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1782		  const struct ib_recv_wr **bad_wr)
1783{
1784	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1785	struct rvt_krwq *wq = qp->r_rq.kwq;
1786	unsigned long flags;
1787	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1788				!qp->ibqp.srq;
1789
1790	/* Check that state is OK to post receive. */
1791	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1792		*bad_wr = wr;
1793		return -EINVAL;
1794	}
1795
1796	for (; wr; wr = wr->next) {
1797		struct rvt_rwqe *wqe;
1798		u32 next;
1799		int i;
1800
1801		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1802			*bad_wr = wr;
1803			return -EINVAL;
1804		}
1805
1806		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1807		next = wq->head + 1;
1808		if (next >= qp->r_rq.size)
1809			next = 0;
1810		if (next == READ_ONCE(wq->tail)) {
1811			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1812			*bad_wr = wr;
1813			return -ENOMEM;
1814		}
1815		if (unlikely(qp_err_flush)) {
1816			struct ib_wc wc;
1817
1818			memset(&wc, 0, sizeof(wc));
1819			wc.qp = &qp->ibqp;
1820			wc.opcode = IB_WC_RECV;
1821			wc.wr_id = wr->wr_id;
1822			wc.status = IB_WC_WR_FLUSH_ERR;
1823			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1824		} else {
1825			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1826			wqe->wr_id = wr->wr_id;
1827			wqe->num_sge = wr->num_sge;
1828			for (i = 0; i < wr->num_sge; i++) {
1829				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1830				wqe->sg_list[i].length = wr->sg_list[i].length;
1831				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1832			}
1833			/*
1834			 * Make sure queue entry is written
1835			 * before the head index.
1836			 */
1837			smp_store_release(&wq->head, next);
1838		}
1839		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1840	}
1841	return 0;
1842}
1843
1844/**
1845 * rvt_qp_valid_operation - validate post send wr request
1846 * @qp: the qp
1847 * @post_parms: the post send table for the driver
1848 * @wr: the work request
1849 *
1850 * The routine validates the operation based on the
1851 * validation table an returns the length of the operation
1852 * which can extend beyond the ib_send_bw.  Operation
1853 * dependent flags key atomic operation validation.
1854 *
1855 * There is an exception for UD qps that validates the pd and
1856 * overrides the length to include the additional UD specific
1857 * length.
1858 *
1859 * Returns a negative error or the length of the work request
1860 * for building the swqe.
1861 */
1862static inline int rvt_qp_valid_operation(
1863	struct rvt_qp *qp,
1864	const struct rvt_operation_params *post_parms,
1865	const struct ib_send_wr *wr)
1866{
1867	int len;
1868
1869	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1870		return -EINVAL;
1871	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1872		return -EINVAL;
1873	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1874	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1875		return -EINVAL;
1876	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1877	    (wr->num_sge == 0 ||
1878	     wr->sg_list[0].length < sizeof(u64) ||
1879	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1880		return -EINVAL;
1881	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1882	    !qp->s_max_rd_atomic)
1883		return -EINVAL;
1884	len = post_parms[wr->opcode].length;
1885	/* UD specific */
1886	if (qp->ibqp.qp_type != IB_QPT_UC &&
1887	    qp->ibqp.qp_type != IB_QPT_RC) {
1888		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1889			return -EINVAL;
1890		len = sizeof(struct ib_ud_wr);
1891	}
1892	return len;
1893}
1894
1895/**
1896 * rvt_qp_is_avail - determine queue capacity
1897 * @qp: the qp
1898 * @rdi: the rdmavt device
1899 * @reserved_op: is reserved operation
1900 *
1901 * This assumes the s_hlock is held but the s_last
1902 * qp variable is uncontrolled.
1903 *
1904 * For non reserved operations, the qp->s_avail
1905 * may be changed.
1906 *
1907 * The return value is zero or a -ENOMEM.
1908 */
1909static inline int rvt_qp_is_avail(
1910	struct rvt_qp *qp,
1911	struct rvt_dev_info *rdi,
1912	bool reserved_op)
1913{
1914	u32 slast;
1915	u32 avail;
1916	u32 reserved_used;
1917
1918	/* see rvt_qp_wqe_unreserve() */
1919	smp_mb__before_atomic();
1920	if (unlikely(reserved_op)) {
1921		/* see rvt_qp_wqe_unreserve() */
1922		reserved_used = atomic_read(&qp->s_reserved_used);
1923		if (reserved_used >= rdi->dparms.reserved_operations)
1924			return -ENOMEM;
1925		return 0;
1926	}
1927	/* non-reserved operations */
1928	if (likely(qp->s_avail))
1929		return 0;
1930	/* See rvt_qp_complete_swqe() */
1931	slast = smp_load_acquire(&qp->s_last);
1932	if (qp->s_head >= slast)
1933		avail = qp->s_size - (qp->s_head - slast);
1934	else
1935		avail = slast - qp->s_head;
1936
1937	reserved_used = atomic_read(&qp->s_reserved_used);
1938	avail =  avail - 1 -
1939		(rdi->dparms.reserved_operations - reserved_used);
1940	/* insure we don't assign a negative s_avail */
1941	if ((s32)avail <= 0)
1942		return -ENOMEM;
1943	qp->s_avail = avail;
1944	if (WARN_ON(qp->s_avail >
1945		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1946		rvt_pr_err(rdi,
1947			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1948			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1949			   qp->s_head, qp->s_tail, qp->s_cur,
1950			   qp->s_acked, qp->s_last);
1951	return 0;
1952}
1953
1954/**
1955 * rvt_post_one_wr - post one RC, UC, or UD send work request
1956 * @qp: the QP to post on
1957 * @wr: the work request to send
1958 * @call_send: kick the send engine into gear
1959 */
1960static int rvt_post_one_wr(struct rvt_qp *qp,
1961			   const struct ib_send_wr *wr,
1962			   bool *call_send)
1963{
1964	struct rvt_swqe *wqe;
1965	u32 next;
1966	int i;
1967	int j;
1968	int acc;
1969	struct rvt_lkey_table *rkt;
1970	struct rvt_pd *pd;
1971	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1972	u8 log_pmtu;
1973	int ret;
1974	size_t cplen;
1975	bool reserved_op;
1976	int local_ops_delayed = 0;
1977
1978	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1979
1980	/* IB spec says that num_sge == 0 is OK. */
1981	if (unlikely(wr->num_sge > qp->s_max_sge))
1982		return -EINVAL;
1983
1984	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1985	if (ret < 0)
1986		return ret;
1987	cplen = ret;
1988
1989	/*
1990	 * Local operations include fast register and local invalidate.
