1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
5 */
6
7#include <linux/pci.h>
8#include <linux/netdevice.h>
9#include <linux/vmalloc.h>
10#include <linux/delay.h>
11#include <linux/xarray.h>
12#include <linux/module.h>
13#include <linux/printk.h>
14#include <linux/hrtimer.h>
15#include <linux/bitmap.h>
16#include <linux/numa.h>
17#include <rdma/rdma_vt.h>
18
19#include "hfi.h"
20#include "device.h"
21#include "common.h"
22#include "trace.h"
23#include "mad.h"
24#include "sdma.h"
25#include "debugfs.h"
26#include "verbs.h"
27#include "aspm.h"
28#include "affinity.h"
29#include "vnic.h"
30#include "exp_rcv.h"
31#include "netdev.h"
32
33#undef pr_fmt
34#define pr_fmt(fmt) DRIVER_NAME ": " fmt
35
36/*
37 * min buffers we want to have per context, after driver
38 */
39#define HFI1_MIN_USER_CTXT_BUFCNT 7
40
41#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43
44#define NUM_IB_PORTS 1
45
46/*
47 * Number of user receive contexts we are configured to use (to allow for more
48 * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
49 */
50int num_user_contexts = -1;
51module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52MODULE_PARM_DESC(
53	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54
55uint krcvqs[RXE_NUM_DATA_VL];
56int krcvqsset;
57module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59
60/* computed based on above array */
61unsigned long n_krcvqs;
62
63static unsigned hfi1_rcvarr_split = 25;
64module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66
67static uint eager_buffer_size = (8 << 20); /* 8MB */
68module_param(eager_buffer_size, uint, S_IRUGO);
69MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70
71static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74
75static uint hfi1_hdrq_entsize = 32;
76module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78
79unsigned int user_credit_return_threshold = 33;	/* default is 33% */
80module_param(user_credit_return_threshold, uint, S_IRUGO);
81MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82
83DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84
85static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86			     struct hfi1_pportdata *ppd)
87{
88	struct hfi1_ctxtdata *rcd;
89	int ret;
90
91	/* Control context has to be always 0 */
92	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93
94	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
95	if (ret < 0) {
96		dd_dev_err(dd, "Kernel receive context allocation failed\n");
97		return ret;
98	}
99
100	/*
101	 * Set up the kernel context flags here and now because they use
102	 * default values for all receive side memories.  User contexts will
103	 * be handled as they are created.
104	 */
105	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107		HFI1_CAP_KGET(NODROP_EGR_FULL) |
108		HFI1_CAP_KGET(DMA_RTAIL);
109
110	/* Control context must use DMA_RTAIL */
111	if (rcd->ctxt == HFI1_CTRL_CTXT)
112		rcd->flags |= HFI1_CAP_DMA_RTAIL;
113	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114				handle_receive_interrupt_dma_rtail :
115				handle_receive_interrupt_nodma_rtail;
116
117	hfi1_set_seq_cnt(rcd, 1);
118
119	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120	if (!rcd->sc) {
121		dd_dev_err(dd, "Kernel send context allocation failed\n");
122		return -ENOMEM;
123	}
124	hfi1_init_ctxt(rcd->sc);
125
126	return 0;
127}
128
129/*
130 * Create the receive context array and one or more kernel contexts
131 */
132int hfi1_create_kctxts(struct hfi1_devdata *dd)
133{
134	u16 i;
135	int ret;
136
137	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138			       GFP_KERNEL, dd->node);
139	if (!dd->rcd)
140		return -ENOMEM;
141
142	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143		ret = hfi1_create_kctxt(dd, dd->pport);
144		if (ret)
145			goto bail;
146	}
147
148	return 0;
149bail:
150	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151		hfi1_free_ctxt(dd->rcd[i]);
152
153	/* All the contexts should be freed, free the array */
154	kfree(dd->rcd);
155	dd->rcd = NULL;
156	return ret;
157}
158
159/*
160 * Helper routines for the receive context reference count (rcd and uctxt).
161 */
162static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163{
164	kref_init(&rcd->kref);
165}
166
167/**
168 * hfi1_rcd_free - When reference is zero clean up.
169 * @kref: pointer to an initialized rcd data structure
170 *
171 */
172static void hfi1_rcd_free(struct kref *kref)
173{
174	unsigned long flags;
175	struct hfi1_ctxtdata *rcd =
176		container_of(kref, struct hfi1_ctxtdata, kref);
177
178	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179	rcd->dd->rcd[rcd->ctxt] = NULL;
180	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181
182	hfi1_free_ctxtdata(rcd->dd, rcd);
183
184	kfree(rcd);
185}
186
187/**
188 * hfi1_rcd_put - decrement reference for rcd
189 * @rcd: pointer to an initialized rcd data structure
190 *
191 * Use this to put a reference after the init.
192 */
193int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194{
195	if (rcd)
196		return kref_put(&rcd->kref, hfi1_rcd_free);
197
198	return 0;
199}
200
201/**
202 * hfi1_rcd_get - increment reference for rcd
203 * @rcd: pointer to an initialized rcd data structure
204 *
205 * Use this to get a reference after the init.
206 *
207 * Return : reflect kref_get_unless_zero(), which returns non-zero on
208 * increment, otherwise 0.
209 */
210int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211{
212	return kref_get_unless_zero(&rcd->kref);
213}
214
215/**
216 * allocate_rcd_index - allocate an rcd index from the rcd array
217 * @dd: pointer to a valid devdata structure
218 * @rcd: rcd data structure to assign
219 * @index: pointer to index that is allocated
220 *
221 * Find an empty index in the rcd array, and assign the given rcd to it.
222 * If the array is full, we are EBUSY.
223 *
224 */
225static int allocate_rcd_index(struct hfi1_devdata *dd,
226			      struct hfi1_ctxtdata *rcd, u16 *index)
227{
228	unsigned long flags;
229	u16 ctxt;
230
231	spin_lock_irqsave(&dd->uctxt_lock, flags);
232	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233		if (!dd->rcd[ctxt])
234			break;
235
236	if (ctxt < dd->num_rcv_contexts) {
237		rcd->ctxt = ctxt;
238		dd->rcd[ctxt] = rcd;
239		hfi1_rcd_init(rcd);
240	}
241	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242
243	if (ctxt >= dd->num_rcv_contexts)
244		return -EBUSY;
245
246	*index = ctxt;
247
248	return 0;
249}
250
251/**
252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253 * array
254 * @dd: pointer to a valid devdata structure
255 * @ctxt: the index of an possilbe rcd
256 *
257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258 * ctxt index is valid.
259 *
260 * The caller is responsible for making the _put().
261 *
262 */
263struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264						 u16 ctxt)
265{
266	if (ctxt < dd->num_rcv_contexts)
267		return hfi1_rcd_get_by_index(dd, ctxt);
268
269	return NULL;
270}
271
272/**
273 * hfi1_rcd_get_by_index - get by index
274 * @dd: pointer to a valid devdata structure
275 * @ctxt: the index of an possilbe rcd
276 *
277 * We need to protect access to the rcd array.  If access is needed to
278 * one or more index, get the protecting spinlock and then increment the
279 * kref.
280 *
281 * The caller is responsible for making the _put().
