1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015 - 2017 Intel Corporation.
4 */
5
6#include <linux/firmware.h>
7#include <linux/mutex.h>
8#include <linux/delay.h>
9#include <linux/crc32.h>
10
11#include "hfi.h"
12#include "trace.h"
13
14/*
15 * Make it easy to toggle firmware file name and if it gets loaded by
16 * editing the following. This may be something we do while in development
17 * but not necessarily something a user would ever need to use.
18 */
19#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
20#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
21#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
22#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
23#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
24#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
25#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
26#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
27#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
28
29MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
30MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
31MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
32MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
33
34static uint fw_8051_load = 1;
35static uint fw_fabric_serdes_load = 1;
36static uint fw_pcie_serdes_load = 1;
37static uint fw_sbus_load = 1;
38
39/* Firmware file names get set in hfi1_firmware_init() based on the above */
40static char *fw_8051_name;
41static char *fw_fabric_serdes_name;
42static char *fw_sbus_name;
43static char *fw_pcie_serdes_name;
44
45#define SBUS_MAX_POLL_COUNT 100
46#define SBUS_COUNTER(reg, name) \
47	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
48	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
49
50/*
51 * Firmware security header.
52 */
53struct css_header {
54	u32 module_type;
55	u32 header_len;
56	u32 header_version;
57	u32 module_id;
58	u32 module_vendor;
59	u32 date;		/* BCD yyyymmdd */
60	u32 size;		/* in DWORDs */
61	u32 key_size;		/* in DWORDs */
62	u32 modulus_size;	/* in DWORDs */
63	u32 exponent_size;	/* in DWORDs */
64	u32 reserved[22];
65};
66
67/* expected field values */
68#define CSS_MODULE_TYPE	   0x00000006
69#define CSS_HEADER_LEN	   0x000000a1
70#define CSS_HEADER_VERSION 0x00010000
71#define CSS_MODULE_VENDOR  0x00008086
72
73#define KEY_SIZE      256
74#define MU_SIZE		8
75#define EXPONENT_SIZE	4
76
77/* size of platform configuration partition */
78#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
79
80/* size of file of plaform configuration encoded in format version 4 */
81#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
82
83/* the file itself */
84struct firmware_file {
85	struct css_header css_header;
86	u8 modulus[KEY_SIZE];
87	u8 exponent[EXPONENT_SIZE];
88	u8 signature[KEY_SIZE];
89	u8 firmware[];
90};
91
92struct augmented_firmware_file {
93	struct css_header css_header;
94	u8 modulus[KEY_SIZE];
95	u8 exponent[EXPONENT_SIZE];
96	u8 signature[KEY_SIZE];
97	u8 r2[KEY_SIZE];
98	u8 mu[MU_SIZE];
99	u8 firmware[];
100};
101
102/* augmented file size difference */
103#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
104						sizeof(struct firmware_file))
105
106struct firmware_details {
107	/* Linux core piece */
108	const struct firmware *fw;
109
110	struct css_header *css_header;
111	u8 *firmware_ptr;		/* pointer to binary data */
112	u32 firmware_len;		/* length in bytes */
113	u8 *modulus;			/* pointer to the modulus */
114	u8 *exponent;			/* pointer to the exponent */
115	u8 *signature;			/* pointer to the signature */
116	u8 *r2;				/* pointer to r2 */
117	u8 *mu;				/* pointer to mu */
118	struct augmented_firmware_file dummy_header;
119};
120
121/*
122 * The mutex protects fw_state, fw_err, and all of the firmware_details
123 * variables.
124 */
125static DEFINE_MUTEX(fw_mutex);
126enum fw_state {
127	FW_EMPTY,
128	FW_TRY,
129	FW_FINAL,
130	FW_ERR
131};
132
133static enum fw_state fw_state = FW_EMPTY;
134static int fw_err;
135static struct firmware_details fw_8051;
136static struct firmware_details fw_fabric;
137static struct firmware_details fw_pcie;
138static struct firmware_details fw_sbus;
139
140/* flags for turn_off_spicos() */
141#define SPICO_SBUS   0x1
142#define SPICO_FABRIC 0x2
143#define ENABLE_SPICO_SMASK 0x1
144
145/* security block commands */
146#define RSA_CMD_INIT  0x1
147#define RSA_CMD_START 0x2
148
149/* security block status */
150#define RSA_STATUS_IDLE   0x0
151#define RSA_STATUS_ACTIVE 0x1
152#define RSA_STATUS_DONE   0x2
153#define RSA_STATUS_FAILED 0x3
154
155/* RSA engine timeout, in ms */
156#define RSA_ENGINE_TIMEOUT 100 /* ms */
157
158/* hardware mutex timeout, in ms */
159#define HM_TIMEOUT 10 /* ms */
160
161/* 8051 memory access timeout, in us */
162#define DC8051_ACCESS_TIMEOUT 100 /* us */
163
164/* the number of fabric SerDes on the SBus */
165#define NUM_FABRIC_SERDES 4
166
167/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
168#define SBUS_READ_COMPLETE 0x4
169
170/* SBus fabric SerDes addresses, one set per HFI */
171static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
172	{ 0x01, 0x02, 0x03, 0x04 },
173	{ 0x28, 0x29, 0x2a, 0x2b }
174};
175
176/* SBus PCIe SerDes addresses, one set per HFI */
177static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
178	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
179	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
180	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
181	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
182};
183
184/* SBus PCIe PCS addresses, one set per HFI */
185const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
186	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
187	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
188	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
189	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
190};
191
192/* SBus fabric SerDes broadcast addresses, one per HFI */
193static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
194static const u8 all_fabric_serdes_broadcast = 0xe1;
195
196/* SBus PCIe SerDes broadcast addresses, one per HFI */
197const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
198static const u8 all_pcie_serdes_broadcast = 0xe0;
199
200static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
201	0,
202	SYSTEM_TABLE_MAX,
203	PORT_TABLE_MAX,
204	RX_PRESET_TABLE_MAX,
205	TX_PRESET_TABLE_MAX,
206	QSFP_ATTEN_TABLE_MAX,
207	VARIABLE_SETTINGS_TABLE_MAX
208};
209
210/* forwards */
211static void dispose_one_firmware(struct firmware_details *fdet);
212static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
213				       struct firmware_details *fdet);
214static void dump_fw_version(struct hfi1_devdata *dd);
215
216/*
217 * Read a single 64-bit value from 8051 data memory.
218 *
219 * Expects:
220 * o caller to have already set up data read, no auto increment
221 * o caller to turn off read enable when finished
222 *
223 * The address argument is a byte offset.  Bits 0:2 in the address are
224 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
225 * the lower bits are zero.
226 *
227 * Return 0 on success, -ENXIO on a read error (timeout).
228 */
229static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
230{
231	u64 reg;
232	int count;
233
234	/* step 1: set the address, clear enable */
235	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
236			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
237	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
238	/* step 2: enable */
239	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
240		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
241
242	/* wait until ACCESS_COMPLETED is set */
243	count = 0;
244	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
245		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
246		    == 0) {
247		count++;
248		if (count > DC8051_ACCESS_TIMEOUT) {
249			dd_dev_err(dd, "timeout reading 8051 data\n");
250			return -ENXIO;
251		}
252		ndelay(10);
253	}
254
255	/* gather the data */
256	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
257
258	return 0;
259}
260
261/*
262 * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
263 * Return 0 on success, -errno on error.