1991	 * Fast register needs to be processed immediately because the
1992	 * registered lkey may be used by following work requests and the
1993	 * lkey needs to be valid at the time those requests are posted.
1994	 * Local invalidate can be processed immediately if fencing is
1995	 * not required and no previous local invalidate ops are pending.
1996	 * Signaled local operations that have been processed immediately
1997	 * need to have requests with "completion only" flags set posted
1998	 * to the send queue in order to generate completions.
1999	 */
2000	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2001		switch (wr->opcode) {
2002		case IB_WR_REG_MR:
2003			ret = rvt_fast_reg_mr(qp,
2004					      reg_wr(wr)->mr,
2005					      reg_wr(wr)->key,
2006					      reg_wr(wr)->access);
2007			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2008				return ret;
2009			break;
2010		case IB_WR_LOCAL_INV:
2011			if ((wr->send_flags & IB_SEND_FENCE) ||
2012			    atomic_read(&qp->local_ops_pending)) {
2013				local_ops_delayed = 1;
2014			} else {
2015				ret = rvt_invalidate_rkey(
2016					qp, wr->ex.invalidate_rkey);
2017				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2018					return ret;
2019			}
2020			break;
2021		default:
2022			return -EINVAL;
2023		}
2024	}
2025
2026	reserved_op = rdi->post_parms[wr->opcode].flags &
2027			RVT_OPERATION_USE_RESERVE;
2028	/* check for avail */
2029	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2030	if (ret)
2031		return ret;
2032	next = qp->s_head + 1;
2033	if (next >= qp->s_size)
2034		next = 0;
2035
2036	rkt = &rdi->lkey_table;
2037	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2038	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2039
2040	/* cplen has length from above */
2041	memcpy(&wqe->ud_wr, wr, cplen);
2042
2043	wqe->length = 0;
2044	j = 0;
2045	if (wr->num_sge) {
2046		struct rvt_sge *last_sge = NULL;
2047
2048		acc = wr->opcode >= IB_WR_RDMA_READ ?
2049			IB_ACCESS_LOCAL_WRITE : 0;
2050		for (i = 0; i < wr->num_sge; i++) {
2051			u32 length = wr->sg_list[i].length;
2052
2053			if (length == 0)
2054				continue;
2055			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2056					  &wr->sg_list[i], acc);
2057			if (unlikely(ret < 0))
2058				goto bail_inval_free;
2059			wqe->length += length;
2060			if (ret)
2061				last_sge = &wqe->sg_list[j];
2062			j += ret;
2063		}
2064		wqe->wr.num_sge = j;
2065	}
2066
2067	/*
2068	 * Calculate and set SWQE PSN values prior to handing it off
2069	 * to the driver's check routine. This give the driver the
2070	 * opportunity to adjust PSN values based on internal checks.
2071	 */
2072	log_pmtu = qp->log_pmtu;
2073	if (qp->allowed_ops == IB_OPCODE_UD) {
2074		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2075
2076		log_pmtu = ah->log_pmtu;
2077		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2078	}
2079
2080	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2081		if (local_ops_delayed)
2082			atomic_inc(&qp->local_ops_pending);
2083		else
2084			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2085		wqe->ssn = 0;
2086		wqe->psn = 0;
2087		wqe->lpsn = 0;
2088	} else {
2089		wqe->ssn = qp->s_ssn++;
2090		wqe->psn = qp->s_next_psn;
2091		wqe->lpsn = wqe->psn +
2092				(wqe->length ?
2093					((wqe->length - 1) >> log_pmtu) :
2094					0);
2095	}
2096
2097	/* general part of wqe valid - allow for driver checks */
2098	if (rdi->driver_f.setup_wqe) {
2099		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2100		if (ret < 0)
2101			goto bail_inval_free_ref;
2102	}
2103
2104	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2105		qp->s_next_psn = wqe->lpsn + 1;
2106
2107	if (unlikely(reserved_op)) {
2108		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2109		rvt_qp_wqe_reserve(qp, wqe);
2110	} else {
2111		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2112		qp->s_avail--;
2113	}
2114	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2115	smp_wmb(); /* see request builders */
2116	qp->s_head = next;
2117
2118	return 0;
2119
2120bail_inval_free_ref:
2121	if (qp->allowed_ops == IB_OPCODE_UD)
2122		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2123bail_inval_free:
2124	/* release mr holds */
2125	while (j) {
2126		struct rvt_sge *sge = &wqe->sg_list[--j];
2127
2128		rvt_put_mr(sge->mr);
2129	}
2130	return ret;
2131}
2132
2133/**
2134 * rvt_post_send - post a send on a QP
2135 * @ibqp: the QP to post the send on
2136 * @wr: the list of work requests to post
2137 * @bad_wr: the first bad WR is put here
2138 *
2139 * This may be called from interrupt context.