282 *
283 */
284struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285{
286	unsigned long flags;
287	struct hfi1_ctxtdata *rcd = NULL;
288
289	spin_lock_irqsave(&dd->uctxt_lock, flags);
290	if (dd->rcd[ctxt]) {
291		rcd = dd->rcd[ctxt];
292		if (!hfi1_rcd_get(rcd))
293			rcd = NULL;
294	}
295	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296
297	return rcd;
298}
299
300/*
301 * Common code for user and kernel context create and setup.
302 * NOTE: the initial kref is done here (hf1_rcd_init()).
303 */
304int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305			 struct hfi1_ctxtdata **context)
306{
307	struct hfi1_devdata *dd = ppd->dd;
308	struct hfi1_ctxtdata *rcd;
309	unsigned kctxt_ngroups = 0;
310	u32 base;
311
312	if (dd->rcv_entries.nctxt_extra >
313	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317	if (rcd) {
318		u32 rcvtids, max_entries;
319		u16 ctxt;
320		int ret;
321
322		ret = allocate_rcd_index(dd, rcd, &ctxt);
323		if (ret) {
324			*context = NULL;
325			kfree(rcd);
326			return ret;
327		}
328
329		INIT_LIST_HEAD(&rcd->qp_wait_list);
330		hfi1_exp_tid_group_init(rcd);
331		rcd->ppd = ppd;
332		rcd->dd = dd;
333		rcd->numa_id = numa;
334		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336		rcd->slow_handler = handle_receive_interrupt;
337		rcd->do_interrupt = rcd->slow_handler;
338		rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
339
340		mutex_init(&rcd->exp_mutex);
341		spin_lock_init(&rcd->exp_lock);
342		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
343		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
344
345		hfi1_cdbg(PROC, "setting up context %u", rcd->ctxt);
346
347		/*
348		 * Calculate the context's RcvArray entry starting point.
349		 * We do this here because we have to take into account all
350		 * the RcvArray entries that previous context would have
351		 * taken and we have to account for any extra groups assigned
352		 * to the static (kernel) or dynamic (vnic/user) contexts.
353		 */
354		if (ctxt < dd->first_dyn_alloc_ctxt) {
355			if (ctxt < kctxt_ngroups) {
356				base = ctxt * (dd->rcv_entries.ngroups + 1);
357				rcd->rcv_array_groups++;
358			} else {
359				base = kctxt_ngroups +
360					(ctxt * dd->rcv_entries.ngroups);
361			}
362		} else {
363			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
364
365			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
366				kctxt_ngroups);
367			if (ct < dd->rcv_entries.nctxt_extra) {
368				base += ct * (dd->rcv_entries.ngroups + 1);
369				rcd->rcv_array_groups++;
370			} else {
371				base += dd->rcv_entries.nctxt_extra +
372					(ct * dd->rcv_entries.ngroups);
373			}
374		}
375		rcd->eager_base = base * dd->rcv_entries.group_size;
376
377		rcd->rcvhdrq_cnt = rcvhdrcnt;
378		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
379		rcd->rhf_offset =
380			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
381		/*
382		 * Simple Eager buffer allocation: we have already pre-allocated
383		 * the number of RcvArray entry groups. Each ctxtdata structure
384		 * holds the number of groups for that context.
385		 *
386		 * To follow CSR requirements and maintain cacheline alignment,
387		 * make sure all sizes and bases are multiples of group_size.
388		 *
389		 * The expected entry count is what is left after assigning
390		 * eager.
391		 */
392		max_entries = rcd->rcv_array_groups *
393			dd->rcv_entries.group_size;
394		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
395		rcd->egrbufs.count = round_down(rcvtids,
396						dd->rcv_entries.group_size);
397		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
398			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
399				   rcd->ctxt);
400			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
401		}
402		hfi1_cdbg(PROC,
403			  "ctxt%u: max Eager buffer RcvArray entries: %u",
404			  rcd->ctxt, rcd->egrbufs.count);
405
406		/*
407		 * Allocate array that will hold the eager buffer accounting
408		 * data.
409		 * This will allocate the maximum possible buffer count based
410		 * on the value of the RcvArray split parameter.
411		 * The resulting value will be rounded down to the closest
412		 * multiple of dd->rcv_entries.group_size.
413		 */
414		rcd->egrbufs.buffers =
415			kcalloc_node(rcd->egrbufs.count,
416				     sizeof(*rcd->egrbufs.buffers),
417				     GFP_KERNEL, numa);
418		if (!rcd->egrbufs.buffers)
419			goto bail;
420		rcd->egrbufs.rcvtids =
421			kcalloc_node(rcd->egrbufs.count,
422				     sizeof(*rcd->egrbufs.rcvtids),
423				     GFP_KERNEL, numa);
424		if (!rcd->egrbufs.rcvtids)
425			goto bail;
426		rcd->egrbufs.size = eager_buffer_size;
427		/*
428		 * The size of the buffers programmed into the RcvArray
429		 * entries needs to be big enough to handle the highest
430		 * MTU supported.
431		 */
432		if (rcd->egrbufs.size < hfi1_max_mtu) {
433			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
434			hfi1_cdbg(PROC,
435				  "ctxt%u: eager bufs size too small. Adjusting to %u",
436				    rcd->ctxt, rcd->egrbufs.size);
437		}
438		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
439
440		/* Applicable only for statically created kernel contexts */
441		if (ctxt < dd->first_dyn_alloc_ctxt) {
442			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
443						    GFP_KERNEL, numa);
444			if (!rcd->opstats)
445				goto bail;
446
447			/* Initialize TID flow generations for the context */
448			hfi1_kern_init_ctxt_generations(rcd);
449		}
450
451		*context = rcd;
452		return 0;
453	}
454
455bail:
456	*context = NULL;
457	hfi1_free_ctxt(rcd);
458	return -ENOMEM;
459}
460
461/**
462 * hfi1_free_ctxt - free context
463 * @rcd: pointer to an initialized rcd data structure
464 *
465 * This wrapper is the free function that matches hfi1_create_ctxtdata().
466 * When a context is done being used (kernel or user), this function is called
467 * for the "final" put to match the kref init from hfi1_create_ctxtdata().
468 * Other users of the context do a get/put sequence to make sure that the
469 * structure isn't removed while in use.
470 */
471void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
472{
473	hfi1_rcd_put(rcd);
474}
475
476/*
477 * Select the largest ccti value over all SLs to determine the intra-
478 * packet gap for the link.
479 *
480 * called with cca_timer_lock held (to protect access to cca_timer
481 * array), and rcu_read_lock() (to protect access to cc_state).
482 */
483void set_link_ipg(struct hfi1_pportdata *ppd)
484{
485	struct hfi1_devdata *dd = ppd->dd;
486	struct cc_state *cc_state;
487	int i;
488	u16 cce, ccti_limit, max_ccti = 0;
489	u16 shift, mult;
490	u64 src;
491	u32 current_egress_rate; /* Mbits /sec */
492	u64 max_pkt_time;
493	/*
494	 * max_pkt_time is the maximum packet egress time in units
495	 * of the fabric clock period 1/(805 MHz).
496	 */
497
498	cc_state = get_cc_state(ppd);
499
500	if (!cc_state)
501		/*
502		 * This should _never_ happen - rcu_read_lock() is held,
503		 * and set_link_ipg() should not be called if cc_state
504		 * is NULL.
