1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015-2018 Intel Corporation.
4 */
5
6#include <linux/delay.h>
7#include "hfi.h"
8#include "qp.h"
9#include "trace.h"
10
11#define SC(name) SEND_CTXT_##name
12/*
13 * Send Context functions
14 */
15static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
16
17/*
18 * Set the CM reset bit and wait for it to clear.  Use the provided
19 * sendctrl register.  This routine has no locking.
20 */
21void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
22{
23	write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
24	while (1) {
25		udelay(1);
26		sendctrl = read_csr(dd, SEND_CTRL);
27		if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
28			break;
29	}
30}
31
32/* global control of PIO send */
33void pio_send_control(struct hfi1_devdata *dd, int op)
34{
35	u64 reg, mask;
36	unsigned long flags;
37	int write = 1;	/* write sendctrl back */
38	int flush = 0;	/* re-read sendctrl to make sure it is flushed */
39	int i;
40
41	spin_lock_irqsave(&dd->sendctrl_lock, flags);
42
43	reg = read_csr(dd, SEND_CTRL);
44	switch (op) {
45	case PSC_GLOBAL_ENABLE:
46		reg |= SEND_CTRL_SEND_ENABLE_SMASK;
47		fallthrough;
48	case PSC_DATA_VL_ENABLE:
49		mask = 0;
50		for (i = 0; i < ARRAY_SIZE(dd->vld); i++)
51			if (!dd->vld[i].mtu)
52				mask |= BIT_ULL(i);
53		/* Disallow sending on VLs not enabled */
54		mask = (mask & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
55			SEND_CTRL_UNSUPPORTED_VL_SHIFT;
56		reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
57		break;
58	case PSC_GLOBAL_DISABLE:
59		reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
60		break;
61	case PSC_GLOBAL_VLARB_ENABLE:
62		reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
63		break;
64	case PSC_GLOBAL_VLARB_DISABLE:
65		reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
66		break;
67	case PSC_CM_RESET:
68		__cm_reset(dd, reg);
69		write = 0; /* CSR already written (and flushed) */
70		break;
71	case PSC_DATA_VL_DISABLE:
72		reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
73		flush = 1;
74		break;
75	default:
76		dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
77		break;
78	}
79
80	if (write) {
81		write_csr(dd, SEND_CTRL, reg);
82		if (flush)
83			(void)read_csr(dd, SEND_CTRL); /* flush write */
84	}
85
86	spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
87}
88
89/* number of send context memory pools */
90#define NUM_SC_POOLS 2
91
92/* Send Context Size (SCS) wildcards */
93#define SCS_POOL_0 -1
94#define SCS_POOL_1 -2
95
96/* Send Context Count (SCC) wildcards */
97#define SCC_PER_VL -1
98#define SCC_PER_CPU  -2
99#define SCC_PER_KRCVQ  -3
100
101/* Send Context Size (SCS) constants */
102#define SCS_ACK_CREDITS  32
103#define SCS_VL15_CREDITS 102	/* 3 pkts of 2048B data + 128B header */
104
105#define PIO_THRESHOLD_CEILING 4096
106
107#define PIO_WAIT_BATCH_SIZE 5
108
109/* default send context sizes */
110static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
111	[SC_KERNEL] = { .size  = SCS_POOL_0,	/* even divide, pool 0 */
112			.count = SCC_PER_VL },	/* one per NUMA */
113	[SC_ACK]    = { .size  = SCS_ACK_CREDITS,
114			.count = SCC_PER_KRCVQ },
115	[SC_USER]   = { .size  = SCS_POOL_0,	/* even divide, pool 0 */
116			.count = SCC_PER_CPU },	/* one per CPU */
117	[SC_VL15]   = { .size  = SCS_VL15_CREDITS,
118			.count = 1 },
119
120};
121
122/* send context memory pool configuration */
123struct mem_pool_config {
124	int centipercent;	/* % of memory, in 100ths of 1% */
125	int absolute_blocks;	/* absolute block count */
126};
127
128/* default memory pool configuration: 100% in pool 0 */
129static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
130	/* centi%, abs blocks */
131	{  10000,     -1 },		/* pool 0 */
132	{      0,     -1 },		/* pool 1 */
133};
134
135/* memory pool information, used when calculating final sizes */
136struct mem_pool_info {
137	int centipercent;	/*
138				 * 100th of 1% of memory to use, -1 if blocks
139				 * already set
140				 */
141	int count;		/* count of contexts in the pool */
142	int blocks;		/* block size of the pool */
143	int size;		/* context size, in blocks */
144};
145
146/*
147 * Convert a pool wildcard to a valid pool index.  The wildcards
148 * start at -1 and increase negatively.  Map them as:
149 *	-1 => 0
150 *	-2 => 1
151 *	etc.
152 *
153 * Return -1 on non-wildcard input, otherwise convert to a pool number.
154 */
155static int wildcard_to_pool(int wc)
156{
157	if (wc >= 0)
158		return -1;	/* non-wildcard */
159	return -wc - 1;
160}
161
162static const char *sc_type_names[SC_MAX] = {
163	"kernel",
164	"ack",
165	"user",
166	"vl15"
167};
168
169static const char *sc_type_name(int index)
170{
171	if (index < 0 || index >= SC_MAX)
172		return "unknown";
173	return sc_type_names[index];
174}
175
176/*
177 * Read the send context memory pool configuration and send context
178 * size configuration.  Replace any wildcards and come up with final
179 * counts and sizes for the send context types.
180 */
181int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
182{
183	struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
184	int total_blocks = (chip_pio_mem_size(dd) / PIO_BLOCK_SIZE) - 1;
185	int total_contexts = 0;
186	int fixed_blocks;
187	int pool_blocks;
188	int used_blocks;
189	int cp_total;		/* centipercent total */
190	int ab_total;		/* absolute block total */
191	int extra;
192	int i;
193
194	/*
195	 * When SDMA is enabled, kernel context pio packet size is capped by
196	 * "piothreshold". Reduce pio buffer allocation for kernel context by
197	 * setting it to a fixed size. The allocation allows 3-deep buffering
198	 * of the largest pio packets plus up to 128 bytes header, sufficient
199	 * to maintain verbs performance.
200	 *
201	 * When SDMA is disabled, keep the default pooling allocation.
202	 */
203	if (HFI1_CAP_IS_KSET(SDMA)) {
204		u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ?
205					 piothreshold : PIO_THRESHOLD_CEILING;
206		sc_config_sizes[SC_KERNEL].size =
207			3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE;
208	}
209
210	/*
211	 * Step 0:
212	 *	- copy the centipercents/absolute sizes from the pool config
213	 *	- sanity check these values
214	 *	- add up centipercents, then later check for full value
215	 *	- add up absolute blocks, then later check for over-commit
216	 */
217	cp_total = 0;
218	ab_total = 0;
219	for (i = 0; i < NUM_SC_POOLS; i++) {
220		int cp = sc_mem_pool_config[i].centipercent;
221		int ab = sc_mem_pool_config[i].absolute_blocks;
222
223		/*
224		 * A negative value is "unused" or "invalid".  Both *can*
225		 * be valid, but centipercent wins, so check that first
226		 */
227		if (cp >= 0) {			/* centipercent valid */
228			cp_total += cp;
229		} else if (ab >= 0) {		/* absolute blocks valid */
230			ab_total += ab;
231		} else {			/* neither valid */
232			dd_dev_err(
233				dd,
234				"Send context memory pool %d: both the block count and centipercent are invalid\n",
235				i);
236			return -EINVAL;
237		}
238
239		mem_pool_info[i].centipercent = cp;
240		mem_pool_info[i].blocks = ab;
241	}
242
243	/* do not use both % and absolute blocks for different pools */
244	if (cp_total != 0 && ab_total != 0) {
245		dd_dev_err(
246			dd,
247			"All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
248		return -EINVAL;
249	}
250
251	/* if any percentages are present, they must add up to 100% x 100 */
252	if (cp_total != 0 && cp_total != 10000) {
253		dd_dev_err(
254			dd,
255			"Send context memory pool centipercent is %d, expecting 10000\n",
256			cp_total);
257		return -EINVAL;
258	}
259
260	/* the absolute pool total cannot be more than the mem total */
261	if (ab_total > total_blocks) {
262		dd_dev_err(
263			dd,
264			"Send context memory pool absolute block count %d is larger than the memory size %d\n",
265			ab_total, total_blocks);
266		return -EINVAL;
267	}
268
269	/*
270	 * Step 2:
271	 *	- copy from the context size config
272	 *	- replace context type wildcard counts with real values
273	 *	- add up non-memory pool block sizes
274	 *	- add up memory pool user counts
275	 */
276	fixed_blocks = 0;
277	for (i = 0; i < SC_MAX; i++) {
278		int count = sc_config_sizes[i].count;
279		int size = sc_config_sizes[i].size;
280		int pool;
281
282		/*
283		 * Sanity check count: Either a positive value or
284		 * one of the expected wildcards is valid.  The positive
285		 * value is checked later when we compare against total
286		 * memory available.