2140 *
2141 * Return: 0 on success else errno
2142 */
2143int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2144		  const struct ib_send_wr **bad_wr)
2145{
2146	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2147	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2148	unsigned long flags = 0;
2149	bool call_send;
2150	unsigned nreq = 0;
2151	int err = 0;
2152
2153	spin_lock_irqsave(&qp->s_hlock, flags);
2154
2155	/*
2156	 * Ensure QP state is such that we can send. If not bail out early,
2157	 * there is no need to do this every time we post a send.
2158	 */
2159	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2160		spin_unlock_irqrestore(&qp->s_hlock, flags);
2161		return -EINVAL;
2162	}
2163
2164	/*
2165	 * If the send queue is empty, and we only have a single WR then just go
2166	 * ahead and kick the send engine into gear. Otherwise we will always
2167	 * just schedule the send to happen later.
2168	 */
2169	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2170
2171	for (; wr; wr = wr->next) {
2172		err = rvt_post_one_wr(qp, wr, &call_send);
2173		if (unlikely(err)) {
2174			*bad_wr = wr;
2175			goto bail;
2176		}
2177		nreq++;
2178	}
2179bail:
2180	spin_unlock_irqrestore(&qp->s_hlock, flags);
2181	if (nreq) {
2182		/*
2183		 * Only call do_send if there is exactly one packet, and the
2184		 * driver said it was ok.
2185		 */
2186		if (nreq == 1 && call_send)
2187			rdi->driver_f.do_send(qp);
2188		else
2189			rdi->driver_f.schedule_send_no_lock(qp);
2190	}
2191	return err;
2192}
2193
2194/**
2195 * rvt_post_srq_recv - post a receive on a shared receive queue
2196 * @ibsrq: the SRQ to post the receive on
2197 * @wr: the list of work requests to post
2198 * @bad_wr: A pointer to the first WR to cause a problem is put here
2199 *
2200 * This may be called from interrupt context.
2201 *
2202 * Return: 0 on success else errno
2203 */
2204int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2205		      const struct ib_recv_wr **bad_wr)
2206{
2207	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2208	struct rvt_krwq *wq;
2209	unsigned long flags;
2210
2211	for (; wr; wr = wr->next) {
2212		struct rvt_rwqe *wqe;
2213		u32 next;
2214		int i;
2215
2216		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2217			*bad_wr = wr;
2218			return -EINVAL;
2219		}
2220
2221		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2222		wq = srq->rq.kwq;
2223		next = wq->head + 1;
2224		if (next >= srq->rq.size)
2225			next = 0;
2226		if (next == READ_ONCE(wq->tail)) {
2227			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2228			*bad_wr = wr;
2229			return -ENOMEM;
2230		}
2231
2232		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2233		wqe->wr_id = wr->wr_id;
2234		wqe->num_sge = wr->num_sge;
2235		for (i = 0; i < wr->num_sge; i++) {
2236			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2237			wqe->sg_list[i].length = wr->sg_list[i].length;
2238			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2239		}
2240		/* Make sure queue entry is written before the head index. */
2241		smp_store_release(&wq->head, next);
2242		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2243	}
2244	return 0;
2245}
2246
2247/*
2248 * rvt used the internal kernel struct as part of its ABI, for now make sure
2249 * the kernel struct does not change layout. FIXME: rvt should never cast the
2250 * user struct to a kernel struct.
2251 */
2252static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2253{
2254	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2255		     offsetof(struct rvt_wqe_sge, addr));
2256	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2257		     offsetof(struct rvt_wqe_sge, length));
2258	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2259		     offsetof(struct rvt_wqe_sge, lkey));
2260	return (struct ib_sge *)sge;
2261}
2262
2263/*
2264 * Validate a RWQE and fill in the SGE state.
2265 * Return 1 if OK.
2266 */
2267static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2268{
2269	int i, j, ret;
2270	struct ib_wc wc;
2271	struct rvt_lkey_table *rkt;
2272	struct rvt_pd *pd;
2273	struct rvt_sge_state *ss;
2274	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2275
2276	rkt = &rdi->lkey_table;
2277	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2278	ss = &qp->r_sge;
2279	ss->sg_list = qp->r_sg_list;
2280	qp->r_len = 0;
2281	for (i = j = 0; i < wqe->num_sge; i++) {
2282		if (wqe->sg_list[i].length == 0)
2283			continue;
2284		/* Check LKEY */
2285		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2286				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2287				  IB_ACCESS_LOCAL_WRITE);
2288		if (unlikely(ret <= 0))
2289			goto bad_lkey;
2290		qp->r_len += wqe->sg_list[i].length;
2291		j++;
2292	}
2293	ss->num_sge = j;
2294	ss->total_len = qp->r_len;
2295	return 1;
2296
2297bad_lkey:
2298	while (j) {
2299		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2300
2301		rvt_put_mr(sge->mr);
2302	}
2303	ss->num_sge = 0;
2304	memset(&wc, 0, sizeof(wc));
2305	wc.wr_id = wqe->wr_id;
2306	wc.status = IB_WC_LOC_PROT_ERR;
2307	wc.opcode = IB_WC_RECV;
2308	wc.qp = &qp->ibqp;
2309	/* Signal solicited completion event. */
2310	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2311	return 0;
2312}
2313
2314/**
2315 * get_rvt_head - get head indices of the circular buffer
2316 * @rq: data structure for request queue entry
2317 * @ip: the QP
2318 *
2319 * Return - head index value
2320 */
2321static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2322{
2323	u32 head;
2324
2325	if (ip)
2326		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2327	else
2328		head = rq->kwq->head;
2329
2330	return head;
2331}
2332
2333/**
2334 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2335 * @qp: the QP
2336 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2337 *
2338 * Return -1 if there is a local error, 0 if no RWQE is available,
2339 * otherwise return 1.