505		 */
506		return;
507
508	for (i = 0; i < OPA_MAX_SLS; i++) {
509		u16 ccti = ppd->cca_timer[i].ccti;
510
511		if (ccti > max_ccti)
512			max_ccti = ccti;
513	}
514
515	ccti_limit = cc_state->cct.ccti_limit;
516	if (max_ccti > ccti_limit)
517		max_ccti = ccti_limit;
518
519	cce = cc_state->cct.entries[max_ccti].entry;
520	shift = (cce & 0xc000) >> 14;
521	mult = (cce & 0x3fff);
522
523	current_egress_rate = active_egress_rate(ppd);
524
525	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
526
527	src = (max_pkt_time >> shift) * mult;
528
529	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
530	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
531
532	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
533}
534
535static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
536{
537	struct cca_timer *cca_timer;
538	struct hfi1_pportdata *ppd;
539	int sl;
540	u16 ccti_timer, ccti_min;
541	struct cc_state *cc_state;
542	unsigned long flags;
543	enum hrtimer_restart ret = HRTIMER_NORESTART;
544
545	cca_timer = container_of(t, struct cca_timer, hrtimer);
546	ppd = cca_timer->ppd;
547	sl = cca_timer->sl;
548
549	rcu_read_lock();
550
551	cc_state = get_cc_state(ppd);
552
553	if (!cc_state) {
554		rcu_read_unlock();
555		return HRTIMER_NORESTART;
556	}
557
558	/*
559	 * 1) decrement ccti for SL
560	 * 2) calculate IPG for link (set_link_ipg())
561	 * 3) restart timer, unless ccti is at min value
562	 */
563
564	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
565	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
566
567	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
568
569	if (cca_timer->ccti > ccti_min) {
570		cca_timer->ccti--;
571		set_link_ipg(ppd);
572	}
573
574	if (cca_timer->ccti > ccti_min) {
575		unsigned long nsec = 1024 * ccti_timer;
576		/* ccti_timer is in units of 1.024 usec */
577		hrtimer_forward_now(t, ns_to_ktime(nsec));
578		ret = HRTIMER_RESTART;
579	}
580
581	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
582	rcu_read_unlock();
583	return ret;
584}
585
586/*
587 * Common code for initializing the physical port structure.
588 */
589void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
590			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
591{
592	int i;
593	uint default_pkey_idx;
594	struct cc_state *cc_state;
595
596	ppd->dd = dd;
597	ppd->hw_pidx = hw_pidx;
598	ppd->port = port; /* IB port number, not index */
599	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
600	/*
601	 * There are C_VL_COUNT number of PortVLXmitWait counters.
602	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
603	 */
604	for (i = 0; i < C_VL_COUNT + 1; i++) {
605		ppd->port_vl_xmit_wait_last[i] = 0;
606		ppd->vl_xmit_flit_cnt[i] = 0;
607	}
608
609	default_pkey_idx = 1;
610
611	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
612	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
613	ppd->pkeys[0] = 0x8001;
614
615	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
616	INIT_WORK(&ppd->link_up_work, handle_link_up);
617	INIT_WORK(&ppd->link_down_work, handle_link_down);
618	INIT_WORK(&ppd->freeze_work, handle_freeze);
619	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
620	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
621	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
622	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
623	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
624	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
625
626	mutex_init(&ppd->hls_lock);
627	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
628
629	ppd->qsfp_info.ppd = ppd;
630	ppd->sm_trap_qp = 0x0;
631	ppd->sa_qp = 0x1;
632
633	ppd->hfi1_wq = NULL;
634
635	spin_lock_init(&ppd->cca_timer_lock);
636
637	for (i = 0; i < OPA_MAX_SLS; i++) {
638		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
639			     HRTIMER_MODE_REL);
640		ppd->cca_timer[i].ppd = ppd;
641		ppd->cca_timer[i].sl = i;
642		ppd->cca_timer[i].ccti = 0;
643		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
644	}
645
646	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
647
648	spin_lock_init(&ppd->cc_state_lock);
649	spin_lock_init(&ppd->cc_log_lock);
650	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
651	RCU_INIT_POINTER(ppd->cc_state, cc_state);
652	if (!cc_state)
653		goto bail;
654	return;
655
656bail:
657	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
658}
659
660/*
661 * Do initialization for device that is only needed on
662 * first detect, not on resets.
663 */
664static int loadtime_init(struct hfi1_devdata *dd)
665{
666	return 0;
667}
668
669/**
670 * init_after_reset - re-initialize after a reset
671 * @dd: the hfi1_ib device
672 *
673 * sanity check at least some of the values after reset, and
674 * ensure no receive or transmit (explicitly, in case reset
675 * failed
676 */
677static int init_after_reset(struct hfi1_devdata *dd)
678{
679	int i;
680	struct hfi1_ctxtdata *rcd;
681	/*
682	 * Ensure chip does no sends or receives, tail updates, or
683	 * pioavail updates while we re-initialize.  This is mostly
684	 * for the driver data structures, not chip registers.
685	 */
686	for (i = 0; i < dd->num_rcv_contexts; i++) {
687		rcd = hfi1_rcd_get_by_index(dd, i);
688		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689			     HFI1_RCVCTRL_INTRAVAIL_DIS |
690			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
691		hfi1_rcd_put(rcd);
692	}
693	pio_send_control(dd, PSC_GLOBAL_DISABLE);
694	for (i = 0; i < dd->num_send_contexts; i++)
695		sc_disable(dd->send_contexts[i].sc);
696
697	return 0;
698}
699
700static void enable_chip(struct hfi1_devdata *dd)
701{
702	struct hfi1_ctxtdata *rcd;
703	u32 rcvmask;
704	u16 i;
705
706	/* enable PIO send */
707	pio_send_control(dd, PSC_GLOBAL_ENABLE);
708
709	/*
710	 * Enable kernel ctxts' receive and receive interrupt.
711	 * Other ctxts done as user opens and initializes them.
712	 */
713	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
714		rcd = hfi1_rcd_get_by_index(dd, i);
715		if (!rcd)
716			continue;
717		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
718		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
719			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
720		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
721			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
722		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
723			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
724		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
725			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
726		if (HFI1_CAP_IS_KSET(TID_RDMA))
727			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
728		hfi1_rcvctrl(dd, rcvmask, rcd);
729		sc_enable(rcd->sc);
730		hfi1_rcd_put(rcd);
731	}
732}
733
734/**
735 * create_workqueues - create per port workqueues
736 * @dd: the hfi1_ib device
737 */
738static int create_workqueues(struct hfi1_devdata *dd)
739{
740	int pidx;
741	struct hfi1_pportdata *ppd;
742
743	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
744		ppd = dd->pport + pidx;
745		if (!ppd->hfi1_wq) {
746			ppd->hfi1_wq =
747				alloc_workqueue(
748				    "hfi%d_%d",
749				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
750				    WQ_MEM_RECLAIM,
751				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
752				    dd->unit, pidx);
753			if (!ppd->hfi1_wq)
754				goto wq_error;
755		}
756		if (!ppd->link_wq) {
757			/*
758			 * Make the link workqueue single-threaded to enforce
759			 * serialization.