287		 */
288		if (i == SC_ACK) {
289			count = dd->n_krcv_queues;
290		} else if (i == SC_KERNEL) {
291			count = INIT_SC_PER_VL * num_vls;
292		} else if (count == SCC_PER_CPU) {
293			count = dd->num_rcv_contexts - dd->n_krcv_queues;
294		} else if (count < 0) {
295			dd_dev_err(
296				dd,
297				"%s send context invalid count wildcard %d\n",
298				sc_type_name(i), count);
299			return -EINVAL;
300		}
301		if (total_contexts + count > chip_send_contexts(dd))
302			count = chip_send_contexts(dd) - total_contexts;
303
304		total_contexts += count;
305
306		/*
307		 * Sanity check pool: The conversion will return a pool
308		 * number or -1 if a fixed (non-negative) value.  The fixed
309		 * value is checked later when we compare against
310		 * total memory available.
311		 */
312		pool = wildcard_to_pool(size);
313		if (pool == -1) {			/* non-wildcard */
314			fixed_blocks += size * count;
315		} else if (pool < NUM_SC_POOLS) {	/* valid wildcard */
316			mem_pool_info[pool].count += count;
317		} else {				/* invalid wildcard */
318			dd_dev_err(
319				dd,
320				"%s send context invalid pool wildcard %d\n",
321				sc_type_name(i), size);
322			return -EINVAL;
323		}
324
325		dd->sc_sizes[i].count = count;
326		dd->sc_sizes[i].size = size;
327	}
328	if (fixed_blocks > total_blocks) {
329		dd_dev_err(
330			dd,
331			"Send context fixed block count, %u, larger than total block count %u\n",
332			fixed_blocks, total_blocks);
333		return -EINVAL;
334	}
335
336	/* step 3: calculate the blocks in the pools, and pool context sizes */
337	pool_blocks = total_blocks - fixed_blocks;
338	if (ab_total > pool_blocks) {
339		dd_dev_err(
340			dd,
341			"Send context fixed pool sizes, %u, larger than pool block count %u\n",
342			ab_total, pool_blocks);
343		return -EINVAL;
344	}
345	/* subtract off the fixed pool blocks */
346	pool_blocks -= ab_total;
347
348	for (i = 0; i < NUM_SC_POOLS; i++) {
349		struct mem_pool_info *pi = &mem_pool_info[i];
350
351		/* % beats absolute blocks */
352		if (pi->centipercent >= 0)
353			pi->blocks = (pool_blocks * pi->centipercent) / 10000;
354
355		if (pi->blocks == 0 && pi->count != 0) {
356			dd_dev_err(
357				dd,
358				"Send context memory pool %d has %u contexts, but no blocks\n",
359				i, pi->count);
360			return -EINVAL;
361		}
362		if (pi->count == 0) {
363			/* warn about wasted blocks */
364			if (pi->blocks != 0)
365				dd_dev_err(
366					dd,
367					"Send context memory pool %d has %u blocks, but zero contexts\n",
368					i, pi->blocks);
369			pi->size = 0;
370		} else {
371			pi->size = pi->blocks / pi->count;
372		}
373	}
374
375	/* step 4: fill in the context type sizes from the pool sizes */
376	used_blocks = 0;
377	for (i = 0; i < SC_MAX; i++) {
378		if (dd->sc_sizes[i].size < 0) {
379			unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
380
381			WARN_ON_ONCE(pool >= NUM_SC_POOLS);
382			dd->sc_sizes[i].size = mem_pool_info[pool].size;
383		}
384		/* make sure we are not larger than what is allowed by the HW */
385#define PIO_MAX_BLOCKS 1024
386		if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
387			dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
388
389		/* calculate our total usage */
390		used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
391	}
392	extra = total_blocks - used_blocks;
393	if (extra != 0)
394		dd_dev_info(dd, "unused send context blocks: %d\n", extra);
395
396	return total_contexts;
397}
398
399int init_send_contexts(struct hfi1_devdata *dd)
400{
401	u16 base;
402	int ret, i, j, context;
403
404	ret = init_credit_return(dd);
405	if (ret)
406		return ret;
407
408	dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
409					GFP_KERNEL);
410	dd->send_contexts = kcalloc(dd->num_send_contexts,
411				    sizeof(struct send_context_info),
412				    GFP_KERNEL);
413	if (!dd->send_contexts || !dd->hw_to_sw) {
414		kfree(dd->hw_to_sw);
415		kfree(dd->send_contexts);
416		free_credit_return(dd);
417		return -ENOMEM;
418	}
419
420	/* hardware context map starts with invalid send context indices */
421	for (i = 0; i < TXE_NUM_CONTEXTS; i++)
422		dd->hw_to_sw[i] = INVALID_SCI;
423
424	/*
425	 * All send contexts have their credit sizes.  Allocate credits
426	 * for each context one after another from the global space.
427	 */
428	context = 0;
429	base = 1;
430	for (i = 0; i < SC_MAX; i++) {
431		struct sc_config_sizes *scs = &dd->sc_sizes[i];
432
433		for (j = 0; j < scs->count; j++) {
434			struct send_context_info *sci =
435						&dd->send_contexts[context];
436			sci->type = i;
437			sci->base = base;
438			sci->credits = scs->size;
439
440			context++;
441			base += scs->size;
442		}
443	}
444
445	return 0;
446}
447
448/*
449 * Allocate a software index and hardware context of the given type.
450 *
451 * Must be called with dd->sc_lock held.
452 */
453static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
454		       u32 *hw_context)
455{
456	struct send_context_info *sci;
457	u32 index;
458	u32 context;
459
460	for (index = 0, sci = &dd->send_contexts[0];
461			index < dd->num_send_contexts; index++, sci++) {
462		if (sci->type == type && sci->allocated == 0) {
463			sci->allocated = 1;
464			/* use a 1:1 mapping, but make them non-equal */
465			context = chip_send_contexts(dd) - index - 1;
466			dd->hw_to_sw[context] = index;
467			*sw_index = index;
468			*hw_context = context;
469			return 0; /* success */
470		}
471	}
472	dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
473	return -ENOSPC;
474}
475
476/*
477 * Free the send context given by its software index.
478 *
479 * Must be called with dd->sc_lock held.
480 */
481static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
482{
483	struct send_context_info *sci;
484
485	sci = &dd->send_contexts[sw_index];
486	if (!sci->allocated) {
487		dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
488			   __func__, sw_index, hw_context);
489	}
490	sci->allocated = 0;
491	dd->hw_to_sw[hw_context] = INVALID_SCI;
492}
493
494/* return the base context of a context in a group */
495static inline u32 group_context(u32 context, u32 group)
496{
497	return (context >> group) << group;
498}
499
500/* return the size of a group */
501static inline u32 group_size(u32 group)
502{
503	return 1 << group;
504}
505
506/*
507 * Obtain the credit return addresses, kernel virtual and bus, for the
508 * given sc.
509 *
510 * To understand this routine:
511 * o va and dma are arrays of struct credit_return.  One for each physical
512 *   send context, per NUMA.
513 * o Each send context always looks in its relative location in a struct
514 *   credit_return for its credit return.
515 * o Each send context in a group must have its return address CSR programmed
516 *   with the same value.  Use the address of the first send context in the
517 *   group.
518 */
519static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma)
520{
521	u32 gc = group_context(sc->hw_context, sc->group);
522	u32 index = sc->hw_context & 0x7;
523
524	sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
525	*dma = (unsigned long)
526	       &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc];
527}
528
529/*
530 * Work queue function triggered in error interrupt routine for
531 * kernel contexts.
532 */
533static void sc_halted(struct work_struct *work)
534{
535	struct send_context *sc;
536
537	sc = container_of(work, struct send_context, halt_work);
538	sc_restart(sc);
539}
540
541/*
542 * Calculate PIO block threshold for this send context using the given MTU.
543 * Trigger a return when one MTU plus optional header of credits remain.
544 *
545 * Parameter mtu is in bytes.
546 * Parameter hdrqentsize is in DWORDs.
547 *
548 * Return value is what to write into the CSR: trigger return when
549 * unreturned credits pass this count.