264 */
265int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
266{
267	unsigned long flags;
268	u32 done;
269	int ret = 0;
270
271	spin_lock_irqsave(&dd->dc8051_memlock, flags);
272
273	/* data read set-up, no auto-increment */
274	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
275
276	for (done = 0; done < len; addr += 8, done += 8, result++) {
277		ret = __read_8051_data(dd, addr, result);
278		if (ret)
279			break;
280	}
281
282	/* turn off read enable */
283	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
284
285	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
286
287	return ret;
288}
289
290/*
291 * Write data or code to the 8051 code or data RAM.
292 */
293static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
294		      const u8 *data, u32 len)
295{
296	u64 reg;
297	u32 offset;
298	int aligned, count;
299
300	/* check alignment */
301	aligned = ((unsigned long)data & 0x7) == 0;
302
303	/* write set-up */
304	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
305		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
306	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
307
308	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
309			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
310		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
311	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
312
313	/* write */
314	for (offset = 0; offset < len; offset += 8) {
315		int bytes = len - offset;
316
317		if (bytes < 8) {
318			reg = 0;
319			memcpy(&reg, &data[offset], bytes);
320		} else if (aligned) {
321			reg = *(u64 *)&data[offset];
322		} else {
323			memcpy(&reg, &data[offset], 8);
324		}
325		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
326
327		/* wait until ACCESS_COMPLETED is set */
328		count = 0;
329		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
330		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
331		    == 0) {
332			count++;
333			if (count > DC8051_ACCESS_TIMEOUT) {
334				dd_dev_err(dd, "timeout writing 8051 data\n");
335				return -ENXIO;
336			}
337			udelay(1);
338		}
339	}
340
341	/* turn off write access, auto increment (also sets to data access) */
342	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
343	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
344
345	return 0;
346}
347
348/* return 0 if values match, non-zero and complain otherwise */
349static int invalid_header(struct hfi1_devdata *dd, const char *what,
350			  u32 actual, u32 expected)
351{
352	if (actual == expected)
353		return 0;
354
355	dd_dev_err(dd,
356		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
357		   what, expected, actual);
358	return 1;
359}
360
361/*
362 * Verify that the static fields in the CSS header match.
363 */
364static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
365{
366	/* verify CSS header fields (most sizes are in DW, so add /4) */
367	if (invalid_header(dd, "module_type", css->module_type,
368			   CSS_MODULE_TYPE) ||
369	    invalid_header(dd, "header_len", css->header_len,
370			   (sizeof(struct firmware_file) / 4)) ||
371	    invalid_header(dd, "header_version", css->header_version,
372			   CSS_HEADER_VERSION) ||
373	    invalid_header(dd, "module_vendor", css->module_vendor,
374			   CSS_MODULE_VENDOR) ||
375	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
376	    invalid_header(dd, "modulus_size", css->modulus_size,
377			   KEY_SIZE / 4) ||
378	    invalid_header(dd, "exponent_size", css->exponent_size,
379			   EXPONENT_SIZE / 4)) {
380		return -EINVAL;
381	}
382	return 0;
383}
384
385/*
386 * Make sure there are at least some bytes after the prefix.
387 */
388static int payload_check(struct hfi1_devdata *dd, const char *name,
389			 long file_size, long prefix_size)
390{
391	/* make sure we have some payload */
392	if (prefix_size >= file_size) {
393		dd_dev_err(dd,
394			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
395			   name, file_size, prefix_size);
396		return -EINVAL;
397	}
398
399	return 0;
400}
401
402/*
403 * Request the firmware from the system.  Extract the pieces and fill in
404 * fdet.  If successful, the caller will need to call dispose_one_firmware().
405 * Returns 0 on success, -ERRNO on error.
406 */
407static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
408			       struct firmware_details *fdet)
409{
410	struct css_header *css;
411	int ret;
412
413	memset(fdet, 0, sizeof(*fdet));
414
415	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
416	if (ret) {
417		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
418			    name, ret);
419		return ret;
420	}
421
422	/* verify the firmware */
423	if (fdet->fw->size < sizeof(struct css_header)) {
424		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
425		ret = -EINVAL;
426		goto done;
427	}
428	css = (struct css_header *)fdet->fw->data;
429
430	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
431	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
432	hfi1_cdbg(FIRMWARE, "CSS structure:");
433	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
434	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
435		  css->header_len, 4 * css->header_len);
436	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
437	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
438	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
439	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
440	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
441		  css->size, 4 * css->size);
442	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
443		  css->key_size, 4 * css->key_size);
444	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
445		  css->modulus_size, 4 * css->modulus_size);
446	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
447		  css->exponent_size, 4 * css->exponent_size);
448	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
449		  fdet->fw->size - sizeof(struct firmware_file));
450
451	/*
452	 * If the file does not have a valid CSS header, fail.
453	 * Otherwise, check the CSS size field for an expected size.
454	 * The augmented file has r2 and mu inserted after the header
455	 * was generated, so there will be a known difference between
456	 * the CSS header size and the actual file size.  Use this
457	 * difference to identify an augmented file.
458	 *
459	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
460	 */
461	ret = verify_css_header(dd, css);
462	if (ret) {
463		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
464	} else if ((css->size * 4) == fdet->fw->size) {
465		/* non-augmented firmware file */
466		struct firmware_file *ff = (struct firmware_file *)
467							fdet->fw->data;
468
469		/* make sure there are bytes in the payload */
470		ret = payload_check(dd, name, fdet->fw->size,
471				    sizeof(struct firmware_file));
472		if (ret == 0) {
473			fdet->css_header = css;
474			fdet->modulus = ff->modulus;
475			fdet->exponent = ff->exponent;
476			fdet->signature = ff->signature;
477			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
478			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
479			fdet->firmware_ptr = ff->firmware;
480			fdet->firmware_len = fdet->fw->size -
481						sizeof(struct firmware_file);
482			/*
483			 * Header does not include r2 and mu - generate here.
484			 * For now, fail.
485			 */
486			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
487			ret = -EINVAL;
488		}
489	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
490		/* augmented firmware file */
491		struct augmented_firmware_file *aff =
492			(struct augmented_firmware_file *)fdet->fw->data;
493
494		/* make sure there are bytes in the payload */
495		ret = payload_check(dd, name, fdet->fw->size,
496				    sizeof(struct augmented_firmware_file));
497		if (ret == 0) {
498			fdet->css_header = css;
499			fdet->modulus = aff->modulus;
500			fdet->exponent = aff->exponent;
501			fdet->signature = aff->signature;
502			fdet->r2 = aff->r2;
503			fdet->mu = aff->mu;
504			fdet->firmware_ptr = aff->firmware;
505			fdet->firmware_len = fdet->fw->size -
506					sizeof(struct augmented_firmware_file);
507		}
508	} else {
509		/* css->size check failed */
510		dd_dev_err(dd,
511			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
512			   fdet->fw->size / 4,
513			   (fdet->fw->size - AUGMENT_SIZE) / 4,
514			   css->size);
515
516		ret = -EINVAL;
517	}
518
519done:
520	/* if returning an error, clean up after ourselves */
521	if (ret)
522		dispose_one_firmware(fdet);
523	return ret;
524}
525
526static void dispose_one_firmware(struct firmware_details *fdet)
527{
528	release_firmware(fdet->fw);
529	/* erase all previous information */
530	memset(fdet, 0, sizeof(*fdet));
531}
532
533/*
534 * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
535 * at all.  If called with the firmware state in FW_TRY, use alternate names.