760			 */
761			ppd->link_wq =
762				alloc_workqueue(
763				    "hfi_link_%d_%d",
764				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
765				    1, /* max_active */
766				    dd->unit, pidx);
767			if (!ppd->link_wq)
768				goto wq_error;
769		}
770	}
771	return 0;
772wq_error:
773	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
774	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
775		ppd = dd->pport + pidx;
776		if (ppd->hfi1_wq) {
777			destroy_workqueue(ppd->hfi1_wq);
778			ppd->hfi1_wq = NULL;
779		}
780		if (ppd->link_wq) {
781			destroy_workqueue(ppd->link_wq);
782			ppd->link_wq = NULL;
783		}
784	}
785	return -ENOMEM;
786}
787
788/**
789 * destroy_workqueues - destroy per port workqueues
790 * @dd: the hfi1_ib device
791 */
792static void destroy_workqueues(struct hfi1_devdata *dd)
793{
794	int pidx;
795	struct hfi1_pportdata *ppd;
796
797	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798		ppd = dd->pport + pidx;
799
800		if (ppd->hfi1_wq) {
801			destroy_workqueue(ppd->hfi1_wq);
802			ppd->hfi1_wq = NULL;
803		}
804		if (ppd->link_wq) {
805			destroy_workqueue(ppd->link_wq);
806			ppd->link_wq = NULL;
807		}
808	}
809}
810
811/**
812 * enable_general_intr() - Enable the IRQs that will be handled by the
813 * general interrupt handler.
814 * @dd: valid devdata
815 *
816 */
817static void enable_general_intr(struct hfi1_devdata *dd)
818{
819	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
820	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
821	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
822	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
823	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
824	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
825	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
826}
827
828/**
829 * hfi1_init - do the actual initialization sequence on the chip
830 * @dd: the hfi1_ib device
831 * @reinit: re-initializing, so don't allocate new memory
832 *
833 * Do the actual initialization sequence on the chip.  This is done
834 * both from the init routine called from the PCI infrastructure, and
835 * when we reset the chip, or detect that it was reset internally,
836 * or it's administratively re-enabled.
837 *
838 * Memory allocation here and in called routines is only done in
839 * the first case (reinit == 0).  We have to be careful, because even
840 * without memory allocation, we need to re-write all the chip registers
841 * TIDs, etc. after the reset or enable has completed.
842 */
843int hfi1_init(struct hfi1_devdata *dd, int reinit)
844{
845	int ret = 0, pidx, lastfail = 0;
846	unsigned long len;
847	u16 i;
848	struct hfi1_ctxtdata *rcd;
849	struct hfi1_pportdata *ppd;
850
851	/* Set up send low level handlers */
852	dd->process_pio_send = hfi1_verbs_send_pio;
853	dd->process_dma_send = hfi1_verbs_send_dma;
854	dd->pio_inline_send = pio_copy;
855	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
856
857	if (is_ax(dd)) {
858		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
859		dd->do_drop = true;
860	} else {
861		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
862		dd->do_drop = false;
863	}
864
865	/* make sure the link is not "up" */
866	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
867		ppd = dd->pport + pidx;
868		ppd->linkup = 0;
869	}
870
871	if (reinit)
872		ret = init_after_reset(dd);
873	else
874		ret = loadtime_init(dd);
875	if (ret)
876		goto done;
877
878	/* dd->rcd can be NULL if early initialization failed */
879	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
880		/*
881		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
882		 * re-init, the simplest way to handle this is to free
883		 * existing, and re-allocate.
884		 * Need to re-create rest of ctxt 0 ctxtdata as well.
885		 */
886		rcd = hfi1_rcd_get_by_index(dd, i);
887		if (!rcd)
888			continue;
889
890		lastfail = hfi1_create_rcvhdrq(dd, rcd);
891		if (!lastfail)
892			lastfail = hfi1_setup_eagerbufs(rcd);
893		if (!lastfail)
894			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
895		if (lastfail) {
896			dd_dev_err(dd,
897				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
898			ret = lastfail;
899		}
900		/* enable IRQ */
901		hfi1_rcd_put(rcd);
902	}
903
904	/* Allocate enough memory for user event notification. */
905	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
906			 sizeof(*dd->events));
907	dd->events = vmalloc_user(len);
908	if (!dd->events)
909		dd_dev_err(dd, "Failed to allocate user events page\n");
910	/*
911	 * Allocate a page for device and port status.
912	 * Page will be shared amongst all user processes.
913	 */
914	dd->status = vmalloc_user(PAGE_SIZE);
915	if (!dd->status)
916		dd_dev_err(dd, "Failed to allocate dev status page\n");
917	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
918		ppd = dd->pport + pidx;
919		if (dd->status)
920			/* Currently, we only have one port */
921			ppd->statusp = &dd->status->port;
922
923		set_mtu(ppd);
924	}
925
926	/* enable chip even if we have an error, so we can debug cause */
927	enable_chip(dd);
928
929done:
930	/*
931	 * Set status even if port serdes is not initialized
932	 * so that diags will work.
933	 */
934	if (dd->status)
935		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
936			HFI1_STATUS_INITTED;
937	if (!ret) {
938		/* enable all interrupts from the chip */
939		enable_general_intr(dd);
940		init_qsfp_int(dd);
941
942		/* chip is OK for user apps; mark it as initialized */
943		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
944			ppd = dd->pport + pidx;
945
946			/*
947			 * start the serdes - must be after interrupts are
948			 * enabled so we are notified when the link goes up
949			 */
950			lastfail = bringup_serdes(ppd);
951			if (lastfail)
952				dd_dev_info(dd,
953					    "Failed to bring up port %u\n",
954					    ppd->port);
955
956			/*
957			 * Set status even if port serdes is not initialized
958			 * so that diags will work.
959			 */
960			if (ppd->statusp)
961				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
962							HFI1_STATUS_INITTED;
963			if (!ppd->link_speed_enabled)
964				continue;
965		}
966	}
967
968	/* if ret is non-zero, we probably should do some cleanup here... */
969	return ret;
970}
971
972struct hfi1_devdata *hfi1_lookup(int unit)
973{
974	return xa_load(&hfi1_dev_table, unit);
975}
976
977/*
978 * Stop the timers during unit shutdown, or after an error late
979 * in initialization.
980 */
981static void stop_timers(struct hfi1_devdata *dd)
982{
983	struct hfi1_pportdata *ppd;
984	int pidx;
985
986	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
987		ppd = dd->pport + pidx;
988		if (ppd->led_override_timer.function) {
989			del_timer_sync(&ppd->led_override_timer);
990			atomic_set(&ppd->led_override_timer_active, 0);
991		}
992	}
993}
994
995/**
996 * shutdown_device - shut down a device
997 * @dd: the hfi1_ib device
998 *
999 * This is called to make the device quiet when we are about to
1000 * unload the driver, and also when the device is administratively
1001 * disabled.   It does not free any data structures.
1002 * Everything it does has to be setup again by hfi1_init(dd, 1)
1003 */
1004static void shutdown_device(struct hfi1_devdata *dd)
1005{
1006	struct hfi1_pportdata *ppd;
1007	struct hfi1_ctxtdata *rcd;
1008	unsigned pidx;
1009	int i;
1010
1011	if (dd->flags & HFI1_SHUTDOWN)
1012		return;
1013	dd->flags |= HFI1_SHUTDOWN;
1014
1015	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016		ppd = dd->pport + pidx;
1017
1018		ppd->linkup = 0;
1019		if (ppd->statusp)
1020			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021					   HFI1_STATUS_IB_READY);
1022	}
1023	dd->flags &= ~HFI1_INITTED;
1024
1025	/* mask and clean up interrupts */
1026	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1027	msix_clean_up_interrupts(dd);
1028
1029	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030		for (i = 0; i < dd->num_rcv_contexts; i++) {
1031			rcd = hfi1_rcd_get_by_index(dd, i);
1032			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1033				     HFI1_RCVCTRL_CTXT_DIS |
1034				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1035				     HFI1_RCVCTRL_PKEY_DIS |
1036				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1037			hfi1_rcd_put(rcd);
1038		}
1039		/*
1040		 * Gracefully stop all sends allowing any in progress to
1041		 * trickle out first.