550 */
551u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
552{
553	u32 release_credits;
554	u32 threshold;
555
556	/* add in the header size, then divide by the PIO block size */
557	mtu += hdrqentsize << 2;
558	release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
559
560	/* check against this context's credits */
561	if (sc->credits <= release_credits)
562		threshold = 1;
563	else
564		threshold = sc->credits - release_credits;
565
566	return threshold;
567}
568
569/*
570 * Calculate credit threshold in terms of percent of the allocated credits.
571 * Trigger when unreturned credits equal or exceed the percentage of the whole.
572 *
573 * Return value is what to write into the CSR: trigger return when
574 * unreturned credits pass this count.
575 */
576u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
577{
578	return (sc->credits * percent) / 100;
579}
580
581/*
582 * Set the credit return threshold.
583 */
584void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
585{
586	unsigned long flags;
587	u32 old_threshold;
588	int force_return = 0;
589
590	spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
591
592	old_threshold = (sc->credit_ctrl >>
593				SC(CREDIT_CTRL_THRESHOLD_SHIFT))
594			 & SC(CREDIT_CTRL_THRESHOLD_MASK);
595
596	if (new_threshold != old_threshold) {
597		sc->credit_ctrl =
598			(sc->credit_ctrl
599				& ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
600			| ((new_threshold
601				& SC(CREDIT_CTRL_THRESHOLD_MASK))
602			   << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
603		write_kctxt_csr(sc->dd, sc->hw_context,
604				SC(CREDIT_CTRL), sc->credit_ctrl);
605
606		/* force a credit return on change to avoid a possible stall */
607		force_return = 1;
608	}
609
610	spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
611
612	if (force_return)
613		sc_return_credits(sc);
614}
615
616/*
617 * set_pio_integrity
618 *
619 * Set the CHECK_ENABLE register for the send context 'sc'.
620 */
621void set_pio_integrity(struct send_context *sc)
622{
623	struct hfi1_devdata *dd = sc->dd;
624	u32 hw_context = sc->hw_context;
625	int type = sc->type;
626
627	write_kctxt_csr(dd, hw_context,
628			SC(CHECK_ENABLE),
629			hfi1_pkt_default_send_ctxt_mask(dd, type));
630}
631
632static u32 get_buffers_allocated(struct send_context *sc)
633{
634	int cpu;
635	u32 ret = 0;
636
637	for_each_possible_cpu(cpu)
638		ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
639	return ret;
640}
641
642static void reset_buffers_allocated(struct send_context *sc)
643{
644	int cpu;
645
646	for_each_possible_cpu(cpu)
647		(*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
648}
649
650/*
651 * Allocate a NUMA relative send context structure of the given type along
652 * with a HW context.
653 */
654struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
655			      uint hdrqentsize, int numa)
656{
657	struct send_context_info *sci;
658	struct send_context *sc = NULL;
659	dma_addr_t dma;
660	unsigned long flags;
661	u64 reg;
662	u32 thresh;
663	u32 sw_index;
664	u32 hw_context;
665	int ret;
666	u8 opval, opmask;
667
668	/* do not allocate while frozen */
669	if (dd->flags & HFI1_FROZEN)
670		return NULL;
671
672	sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
673	if (!sc)
674		return NULL;
675
676	sc->buffers_allocated = alloc_percpu(u32);
677	if (!sc->buffers_allocated) {
678		kfree(sc);
679		dd_dev_err(dd,
680			   "Cannot allocate buffers_allocated per cpu counters\n"
681			  );
682		return NULL;
683	}
684
685	spin_lock_irqsave(&dd->sc_lock, flags);
686	ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
687	if (ret) {
688		spin_unlock_irqrestore(&dd->sc_lock, flags);
689		free_percpu(sc->buffers_allocated);
690		kfree(sc);
691		return NULL;
692	}
693
694	sci = &dd->send_contexts[sw_index];
695	sci->sc = sc;
696
697	sc->dd = dd;
698	sc->node = numa;
699	sc->type = type;
700	spin_lock_init(&sc->alloc_lock);
701	spin_lock_init(&sc->release_lock);
702	spin_lock_init(&sc->credit_ctrl_lock);
703	seqlock_init(&sc->waitlock);
704	INIT_LIST_HEAD(&sc->piowait);
705	INIT_WORK(&sc->halt_work, sc_halted);
706	init_waitqueue_head(&sc->halt_wait);
707
708	/* grouping is always single context for now */
709	sc->group = 0;
710
711	sc->sw_index = sw_index;
712	sc->hw_context = hw_context;
713	cr_group_addresses(sc, &dma);
714	sc->credits = sci->credits;
715	sc->size = sc->credits * PIO_BLOCK_SIZE;
716
717/* PIO Send Memory Address details */
718#define PIO_ADDR_CONTEXT_MASK 0xfful
719#define PIO_ADDR_CONTEXT_SHIFT 16
720	sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
721					<< PIO_ADDR_CONTEXT_SHIFT);
722
723	/* set base and credits */
724	reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
725					<< SC(CTRL_CTXT_DEPTH_SHIFT))
726		| ((sci->base & SC(CTRL_CTXT_BASE_MASK))
727					<< SC(CTRL_CTXT_BASE_SHIFT));
728	write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
729
730	set_pio_integrity(sc);
731
732	/* unmask all errors */
733	write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
734
735	/* set the default partition key */
736	write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
737			(SC(CHECK_PARTITION_KEY_VALUE_MASK) &
738			 DEFAULT_PKEY) <<
739			SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
740
741	/* per context type checks */
742	if (type == SC_USER) {
743		opval = USER_OPCODE_CHECK_VAL;
744		opmask = USER_OPCODE_CHECK_MASK;
745	} else {
746		opval = OPCODE_CHECK_VAL_DISABLED;
747		opmask = OPCODE_CHECK_MASK_DISABLED;
748	}
749
750	/* set the send context check opcode mask and value */
751	write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
752			((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
753			((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
754
755	/* set up credit return */
756	reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
757	write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
758
759	/*
760	 * Calculate the initial credit return threshold.
761	 *
762	 * For Ack contexts, set a threshold for half the credits.
763	 * For User contexts use the given percentage.  This has been
764	 * sanitized on driver start-up.
765	 * For Kernel contexts, use the default MTU plus a header
766	 * or half the credits, whichever is smaller. This should
767	 * work for both the 3-deep buffering allocation and the
768	 * pooling allocation.
769	 */
770	if (type == SC_ACK) {
771		thresh = sc_percent_to_threshold(sc, 50);
772	} else if (type == SC_USER) {
773		thresh = sc_percent_to_threshold(sc,
774						 user_credit_return_threshold);
775	} else { /* kernel */
776		thresh = min(sc_percent_to_threshold(sc, 50),
777			     sc_mtu_to_threshold(sc, hfi1_max_mtu,
778						 hdrqentsize));
779	}
780	reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
781	/* add in early return */
782	if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
783		reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
784	else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
785		reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
786
787	/* set up write-through credit_ctrl */
788	sc->credit_ctrl = reg;
789	write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
790
791	/* User send contexts should not allow sending on VL15 */
792	if (type == SC_USER) {
793		reg = 1ULL << 15;
794		write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
795	}
796
797	spin_unlock_irqrestore(&dd->sc_lock, flags);
798
799	/*
800	 * Allocate shadow ring to track outstanding PIO buffers _after_
801	 * unlocking.  We don't know the size until the lock is held and
802	 * we can't allocate while the lock is held.  No one is using
803	 * the context yet, so allocate it now.
804	 *
805	 * User contexts do not get a shadow ring.
806	 */
807	if (type != SC_USER) {
808		/*
809		 * Size the shadow ring 1 larger than the number of credits
810		 * so head == tail can mean empty.