536 * On exit, this routine will have set the firmware state to one of FW_TRY,
537 * FW_FINAL, or FW_ERR.
538 *
539 * Must be holding fw_mutex.
540 */
541static void __obtain_firmware(struct hfi1_devdata *dd)
542{
543	int err = 0;
544
545	if (fw_state == FW_FINAL)	/* nothing more to obtain */
546		return;
547	if (fw_state == FW_ERR)		/* already in error */
548		return;
549
550	/* fw_state is FW_EMPTY or FW_TRY */
551retry:
552	if (fw_state == FW_TRY) {
553		/*
554		 * We tried the original and it failed.  Move to the
555		 * alternate.
556		 */
557		dd_dev_warn(dd, "using alternate firmware names\n");
558		/*
559		 * Let others run.  Some systems, when missing firmware, does
560		 * something that holds for 30 seconds.  If we do that twice
561		 * in a row it triggers task blocked warning.
562		 */
563		cond_resched();
564		if (fw_8051_load)
565			dispose_one_firmware(&fw_8051);
566		if (fw_fabric_serdes_load)
567			dispose_one_firmware(&fw_fabric);
568		if (fw_sbus_load)
569			dispose_one_firmware(&fw_sbus);
570		if (fw_pcie_serdes_load)
571			dispose_one_firmware(&fw_pcie);
572		fw_8051_name = ALT_FW_8051_NAME_ASIC;
573		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
574		fw_sbus_name = ALT_FW_SBUS_NAME;
575		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
576
577		/*
578		 * Add a delay before obtaining and loading debug firmware.
579		 * Authorization will fail if the delay between firmware
580		 * authorization events is shorter than 50us. Add 100us to
581		 * make a delay time safe.
582		 */
583		usleep_range(100, 120);
584	}
585
586	if (fw_sbus_load) {
587		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
588		if (err)
589			goto done;
590	}
591
592	if (fw_pcie_serdes_load) {
593		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
594		if (err)
595			goto done;
596	}
597
598	if (fw_fabric_serdes_load) {
599		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
600					  &fw_fabric);
601		if (err)
602			goto done;
603	}
604
605	if (fw_8051_load) {
606		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
607		if (err)
608			goto done;
609	}
610
611done:
612	if (err) {
613		/* oops, had problems obtaining a firmware */
614		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
615			/* retry with alternate (RTL only) */
616			fw_state = FW_TRY;
617			goto retry;
618		}
619		dd_dev_err(dd, "unable to obtain working firmware\n");
620		fw_state = FW_ERR;
621		fw_err = -ENOENT;
622	} else {
623		/* success */
624		if (fw_state == FW_EMPTY &&
625		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
626			fw_state = FW_TRY;	/* may retry later */
627		else
628			fw_state = FW_FINAL;	/* cannot try again */
629	}
630}
631
632/*
633 * Called by all HFIs when loading their firmware - i.e. device probe time.
634 * The first one will do the actual firmware load.  Use a mutex to resolve
635 * any possible race condition.
636 *
637 * The call to this routine cannot be moved to driver load because the kernel
638 * call request_firmware() requires a device which is only available after
639 * the first device probe.
640 */
641static int obtain_firmware(struct hfi1_devdata *dd)
642{
643	unsigned long timeout;
644
645	mutex_lock(&fw_mutex);
646
647	/* 40s delay due to long delay on missing firmware on some systems */
648	timeout = jiffies + msecs_to_jiffies(40000);
649	while (fw_state == FW_TRY) {
650		/*
651		 * Another device is trying the firmware.  Wait until it
652		 * decides what works (or not).
653		 */
654		if (time_after(jiffies, timeout)) {
655			/* waited too long */
656			dd_dev_err(dd, "Timeout waiting for firmware try");
657			fw_state = FW_ERR;
658			fw_err = -ETIMEDOUT;
659			break;
660		}
661		mutex_unlock(&fw_mutex);
662		msleep(20);	/* arbitrary delay */
663		mutex_lock(&fw_mutex);
664	}
665	/* not in FW_TRY state */
666
667	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
668	if (fw_state == FW_EMPTY)
669		__obtain_firmware(dd);
670
671	mutex_unlock(&fw_mutex);
672	return fw_err;
673}
674
675/*
676 * Called when the driver unloads.  The timing is asymmetric with its
677 * counterpart, obtain_firmware().  If called at device remove time,
678 * then it is conceivable that another device could probe while the
679 * firmware is being disposed.  The mutexes can be moved to do that
680 * safely, but then the firmware would be requested from the OS multiple
681 * times.
682 *
683 * No mutex is needed as the driver is unloading and there cannot be any
684 * other callers.
685 */
686void dispose_firmware(void)
687{
688	dispose_one_firmware(&fw_8051);
689	dispose_one_firmware(&fw_fabric);
690	dispose_one_firmware(&fw_pcie);
691	dispose_one_firmware(&fw_sbus);
692
693	/* retain the error state, otherwise revert to empty */
694	if (fw_state != FW_ERR)
695		fw_state = FW_EMPTY;
696}
697
698/*
699 * Called with the result of a firmware download.
700 *
701 * Return 1 to retry loading the firmware, 0 to stop.
702 */
703static int retry_firmware(struct hfi1_devdata *dd, int load_result)
704{
705	int retry;
706
707	mutex_lock(&fw_mutex);
708
709	if (load_result == 0) {
710		/*
711		 * The load succeeded, so expect all others to do the same.
712		 * Do not retry again.
713		 */
714		if (fw_state == FW_TRY)
715			fw_state = FW_FINAL;
716		retry = 0;	/* do NOT retry */
717	} else if (fw_state == FW_TRY) {
718		/* load failed, obtain alternate firmware */
719		__obtain_firmware(dd);
720		retry = (fw_state == FW_FINAL);
721	} else {
722		/* else in FW_FINAL or FW_ERR, no retry in either case */
723		retry = 0;
724	}
725
726	mutex_unlock(&fw_mutex);
727	return retry;
728}
729
730/*
731 * Write a block of data to a given array CSR.  All calls will be in
732 * multiples of 8 bytes.