2340 *
2341 * Can be called from interrupt level.
2342 */
2343int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2344{
2345	unsigned long flags;
2346	struct rvt_rq *rq;
2347	struct rvt_krwq *kwq = NULL;
2348	struct rvt_rwq *wq;
2349	struct rvt_srq *srq;
2350	struct rvt_rwqe *wqe;
2351	void (*handler)(struct ib_event *, void *);
2352	u32 tail;
2353	u32 head;
2354	int ret;
2355	void *ip = NULL;
2356
2357	if (qp->ibqp.srq) {
2358		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2359		handler = srq->ibsrq.event_handler;
2360		rq = &srq->rq;
2361		ip = srq->ip;
2362	} else {
2363		srq = NULL;
2364		handler = NULL;
2365		rq = &qp->r_rq;
2366		ip = qp->ip;
2367	}
2368
2369	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2370	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2371		ret = 0;
2372		goto unlock;
2373	}
2374	kwq = rq->kwq;
2375	if (ip) {
2376		wq = rq->wq;
2377		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2378	} else {
2379		tail = kwq->tail;
2380	}
2381
2382	/* Validate tail before using it since it is user writable. */
2383	if (tail >= rq->size)
2384		tail = 0;
2385
2386	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2387		head = get_rvt_head(rq, ip);
2388		kwq->count = rvt_get_rq_count(rq, head, tail);
2389	}
2390	if (unlikely(kwq->count == 0)) {
2391		ret = 0;
2392		goto unlock;
2393	}
2394	/* Make sure entry is read after the count is read. */
2395	smp_rmb();
2396	wqe = rvt_get_rwqe_ptr(rq, tail);
2397	/*
2398	 * Even though we update the tail index in memory, the verbs
2399	 * consumer is not supposed to post more entries until a
2400	 * completion is generated.
2401	 */
2402	if (++tail >= rq->size)
2403		tail = 0;
2404	if (ip)
2405		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2406	else
2407		kwq->tail = tail;
2408	if (!wr_id_only && !init_sge(qp, wqe)) {
2409		ret = -1;
2410		goto unlock;
2411	}
2412	qp->r_wr_id = wqe->wr_id;
2413
2414	kwq->count--;
2415	ret = 1;
2416	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2417	if (handler) {
2418		/*
2419		 * Validate head pointer value and compute
2420		 * the number of remaining WQEs.
2421		 */
2422		if (kwq->count < srq->limit) {
2423			kwq->count =
2424				rvt_get_rq_count(rq,
2425						 get_rvt_head(rq, ip), tail);
2426			if (kwq->count < srq->limit) {
2427				struct ib_event ev;
2428
2429				srq->limit = 0;
2430				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2431				ev.device = qp->ibqp.device;
2432				ev.element.srq = qp->ibqp.srq;
2433				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2434				handler(&ev, srq->ibsrq.srq_context);
2435				goto bail;
2436			}
2437		}
2438	}
2439unlock:
2440	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2441bail:
2442	return ret;
2443}
2444EXPORT_SYMBOL(rvt_get_rwqe);
2445
2446/**
2447 * rvt_comm_est - handle trap with QP established
2448 * @qp: the QP
2449 */
2450void rvt_comm_est(struct rvt_qp *qp)
2451{
2452	qp->r_flags |= RVT_R_COMM_EST;
2453	if (qp->ibqp.event_handler) {
2454		struct ib_event ev;
2455
2456		ev.device = qp->ibqp.device;
2457		ev.element.qp = &qp->ibqp;
2458		ev.event = IB_EVENT_COMM_EST;
2459		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2460	}
2461}
2462EXPORT_SYMBOL(rvt_comm_est);
2463
2464void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2465{
2466	unsigned long flags;
2467	int lastwqe;
2468
2469	spin_lock_irqsave(&qp->s_lock, flags);
2470	lastwqe = rvt_error_qp(qp, err);
2471	spin_unlock_irqrestore(&qp->s_lock, flags);
2472
2473	if (lastwqe) {
2474		struct ib_event ev;
2475
2476		ev.device = qp->ibqp.device;
2477		ev.element.qp = &qp->ibqp;
2478		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2479		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2480	}
2481}
2482EXPORT_SYMBOL(rvt_rc_error);
2483
2484/*
2485 *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2486 *  @index - the index
2487 *  return usec from an index into ib_rvt_rnr_table
2488 */
2489unsigned long rvt_rnr_tbl_to_usec(u32 index)
2490{
2491	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2492}
2493EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2494
2495static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2496{
2497	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2498				  IB_AETH_CREDIT_MASK];
2499}
2500
2501/*
2502 *  rvt_add_retry_timer_ext - add/start a retry timer
2503 *  @qp - the QP
2504 *  @shift - timeout shift to wait for multiple packets
2505 *  add a retry timer on the QP
2506 */
2507void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2508{
2509	struct ib_qp *ibqp = &qp->ibqp;
2510	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2511
2512	lockdep_assert_held(&qp->s_lock);
2513	qp->s_flags |= RVT_S_TIMER;
2514       /* 4.096 usec. * (1 << qp->timeout) */
2515	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2516			      (qp->timeout_jiffies << shift);
2517	add_timer(&qp->s_timer);
2518}
2519EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2520
2521/**
2522 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2523 * @qp: the QP
2524 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2525 */
2526void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2527{
2528	u32 to;
2529
2530	lockdep_assert_held(&qp->s_lock);
2531	qp->s_flags |= RVT_S_WAIT_RNR;
2532	to = rvt_aeth_to_usec(aeth);
2533	trace_rvt_rnrnak_add(qp, to);
2534	hrtimer_start(&qp->s_rnr_timer,
2535		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2536}
2537EXPORT_SYMBOL(rvt_add_rnr_timer);
2538
2539/**
2540 * rvt_stop_rc_timers - stop all timers
2541 * @qp: the QP
2542 * stop any pending timers
2543 */
2544void rvt_stop_rc_timers(struct rvt_qp *qp)
2545{
2546	lockdep_assert_held(&qp->s_lock);
2547	/* Remove QP from all timers */
2548	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2549		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2550		del_timer(&qp->s_timer);
2551		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2552	}
2553}
2554EXPORT_SYMBOL(rvt_stop_rc_timers);
2555
2556/**
2557 * rvt_stop_rnr_timer - stop an rnr timer
2558 * @qp: the QP
2559 *
2560 * stop an rnr timer and return if the timer
2561 * had been pending.