811		 */
812		sc->sr_size = sci->credits + 1;
813		sc->sr = kcalloc_node(sc->sr_size,
814				      sizeof(union pio_shadow_ring),
815				      GFP_KERNEL, numa);
816		if (!sc->sr) {
817			sc_free(sc);
818			return NULL;
819		}
820	}
821
822	hfi1_cdbg(PIO,
823		  "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u",
824		  sw_index,
825		  hw_context,
826		  sc_type_name(type),
827		  sc->group,
828		  sc->credits,
829		  sc->credit_ctrl,
830		  thresh);
831
832	return sc;
833}
834
835/* free a per-NUMA send context structure */
836void sc_free(struct send_context *sc)
837{
838	struct hfi1_devdata *dd;
839	unsigned long flags;
840	u32 sw_index;
841	u32 hw_context;
842
843	if (!sc)
844		return;
845
846	sc->flags |= SCF_IN_FREE;	/* ensure no restarts */
847	dd = sc->dd;
848	if (!list_empty(&sc->piowait))
849		dd_dev_err(dd, "piowait list not empty!\n");
850	sw_index = sc->sw_index;
851	hw_context = sc->hw_context;
852	sc_disable(sc);	/* make sure the HW is disabled */
853	flush_work(&sc->halt_work);
854
855	spin_lock_irqsave(&dd->sc_lock, flags);
856	dd->send_contexts[sw_index].sc = NULL;
857
858	/* clear/disable all registers set in sc_alloc */
859	write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
860	write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
861	write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
862	write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
863	write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
864	write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
865	write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
866
867	/* release the index and context for re-use */
868	sc_hw_free(dd, sw_index, hw_context);
869	spin_unlock_irqrestore(&dd->sc_lock, flags);
870
871	kfree(sc->sr);
872	free_percpu(sc->buffers_allocated);
873	kfree(sc);
874}
875
876/* disable the context */
877void sc_disable(struct send_context *sc)
878{
879	u64 reg;
880	struct pio_buf *pbuf;
881	LIST_HEAD(wake_list);
882
883	if (!sc)
884		return;
885
886	/* do all steps, even if already disabled */
887	spin_lock_irq(&sc->alloc_lock);
888	reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
889	reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
890	sc->flags &= ~SCF_ENABLED;
891	sc_wait_for_packet_egress(sc, 1);
892	write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
893
894	/*
895	 * Flush any waiters.  Once the context is disabled,
896	 * credit return interrupts are stopped (although there
897	 * could be one in-process when the context is disabled).
898	 * Wait one microsecond for any lingering interrupts, then
899	 * proceed with the flush.
900	 */
901	udelay(1);
902	spin_lock(&sc->release_lock);
903	if (sc->sr) {	/* this context has a shadow ring */
904		while (sc->sr_tail != sc->sr_head) {
905			pbuf = &sc->sr[sc->sr_tail].pbuf;
906			if (pbuf->cb)
907				(*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
908			sc->sr_tail++;
909			if (sc->sr_tail >= sc->sr_size)
910				sc->sr_tail = 0;
911		}
912	}
913	spin_unlock(&sc->release_lock);
914
915	write_seqlock(&sc->waitlock);
916	list_splice_init(&sc->piowait, &wake_list);
917	write_sequnlock(&sc->waitlock);
918	while (!list_empty(&wake_list)) {
919		struct iowait *wait;
920		struct rvt_qp *qp;
921		struct hfi1_qp_priv *priv;
922
923		wait = list_first_entry(&wake_list, struct iowait, list);
924		qp = iowait_to_qp(wait);
925		priv = qp->priv;
926		list_del_init(&priv->s_iowait.list);
927		priv->s_iowait.lock = NULL;
928		hfi1_qp_wakeup(qp, RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
929	}
930
931	spin_unlock_irq(&sc->alloc_lock);
932}
933
934/* return SendEgressCtxtStatus.PacketOccupancy */
935static u64 packet_occupancy(u64 reg)
936{
937	return (reg &
938		SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)
939		>> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT;
940}
941
942/* is egress halted on the context? */
943static bool egress_halted(u64 reg)
944{
945	return !!(reg & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK);
946}
947
948/* is the send context halted? */
949static bool is_sc_halted(struct hfi1_devdata *dd, u32 hw_context)
950{
951	return !!(read_kctxt_csr(dd, hw_context, SC(STATUS)) &
952		  SC(STATUS_CTXT_HALTED_SMASK));
953}
954
955/**
956 * sc_wait_for_packet_egress - wait for packet
957 * @sc: valid send context
958 * @pause: wait for credit return
959 *
960 * Wait for packet egress, optionally pause for credit return
961 *
962 * Egress halt and Context halt are not necessarily the same thing, so
963 * check for both.
964 *
965 * NOTE: The context halt bit may not be set immediately.  Because of this,
966 * it is necessary to check the SW SFC_HALTED bit (set in the IRQ) and the HW
967 * context bit to determine if the context is halted.
968 */
969static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
970{
971	struct hfi1_devdata *dd = sc->dd;
972	u64 reg = 0;
973	u64 reg_prev;
974	u32 loop = 0;
975
976	while (1) {
977		reg_prev = reg;
978		reg = read_csr(dd, sc->hw_context * 8 +
979			       SEND_EGRESS_CTXT_STATUS);
980		/* done if any halt bits, SW or HW are set */
981		if (sc->flags & SCF_HALTED ||
982		    is_sc_halted(dd, sc->hw_context) || egress_halted(reg))
983			break;
984		reg = packet_occupancy(reg);
985		if (reg == 0)
986			break;
987		/* counter is reset if occupancy count changes */
988		if (reg != reg_prev)
989			loop = 0;
990		if (loop > 50000) {
991			/* timed out - bounce the link */
992			dd_dev_err(dd,
993				   "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
994				   __func__, sc->sw_index,
995				   sc->hw_context, (u32)reg);
996			queue_work(dd->pport->link_wq,
997				   &dd->pport->link_bounce_work);
998			break;
999		}
1000		loop++;
1001		udelay(1);
1002	}
1003
1004	if (pause)
1005		/* Add additional delay to ensure chip returns all credits */
1006		pause_for_credit_return(dd);
1007}
1008
1009void sc_wait(struct hfi1_devdata *dd)
1010{
1011	int i;
1012
1013	for (i = 0; i < dd->num_send_contexts; i++) {
1014		struct send_context *sc = dd->send_contexts[i].sc;
1015
1016		if (!sc)
1017			continue;
1018		sc_wait_for_packet_egress(sc, 0);
1019	}
1020}
1021
1022/*
1023 * Restart a context after it has been halted due to error.
1024 *
1025 * If the first step fails - wait for the halt to be asserted, return early.
1026 * Otherwise complain about timeouts but keep going.
1027 *
1028 * It is expected that allocations (enabled flag bit) have been shut off
1029 * already (only applies to kernel contexts).
1030 */
1031int sc_restart(struct send_context *sc)
1032{
1033	struct hfi1_devdata *dd = sc->dd;
1034	u64 reg;
1035	u32 loop;
1036	int count;
1037
1038	/* bounce off if not halted, or being free'd */
1039	if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1040		return -EINVAL;
1041
1042	dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1043		    sc->hw_context);
1044
1045	/*
1046	 * Step 1: Wait for the context to actually halt.
1047	 *
1048	 * The error interrupt is asynchronous to actually setting halt
1049	 * on the context.
1050	 */
1051	loop = 0;
1052	while (1) {
1053		reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1054		if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1055			break;
1056		if (loop > 100) {
1057			dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1058				   __func__, sc->sw_index, sc->hw_context);
1059			return -ETIME;
1060		}
1061		loop++;
1062		udelay(1);
1063	}
1064
1065	/*
1066	 * Step 2: Ensure no users are still trying to write to PIO.
1067	 *
1068	 * For kernel contexts, we have already turned off buffer allocation.
1069	 * Now wait for the buffer count to go to zero.
1070	 *
1071	 * For user contexts, the user handling code has cut off write access
1072	 * to the context's PIO pages before calling this routine and will
1073	 * restore write access after this routine returns.
1074	 */
1075	if (sc->type != SC_USER) {
1076		/* kernel context */
1077		loop = 0;
1078		while (1) {
1079			count = get_buffers_allocated(sc);
1080			if (count == 0)
1081				break;
1082			if (loop > 100) {
1083				dd_dev_err(dd,
1084					   "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1085					   __func__, sc->sw_index,
1086					   sc->hw_context, count);
1087			}
1088			loop++;
1089			udelay(1);
1090		}
1091	}
1092
1093	/*
1094	 * Step 3: Wait for all packets to egress.
1095	 * This is done while disabling the send context
1096	 *
1097	 * Step 4: Disable the context
1098	 *
1099	 * This is a superset of the halt.  After the disable, the
1100	 * errors can be cleared.
1101	 */
1102	sc_disable(sc);
1103
1104	/*
1105	 * Step 5: Enable the context
1106	 *
1107	 * This enable will clear the halted flag and per-send context
1108	 * error flags.
1109	 */
1110	return sc_enable(sc);
1111}
1112
1113/*
1114 * PIO freeze processing.  To be called after the TXE block is fully frozen.
1115 * Go through all frozen send contexts and disable them.  The contexts are
1116 * already stopped by the freeze.
1117 */
1118void pio_freeze(struct hfi1_devdata *dd)
1119{
1120	struct send_context *sc;
1121	int i;
1122
1123	for (i = 0; i < dd->num_send_contexts; i++) {
1124		sc = dd->send_contexts[i].sc;
1125		/*
1126		 * Don't disable unallocated, unfrozen, or user send contexts.
1127		 * User send contexts will be disabled when the process
1128		 * calls into the driver to reset its context.