733 */
734static void write_rsa_data(struct hfi1_devdata *dd, int what,
735			   const u8 *data, int nbytes)
736{
737	int qw_size = nbytes / 8;
738	int i;
739
740	if (((unsigned long)data & 0x7) == 0) {
741		/* aligned */
742		u64 *ptr = (u64 *)data;
743
744		for (i = 0; i < qw_size; i++, ptr++)
745			write_csr(dd, what + (8 * i), *ptr);
746	} else {
747		/* not aligned */
748		for (i = 0; i < qw_size; i++, data += 8) {
749			u64 value;
750
751			memcpy(&value, data, 8);
752			write_csr(dd, what + (8 * i), value);
753		}
754	}
755}
756
757/*
758 * Write a block of data to a given CSR as a stream of writes.  All calls will
759 * be in multiples of 8 bytes.
760 */
761static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
762				    const u8 *data, int nbytes)
763{
764	u64 *ptr = (u64 *)data;
765	int qw_size = nbytes / 8;
766
767	for (; qw_size > 0; qw_size--, ptr++)
768		write_csr(dd, what, *ptr);
769}
770
771/*
772 * Download the signature and start the RSA mechanism.  Wait for
773 * RSA_ENGINE_TIMEOUT before giving up.
774 */
775static int run_rsa(struct hfi1_devdata *dd, const char *who,
776		   const u8 *signature)
777{
778	unsigned long timeout;
779	u64 reg;
780	u32 status;
781	int ret = 0;
782
783	/* write the signature */
784	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
785
786	/* initialize RSA */
787	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
788
789	/*
790	 * Make sure the engine is idle and insert a delay between the two
791	 * writes to MISC_CFG_RSA_CMD.
792	 */
793	status = (read_csr(dd, MISC_CFG_FW_CTRL)
794			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
795			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
796	if (status != RSA_STATUS_IDLE) {
797		dd_dev_err(dd, "%s security engine not idle - giving up\n",
798			   who);
799		return -EBUSY;
800	}
801
802	/* start RSA */
803	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
804
805	/*
806	 * Look for the result.
807	 *
808	 * The RSA engine is hooked up to two MISC errors.  The driver
809	 * masks these errors as they do not respond to the standard
810	 * error "clear down" mechanism.  Look for these errors here and
811	 * clear them when possible.  This routine will exit with the
812	 * errors of the current run still set.
813	 *
814	 * MISC_FW_AUTH_FAILED_ERR
815	 *	Firmware authorization failed.  This can be cleared by
816	 *	re-initializing the RSA engine, then clearing the status bit.
817	 *	Do not re-init the RSA angine immediately after a successful
818	 *	run - this will reset the current authorization.
819	 *
820	 * MISC_KEY_MISMATCH_ERR
821	 *	Key does not match.  The only way to clear this is to load
822	 *	a matching key then clear the status bit.  If this error
823	 *	is raised, it will persist outside of this routine until a
824	 *	matching key is loaded.
825	 */
826	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
827	while (1) {
828		status = (read_csr(dd, MISC_CFG_FW_CTRL)
829			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
830			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
831
832		if (status == RSA_STATUS_IDLE) {
833			/* should not happen */
834			dd_dev_err(dd, "%s firmware security bad idle state\n",
835				   who);
836			ret = -EINVAL;
837			break;
838		} else if (status == RSA_STATUS_DONE) {
839			/* finished successfully */
840			break;
841		} else if (status == RSA_STATUS_FAILED) {
842			/* finished unsuccessfully */
843			ret = -EINVAL;
844			break;
845		}
846		/* else still active */
847
848		if (time_after(jiffies, timeout)) {
849			/*
850			 * Timed out while active.  We can't reset the engine
851			 * if it is stuck active, but run through the
852			 * error code to see what error bits are set.
853			 */
854			dd_dev_err(dd, "%s firmware security time out\n", who);
855			ret = -ETIMEDOUT;
856			break;
857		}
858
859		msleep(20);
860	}
861
862	/*
863	 * Arrive here on success or failure.  Clear all RSA engine
864	 * errors.  All current errors will stick - the RSA logic is keeping
865	 * error high.  All previous errors will clear - the RSA logic
866	 * is not keeping the error high.
867	 */
868	write_csr(dd, MISC_ERR_CLEAR,
869		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
870		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
871	/*
872	 * All that is left are the current errors.  Print warnings on
873	 * authorization failure details, if any.  Firmware authorization
874	 * can be retried, so these are only warnings.
875	 */
876	reg = read_csr(dd, MISC_ERR_STATUS);
877	if (ret) {
878		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
879			dd_dev_warn(dd, "%s firmware authorization failed\n",
880				    who);
881		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
882			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
883	}
884
885	return ret;
886}
887
888static void load_security_variables(struct hfi1_devdata *dd,
889				    struct firmware_details *fdet)
890{
891	/* Security variables a.  Write the modulus */
892	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
893	/* Security variables b.  Write the r2 */
894	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
895	/* Security variables c.  Write the mu */
896	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
897	/* Security variables d.  Write the header */
898	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
899				(u8 *)fdet->css_header,
900				sizeof(struct css_header));
901}
902
903/* return the 8051 firmware state */
904static inline u32 get_firmware_state(struct hfi1_devdata *dd)
905{
906	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
907
908	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
909				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
910}
911
912/*
913 * Wait until the firmware is up and ready to take host requests.
914 * Return 0 on success, -ETIMEDOUT on timeout.
915 */
916int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
917{
918	unsigned long timeout;
919
920	/* in the simulator, the fake 8051 is always ready */
921	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
922		return 0;
923
924	timeout = msecs_to_jiffies(mstimeout) + jiffies;
925	while (1) {
926		if (get_firmware_state(dd) == 0xa0)	/* ready */
927			return 0;
928		if (time_after(jiffies, timeout))	/* timed out */
929			return -ETIMEDOUT;
930		usleep_range(1950, 2050); /* sleep 2ms-ish */
931	}
932}
933
934/*
935 * Load the 8051 firmware.
936 */
937static int load_8051_firmware(struct hfi1_devdata *dd,
938			      struct firmware_details *fdet)
939{
940	u64 reg;
941	int ret;
942	u8 ver_major;
943	u8 ver_minor;
944	u8 ver_patch;
945
946	/*
947	 * DC Reset sequence
948	 * Load DC 8051 firmware
949	 */
950	/*
951	 * DC reset step 1: Reset DC8051
952	 */
953	reg = DC_DC8051_CFG_RST_M8051W_SMASK
954		| DC_DC8051_CFG_RST_CRAM_SMASK
955		| DC_DC8051_CFG_RST_DRAM_SMASK
956		| DC_DC8051_CFG_RST_IRAM_SMASK
957		| DC_DC8051_CFG_RST_SFR_SMASK;
958	write_csr(dd, DC_DC8051_CFG_RST, reg);
959
960	/*
961	 * DC reset step 2 (optional): Load 8051 data memory with link
962	 * configuration
963	 */
964
965	/*
966	 * DC reset step 3: Load DC8051 firmware
967	 */
968	/* release all but the core reset */
969	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
970	write_csr(dd, DC_DC8051_CFG_RST, reg);
971
972	/* Firmware load step 1 */
973	load_security_variables(dd, fdet);
974
975	/*
976	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
977	 */
978	write_csr(dd, MISC_CFG_FW_CTRL, 0);
979
980	/* Firmware load steps 3-5 */
981	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
982			 fdet->firmware_len);
983	if (ret)
984		return ret;
985
986	/*
987	 * DC reset step 4. Host starts the DC8051 firmware
988	 */
989	/*
990	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
991	 */
992	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
993
994	/* Firmware load steps 7-10 */
995	ret = run_rsa(dd, "8051", fdet->signature);
996	if (ret)
997		return ret;
998
999	/* clear all reset bits, releasing the 8051 */
1000	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1001
1002	/*
1003	 * DC reset step 5. Wait for firmware to be ready to accept host
1004	 * requests.