2562 */
2563static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2564{
2565	lockdep_assert_held(&qp->s_lock);
2566	/* Remove QP from rnr timer */
2567	if (qp->s_flags & RVT_S_WAIT_RNR) {
2568		qp->s_flags &= ~RVT_S_WAIT_RNR;
2569		trace_rvt_rnrnak_stop(qp, 0);
2570	}
2571}
2572
2573/**
2574 * rvt_del_timers_sync - wait for any timeout routines to exit
2575 * @qp: the QP
2576 */
2577void rvt_del_timers_sync(struct rvt_qp *qp)
2578{
2579	del_timer_sync(&qp->s_timer);
2580	hrtimer_cancel(&qp->s_rnr_timer);
2581}
2582EXPORT_SYMBOL(rvt_del_timers_sync);
2583
2584/*
2585 * This is called from s_timer for missing responses.
2586 */
2587static void rvt_rc_timeout(struct timer_list *t)
2588{
2589	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2590	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2591	unsigned long flags;
2592
2593	spin_lock_irqsave(&qp->r_lock, flags);
2594	spin_lock(&qp->s_lock);
2595	if (qp->s_flags & RVT_S_TIMER) {
2596		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2597
2598		qp->s_flags &= ~RVT_S_TIMER;
2599		rvp->n_rc_timeouts++;
2600		del_timer(&qp->s_timer);
2601		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2602		if (rdi->driver_f.notify_restart_rc)
2603			rdi->driver_f.notify_restart_rc(qp,
2604							qp->s_last_psn + 1,
2605							1);
2606		rdi->driver_f.schedule_send(qp);
2607	}
2608	spin_unlock(&qp->s_lock);
2609	spin_unlock_irqrestore(&qp->r_lock, flags);
2610}
2611
2612/*
2613 * This is called from s_timer for RNR timeouts.
2614 */
2615enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2616{
2617	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2618	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2619	unsigned long flags;
2620
2621	spin_lock_irqsave(&qp->s_lock, flags);
2622	rvt_stop_rnr_timer(qp);
2623	trace_rvt_rnrnak_timeout(qp, 0);
2624	rdi->driver_f.schedule_send(qp);
2625	spin_unlock_irqrestore(&qp->s_lock, flags);
2626	return HRTIMER_NORESTART;
2627}
2628EXPORT_SYMBOL(rvt_rc_rnr_retry);
2629
2630/**
2631 * rvt_qp_iter_init - initial for QP iteration
2632 * @rdi: rvt devinfo
2633 * @v: u64 value
2634 * @cb: user-defined callback
2635 *
2636 * This returns an iterator suitable for iterating QPs
2637 * in the system.
2638 *
2639 * The @cb is a user-defined callback and @v is a 64-bit
2640 * value passed to and relevant for processing in the
2641 * @cb.  An example use case would be to alter QP processing
2642 * based on criteria not part of the rvt_qp.
2643 *
2644 * Use cases that require memory allocation to succeed
2645 * must preallocate appropriately.
2646 *
2647 * Return: a pointer to an rvt_qp_iter or NULL
2648 */
2649struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2650				     u64 v,
2651				     void (*cb)(struct rvt_qp *qp, u64 v))
2652{
2653	struct rvt_qp_iter *i;
2654
2655	i = kzalloc(sizeof(*i), GFP_KERNEL);
2656	if (!i)
2657		return NULL;
2658
2659	i->rdi = rdi;
2660	/* number of special QPs (SMI/GSI) for device */
2661	i->specials = rdi->ibdev.phys_port_cnt * 2;
2662	i->v = v;
2663	i->cb = cb;
2664
2665	return i;
2666}
2667EXPORT_SYMBOL(rvt_qp_iter_init);
2668
2669/**
2670 * rvt_qp_iter_next - return the next QP in iter
2671 * @iter: the iterator
2672 *
2673 * Fine grained QP iterator suitable for use
2674 * with debugfs seq_file mechanisms.
2675 *
2676 * Updates iter->qp with the current QP when the return
2677 * value is 0.
2678 *
2679 * Return: 0 - iter->qp is valid 1 - no more QPs
2680 */
2681int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2682	__must_hold(RCU)
2683{
2684	int n = iter->n;
2685	int ret = 1;
2686	struct rvt_qp *pqp = iter->qp;
2687	struct rvt_qp *qp;
2688	struct rvt_dev_info *rdi = iter->rdi;
2689
2690	/*
2691	 * The approach is to consider the special qps
2692	 * as additional table entries before the
2693	 * real hash table.  Since the qp code sets
2694	 * the qp->next hash link to NULL, this works just fine.