1129		 */
1130		if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1131			continue;
1132
1133		/* only need to disable, the context is already stopped */
1134		sc_disable(sc);
1135	}
1136}
1137
1138/*
1139 * Unfreeze PIO for kernel send contexts.  The precondition for calling this
1140 * is that all PIO send contexts have been disabled and the SPC freeze has
1141 * been cleared.  Now perform the last step and re-enable each kernel context.
1142 * User (PSM) processing will occur when PSM calls into the kernel to
1143 * acknowledge the freeze.
1144 */
1145void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1146{
1147	struct send_context *sc;
1148	int i;
1149
1150	for (i = 0; i < dd->num_send_contexts; i++) {
1151		sc = dd->send_contexts[i].sc;
1152		if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1153			continue;
1154		if (sc->flags & SCF_LINK_DOWN)
1155			continue;
1156
1157		sc_enable(sc);	/* will clear the sc frozen flag */
1158	}
1159}
1160
1161/**
1162 * pio_kernel_linkup() - Re-enable send contexts after linkup event
1163 * @dd: valid devive data
1164 *
1165 * When the link goes down, the freeze path is taken.  However, a link down
1166 * event is different from a freeze because if the send context is re-enabled
1167 * whowever is sending data will start sending data again, which will hang
1168 * any QP that is sending data.
1169 *
1170 * The freeze path now looks at the type of event that occurs and takes this
1171 * path for link down event.
1172 */
1173void pio_kernel_linkup(struct hfi1_devdata *dd)
1174{
1175	struct send_context *sc;
1176	int i;
1177
1178	for (i = 0; i < dd->num_send_contexts; i++) {
1179		sc = dd->send_contexts[i].sc;
1180		if (!sc || !(sc->flags & SCF_LINK_DOWN) || sc->type == SC_USER)
1181			continue;
1182
1183		sc_enable(sc);	/* will clear the sc link down flag */
1184	}
1185}
1186
1187/*
1188 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1189 * Returns:
1190 *	-ETIMEDOUT - if we wait too long
1191 *	-EIO	   - if there was an error
1192 */
1193static int pio_init_wait_progress(struct hfi1_devdata *dd)
1194{
1195	u64 reg;
1196	int max, count = 0;
1197
1198	/* max is the longest possible HW init time / delay */
1199	max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1200	while (1) {
1201		reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1202		if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1203			break;
1204		if (count >= max)
1205			return -ETIMEDOUT;
1206		udelay(5);
1207		count++;
1208	}
1209
1210	return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1211}
1212
1213/*
1214 * Reset all of the send contexts to their power-on state.  Used
1215 * only during manual init - no lock against sc_enable needed.
1216 */
1217void pio_reset_all(struct hfi1_devdata *dd)
1218{
1219	int ret;
1220
1221	/* make sure the init engine is not busy */
1222	ret = pio_init_wait_progress(dd);
1223	/* ignore any timeout */
1224	if (ret == -EIO) {
1225		/* clear the error */
1226		write_csr(dd, SEND_PIO_ERR_CLEAR,
1227			  SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1228	}
1229
1230	/* reset init all */
1231	write_csr(dd, SEND_PIO_INIT_CTXT,
1232		  SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1233	udelay(2);
1234	ret = pio_init_wait_progress(dd);
1235	if (ret < 0) {
1236		dd_dev_err(dd,
1237			   "PIO send context init %s while initializing all PIO blocks\n",
1238			   ret == -ETIMEDOUT ? "is stuck" : "had an error");
1239	}
1240}
1241
1242/* enable the context */
1243int sc_enable(struct send_context *sc)
1244{
1245	u64 sc_ctrl, reg, pio;
1246	struct hfi1_devdata *dd;
1247	unsigned long flags;
1248	int ret = 0;
1249
1250	if (!sc)
1251		return -EINVAL;
1252	dd = sc->dd;
1253
1254	/*
1255	 * Obtain the allocator lock to guard against any allocation
1256	 * attempts (which should not happen prior to context being
1257	 * enabled). On the release/disable side we don't need to
1258	 * worry about locking since the releaser will not do anything
1259	 * if the context accounting values have not changed.
1260	 */
1261	spin_lock_irqsave(&sc->alloc_lock, flags);
1262	sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1263	if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1264		goto unlock; /* already enabled */
1265
1266	/* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1267
1268	*sc->hw_free = 0;
1269	sc->free = 0;
1270	sc->alloc_free = 0;
1271	sc->fill = 0;
1272	sc->fill_wrap = 0;
1273	sc->sr_head = 0;
1274	sc->sr_tail = 0;
1275	sc->flags = 0;
1276	/* the alloc lock insures no fast path allocation */
1277	reset_buffers_allocated(sc);
1278
1279	/*
1280	 * Clear all per-context errors.  Some of these will be set when
1281	 * we are re-enabling after a context halt.  Now that the context
1282	 * is disabled, the halt will not clear until after the PIO init
1283	 * engine runs below.
1284	 */
1285	reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1286	if (reg)
1287		write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1288
1289	/*
1290	 * The HW PIO initialization engine can handle only one init
1291	 * request at a time. Serialize access to each device's engine.
1292	 */
1293	spin_lock(&dd->sc_init_lock);
1294	/*
1295	 * Since access to this code block is serialized and
1296	 * each access waits for the initialization to complete
1297	 * before releasing the lock, the PIO initialization engine
1298	 * should not be in use, so we don't have to wait for the
1299	 * InProgress bit to go down.
1300	 */
1301	pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1302	       SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1303		SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1304	write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1305	/*
1306	 * Wait until the engine is done.  Give the chip the required time
1307	 * so, hopefully, we read the register just once.
1308	 */
1309	udelay(2);
1310	ret = pio_init_wait_progress(dd);
1311	spin_unlock(&dd->sc_init_lock);
1312	if (ret) {
1313		dd_dev_err(dd,
1314			   "sctxt%u(%u): Context not enabled due to init failure %d\n",
1315			   sc->sw_index, sc->hw_context, ret);
1316		goto unlock;
1317	}
1318
1319	/*
1320	 * All is well. Enable the context.
1321	 */
1322	sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1323	write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1324	/*
1325	 * Read SendCtxtCtrl to force the write out and prevent a timing
1326	 * hazard where a PIO write may reach the context before the enable.
1327	 */
1328	read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1329	sc->flags |= SCF_ENABLED;
1330
1331unlock:
1332	spin_unlock_irqrestore(&sc->alloc_lock, flags);
1333
1334	return ret;
1335}
1336
1337/* force a credit return on the context */
1338void sc_return_credits(struct send_context *sc)
1339{
1340	if (!sc)
1341		return;
1342
1343	/* a 0->1 transition schedules a credit return */
1344	write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1345			SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1346	/*
1347	 * Ensure that the write is flushed and the credit return is
1348	 * scheduled. We care more about the 0 -> 1 transition.
1349	 */
1350	read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1351	/* set back to 0 for next time */
1352	write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1353}
1354
1355/* allow all in-flight packets to drain on the context */
1356void sc_flush(struct send_context *sc)
1357{
1358	if (!sc)
1359		return;
1360
1361	sc_wait_for_packet_egress(sc, 1);
1362}
1363
1364/* drop all packets on the context, no waiting until they are sent */
1365void sc_drop(struct send_context *sc)
1366{
1367	if (!sc)
1368		return;
1369
1370	dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1371		    __func__, sc->sw_index, sc->hw_context);
1372}
1373
1374/*
1375 * Start the software reaction to a context halt or SPC freeze:
1376 *	- mark the context as halted or frozen
1377 *	- stop buffer allocations
1378 *
1379 * Called from the error interrupt.  Other work is deferred until
1380 * out of the interrupt.
1381 */
1382void sc_stop(struct send_context *sc, int flag)
1383{
1384	unsigned long flags;
1385
1386	/* stop buffer allocations */
1387	spin_lock_irqsave(&sc->alloc_lock, flags);
1388	/* mark the context */
1389	sc->flags |= flag;
1390	sc->flags &= ~SCF_ENABLED;
1391	spin_unlock_irqrestore(&sc->alloc_lock, flags);
1392	wake_up(&sc->halt_wait);
1393}
1394
1395#define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1396#define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1397
1398/*
1399 * The send context buffer "allocator".
1400 *
1401 * @sc: the PIO send context we are allocating from
1402 * @len: length of whole packet - including PBC - in dwords
1403 * @cb: optional callback to call when the buffer is finished sending
1404 * @arg: argument for cb
1405 *
1406 * Return a pointer to a PIO buffer, NULL if not enough room, -ECOMM
1407 * when link is down.