1005	 */
1006	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1007	if (ret) { /* timed out */
1008		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1009			   get_firmware_state(dd));
1010		return -ETIMEDOUT;
1011	}
1012
1013	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1014	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1015		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1016	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1017	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1018	if (ret != HCMD_SUCCESS) {
1019		dd_dev_err(dd,
1020			   "Failed to set host interface version, return 0x%x\n",
1021			   ret);
1022		return -EIO;
1023	}
1024
1025	return 0;
1026}
1027
1028/*
1029 * Write the SBus request register
1030 *
1031 * No need for masking - the arguments are sized exactly.
1032 */
1033void sbus_request(struct hfi1_devdata *dd,
1034		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1035{
1036	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1037		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1038		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1039		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1040		  ((u64)receiver_addr <<
1041		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1042}
1043
1044/*
1045 * Read a value from the SBus.
1046 *
1047 * Requires the caller to be in fast mode
1048 */
1049static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1050		     u32 data_in)
1051{
1052	u64 reg;
1053	int retries;
1054	int success = 0;
1055	u32 result = 0;
1056	u32 result_code = 0;
1057
1058	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1059
1060	for (retries = 0; retries < 100; retries++) {
1061		usleep_range(1000, 1200); /* arbitrary */
1062		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1063		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1064				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1065		if (result_code != SBUS_READ_COMPLETE)
1066			continue;
1067
1068		success = 1;
1069		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1070			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1071		break;
1072	}
1073
1074	if (!success) {
1075		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1076			   result_code);
1077	}
1078
1079	return result;
1080}
1081
1082/*
1083 * Turn off the SBus and fabric serdes spicos.
1084 *
1085 * + Must be called with Sbus fast mode turned on.
1086 * + Must be called after fabric serdes broadcast is set up.
1087 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1088 *   when using MISC_CFG_FW_CTRL.
1089 */
1090static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1091{
1092	/* only needed on A0 */
1093	if (!is_ax(dd))
1094		return;
1095
1096	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1097		    flags & SPICO_SBUS ? " SBus" : "",
1098		    flags & SPICO_FABRIC ? " fabric" : "");
1099
1100	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1101	/* disable SBus spico */
1102	if (flags & SPICO_SBUS)
1103		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1104			     WRITE_SBUS_RECEIVER, 0x00000040);
1105
1106	/* disable the fabric serdes spicos */
1107	if (flags & SPICO_FABRIC)
1108		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1109			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1110	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1111}
1112
1113/*
1114 * Reset all of the fabric serdes for this HFI in preparation to take the
1115 * link to Polling.
1116 *
1117 * To do a reset, we need to write to the serdes registers.  Unfortunately,
1118 * the fabric serdes download to the other HFI on the ASIC will have turned
1119 * off the firmware validation on this HFI.  This means we can't write to the
1120 * registers to reset the serdes.  Work around this by performing a complete
1121 * re-download and validation of the fabric serdes firmware.  This, as a
1122 * by-product, will reset the serdes.  NOTE: the re-download requires that
1123 * the 8051 be in the Offline state.  I.e. not actively trying to use the
1124 * serdes.  This routine is called at the point where the link is Offline and
1125 * is getting ready to go to Polling.
1126 */
1127void fabric_serdes_reset(struct hfi1_devdata *dd)
1128{
1129	int ret;
1130
1131	if (!fw_fabric_serdes_load)
1132		return;
1133
1134	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1135	if (ret) {
1136		dd_dev_err(dd,
1137			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1138		return;
1139	}
1140	set_sbus_fast_mode(dd);
1141
1142	if (is_ax(dd)) {
1143		/* A0 serdes do not work with a re-download */
1144		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1145
1146		/* place SerDes in reset and disable SPICO */
1147		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1148		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1149		udelay(1);
1150		/* remove SerDes reset */
1151		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1152		/* turn SPICO enable on */
1153		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1154	} else {
1155		turn_off_spicos(dd, SPICO_FABRIC);
1156		/*
1157		 * No need for firmware retry - what to download has already
1158		 * been decided.
1159		 * No need to pay attention to the load return - the only
1160		 * failure is a validation failure, which has already been
1161		 * checked by the initial download.
1162		 */
1163		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1164	}
1165
1166	clear_sbus_fast_mode(dd);
1167	release_chip_resource(dd, CR_SBUS);
1168}
1169
1170/* Access to the SBus in this routine should probably be serialized */
1171int sbus_request_slow(struct hfi1_devdata *dd,
1172		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1173{
1174	u64 reg, count = 0;
1175
1176	/* make sure fast mode is clear */
1177	clear_sbus_fast_mode(dd);
1178
1179	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1180	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1181		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1182	/* Wait for both DONE and RCV_DATA_VALID to go high */
1183	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1184	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1185		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1186		if (count++ >= SBUS_MAX_POLL_COUNT) {
1187			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1188			/*
1189			 * If the loop has timed out, we are OK if DONE bit
1190			 * is set and RCV_DATA_VALID and EXECUTE counters
1191			 * are the same. If not, we cannot proceed.