2695	 *
2696	 * iter->specials is 2 * # ports
2697	 *
2698	 * n = 0..iter->specials is the special qp indices
2699	 *
2700	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2701	 * the potential hash bucket entries
2702	 *
2703	 */
2704	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2705		if (pqp) {
2706			qp = rcu_dereference(pqp->next);
2707		} else {
2708			if (n < iter->specials) {
2709				struct rvt_ibport *rvp;
2710				int pidx;
2711
2712				pidx = n % rdi->ibdev.phys_port_cnt;
2713				rvp = rdi->ports[pidx];
2714				qp = rcu_dereference(rvp->qp[n & 1]);
2715			} else {
2716				qp = rcu_dereference(
2717					rdi->qp_dev->qp_table[
2718						(n - iter->specials)]);
2719			}
2720		}
2721		pqp = qp;
2722		if (qp) {
2723			iter->qp = qp;
2724			iter->n = n;
2725			return 0;
2726		}
2727	}
2728	return ret;
2729}
2730EXPORT_SYMBOL(rvt_qp_iter_next);
2731
2732/**
2733 * rvt_qp_iter - iterate all QPs
2734 * @rdi: rvt devinfo
2735 * @v: a 64-bit value
2736 * @cb: a callback
2737 *
2738 * This provides a way for iterating all QPs.
2739 *
2740 * The @cb is a user-defined callback and @v is a 64-bit
2741 * value passed to and relevant for processing in the
2742 * cb.  An example use case would be to alter QP processing
2743 * based on criteria not part of the rvt_qp.
2744 *
2745 * The code has an internal iterator to simplify
2746 * non seq_file use cases.
2747 */
2748void rvt_qp_iter(struct rvt_dev_info *rdi,
2749		 u64 v,
2750		 void (*cb)(struct rvt_qp *qp, u64 v))
2751{
2752	int ret;
2753	struct rvt_qp_iter i = {
2754		.rdi = rdi,
2755		.specials = rdi->ibdev.phys_port_cnt * 2,
2756		.v = v,
2757		.cb = cb
2758	};
2759
2760	rcu_read_lock();
2761	do {
2762		ret = rvt_qp_iter_next(&i);
2763		if (!ret) {
2764			rvt_get_qp(i.qp);
2765			rcu_read_unlock();
2766			i.cb(i.qp, i.v);
2767			rcu_read_lock();
2768			rvt_put_qp(i.qp);
2769		}
2770	} while (!ret);
2771	rcu_read_unlock();
2772}
2773EXPORT_SYMBOL(rvt_qp_iter);
2774
2775/*
2776 * This should be called with s_lock and r_lock held.
2777 */
2778void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2779		       enum ib_wc_status status)
2780{
2781	u32 old_last, last;
2782	struct rvt_dev_info *rdi;
2783
2784	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2785		return;
2786	rdi = ib_to_rvt(qp->ibqp.device);
2787
2788	old_last = qp->s_last;
2789	trace_rvt_qp_send_completion(qp, wqe, old_last);
2790	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2791				    status);
2792	if (qp->s_acked == old_last)
2793		qp->s_acked = last;
2794	if (qp->s_cur == old_last)
2795		qp->s_cur = last;
2796	if (qp->s_tail == old_last)
2797		qp->s_tail = last;
2798	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2799		qp->s_draining = 0;
2800}
2801EXPORT_SYMBOL(rvt_send_complete);
2802
2803/**
2804 * rvt_copy_sge - copy data to SGE memory
2805 * @qp: associated QP
2806 * @ss: the SGE state
2807 * @data: the data to copy
2808 * @length: the length of the data
2809 * @release: boolean to release MR
2810 * @copy_last: do a separate copy of the last 8 bytes
2811 */
2812void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2813		  void *data, u32 length,
2814		  bool release, bool copy_last)
2815{
2816	struct rvt_sge *sge = &ss->sge;
2817	int i;
2818	bool in_last = false;
2819	bool cacheless_copy = false;
2820	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2821	struct rvt_wss *wss = rdi->wss;
2822	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2823
2824	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2825		cacheless_copy = length >= PAGE_SIZE;
2826	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2827		if (length >= PAGE_SIZE) {
2828			/*
2829			 * NOTE: this *assumes*:
2830			 * o The first vaddr is the dest.
2831			 * o If multiple pages, then vaddr is sequential.
2832			 */
2833			wss_insert(wss, sge->vaddr);
2834			if (length >= (2 * PAGE_SIZE))
2835				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2836
2837			cacheless_copy = wss_exceeds_threshold(wss);
2838		} else {
2839			wss_advance_clean_counter(wss);
2840		}
2841	}
2842
2843	if (copy_last) {
2844		if (length > 8) {
2845			length -= 8;
2846		} else {
2847			copy_last = false;
2848			in_last = true;
2849		}
2850	}
2851
2852again:
2853	while (length) {
2854		u32 len = rvt_get_sge_length(sge, length);
2855
2856		WARN_ON_ONCE(len == 0);
2857		if (unlikely(in_last)) {
2858			/* enforce byte transfer ordering */
2859			for (i = 0; i < len; i++)
2860				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2861		} else if (cacheless_copy) {
2862			cacheless_memcpy(sge->vaddr, data, len);
2863		} else {
2864			memcpy(sge->vaddr, data, len);
2865		}
2866		rvt_update_sge(ss, len, release);
2867		data += len;
2868		length -= len;
2869	}
2870
2871	if (copy_last) {
2872		copy_last = false;
2873		in_last = true;
2874		length = 8;
2875		goto again;
2876	}
2877}
2878EXPORT_SYMBOL(rvt_copy_sge);
2879
2880static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2881					  struct rvt_qp *sqp)
2882{
2883	rvp->n_pkt_drops++;
2884	/*
2885	 * For RC, the requester would timeout and retry so
2886	 * shortcut the timeouts and just signal too many retries.
2887	 */
2888	return sqp->ibqp.qp_type == IB_QPT_RC ?
2889		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2890}
2891
2892/**
2893 * rvt_ruc_loopback - handle UC and RC loopback requests
2894 * @sqp: the sending QP
2895 *
2896 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2897 * Note that although we are single threaded due to the send engine, we still
2898 * have to protect against post_send().  We don't have to worry about
2899 * receive interrupts since this is a connected protocol and all packets
2900 * will pass through here.