1408 */
1409struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1410				pio_release_cb cb, void *arg)
1411{
1412	struct pio_buf *pbuf = NULL;
1413	unsigned long flags;
1414	unsigned long avail;
1415	unsigned long blocks = dwords_to_blocks(dw_len);
1416	u32 fill_wrap;
1417	int trycount = 0;
1418	u32 head, next;
1419
1420	spin_lock_irqsave(&sc->alloc_lock, flags);
1421	if (!(sc->flags & SCF_ENABLED)) {
1422		spin_unlock_irqrestore(&sc->alloc_lock, flags);
1423		return ERR_PTR(-ECOMM);
1424	}
1425
1426retry:
1427	avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1428	if (blocks > avail) {
1429		/* not enough room */
1430		if (unlikely(trycount))	{ /* already tried to get more room */
1431			spin_unlock_irqrestore(&sc->alloc_lock, flags);
1432			goto done;
1433		}
1434		/* copy from receiver cache line and recalculate */
1435		sc->alloc_free = READ_ONCE(sc->free);
1436		avail =
1437			(unsigned long)sc->credits -
1438			(sc->fill - sc->alloc_free);
1439		if (blocks > avail) {
1440			/* still no room, actively update */
1441			sc_release_update(sc);
1442			sc->alloc_free = READ_ONCE(sc->free);
1443			trycount++;
1444			goto retry;
1445		}
1446	}
1447
1448	/* there is enough room */
1449
1450	preempt_disable();
1451	this_cpu_inc(*sc->buffers_allocated);
1452
1453	/* read this once */
1454	head = sc->sr_head;
1455
1456	/* "allocate" the buffer */
1457	sc->fill += blocks;
1458	fill_wrap = sc->fill_wrap;
1459	sc->fill_wrap += blocks;
1460	if (sc->fill_wrap >= sc->credits)
1461		sc->fill_wrap = sc->fill_wrap - sc->credits;
1462
1463	/*
1464	 * Fill the parts that the releaser looks at before moving the head.
1465	 * The only necessary piece is the sent_at field.  The credits
1466	 * we have just allocated cannot have been returned yet, so the
1467	 * cb and arg will not be looked at for a "while".  Put them
1468	 * on this side of the memory barrier anyway.
1469	 */
1470	pbuf = &sc->sr[head].pbuf;
1471	pbuf->sent_at = sc->fill;
1472	pbuf->cb = cb;
1473	pbuf->arg = arg;
1474	pbuf->sc = sc;	/* could be filled in at sc->sr init time */
1475	/* make sure this is in memory before updating the head */
1476
1477	/* calculate next head index, do not store */
1478	next = head + 1;
1479	if (next >= sc->sr_size)
1480		next = 0;
1481	/*
1482	 * update the head - must be last! - the releaser can look at fields
1483	 * in pbuf once we move the head
1484	 */
1485	smp_wmb();
1486	sc->sr_head = next;
1487	spin_unlock_irqrestore(&sc->alloc_lock, flags);
1488
1489	/* finish filling in the buffer outside the lock */
1490	pbuf->start = sc->base_addr + fill_wrap * PIO_BLOCK_SIZE;
1491	pbuf->end = sc->base_addr + sc->size;
1492	pbuf->qw_written = 0;
1493	pbuf->carry_bytes = 0;
1494	pbuf->carry.val64 = 0;
1495done:
1496	return pbuf;
1497}
1498
1499/*
1500 * There are at least two entities that can turn on credit return
1501 * interrupts and they can overlap.  Avoid problems by implementing
1502 * a count scheme that is enforced by a lock.  The lock is needed because
1503 * the count and CSR write must be paired.
1504 */
1505
1506/*
1507 * Start credit return interrupts.  This is managed by a count.  If already
1508 * on, just increment the count.
1509 */
1510void sc_add_credit_return_intr(struct send_context *sc)
1511{
1512	unsigned long flags;
1513
1514	/* lock must surround both the count change and the CSR update */
1515	spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1516	if (sc->credit_intr_count == 0) {
1517		sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1518		write_kctxt_csr(sc->dd, sc->hw_context,
1519				SC(CREDIT_CTRL), sc->credit_ctrl);
1520	}
1521	sc->credit_intr_count++;
1522	spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1523}
1524
1525/*
1526 * Stop credit return interrupts.  This is managed by a count.  Decrement the
1527 * count, if the last user, then turn the credit interrupts off.
1528 */
1529void sc_del_credit_return_intr(struct send_context *sc)
1530{
1531	unsigned long flags;
1532
1533	WARN_ON(sc->credit_intr_count == 0);
1534
1535	/* lock must surround both the count change and the CSR update */
1536	spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1537	sc->credit_intr_count--;
1538	if (sc->credit_intr_count == 0) {
1539		sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1540		write_kctxt_csr(sc->dd, sc->hw_context,
1541				SC(CREDIT_CTRL), sc->credit_ctrl);
1542	}
1543	spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1544}
1545
1546/*
1547 * The caller must be careful when calling this.  All needint calls
1548 * must be paired with !needint.
1549 */
1550void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1551{
1552	if (needint)
1553		sc_add_credit_return_intr(sc);
1554	else
1555		sc_del_credit_return_intr(sc);
1556	trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1557	if (needint)
1558		sc_return_credits(sc);
1559}
1560
1561/**
1562 * sc_piobufavail - callback when a PIO buffer is available
1563 * @sc: the send context
1564 *
1565 * This is called from the interrupt handler when a PIO buffer is
1566 * available after hfi1_verbs_send() returned an error that no buffers were
1567 * available. Disable the interrupt if there are no more QPs waiting.
1568 */
1569static void sc_piobufavail(struct send_context *sc)
1570{
1571	struct hfi1_devdata *dd = sc->dd;
1572	struct list_head *list;
1573	struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1574	struct rvt_qp *qp;
1575	struct hfi1_qp_priv *priv;
1576	unsigned long flags;
1577	uint i, n = 0, top_idx = 0;
1578
1579	if (dd->send_contexts[sc->sw_index].type != SC_KERNEL &&
1580	    dd->send_contexts[sc->sw_index].type != SC_VL15)
1581		return;
1582	list = &sc->piowait;
1583	/*
1584	 * Note: checking that the piowait list is empty and clearing
1585	 * the buffer available interrupt needs to be atomic or we
1586	 * could end up with QPs on the wait list with the interrupt
1587	 * disabled.
1588	 */
1589	write_seqlock_irqsave(&sc->waitlock, flags);
1590	while (!list_empty(list)) {
1591		struct iowait *wait;
1592
1593		if (n == ARRAY_SIZE(qps))
1594			break;
1595		wait = list_first_entry(list, struct iowait, list);
1596		iowait_get_priority(wait);
1597		qp = iowait_to_qp(wait);
1598		priv = qp->priv;
1599		list_del_init(&priv->s_iowait.list);
1600		priv->s_iowait.lock = NULL;
1601		if (n) {
1602			priv = qps[top_idx]->priv;
1603			top_idx = iowait_priority_update_top(wait,
1604							     &priv->s_iowait,
1605							     n, top_idx);
1606		}
1607
1608		/* refcount held until actual wake up */
1609		qps[n++] = qp;
1610	}
1611	/*
1612	 * If there had been waiters and there are more
1613	 * insure that we redo the force to avoid a potential hang.
1614	 */
1615	if (n) {
1616		hfi1_sc_wantpiobuf_intr(sc, 0);
1617		if (!list_empty(list))
1618			hfi1_sc_wantpiobuf_intr(sc, 1);
1619	}
1620	write_sequnlock_irqrestore(&sc->waitlock, flags);
1621
1622	/* Wake up the top-priority one first */
1623	if (n)
1624		hfi1_qp_wakeup(qps[top_idx],
1625			       RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1626	for (i = 0; i < n; i++)
1627		if (i != top_idx)
1628			hfi1_qp_wakeup(qps[i],
1629				       RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1630}
1631
1632/* translate a send credit update to a bit code of reasons */
1633static inline int fill_code(u64 hw_free)
1634{
1635	int code = 0;
1636
1637	if (hw_free & CR_STATUS_SMASK)
1638		code |= PRC_STATUS_ERR;
1639	if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1640		code |= PRC_PBC;
1641	if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1642		code |= PRC_THRESHOLD;
1643	if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1644		code |= PRC_FILL_ERR;
1645	if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1646		code |= PRC_SC_DISABLE;
1647	return code;
1648}
1649
1650/* use the jiffies compare to get the wrap right */
1651#define sent_before(a, b) time_before(a, b)	/* a < b */
1652
1653/*
1654 * The send context buffer "releaser".