1192			 */
1193			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1194			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1195			     SBUS_COUNTER(counts, EXECUTE)))
1196				break;
1197			return -ETIMEDOUT;
1198		}
1199		udelay(1);
1200		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1201	}
1202	count = 0;
1203	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1204	/* Wait for DONE to clear after EXECUTE is cleared */
1205	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1206	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1207		if (count++ >= SBUS_MAX_POLL_COUNT)
1208			return -ETIME;
1209		udelay(1);
1210		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1211	}
1212	return 0;
1213}
1214
1215static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1216				       struct firmware_details *fdet)
1217{
1218	int i, err;
1219	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1220
1221	dd_dev_info(dd, "Downloading fabric firmware\n");
1222
1223	/* step 1: load security variables */
1224	load_security_variables(dd, fdet);
1225	/* step 2: place SerDes in reset and disable SPICO */
1226	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1227	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1228	udelay(1);
1229	/* step 3:  remove SerDes reset */
1230	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1231	/* step 4: assert IMEM override */
1232	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1233	/* step 5: download SerDes machine code */
1234	for (i = 0; i < fdet->firmware_len; i += 4) {
1235		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1236			     *(u32 *)&fdet->firmware_ptr[i]);
1237	}
1238	/* step 6: IMEM override off */
1239	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1240	/* step 7: turn ECC on */
1241	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1242
1243	/* steps 8-11: run the RSA engine */
1244	err = run_rsa(dd, "fabric serdes", fdet->signature);
1245	if (err)
1246		return err;
1247
1248	/* step 12: turn SPICO enable on */
1249	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1250	/* step 13: enable core hardware interrupts */
1251	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1252
1253	return 0;
1254}
1255
1256static int load_sbus_firmware(struct hfi1_devdata *dd,
1257			      struct firmware_details *fdet)
1258{
1259	int i, err;
1260	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1261
1262	dd_dev_info(dd, "Downloading SBus firmware\n");
1263
1264	/* step 1: load security variables */
1265	load_security_variables(dd, fdet);
1266	/* step 2: place SPICO into reset and enable off */
1267	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1268	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1269	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1270	/* step 4: set starting IMEM address for burst download */
1271	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1272	/* step 5: download the SBus Master machine code */
1273	for (i = 0; i < fdet->firmware_len; i += 4) {
1274		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1275			     *(u32 *)&fdet->firmware_ptr[i]);
1276	}
1277	/* step 6: set IMEM_CNTL_EN off */
1278	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1279	/* step 7: turn ECC on */
1280	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1281
1282	/* steps 8-11: run the RSA engine */
1283	err = run_rsa(dd, "SBus", fdet->signature);
1284	if (err)
1285		return err;
1286
1287	/* step 12: set SPICO_ENABLE on */
1288	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1289
1290	return 0;
1291}
1292
1293static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1294				     struct firmware_details *fdet)
1295{
1296	int i;
1297	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1298
1299	dd_dev_info(dd, "Downloading PCIe firmware\n");
1300
1301	/* step 1: load security variables */
1302	load_security_variables(dd, fdet);
1303	/* step 2: assert single step (halts the SBus Master spico) */
1304	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1305	/* step 3: enable XDMEM access */
1306	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1307	/* step 4: load firmware into SBus Master XDMEM */
1308	/*
1309	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1310	 * we only need to pick up the bytes and write them
1311	 */
1312	for (i = 0; i < fdet->firmware_len; i += 4) {
1313		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1314			     *(u32 *)&fdet->firmware_ptr[i]);
1315	}
1316	/* step 5: disable XDMEM access */
1317	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1318	/* step 6: allow SBus Spico to run */
1319	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1320
1321	/*
1322	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1323	 * be swapped
1324	 */
1325	return run_rsa(dd, "PCIe serdes", fdet->signature);
1326}
1327
1328/*
1329 * Set the given broadcast values on the given list of devices.
1330 */
1331static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1332				 const u8 *addrs, int count)
1333{
1334	while (--count >= 0) {
1335		/*
1336		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1337		 * defaults for everything else.  Do not read-modify-write,
1338		 * per instruction from the manufacturer.
1339		 *
1340		 * Register 0xfd:
1341		 *	bits    what
1342		 *	-----	---------------------------------
1343		 *	  0	IGNORE_BROADCAST  (default 0)
1344		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1345		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1346		 */
1347		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1348			     (u32)bg1 << 4 | (u32)bg2 << 16);
1349	}
1350}
1351
1352int acquire_hw_mutex(struct hfi1_devdata *dd)
1353{
1354	unsigned long timeout;
1355	int try = 0;
1356	u8 mask = 1 << dd->hfi1_id;
1357	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1358
1359	if (user == mask) {
1360		dd_dev_info(dd,
1361			    "Hardware mutex already acquired, mutex mask %u\n",
1362			    (u32)mask);
1363		return 0;
1364	}
1365
1366retry:
1367	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1368	while (1) {
1369		write_csr(dd, ASIC_CFG_MUTEX, mask);
1370		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1371		if (user == mask)
1372			return 0; /* success */
1373		if (time_after(jiffies, timeout))
1374			break; /* timed out */
1375		msleep(20);
1376	}
1377
1378	/* timed out */
1379	dd_dev_err(dd,
1380		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1381		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1382
1383	if (try == 0) {
1384		/* break mutex and retry */
1385		write_csr(dd, ASIC_CFG_MUTEX, 0);
1386		try++;
1387		goto retry;
1388	}
1389
1390	return -EBUSY;
1391}
1392
1393void release_hw_mutex(struct hfi1_devdata *dd)
1394{
1395	u8 mask = 1 << dd->hfi1_id;
1396	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1397
1398	if (user != mask)
1399		dd_dev_warn(dd,
1400			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1401			    (u32)user, (u32)mask);
1402	else
1403		write_csr(dd, ASIC_CFG_MUTEX, 0);
1404}
1405
1406/* return the given resource bit(s) as a mask for the given HFI */
1407static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1408{
1409	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1410}
1411
1412static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1413				       const char *func)
1414{
1415	dd_dev_err(dd,
1416		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1417		   func);
1418}
1419
1420/*
1421 * Acquire access to a chip resource.
1422 *
1423 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1424 */
1425static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1426{
1427	u64 scratch0, all_bits, my_bit;
1428	int ret;
1429
1430	if (resource & CR_DYN_MASK) {
1431		/* a dynamic resource is in use if either HFI has set the bit */
1432		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1433		    (resource & (CR_I2C1 | CR_I2C2))) {
1434			/* discrete devices must serialize across both chains */
1435			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1436					resource_mask(1, CR_I2C1 | CR_I2C2);
1437		} else {
1438			all_bits = resource_mask(0, resource) |
1439						resource_mask(1, resource);
1440		}
1441		my_bit = resource_mask(dd->hfi1_id, resource);
1442	} else {
1443		/* non-dynamic resources are not split between HFIs */
1444		all_bits = resource;
1445		my_bit = resource;
1446	}
1447
1448	/* lock against other callers within the driver wanting a resource */
1449	mutex_lock(&dd->asic_data->asic_resource_mutex);
1450
1451	ret = acquire_hw_mutex(dd);
1452	if (ret) {
1453		fail_mutex_acquire_message(dd, __func__);
1454		ret = -EIO;
1455		goto done;
1456	}
1457
1458	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1459	if (scratch0 & all_bits) {
1460		ret = -EBUSY;
1461	} else {
1462		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1463		/* force write to be visible to other HFI on another OS */
1464		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1465	}
1466
1467	release_hw_mutex(dd);
1468
1469done:
1470	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1471	return ret;
1472}
1473
1474/*
1475 * Acquire access to a chip resource, wait up to mswait milliseconds for
1476 * the resource to become available.
1477 *
1478 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1479 * acquire failed.