2901 */
2902void rvt_ruc_loopback(struct rvt_qp *sqp)
2903{
2904	struct rvt_ibport *rvp =  NULL;
2905	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2906	struct rvt_qp *qp;
2907	struct rvt_swqe *wqe;
2908	struct rvt_sge *sge;
2909	unsigned long flags;
2910	struct ib_wc wc;
2911	u64 sdata;
2912	atomic64_t *maddr;
2913	enum ib_wc_status send_status;
2914	bool release;
2915	int ret;
2916	bool copy_last = false;
2917	int local_ops = 0;
2918
2919	rcu_read_lock();
2920	rvp = rdi->ports[sqp->port_num - 1];
2921
2922	/*
2923	 * Note that we check the responder QP state after
2924	 * checking the requester's state.
2925	 */
2926
2927	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2928			    sqp->remote_qpn);
2929
2930	spin_lock_irqsave(&sqp->s_lock, flags);
2931
2932	/* Return if we are already busy processing a work request. */
2933	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2934	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2935		goto unlock;
2936
2937	sqp->s_flags |= RVT_S_BUSY;
2938
2939again:
2940	if (sqp->s_last == READ_ONCE(sqp->s_head))
2941		goto clr_busy;
2942	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2943
2944	/* Return if it is not OK to start a new work request. */
2945	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2946		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2947			goto clr_busy;
2948		/* We are in the error state, flush the work request. */
2949		send_status = IB_WC_WR_FLUSH_ERR;
2950		goto flush_send;
2951	}
2952
2953	/*
2954	 * We can rely on the entry not changing without the s_lock
2955	 * being held until we update s_last.
2956	 * We increment s_cur to indicate s_last is in progress.
2957	 */
2958	if (sqp->s_last == sqp->s_cur) {
2959		if (++sqp->s_cur >= sqp->s_size)
2960			sqp->s_cur = 0;
2961	}
2962	spin_unlock_irqrestore(&sqp->s_lock, flags);
2963
2964	if (!qp) {
2965		send_status = loopback_qp_drop(rvp, sqp);
2966		goto serr_no_r_lock;
2967	}
2968	spin_lock_irqsave(&qp->r_lock, flags);
2969	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2970	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2971		send_status = loopback_qp_drop(rvp, sqp);
2972		goto serr;
2973	}
2974
2975	memset(&wc, 0, sizeof(wc));
2976	send_status = IB_WC_SUCCESS;
2977
2978	release = true;
2979	sqp->s_sge.sge = wqe->sg_list[0];
2980	sqp->s_sge.sg_list = wqe->sg_list + 1;
2981	sqp->s_sge.num_sge = wqe->wr.num_sge;
2982	sqp->s_len = wqe->length;
2983	switch (wqe->wr.opcode) {
2984	case IB_WR_REG_MR:
2985		goto send_comp;
2986
2987	case IB_WR_LOCAL_INV:
2988		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2989			if (rvt_invalidate_rkey(sqp,
2990						wqe->wr.ex.invalidate_rkey))
2991				send_status = IB_WC_LOC_PROT_ERR;
2992			local_ops = 1;
2993		}
2994		goto send_comp;
2995
2996	case IB_WR_SEND_WITH_INV:
2997	case IB_WR_SEND_WITH_IMM:
2998	case IB_WR_SEND:
2999		ret = rvt_get_rwqe(qp, false);
3000		if (ret < 0)
3001			goto op_err;
3002		if (!ret)
3003			goto rnr_nak;
3004		if (wqe->length > qp->r_len)
3005			goto inv_err;
3006		switch (wqe->wr.opcode) {
3007		case IB_WR_SEND_WITH_INV:
3008			if (!rvt_invalidate_rkey(qp,
3009						 wqe->wr.ex.invalidate_rkey)) {
3010				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3011				wc.ex.invalidate_rkey =
3012					wqe->wr.ex.invalidate_rkey;
3013			}
3014			break;
3015		case IB_WR_SEND_WITH_IMM:
3016			wc.wc_flags = IB_WC_WITH_IMM;
3017			wc.ex.imm_data = wqe->wr.ex.imm_data;
3018			break;
3019		default:
3020			break;
3021		}
3022		break;
3023
3024	case IB_WR_RDMA_WRITE_WITH_IMM:
3025		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3026			goto inv_err;
3027		wc.wc_flags = IB_WC_WITH_IMM;
3028		wc.ex.imm_data = wqe->wr.ex.imm_data;
3029		ret = rvt_get_rwqe(qp, true);
3030		if (ret < 0)
3031			goto op_err;
3032		if (!ret)
3033			goto rnr_nak;
3034		/* skip copy_last set and qp_access_flags recheck */
3035		goto do_write;
3036	case IB_WR_RDMA_WRITE:
3037		copy_last = rvt_is_user_qp(qp);
3038		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3039			goto inv_err;
3040do_write:
3041		if (wqe->length == 0)
3042			break;
3043		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3044					  wqe->rdma_wr.remote_addr,
3045					  wqe->rdma_wr.rkey,
3046					  IB_ACCESS_REMOTE_WRITE)))
3047			goto acc_err;
3048		qp->r_sge.sg_list = NULL;
3049		qp->r_sge.num_sge = 1;
3050		qp->r_sge.total_len = wqe->length;
3051		break;
3052
3053	case IB_WR_RDMA_READ:
3054		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3055			goto inv_err;
3056		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3057					  wqe->rdma_wr.remote_addr,
3058					  wqe->rdma_wr.rkey,
3059					  IB_ACCESS_REMOTE_READ)))
3060			goto acc_err;
3061		release = false;
3062		sqp->s_sge.sg_list = NULL;
3063		sqp->s_sge.num_sge = 1;
3064		qp->r_sge.sge = wqe->sg_list[0];