1042		 */
1043		for (i = 0; i < dd->num_send_contexts; i++)
1044			sc_flush(dd->send_contexts[i].sc);
1045	}
1046
1047	/*
1048	 * Enough for anything that's going to trickle out to have actually
1049	 * done so.
1050	 */
1051	udelay(20);
1052
1053	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1054		ppd = dd->pport + pidx;
1055
1056		/* disable all contexts */
1057		for (i = 0; i < dd->num_send_contexts; i++)
1058			sc_disable(dd->send_contexts[i].sc);
1059		/* disable the send device */
1060		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1061
1062		shutdown_led_override(ppd);
1063
1064		/*
1065		 * Clear SerdesEnable.
1066		 * We can't count on interrupts since we are stopping.
1067		 */
1068		hfi1_quiet_serdes(ppd);
1069		if (ppd->hfi1_wq)
1070			flush_workqueue(ppd->hfi1_wq);
1071		if (ppd->link_wq)
1072			flush_workqueue(ppd->link_wq);
1073	}
1074	sdma_exit(dd);
1075}
1076
1077/**
1078 * hfi1_free_ctxtdata - free a context's allocated data
1079 * @dd: the hfi1_ib device
1080 * @rcd: the ctxtdata structure
1081 *
1082 * free up any allocated data for a context
1083 * It should never change any chip state, or global driver state.
1084 */
1085void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1086{
1087	u32 e;
1088
1089	if (!rcd)
1090		return;
1091
1092	if (rcd->rcvhdrq) {
1093		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1094				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1095		rcd->rcvhdrq = NULL;
1096		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1097			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1098					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1099					  rcd->rcvhdrqtailaddr_dma);
1100			rcd->rcvhdrtail_kvaddr = NULL;
1101		}
1102	}
1103
1104	/* all the RcvArray entries should have been cleared by now */
1105	kfree(rcd->egrbufs.rcvtids);
1106	rcd->egrbufs.rcvtids = NULL;
1107
1108	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1109		if (rcd->egrbufs.buffers[e].addr)
1110			dma_free_coherent(&dd->pcidev->dev,
1111					  rcd->egrbufs.buffers[e].len,
1112					  rcd->egrbufs.buffers[e].addr,
1113					  rcd->egrbufs.buffers[e].dma);
1114	}
1115	kfree(rcd->egrbufs.buffers);
1116	rcd->egrbufs.alloced = 0;
1117	rcd->egrbufs.buffers = NULL;
1118
1119	sc_free(rcd->sc);
1120	rcd->sc = NULL;
1121
1122	vfree(rcd->subctxt_uregbase);
1123	vfree(rcd->subctxt_rcvegrbuf);
1124	vfree(rcd->subctxt_rcvhdr_base);
1125	kfree(rcd->opstats);
1126
1127	rcd->subctxt_uregbase = NULL;
1128	rcd->subctxt_rcvegrbuf = NULL;
1129	rcd->subctxt_rcvhdr_base = NULL;
1130	rcd->opstats = NULL;
1131}
1132
1133/*
1134 * Release our hold on the shared asic data.  If we are the last one,
1135 * return the structure to be finalized outside the lock.  Must be
1136 * holding hfi1_dev_table lock.
1137 */
1138static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1139{
1140	struct hfi1_asic_data *ad;
1141	int other;
1142
1143	if (!dd->asic_data)
1144		return NULL;
1145	dd->asic_data->dds[dd->hfi1_id] = NULL;
1146	other = dd->hfi1_id ? 0 : 1;
1147	ad = dd->asic_data;
1148	dd->asic_data = NULL;
1149	/* return NULL if the other dd still has a link */
1150	return ad->dds[other] ? NULL : ad;
1151}
1152
1153static void finalize_asic_data(struct hfi1_devdata *dd,
1154			       struct hfi1_asic_data *ad)
1155{
1156	clean_up_i2c(dd, ad);
1157	kfree(ad);
1158}
1159
1160/**
1161 * hfi1_free_devdata - cleans up and frees per-unit data structure
1162 * @dd: pointer to a valid devdata structure
1163 *
1164 * It cleans up and frees all data structures set up by
1165 * by hfi1_alloc_devdata().
1166 */
1167void hfi1_free_devdata(struct hfi1_devdata *dd)
1168{
1169	struct hfi1_asic_data *ad;
1170	unsigned long flags;
1171
1172	xa_lock_irqsave(&hfi1_dev_table, flags);
1173	__xa_erase(&hfi1_dev_table, dd->unit);
1174	ad = release_asic_data(dd);
1175	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1176
1177	finalize_asic_data(dd, ad);
1178	free_platform_config(dd);
1179	rcu_barrier(); /* wait for rcu callbacks to complete */
1180	free_percpu(dd->int_counter);
1181	free_percpu(dd->rcv_limit);
1182	free_percpu(dd->send_schedule);
1183	free_percpu(dd->tx_opstats);
1184	dd->int_counter   = NULL;
1185	dd->rcv_limit     = NULL;
1186	dd->send_schedule = NULL;
1187	dd->tx_opstats    = NULL;
1188	kfree(dd->comp_vect);
1189	dd->comp_vect = NULL;
1190	if (dd->rcvhdrtail_dummy_kvaddr)
1191		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1192				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1193				  dd->rcvhdrtail_dummy_dma);
1194	dd->rcvhdrtail_dummy_kvaddr = NULL;
1195	sdma_clean(dd, dd->num_sdma);
1196	rvt_dealloc_device(&dd->verbs_dev.rdi);
1197}
1198
1199/**
1200 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1201 * @pdev: Valid PCI device
1202 * @extra: How many bytes to alloc past the default
1203 *
1204 * Must be done via verbs allocator, because the verbs cleanup process
1205 * both does cleanup and free of the data structure.
1206 * "extra" is for chip-specific data.
1207 */
1208static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1209					       size_t extra)
1210{
1211	struct hfi1_devdata *dd;
1212	int ret, nports;
1213
1214	/* extra is * number of ports */
1215	nports = extra / sizeof(struct hfi1_pportdata);
1216
1217	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1218						     nports);
1219	if (!dd)
1220		return ERR_PTR(-ENOMEM);
1221	dd->num_pports = nports;
1222	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1223	dd->pcidev = pdev;
1224	pci_set_drvdata(pdev, dd);
1225
1226	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1227			GFP_KERNEL);
1228	if (ret < 0) {
1229		dev_err(&pdev->dev,
1230			"Could not allocate unit ID: error %d\n", -ret);
1231		goto bail;
1232	}
1233	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1234	/*
1235	 * If the BIOS does not have the NUMA node information set, select
1236	 * NUMA 0 so we get consistent performance.
1237	 */
1238	dd->node = pcibus_to_node(pdev->bus);
1239	if (dd->node == NUMA_NO_NODE) {
1240		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1241		dd->node = 0;
1242	}
1243
1244	/*
1245	 * Initialize all locks for the device. This needs to be as early as
1246	 * possible so locks are usable.