1480 */
1481int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1482{
1483	unsigned long timeout;
1484	int ret;
1485
1486	timeout = jiffies + msecs_to_jiffies(mswait);
1487	while (1) {
1488		ret = __acquire_chip_resource(dd, resource);
1489		if (ret != -EBUSY)
1490			return ret;
1491		/* resource is busy, check our timeout */
1492		if (time_after_eq(jiffies, timeout))
1493			return -EBUSY;
1494		usleep_range(80, 120);	/* arbitrary delay */
1495	}
1496}
1497
1498/*
1499 * Release access to a chip resource
1500 */
1501void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1502{
1503	u64 scratch0, bit;
1504
1505	/* only dynamic resources should ever be cleared */
1506	if (!(resource & CR_DYN_MASK)) {
1507		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1508			   resource);
1509		return;
1510	}
1511	bit = resource_mask(dd->hfi1_id, resource);
1512
1513	/* lock against other callers within the driver wanting a resource */
1514	mutex_lock(&dd->asic_data->asic_resource_mutex);
1515
1516	if (acquire_hw_mutex(dd)) {
1517		fail_mutex_acquire_message(dd, __func__);
1518		goto done;
1519	}
1520
1521	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1522	if ((scratch0 & bit) != 0) {
1523		scratch0 &= ~bit;
1524		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1525		/* force write to be visible to other HFI on another OS */
1526		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1527	} else {
1528		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1529			    __func__, dd->hfi1_id, resource);
1530	}
1531
1532	release_hw_mutex(dd);
1533
1534done:
1535	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1536}
1537
1538/*
1539 * Return true if resource is set, false otherwise.  Print a warning
1540 * if not set and a function is supplied.
1541 */
1542bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1543			 const char *func)
1544{
1545	u64 scratch0, bit;
1546
1547	if (resource & CR_DYN_MASK)
1548		bit = resource_mask(dd->hfi1_id, resource);
1549	else
1550		bit = resource;
1551
1552	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1553	if ((scratch0 & bit) == 0) {
1554		if (func)
1555			dd_dev_warn(dd,
1556				    "%s: id %d, resource 0x%x, not acquired!\n",
1557				    func, dd->hfi1_id, resource);
1558		return false;
1559	}
1560	return true;
1561}
1562
1563static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1564{
1565	u64 scratch0;
1566
1567	/* lock against other callers within the driver wanting a resource */
1568	mutex_lock(&dd->asic_data->asic_resource_mutex);
1569
1570	if (acquire_hw_mutex(dd)) {
1571		fail_mutex_acquire_message(dd, func);
1572		goto done;
1573	}
1574
1575	/* clear all dynamic access bits for this HFI */
1576	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1577	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1578	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1579	/* force write to be visible to other HFI on another OS */
1580	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1581
1582	release_hw_mutex(dd);
1583
1584done:
1585	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1586}
1587
1588void init_chip_resources(struct hfi1_devdata *dd)
1589{
1590	/* clear any holds left by us */
1591	clear_chip_resources(dd, __func__);
1592}
1593
1594void finish_chip_resources(struct hfi1_devdata *dd)
1595{
1596	/* clear any holds left by us */
1597	clear_chip_resources(dd, __func__);
1598}
1599
1600void set_sbus_fast_mode(struct hfi1_devdata *dd)
1601{
1602	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1603		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1604}
1605
1606void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1607{
1608	u64 reg, count = 0;
1609
1610	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1611	while (SBUS_COUNTER(reg, EXECUTE) !=
1612	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1613		if (count++ >= SBUS_MAX_POLL_COUNT)
1614			break;
1615		udelay(1);
1616		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1617	}
1618	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1619}
1620
1621int load_firmware(struct hfi1_devdata *dd)
1622{
1623	int ret;
1624
1625	if (fw_fabric_serdes_load) {
1626		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1627		if (ret)
1628			return ret;
1629
1630		set_sbus_fast_mode(dd);
1631
1632		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1633				     fabric_serdes_broadcast[dd->hfi1_id],
1634				     fabric_serdes_addrs[dd->hfi1_id],
1635				     NUM_FABRIC_SERDES);
1636		turn_off_spicos(dd, SPICO_FABRIC);
1637		do {
1638			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1639		} while (retry_firmware(dd, ret));
1640
1641		clear_sbus_fast_mode(dd);
1642		release_chip_resource(dd, CR_SBUS);
1643		if (ret)
1644			return ret;
1645	}
1646
1647	if (fw_8051_load) {
1648		do {
1649			ret = load_8051_firmware(dd, &fw_8051);
1650		} while (retry_firmware(dd, ret));
1651		if (ret)
1652			return ret;
1653	}
1654
1655	dump_fw_version(dd);
1656	return 0;
1657}
1658
1659int hfi1_firmware_init(struct hfi1_devdata *dd)
1660{
1661	/* only RTL can use these */
1662	if (dd->icode != ICODE_RTL_SILICON) {
1663		fw_fabric_serdes_load = 0;
1664		fw_pcie_serdes_load = 0;
1665		fw_sbus_load = 0;
1666	}
1667
1668	/* no 8051 or QSFP on simulator */
1669	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1670		fw_8051_load = 0;
1671
1672	if (!fw_8051_name) {
1673		if (dd->icode == ICODE_RTL_SILICON)
1674			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1675		else
1676			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1677	}
1678	if (!fw_fabric_serdes_name)
1679		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1680	if (!fw_sbus_name)
1681		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1682	if (!fw_pcie_serdes_name)
1683		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1684
1685	return obtain_firmware(dd);
1686}
1687
1688/*
1689 * This function is a helper function for parse_platform_config(...) and
1690 * does not check for validity of the platform configuration cache
1691 * (because we know it is invalid as we are building up the cache).
1692 * As such, this should not be called from anywhere other than
1693 * parse_platform_config
1694 */
1695static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1696{
1697	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1698	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1699
1700	if (!system_table)
1701		return -EINVAL;
1702
1703	meta_ver_meta =
1704	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1705	+ SYSTEM_TABLE_META_VERSION);
1706
1707	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1708	ver_start = meta_ver_meta & mask;
1709
1710	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1711
1712	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1713	ver_len = meta_ver_meta & mask;
1714
1715	ver_start /= 8;
1716	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1717
1718	if (meta_ver < 4) {
1719		dd_dev_info(
1720			dd, "%s:Please update platform config\n", __func__);
1721		return -EINVAL;
1722	}
1723	return 0;
1724}
1725
1726int parse_platform_config(struct hfi1_devdata *dd)
1727{
1728	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1729	struct hfi1_pportdata *ppd = dd->pport;
1730	u32 *ptr = NULL;
1731	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1732	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1733	int ret = -EINVAL; /* assume failure */
1734
1735	/*
1736	 * For integrated devices that did not fall back to the default file,
1737	 * the SI tuning information for active channels is acquired from the
1738	 * scratch register bitmap, thus there is no platform config to parse.
1739	 * Skip parsing in these situations.
1740	 */
1741	if (ppd->config_from_scratch)
1742		return 0;
1743
1744	if (!dd->platform_config.data) {
1745		dd_dev_err(dd, "%s: Missing config file\n", __func__);
1746		ret = -EINVAL;
1747		goto bail;
1748	}
1749	ptr = (u32 *)dd->platform_config.data;
1750
1751	magic_num = *ptr;
1752	ptr++;
1753	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1754		dd_dev_err(dd, "%s: Bad config file\n", __func__);
1755		ret = -EINVAL;
1756		goto bail;
1757	}
1758
1759	/* Field is file size in DWORDs */
1760	file_length = (*ptr) * 4;
1761
1762	/*
1763	 * Length can't be larger than partition size. Assume platform
1764	 * config format version 4 is being used. Interpret the file size
1765	 * field as header instead by not moving the pointer.