1655 */
1656void sc_release_update(struct send_context *sc)
1657{
1658	struct pio_buf *pbuf;
1659	u64 hw_free;
1660	u32 head, tail;
1661	unsigned long old_free;
1662	unsigned long free;
1663	unsigned long extra;
1664	unsigned long flags;
1665	int code;
1666
1667	if (!sc)
1668		return;
1669
1670	spin_lock_irqsave(&sc->release_lock, flags);
1671	/* update free */
1672	hw_free = le64_to_cpu(*sc->hw_free);		/* volatile read */
1673	old_free = sc->free;
1674	extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1675			- (old_free & CR_COUNTER_MASK))
1676				& CR_COUNTER_MASK;
1677	free = old_free + extra;
1678	trace_hfi1_piofree(sc, extra);
1679
1680	/* call sent buffer callbacks */
1681	code = -1;				/* code not yet set */
1682	head = READ_ONCE(sc->sr_head);	/* snapshot the head */
1683	tail = sc->sr_tail;
1684	while (head != tail) {
1685		pbuf = &sc->sr[tail].pbuf;
1686
1687		if (sent_before(free, pbuf->sent_at)) {
1688			/* not sent yet */
1689			break;
1690		}
1691		if (pbuf->cb) {
1692			if (code < 0) /* fill in code on first user */
1693				code = fill_code(hw_free);
1694			(*pbuf->cb)(pbuf->arg, code);
1695		}
1696
1697		tail++;
1698		if (tail >= sc->sr_size)
1699			tail = 0;
1700	}
1701	sc->sr_tail = tail;
1702	/* make sure tail is updated before free */
1703	smp_wmb();
1704	sc->free = free;
1705	spin_unlock_irqrestore(&sc->release_lock, flags);
1706	sc_piobufavail(sc);
1707}
1708
1709/*
1710 * Send context group releaser.  Argument is the send context that caused
1711 * the interrupt.  Called from the send context interrupt handler.
1712 *
1713 * Call release on all contexts in the group.
1714 *
1715 * This routine takes the sc_lock without an irqsave because it is only
1716 * called from an interrupt handler.  Adjust if that changes.
1717 */
1718void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1719{
1720	struct send_context *sc;
1721	u32 sw_index;
1722	u32 gc, gc_end;
1723
1724	spin_lock(&dd->sc_lock);
1725	sw_index = dd->hw_to_sw[hw_context];
1726	if (unlikely(sw_index >= dd->num_send_contexts)) {
1727		dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1728			   __func__, hw_context, sw_index);
1729		goto done;
1730	}
1731	sc = dd->send_contexts[sw_index].sc;
1732	if (unlikely(!sc))
1733		goto done;
1734
1735	gc = group_context(hw_context, sc->group);
1736	gc_end = gc + group_size(sc->group);
1737	for (; gc < gc_end; gc++) {
1738		sw_index = dd->hw_to_sw[gc];
1739		if (unlikely(sw_index >= dd->num_send_contexts)) {
1740			dd_dev_err(dd,
1741				   "%s: invalid hw (%u) to sw (%u) mapping\n",
1742				   __func__, hw_context, sw_index);
1743			continue;
1744		}
1745		sc_release_update(dd->send_contexts[sw_index].sc);
1746	}
1747done:
1748	spin_unlock(&dd->sc_lock);
1749}
1750
1751/*
1752 * pio_select_send_context_vl() - select send context
1753 * @dd: devdata
1754 * @selector: a spreading factor
1755 * @vl: this vl
1756 *
1757 * This function returns a send context based on the selector and a vl.
1758 * The mapping fields are protected by RCU
1759 */
1760struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1761						u32 selector, u8 vl)
1762{
1763	struct pio_vl_map *m;
1764	struct pio_map_elem *e;
1765	struct send_context *rval;
1766
1767	/*
1768	 * NOTE This should only happen if SC->VL changed after the initial
1769	 * checks on the QP/AH
1770	 * Default will return VL0's send context below
1771	 */
1772	if (unlikely(vl >= num_vls)) {
1773		rval = NULL;
1774		goto done;
1775	}
1776
1777	rcu_read_lock();
1778	m = rcu_dereference(dd->pio_map);
1779	if (unlikely(!m)) {
1780		rcu_read_unlock();
1781		return dd->vld[0].sc;
1782	}
1783	e = m->map[vl & m->mask];
1784	rval = e->ksc[selector & e->mask];
1785	rcu_read_unlock();
1786
1787done:
1788	rval = !rval ? dd->vld[0].sc : rval;
1789	return rval;
1790}
1791
1792/*
1793 * pio_select_send_context_sc() - select send context
1794 * @dd: devdata
1795 * @selector: a spreading factor
1796 * @sc5: the 5 bit sc
1797 *
1798 * This function returns an send context based on the selector and an sc
1799 */
1800struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1801						u32 selector, u8 sc5)
1802{
1803	u8 vl = sc_to_vlt(dd, sc5);
1804
1805	return pio_select_send_context_vl(dd, selector, vl);
1806}
1807
1808/*
1809 * Free the indicated map struct
1810 */
1811static void pio_map_free(struct pio_vl_map *m)
1812{
1813	int i;
1814
1815	for (i = 0; m && i < m->actual_vls; i++)
1816		kfree(m->map[i]);
1817	kfree(m);
1818}
1819
1820/*
1821 * Handle RCU callback
1822 */
1823static void pio_map_rcu_callback(struct rcu_head *list)
1824{
1825	struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1826
1827	pio_map_free(m);
1828}
1829
1830/*
1831 * Set credit return threshold for the kernel send context
1832 */
1833static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
1834{
1835	u32 thres;
1836
1837	thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
1838					    50),
1839		    sc_mtu_to_threshold(dd->kernel_send_context[scontext],
1840					dd->vld[i].mtu,
1841					dd->rcd[0]->rcvhdrqentsize));
1842	sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
1843}
1844
1845/*
1846 * pio_map_init - called when #vls change
1847 * @dd: hfi1_devdata
1848 * @port: port number
1849 * @num_vls: number of vls
1850 * @vl_scontexts: per vl send context mapping (optional)
1851 *
1852 * This routine changes the mapping based on the number of vls.
1853 *
1854 * vl_scontexts is used to specify a non-uniform vl/send context
1855 * loading. NULL implies auto computing the loading and giving each
1856 * VL an uniform distribution of send contexts per VL.
1857 *
1858 * The auto algorithm computers the sc_per_vl and the number of extra
1859 * send contexts. Any extra send contexts are added from the last VL
1860 * on down
1861 *
1862 * rcu locking is used here to control access to the mapping fields.
1863 *
1864 * If either the num_vls or num_send_contexts are non-power of 2, the
1865 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1866 * rounded up to the next highest power of 2 and the first entry is
1867 * reused in a round robin fashion.
1868 *
1869 * If an error occurs the map change is not done and the mapping is not
1870 * chaged.