1247	 */
1248	spin_lock_init(&dd->sc_lock);
1249	spin_lock_init(&dd->sendctrl_lock);
1250	spin_lock_init(&dd->rcvctrl_lock);
1251	spin_lock_init(&dd->uctxt_lock);
1252	spin_lock_init(&dd->hfi1_diag_trans_lock);
1253	spin_lock_init(&dd->sc_init_lock);
1254	spin_lock_init(&dd->dc8051_memlock);
1255	seqlock_init(&dd->sc2vl_lock);
1256	spin_lock_init(&dd->sde_map_lock);
1257	spin_lock_init(&dd->pio_map_lock);
1258	mutex_init(&dd->dc8051_lock);
1259	init_waitqueue_head(&dd->event_queue);
1260	spin_lock_init(&dd->irq_src_lock);
1261
1262	dd->int_counter = alloc_percpu(u64);
1263	if (!dd->int_counter) {
1264		ret = -ENOMEM;
1265		goto bail;
1266	}
1267
1268	dd->rcv_limit = alloc_percpu(u64);
1269	if (!dd->rcv_limit) {
1270		ret = -ENOMEM;
1271		goto bail;
1272	}
1273
1274	dd->send_schedule = alloc_percpu(u64);
1275	if (!dd->send_schedule) {
1276		ret = -ENOMEM;
1277		goto bail;
1278	}
1279
1280	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1281	if (!dd->tx_opstats) {
1282		ret = -ENOMEM;
1283		goto bail;
1284	}
1285
1286	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1287	if (!dd->comp_vect) {
1288		ret = -ENOMEM;
1289		goto bail;
1290	}
1291
1292	/* allocate dummy tail memory for all receive contexts */
1293	dd->rcvhdrtail_dummy_kvaddr =
1294		dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1295				   &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1296	if (!dd->rcvhdrtail_dummy_kvaddr) {
1297		ret = -ENOMEM;
1298		goto bail;
1299	}
1300
1301	atomic_set(&dd->ipoib_rsm_usr_num, 0);
1302	return dd;
1303
1304bail:
1305	hfi1_free_devdata(dd);
1306	return ERR_PTR(ret);
1307}
1308
1309/*
1310 * Called from freeze mode handlers, and from PCI error
1311 * reporting code.  Should be paranoid about state of
1312 * system and data structures.
1313 */
1314void hfi1_disable_after_error(struct hfi1_devdata *dd)
1315{
1316	if (dd->flags & HFI1_INITTED) {
1317		u32 pidx;
1318
1319		dd->flags &= ~HFI1_INITTED;
1320		if (dd->pport)
1321			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1322				struct hfi1_pportdata *ppd;
1323
1324				ppd = dd->pport + pidx;
1325				if (dd->flags & HFI1_PRESENT)
1326					set_link_state(ppd, HLS_DN_DISABLE);
1327
1328				if (ppd->statusp)
1329					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1330			}
1331	}
1332
1333	/*
1334	 * Mark as having had an error for driver, and also
1335	 * for /sys and status word mapped to user programs.
1336	 * This marks unit as not usable, until reset.
1337	 */
1338	if (dd->status)
1339		dd->status->dev |= HFI1_STATUS_HWERROR;
1340}
1341
1342static void remove_one(struct pci_dev *);
1343static int init_one(struct pci_dev *, const struct pci_device_id *);
1344static void shutdown_one(struct pci_dev *);
1345
1346#define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1347#define PFX DRIVER_NAME ": "
1348
1349const struct pci_device_id hfi1_pci_tbl[] = {
1350	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1351	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1352	{ 0, }
1353};
1354
1355MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1356
1357static struct pci_driver hfi1_pci_driver = {
1358	.name = DRIVER_NAME,
1359	.probe = init_one,
1360	.remove = remove_one,
1361	.shutdown = shutdown_one,
1362	.id_table = hfi1_pci_tbl,
1363	.err_handler = &hfi1_pci_err_handler,
1364};
1365
1366static void __init compute_krcvqs(void)
1367{
1368	int i;
1369
1370	for (i = 0; i < krcvqsset; i++)
1371		n_krcvqs += krcvqs[i];
1372}
1373
1374/*
1375 * Do all the generic driver unit- and chip-independent memory
1376 * allocation and initialization.
1377 */
1378static int __init hfi1_mod_init(void)
1379{
1380	int ret;
1381
1382	ret = dev_init();
1383	if (ret)
1384		goto bail;
1385
1386	ret = node_affinity_init();
1387	if (ret)
1388		goto bail;
1389
1390	/* validate max MTU before any devices start */
1391	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1392		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1393		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1394		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1395	}
1396	/* valid CUs run from 1-128 in powers of 2 */
1397	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1398		hfi1_cu = 1;
1399	/* valid credit return threshold is 0-100, variable is unsigned */
1400	if (user_credit_return_threshold > 100)
1401		user_credit_return_threshold = 100;
1402
1403	compute_krcvqs();
1404	/*
1405	 * sanitize receive interrupt count, time must wait until after
1406	 * the hardware type is known
1407	 */
1408	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1409		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1410	/* reject invalid combinations */
1411	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1412		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1413		rcv_intr_count = 1;
1414	}
1415	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1416		/*
1417		 * Avoid indefinite packet delivery by requiring a timeout
1418		 * if count is > 1.
1419		 */
1420		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1421		rcv_intr_timeout = 1;
1422	}
1423	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1424		/*
1425		 * The dynamic algorithm expects a non-zero timeout
1426		 * and a count > 1.
1427		 */
1428		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1429		rcv_intr_dynamic = 0;
1430	}
1431
1432	/* sanitize link CRC options */
1433	link_crc_mask &= SUPPORTED_CRCS;
1434
1435	ret = opfn_init();
1436	if (ret < 0) {
1437		pr_err("Failed to allocate opfn_wq");
1438		goto bail_dev;
1439	}
1440
1441	/*
1442	 * These must be called before the driver is registered with
1443	 * the PCI subsystem.
1444	 */
1445	hfi1_dbg_init();
1446	ret = pci_register_driver(&hfi1_pci_driver);
1447	if (ret < 0) {
1448		pr_err("Unable to register driver: error %d\n", -ret);
1449		goto bail_dev;
1450	}
1451	goto bail; /* all OK */
1452
1453bail_dev:
1454	hfi1_dbg_exit();
1455	dev_cleanup();
1456bail:
1457	return ret;
1458}
1459
1460module_init(hfi1_mod_init);
1461
1462/*
1463 * Do the non-unit driver cleanup, memory free, etc. at unload.
1464 */
1465static void __exit hfi1_mod_cleanup(void)
1466{
1467	pci_unregister_driver(&hfi1_pci_driver);
1468	opfn_exit();
1469	node_affinity_destroy_all();
1470	hfi1_dbg_exit();
1471
1472	WARN_ON(!xa_empty(&hfi1_dev_table));
1473	dispose_firmware();	/* asymmetric with obtain_firmware() */
1474	dev_cleanup();
1475}
1476
1477module_exit(hfi1_mod_cleanup);
1478
1479/* this can only be called after a successful initialization */
1480static void cleanup_device_data(struct hfi1_devdata *dd)
1481{
1482	int ctxt;
1483	int pidx;
1484
1485	/* users can't do anything more with chip */
1486	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1487		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1488		struct cc_state *cc_state;
1489		int i;
1490
1491		if (ppd->statusp)
1492			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1493
1494		for (i = 0; i < OPA_MAX_SLS; i++)
1495			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1496
1497		spin_lock(&ppd->cc_state_lock);
1498		cc_state = get_cc_state_protected(ppd);
1499		RCU_INIT_POINTER(ppd->cc_state, NULL);
1500		spin_unlock(&ppd->cc_state_lock);
1501
1502		if (cc_state)
1503			kfree_rcu(cc_state, rcu);
1504	}
1505
1506	free_credit_return(dd);
1507
1508	/*
1509	 * Free any resources still in use (usually just kernel contexts)
1510	 * at unload; we do for ctxtcnt, because that's what we allocate.