3065		qp->r_sge.sg_list = wqe->sg_list + 1;
3066		qp->r_sge.num_sge = wqe->wr.num_sge;
3067		qp->r_sge.total_len = wqe->length;
3068		break;
3069
3070	case IB_WR_ATOMIC_CMP_AND_SWP:
3071	case IB_WR_ATOMIC_FETCH_AND_ADD:
3072		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3073			goto inv_err;
3074		if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3075			goto inv_err;
3076		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3077					  wqe->atomic_wr.remote_addr,
3078					  wqe->atomic_wr.rkey,
3079					  IB_ACCESS_REMOTE_ATOMIC)))
3080			goto acc_err;
3081		/* Perform atomic OP and save result. */
3082		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3083		sdata = wqe->atomic_wr.compare_add;
3084		*(u64 *)sqp->s_sge.sge.vaddr =
3085			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3086			(u64)atomic64_add_return(sdata, maddr) - sdata :
3087			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3088				      sdata, wqe->atomic_wr.swap);
3089		rvt_put_mr(qp->r_sge.sge.mr);
3090		qp->r_sge.num_sge = 0;
3091		goto send_comp;
3092
3093	default:
3094		send_status = IB_WC_LOC_QP_OP_ERR;
3095		goto serr;
3096	}
3097
3098	sge = &sqp->s_sge.sge;
3099	while (sqp->s_len) {
3100		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3101
3102		WARN_ON_ONCE(len == 0);
3103		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3104			     len, release, copy_last);
3105		rvt_update_sge(&sqp->s_sge, len, !release);
3106		sqp->s_len -= len;
3107	}
3108	if (release)
3109		rvt_put_ss(&qp->r_sge);
3110
3111	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3112		goto send_comp;
3113
3114	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3115		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3116	else
3117		wc.opcode = IB_WC_RECV;
3118	wc.wr_id = qp->r_wr_id;
3119	wc.status = IB_WC_SUCCESS;
3120	wc.byte_len = wqe->length;
3121	wc.qp = &qp->ibqp;
3122	wc.src_qp = qp->remote_qpn;
3123	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3124	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3125	wc.port_num = 1;
3126	/* Signal completion event if the solicited bit is set. */
3127	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3128
3129send_comp:
3130	spin_unlock_irqrestore(&qp->r_lock, flags);
3131	spin_lock_irqsave(&sqp->s_lock, flags);
3132	rvp->n_loop_pkts++;
3133flush_send:
3134	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3135	spin_lock(&sqp->r_lock);
3136	rvt_send_complete(sqp, wqe, send_status);
3137	spin_unlock(&sqp->r_lock);
3138	if (local_ops) {
3139		atomic_dec(&sqp->local_ops_pending);
3140		local_ops = 0;
3141	}
3142	goto again;
3143
3144rnr_nak:
3145	/* Handle RNR NAK */
3146	if (qp->ibqp.qp_type == IB_QPT_UC)
3147		goto send_comp;
3148	rvp->n_rnr_naks++;
3149	/*
3150	 * Note: we don't need the s_lock held since the BUSY flag
3151	 * makes this single threaded.
3152	 */
3153	if (sqp->s_rnr_retry == 0) {
3154		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3155		goto serr;
3156	}
3157	if (sqp->s_rnr_retry_cnt < 7)
3158		sqp->s_rnr_retry--;
3159	spin_unlock_irqrestore(&qp->r_lock, flags);
3160	spin_lock_irqsave(&sqp->s_lock, flags);
3161	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3162		goto clr_busy;
3163	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3164				IB_AETH_CREDIT_SHIFT);
3165	goto clr_busy;
3166
3167op_err:
3168	send_status = IB_WC_REM_OP_ERR;
3169	wc.status = IB_WC_LOC_QP_OP_ERR;
3170	goto err;
3171
3172inv_err:
3173	send_status =
3174		sqp->ibqp.qp_type == IB_QPT_RC ?
3175			IB_WC_REM_INV_REQ_ERR :
3176			IB_WC_SUCCESS;
3177	wc.status = IB_WC_LOC_QP_OP_ERR;
3178	goto err;
3179
3180acc_err:
3181	send_status = IB_WC_REM_ACCESS_ERR;
3182	wc.status = IB_WC_LOC_PROT_ERR;
3183err:
3184	/* responder goes to error state */
3185	rvt_rc_error(qp, wc.status);
3186
3187serr:
3188	spin_unlock_irqrestore(&qp->r_lock, flags);
3189serr_no_r_lock:
3190	spin_lock_irqsave(&sqp->s_lock, flags);
3191	spin_lock(&sqp->r_lock);
3192	rvt_send_complete(sqp, wqe, send_status);
3193	spin_unlock(&sqp->r_lock);
3194	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3195		int lastwqe;
3196
3197		spin_lock(&sqp->r_lock);
3198		lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3199		spin_unlock(&sqp->r_lock);
3200
3201		sqp->s_flags &= ~RVT_S_BUSY;
3202		spin_unlock_irqrestore(&sqp->s_lock, flags);
3203		if (lastwqe) {
3204			struct ib_event ev;
3205
3206			ev.device = sqp->ibqp.device;
3207			ev.element.qp = &sqp->ibqp;
3208			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3209			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3210		}
3211		goto done;
3212	}
3213clr_busy:
3214	sqp->s_flags &= ~RVT_S_BUSY;
3215unlock:
3216	spin_unlock_irqrestore(&sqp->s_lock, flags);
3217done:
3218	rcu_read_unlock();
3219}
3220EXPORT_SYMBOL(rvt_ruc_loopback);
3221