1871 *
1872 */
1873int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1874{
1875	int i, j;
1876	int extra, sc_per_vl;
1877	int scontext = 1;
1878	int num_kernel_send_contexts = 0;
1879	u8 lvl_scontexts[OPA_MAX_VLS];
1880	struct pio_vl_map *oldmap, *newmap;
1881
1882	if (!vl_scontexts) {
1883		for (i = 0; i < dd->num_send_contexts; i++)
1884			if (dd->send_contexts[i].type == SC_KERNEL)
1885				num_kernel_send_contexts++;
1886		/* truncate divide */
1887		sc_per_vl = num_kernel_send_contexts / num_vls;
1888		/* extras */
1889		extra = num_kernel_send_contexts % num_vls;
1890		vl_scontexts = lvl_scontexts;
1891		/* add extras from last vl down */
1892		for (i = num_vls - 1; i >= 0; i--, extra--)
1893			vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1894	}
1895	/* build new map */
1896	newmap = kzalloc(struct_size(newmap, map, roundup_pow_of_two(num_vls)),
1897			 GFP_KERNEL);
1898	if (!newmap)
1899		goto bail;
1900	newmap->actual_vls = num_vls;
1901	newmap->vls = roundup_pow_of_two(num_vls);
1902	newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1903	for (i = 0; i < newmap->vls; i++) {
1904		/* save for wrap around */
1905		int first_scontext = scontext;
1906
1907		if (i < newmap->actual_vls) {
1908			int sz = roundup_pow_of_two(vl_scontexts[i]);
1909
1910			/* only allocate once */
1911			newmap->map[i] = kzalloc(struct_size(newmap->map[i],
1912							     ksc, sz),
1913						 GFP_KERNEL);
1914			if (!newmap->map[i])
1915				goto bail;
1916			newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1917			/*
1918			 * assign send contexts and
1919			 * adjust credit return threshold
1920			 */
1921			for (j = 0; j < sz; j++) {
1922				if (dd->kernel_send_context[scontext]) {
1923					newmap->map[i]->ksc[j] =
1924					dd->kernel_send_context[scontext];
1925					set_threshold(dd, scontext, i);
1926				}
1927				if (++scontext >= first_scontext +
1928						  vl_scontexts[i])
1929					/* wrap back to first send context */
1930					scontext = first_scontext;
1931			}
1932		} else {
1933			/* just re-use entry without allocating */
1934			newmap->map[i] = newmap->map[i % num_vls];
1935		}
1936		scontext = first_scontext + vl_scontexts[i];
1937	}
1938	/* newmap in hand, save old map */
1939	spin_lock_irq(&dd->pio_map_lock);
1940	oldmap = rcu_dereference_protected(dd->pio_map,
1941					   lockdep_is_held(&dd->pio_map_lock));
1942
1943	/* publish newmap */
1944	rcu_assign_pointer(dd->pio_map, newmap);
1945
1946	spin_unlock_irq(&dd->pio_map_lock);
1947	/* success, free any old map after grace period */
1948	if (oldmap)
1949		call_rcu(&oldmap->list, pio_map_rcu_callback);
1950	return 0;
1951bail:
1952	/* free any partial allocation */
1953	pio_map_free(newmap);
1954	return -ENOMEM;
1955}
1956
1957void free_pio_map(struct hfi1_devdata *dd)
1958{
1959	/* Free PIO map if allocated */
1960	if (rcu_access_pointer(dd->pio_map)) {
1961		spin_lock_irq(&dd->pio_map_lock);
1962		pio_map_free(rcu_access_pointer(dd->pio_map));
1963		RCU_INIT_POINTER(dd->pio_map, NULL);
1964		spin_unlock_irq(&dd->pio_map_lock);
1965		synchronize_rcu();
1966	}
1967	kfree(dd->kernel_send_context);
1968	dd->kernel_send_context = NULL;
1969}
1970
1971int init_pervl_scs(struct hfi1_devdata *dd)
1972{
1973	int i;
1974	u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
1975	u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
1976	u32 ctxt;
1977	struct hfi1_pportdata *ppd = dd->pport;
1978
1979	dd->vld[15].sc = sc_alloc(dd, SC_VL15,
1980				  dd->rcd[0]->rcvhdrqentsize, dd->node);
1981	if (!dd->vld[15].sc)
1982		return -ENOMEM;
1983
1984	hfi1_init_ctxt(dd->vld[15].sc);
1985	dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
1986
1987	dd->kernel_send_context = kcalloc_node(dd->num_send_contexts,
1988					       sizeof(struct send_context *),
1989					       GFP_KERNEL, dd->node);
1990	if (!dd->kernel_send_context)
1991		goto freesc15;
1992
1993	dd->kernel_send_context[0] = dd->vld[15].sc;
1994
1995	for (i = 0; i < num_vls; i++) {
1996		/*
1997		 * Since this function does not deal with a specific
1998		 * receive context but we need the RcvHdrQ entry size,
1999		 * use the size from rcd[0]. It is guaranteed to be
2000		 * valid at this point and will remain the same for all
2001		 * receive contexts.
2002		 */
2003		dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
2004					 dd->rcd[0]->rcvhdrqentsize, dd->node);
2005		if (!dd->vld[i].sc)
2006			goto nomem;
2007		dd->kernel_send_context[i + 1] = dd->vld[i].sc;
2008		hfi1_init_ctxt(dd->vld[i].sc);
2009		/* non VL15 start with the max MTU */
2010		dd->vld[i].mtu = hfi1_max_mtu;
2011	}
2012	for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2013		dd->kernel_send_context[i + 1] =
2014		sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
2015		if (!dd->kernel_send_context[i + 1])
2016			goto nomem;
2017		hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
2018	}
2019
2020	sc_enable(dd->vld[15].sc);
2021	ctxt = dd->vld[15].sc->hw_context;
2022	mask = all_vl_mask & ~(1LL << 15);
2023	write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2024	dd_dev_info(dd,
2025		    "Using send context %u(%u) for VL15\n",
2026		    dd->vld[15].sc->sw_index, ctxt);
2027
2028	for (i = 0; i < num_vls; i++) {
2029		sc_enable(dd->vld[i].sc);
2030		ctxt = dd->vld[i].sc->hw_context;
2031		mask = all_vl_mask & ~(data_vls_mask);
2032		write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2033	}
2034	for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2035		sc_enable(dd->kernel_send_context[i + 1]);
2036		ctxt = dd->kernel_send_context[i + 1]->hw_context;
2037		mask = all_vl_mask & ~(data_vls_mask);
2038		write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2039	}
2040
2041	if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
2042		goto nomem;
2043	return 0;
2044
2045nomem:
2046	for (i = 0; i < num_vls; i++) {
2047		sc_free(dd->vld[i].sc);
2048		dd->vld[i].sc = NULL;
2049	}
2050
2051	for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
2052		sc_free(dd->kernel_send_context[i + 1]);
2053
2054	kfree(dd->kernel_send_context);
2055	dd->kernel_send_context = NULL;
2056
2057freesc15:
2058	sc_free(dd->vld[15].sc);
2059	return -ENOMEM;
2060}
2061
2062int init_credit_return(struct hfi1_devdata *dd)
2063{
2064	int ret;
2065	int i;
2066
2067	dd->cr_base = kcalloc(
2068		node_affinity.num_possible_nodes,
2069		sizeof(struct credit_return_base),
2070		GFP_KERNEL);
2071	if (!dd->cr_base) {
2072		ret = -ENOMEM;
2073		goto done;
2074	}
2075	for_each_node_with_cpus(i) {
2076		int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2077
2078		set_dev_node(&dd->pcidev->dev, i);
2079		dd->cr_base[i].va = dma_alloc_coherent(&dd->pcidev->dev,
2080						       bytes,
2081						       &dd->cr_base[i].dma,
2082						       GFP_KERNEL);
2083		if (!dd->cr_base[i].va) {
2084			set_dev_node(&dd->pcidev->dev, dd->node);
2085			dd_dev_err(dd,
2086				   "Unable to allocate credit return DMA range for NUMA %d\n",
2087				   i);
2088			ret = -ENOMEM;
2089			goto free_cr_base;
2090		}
2091	}
2092	set_dev_node(&dd->pcidev->dev, dd->node);
2093
2094	ret = 0;
2095done:
2096	return ret;
2097
2098free_cr_base:
2099	free_credit_return(dd);
2100	goto done;
2101}
2102
2103void free_credit_return(struct hfi1_devdata *dd)
2104{
2105	int i;
2106
2107	if (!dd->cr_base)
2108		return;
2109	for (i = 0; i < node_affinity.num_possible_nodes; i++) {
2110		if (dd->cr_base[i].va) {
2111			dma_free_coherent(&dd->pcidev->dev,
2112					  TXE_NUM_CONTEXTS *
2113					  sizeof(struct credit_return),
2114					  dd->cr_base[i].va,
2115					  dd->cr_base[i].dma);
2116		}
2117	}
2118	kfree(dd->cr_base);
2119	dd->cr_base = NULL;
2120}
2121
2122void seqfile_dump_sci(struct seq_file *s, u32 i,
2123		      struct send_context_info *sci)
2124{
2125	struct send_context *sc = sci->sc;
2126	u64 reg;
2127
2128	seq_printf(s, "SCI %u: type %u base %u credits %u\n",
2129		   i, sci->type, sci->base, sci->credits);
2130	seq_printf(s, "  flags 0x%x sw_inx %u hw_ctxt %u grp %u\n",
2131		   sc->flags,  sc->sw_index, sc->hw_context, sc->group);
2132	seq_printf(s, "  sr_size %u credits %u sr_head %u sr_tail %u\n",
2133		   sc->sr_size, sc->credits, sc->sr_head, sc->sr_tail);
2134	seq_printf(s, "  fill %lu free %lu fill_wrap %u alloc_free %lu\n",
2135		   sc->fill, sc->free, sc->fill_wrap, sc->alloc_free);
2136	seq_printf(s, "  credit_intr_count %u credit_ctrl 0x%llx\n",
2137		   sc->credit_intr_count, sc->credit_ctrl);
2138	reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_STATUS));
2139	seq_printf(s, "  *hw_free %llu CurrentFree %llu LastReturned %llu\n",
2140		   (le64_to_cpu(*sc->hw_free) & CR_COUNTER_SMASK) >>
2141		    CR_COUNTER_SHIFT,
2142		   (reg >> SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_SHIFT)) &
2143		    SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_MASK),
2144		   reg & SC(CREDIT_STATUS_LAST_RETURNED_COUNTER_SMASK));
2145}
2146