1511	 */
1512	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1513		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1514
1515		if (rcd) {
1516			hfi1_free_ctxt_rcv_groups(rcd);
1517			hfi1_free_ctxt(rcd);
1518		}
1519	}
1520
1521	kfree(dd->rcd);
1522	dd->rcd = NULL;
1523
1524	free_pio_map(dd);
1525	/* must follow rcv context free - need to remove rcv's hooks */
1526	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1527		sc_free(dd->send_contexts[ctxt].sc);
1528	dd->num_send_contexts = 0;
1529	kfree(dd->send_contexts);
1530	dd->send_contexts = NULL;
1531	kfree(dd->hw_to_sw);
1532	dd->hw_to_sw = NULL;
1533	kfree(dd->boardname);
1534	vfree(dd->events);
1535	vfree(dd->status);
1536}
1537
1538/*
1539 * Clean up on unit shutdown, or error during unit load after
1540 * successful initialization.
1541 */
1542static void postinit_cleanup(struct hfi1_devdata *dd)
1543{
1544	hfi1_start_cleanup(dd);
1545	hfi1_comp_vectors_clean_up(dd);
1546	hfi1_dev_affinity_clean_up(dd);
1547
1548	hfi1_pcie_ddcleanup(dd);
1549	hfi1_pcie_cleanup(dd->pcidev);
1550
1551	cleanup_device_data(dd);
1552
1553	hfi1_free_devdata(dd);
1554}
1555
1556static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1557{
1558	int ret = 0, j, pidx, initfail;
1559	struct hfi1_devdata *dd;
1560	struct hfi1_pportdata *ppd;
1561
1562	/* First, lock the non-writable module parameters */
1563	HFI1_CAP_LOCK();
1564
1565	/* Validate dev ids */
1566	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1567	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1568		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1569			ent->device);
1570		ret = -ENODEV;
1571		goto bail;
1572	}
1573
1574	/* Allocate the dd so we can get to work */
1575	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1576				sizeof(struct hfi1_pportdata));
1577	if (IS_ERR(dd)) {
1578		ret = PTR_ERR(dd);
1579		goto bail;
1580	}
1581
1582	/* Validate some global module parameters */
1583	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1584	if (ret)
1585		goto bail;
1586
1587	/* use the encoding function as a sanitization check */
1588	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1589		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1590			   hfi1_hdrq_entsize);
1591		ret = -EINVAL;
1592		goto bail;
1593	}
1594
1595	/* The receive eager buffer size must be set before the receive
1596	 * contexts are created.
1597	 *
1598	 * Set the eager buffer size.  Validate that it falls in a range
1599	 * allowed by the hardware - all powers of 2 between the min and
1600	 * max.  The maximum valid MTU is within the eager buffer range
1601	 * so we do not need to cap the max_mtu by an eager buffer size
1602	 * setting.
1603	 */
1604	if (eager_buffer_size) {
1605		if (!is_power_of_2(eager_buffer_size))
1606			eager_buffer_size =
1607				roundup_pow_of_two(eager_buffer_size);
1608		eager_buffer_size =
1609			clamp_val(eager_buffer_size,
1610				  MIN_EAGER_BUFFER * 8,
1611				  MAX_EAGER_BUFFER_TOTAL);
1612		dd_dev_info(dd, "Eager buffer size %u\n",
1613			    eager_buffer_size);
1614	} else {
1615		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1616		ret = -EINVAL;
1617		goto bail;
1618	}
1619
1620	/* restrict value of hfi1_rcvarr_split */
1621	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1622
1623	ret = hfi1_pcie_init(dd);
1624	if (ret)
1625		goto bail;
1626
1627	/*
1628	 * Do device-specific initialization, function table setup, dd
1629	 * allocation, etc.
1630	 */
1631	ret = hfi1_init_dd(dd);
1632	if (ret)
1633		goto clean_bail; /* error already printed */
1634
1635	ret = create_workqueues(dd);
1636	if (ret)
1637		goto clean_bail;
1638
1639	/* do the generic initialization */
1640	initfail = hfi1_init(dd, 0);
1641
1642	ret = hfi1_register_ib_device(dd);
1643
1644	/*
1645	 * Now ready for use.  this should be cleared whenever we
1646	 * detect a reset, or initiate one.  If earlier failure,
1647	 * we still create devices, so diags, etc. can be used
1648	 * to determine cause of problem.
1649	 */
1650	if (!initfail && !ret) {
1651		dd->flags |= HFI1_INITTED;
1652		/* create debufs files after init and ib register */
1653		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1654	}
1655
1656	j = hfi1_device_create(dd);
1657	if (j)
1658		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1659
1660	if (initfail || ret) {
1661		msix_clean_up_interrupts(dd);
1662		stop_timers(dd);
1663		flush_workqueue(ib_wq);
1664		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1665			hfi1_quiet_serdes(dd->pport + pidx);
1666			ppd = dd->pport + pidx;
1667			if (ppd->hfi1_wq) {
1668				destroy_workqueue(ppd->hfi1_wq);
1669				ppd->hfi1_wq = NULL;
1670			}
1671			if (ppd->link_wq) {
1672				destroy_workqueue(ppd->link_wq);
1673				ppd->link_wq = NULL;
1674			}
1675		}
1676		if (!j)
1677			hfi1_device_remove(dd);
1678		if (!ret)
1679			hfi1_unregister_ib_device(dd);
1680		postinit_cleanup(dd);
1681		if (initfail)
1682			ret = initfail;
1683		goto bail;	/* everything already cleaned */
1684	}
1685
1686	sdma_start(dd);
1687
1688	return 0;
1689
1690clean_bail:
1691	hfi1_pcie_cleanup(pdev);
1692bail:
1693	return ret;
1694}
1695
1696static void wait_for_clients(struct hfi1_devdata *dd)
1697{
1698	/*
1699	 * Remove the device init value and complete the device if there is
1700	 * no clients or wait for active clients to finish.
1701	 */
1702	if (refcount_dec_and_test(&dd->user_refcount))
1703		complete(&dd->user_comp);
1704
1705	wait_for_completion(&dd->user_comp);
1706}
1707
1708static void remove_one(struct pci_dev *pdev)
1709{
1710	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1711
1712	/* close debugfs files before ib unregister */
1713	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1714
1715	/* remove the /dev hfi1 interface */
1716	hfi1_device_remove(dd);
1717
1718	/* wait for existing user space clients to finish */
1719	wait_for_clients(dd);
1720
1721	/* unregister from IB core */
1722	hfi1_unregister_ib_device(dd);
1723
1724	/* free netdev data */
1725	hfi1_free_rx(dd);
1726
1727	/*
1728	 * Disable the IB link, disable interrupts on the device,
1729	 * clear dma engines, etc.
1730	 */
1731	shutdown_device(dd);
1732	destroy_workqueues(dd);
1733
1734	stop_timers(dd);
1735
1736	/* wait until all of our (qsfp) queue_work() calls complete */
1737	flush_workqueue(ib_wq);
1738
1739	postinit_cleanup(dd);
1740}
1741
1742static void shutdown_one(struct pci_dev *pdev)
1743{
1744	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1745
1746	shutdown_device(dd);
1747}
1748
1749/**
1750 * hfi1_create_rcvhdrq - create a receive header queue
1751 * @dd: the hfi1_ib device
1752 * @rcd: the context data
1753 *
1754 * This must be contiguous memory (from an i/o perspective), and must be
1755 * DMA'able (which means for some systems, it will go through an IOMMU,
1756 * or be forced into a low address range).
1757 */
1758int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1759{
1760	unsigned amt;
1761
1762	if (!rcd->rcvhdrq) {
1763		amt = rcvhdrq_size(rcd);
1764
1765		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1766						  &rcd->rcvhdrq_dma,
1767						  GFP_KERNEL);
1768
1769		if (!rcd->rcvhdrq) {
1770			dd_dev_err(dd,
1771				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1772				   amt, rcd->ctxt);
1773			goto bail;
1774		}
1775
1776		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1777		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1778			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1779								    PAGE_SIZE,
1780								    &rcd->rcvhdrqtailaddr_dma,
1781								    GFP_KERNEL);
1782			if (!rcd->rcvhdrtail_kvaddr)
1783				goto bail_free;
1784		}
1785	}
1786
1787	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1788		      rcd->rcvhdrq_cnt);
1789
1790	return 0;
1791
1792bail_free:
1793	dd_dev_err(dd,
1794		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1795		   rcd->ctxt);
1796	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1797			  rcd->rcvhdrq_dma);
1798	rcd->rcvhdrq = NULL;
1799bail:
1800	return -ENOMEM;
1801}
1802
1803/**
1804 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1805 * contexts.
1806 * @rcd: the context we are setting up.
1807 *
1808 * Allocate the eager TID buffers and program them into hip.
1809 * They are no longer completely contiguous, we do multiple allocation
1810 * calls.  Otherwise we get the OOM code involved, by asking for too
1811 * much per call, with disastrous results on some kernels.
1812 */
1813int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1814{
1815	struct hfi1_devdata *dd = rcd->dd;
1816	u32 max_entries, egrtop, alloced_bytes = 0;
1817	u16 order, idx = 0;
1818	int ret = 0;
1819	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1820
1821	/*
1822	 * The minimum size of the eager buffers is a groups of MTU-sized
1823	 * buffers.
1824	 * The global eager_buffer_size parameter is checked against the
1825	 * theoretical lower limit of the value. Here, we check against the
1826	 * MTU.
1827	 */
1828	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1829		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1830	/*
1831	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1832	 * size to the max MTU (page-aligned).
1833	 */
1834	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1835		rcd->egrbufs.rcvtid_size = round_mtu;
1836
1837	/*
1838	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1839	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1840	 */
1841	if (rcd->egrbufs.size <= (1 << 20))
1842		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1843			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1844
1845	while (alloced_bytes < rcd->egrbufs.size &&
1846	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1847		rcd->egrbufs.buffers[idx].addr =
1848			dma_alloc_coherent(&dd->pcidev->dev,
1849					   rcd->egrbufs.rcvtid_size,
1850					   &rcd->egrbufs.buffers[idx].dma,
1851					   GFP_KERNEL);
1852		if (rcd->egrbufs.buffers[idx].addr) {
1853			rcd->egrbufs.buffers[idx].len =
1854				rcd->egrbufs.rcvtid_size;
1855			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1856				rcd->egrbufs.buffers[idx].addr;
1857			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1858				rcd->egrbufs.buffers[idx].dma;
1859			rcd->egrbufs.alloced++;
1860			alloced_bytes += rcd->egrbufs.rcvtid_size;
1861			idx++;
1862		} else {
1863			u32 new_size, i, j;
1864			u64 offset = 0;
1865
1866			/*
1867			 * Fail the eager buffer allocation if:
1868			 *   - we are already using the lowest acceptable size
1869			 *   - we are using one-pkt-per-egr-buffer (this implies
1870			 *     that we are accepting only one size)
1871			 */
1872			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1873			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1874				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1875					   rcd->ctxt);
1876				ret = -ENOMEM;
1877				goto bail_rcvegrbuf_phys;
1878			}
1879
1880			new_size = rcd->egrbufs.rcvtid_size / 2;
1881
1882			/*
1883			 * If the first attempt to allocate memory failed, don't
1884			 * fail everything but continue with the next lower
1885			 * size.
1886			 */
1887			if (idx == 0) {
1888				rcd->egrbufs.rcvtid_size = new_size;
1889				continue;
1890			}
1891
1892			/*
1893			 * Re-partition already allocated buffers to a smaller
1894			 * size.
1895			 */
1896			rcd->egrbufs.alloced = 0;
1897			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1898				if (i >= rcd->egrbufs.count)
1899					break;
1900				rcd->egrbufs.rcvtids[i].dma =
1901					rcd->egrbufs.buffers[j].dma + offset;
1902				rcd->egrbufs.rcvtids[i].addr =
1903					rcd->egrbufs.buffers[j].addr + offset;
1904				rcd->egrbufs.alloced++;
1905				if ((rcd->egrbufs.buffers[j].dma + offset +
1906				     new_size) ==
1907				    (rcd->egrbufs.buffers[j].dma +
1908				     rcd->egrbufs.buffers[j].len)) {
1909					j++;
1910					offset = 0;
1911				} else {
1912					offset += new_size;
1913				}
1914			}
1915			rcd->egrbufs.rcvtid_size = new_size;
1916		}
1917	}
1918	rcd->egrbufs.numbufs = idx;
1919	rcd->egrbufs.size = alloced_bytes;
1920
1921	hfi1_cdbg(PROC,
1922		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB",
1923		  rcd->ctxt, rcd->egrbufs.alloced,
1924		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1925
1926	/*
1927	 * Set the contexts rcv array head update threshold to the closest
1928	 * power of 2 (so we can use a mask instead of modulo) below half
1929	 * the allocated entries.
1930	 */
1931	rcd->egrbufs.threshold =
1932		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1933	/*
1934	 * Compute the expected RcvArray entry base. This is done after
1935	 * allocating the eager buffers in order to maximize the
1936	 * expected RcvArray entries for the context.
1937	 */
1938	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1939	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1940	rcd->expected_count = max_entries - egrtop;
1941	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1942		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1943
1944	rcd->expected_base = rcd->eager_base + egrtop;
1945	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u",
1946		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1947		  rcd->eager_base, rcd->expected_base);
1948
1949	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1950		hfi1_cdbg(PROC,
1951			  "ctxt%u: current Eager buffer size is invalid %u",
1952			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1953		ret = -EINVAL;
1954		goto bail_rcvegrbuf_phys;
1955	}
1956
1957	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1958		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1959			     rcd->egrbufs.rcvtids[idx].dma, order);
1960		cond_resched();
1961	}
1962
1963	return 0;
1964
1965bail_rcvegrbuf_phys:
1966	for (idx = 0; idx < rcd->egrbufs.alloced &&
1967	     rcd->egrbufs.buffers[idx].addr;
1968	     idx++) {
1969		dma_free_coherent(&dd->pcidev->dev,
1970				  rcd->egrbufs.buffers[idx].len,
1971				  rcd->egrbufs.buffers[idx].addr,
1972				  rcd->egrbufs.buffers[idx].dma);
1973		rcd->egrbufs.buffers[idx].addr = NULL;
1974		rcd->egrbufs.buffers[idx].dma = 0;
1975		rcd->egrbufs.buffers[idx].len = 0;
1976	}
1977
1978	return ret;
1979}
1980