1766	 */
1767	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1768		dd_dev_info(dd,
1769			    "%s:File length out of bounds, using alternative format\n",
1770			    __func__);
1771		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1772	} else {
1773		ptr++;
1774	}
1775
1776	if (file_length > dd->platform_config.size) {
1777		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1778			    __func__);
1779		ret = -EINVAL;
1780		goto bail;
1781	} else if (file_length < dd->platform_config.size) {
1782		dd_dev_info(dd,
1783			    "%s:File claims to be smaller than read size, continuing\n",
1784			    __func__);
1785	}
1786	/* exactly equal, perfection */
1787
1788	/*
1789	 * In both cases where we proceed, using the self-reported file length
1790	 * is the safer option. In case of old format a predefined value is
1791	 * being used.
1792	 */
1793	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1794		header1 = *ptr;
1795		header2 = *(ptr + 1);
1796		if (header1 != ~header2) {
1797			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1798				   __func__, (ptr - (u32 *)
1799					      dd->platform_config.data));
1800			ret = -EINVAL;
1801			goto bail;
1802		}
1803
1804		record_idx = *ptr &
1805			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1806
1807		table_length_dwords = (*ptr >>
1808				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1809		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1810
1811		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1812			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1813
1814		/* Done with this set of headers */
1815		ptr += 2;
1816
1817		if (record_idx) {
1818			/* data table */
1819			switch (table_type) {
1820			case PLATFORM_CONFIG_SYSTEM_TABLE:
1821				pcfgcache->config_tables[table_type].num_table =
1822									1;
1823				ret = check_meta_version(dd, ptr);
1824				if (ret)
1825					goto bail;
1826				break;
1827			case PLATFORM_CONFIG_PORT_TABLE:
1828				pcfgcache->config_tables[table_type].num_table =
1829									2;
1830				break;
1831			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1832			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1833			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1834			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1835				pcfgcache->config_tables[table_type].num_table =
1836							table_length_dwords;
1837				break;
1838			default:
1839				dd_dev_err(dd,
1840					   "%s: Unknown data table %d, offset %ld\n",
1841					   __func__, table_type,
1842					   (ptr - (u32 *)
1843					    dd->platform_config.data));
1844				ret = -EINVAL;
1845				goto bail; /* We don't trust this file now */
1846			}
1847			pcfgcache->config_tables[table_type].table = ptr;
1848		} else {
1849			/* metadata table */
1850			switch (table_type) {
1851			case PLATFORM_CONFIG_SYSTEM_TABLE:
1852			case PLATFORM_CONFIG_PORT_TABLE:
1853			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1854			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1855			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1856			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1857				break;
1858			default:
1859				dd_dev_err(dd,
1860					   "%s: Unknown meta table %d, offset %ld\n",
1861					   __func__, table_type,
1862					   (ptr -
1863					    (u32 *)dd->platform_config.data));
1864				ret = -EINVAL;
1865				goto bail; /* We don't trust this file now */
1866			}
1867			pcfgcache->config_tables[table_type].table_metadata =
1868									ptr;
1869		}
1870
1871		/* Calculate and check table crc */
1872		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1873			       (table_length_dwords * 4));
1874		crc ^= ~(u32)0;
1875
1876		/* Jump the table */
1877		ptr += table_length_dwords;
1878		if (crc != *ptr) {
1879			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1880				   __func__, (ptr -
1881				   (u32 *)dd->platform_config.data));
1882			ret = -EINVAL;
1883			goto bail;
1884		}
1885		/* Jump the CRC DWORD */
1886		ptr++;
1887	}
1888
1889	pcfgcache->cache_valid = 1;
1890	return 0;
1891bail:
1892	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1893	return ret;
1894}
1895
1896static void get_integrated_platform_config_field(
1897		struct hfi1_devdata *dd,
1898		enum platform_config_table_type_encoding table_type,
1899		int field_index, u32 *data)
1900{
1901	struct hfi1_pportdata *ppd = dd->pport;
1902	u8 *cache = ppd->qsfp_info.cache;
1903	u32 tx_preset = 0;
1904
1905	switch (table_type) {
1906	case PLATFORM_CONFIG_SYSTEM_TABLE:
1907		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1908			*data = ppd->max_power_class;
1909		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1910			*data = ppd->default_atten;
1911		break;
1912	case PLATFORM_CONFIG_PORT_TABLE:
1913		if (field_index == PORT_TABLE_PORT_TYPE)
1914			*data = ppd->port_type;
1915		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1916			*data = ppd->local_atten;
1917		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1918			*data = ppd->remote_atten;
1919		break;
1920	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1921		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1922			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1923				QSFP_RX_CDR_APPLY_SHIFT;
1924		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1925			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1926				QSFP_RX_EMP_APPLY_SHIFT;
1927		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1928			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1929				QSFP_RX_AMP_APPLY_SHIFT;
1930		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1931			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1932				QSFP_RX_CDR_SHIFT;
1933		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1934			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1935				QSFP_RX_EMP_SHIFT;
1936		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1937			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1938				QSFP_RX_AMP_SHIFT;
1939		break;
1940	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1941		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1942			tx_preset = ppd->tx_preset_eq;
1943		else
1944			tx_preset = ppd->tx_preset_noeq;
1945		if (field_index == TX_PRESET_TABLE_PRECUR)
1946			*data = (tx_preset & TX_PRECUR_SMASK) >>
1947				TX_PRECUR_SHIFT;
1948		else if (field_index == TX_PRESET_TABLE_ATTN)
1949			*data = (tx_preset & TX_ATTN_SMASK) >>
1950				TX_ATTN_SHIFT;
1951		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1952			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1953				TX_POSTCUR_SHIFT;
1954		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1955			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1956				QSFP_TX_CDR_APPLY_SHIFT;
1957		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1958			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1959				QSFP_TX_EQ_APPLY_SHIFT;
1960		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1961			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1962				QSFP_TX_CDR_SHIFT;
1963		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1964			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1965				QSFP_TX_EQ_SHIFT;
1966		break;
1967	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1968	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1969	default:
1970		break;
1971	}
1972}
1973
1974static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1975					  int field, u32 *field_len_bits,
1976					  u32 *field_start_bits)
1977{
1978	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1979	u32 *src_ptr = NULL;
1980
1981	if (!pcfgcache->cache_valid)
1982		return -EINVAL;
1983
1984	switch (table) {
1985	case PLATFORM_CONFIG_SYSTEM_TABLE:
1986	case PLATFORM_CONFIG_PORT_TABLE:
1987	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1988	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1989	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1990	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1991		if (field && field < platform_config_table_limits[table])
1992			src_ptr =
1993			pcfgcache->config_tables[table].table_metadata + field;
1994		break;
1995	default:
1996		dd_dev_info(dd, "%s: Unknown table\n", __func__);
1997		break;
1998	}
1999
2000	if (!src_ptr)
2001		return -EINVAL;
2002
2003	if (field_start_bits)
2004		*field_start_bits = *src_ptr &
2005		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2006
2007	if (field_len_bits)
2008		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2009		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2010
2011	return 0;
2012}
2013
2014/* This is the central interface to getting data out of the platform config
2015 * file. It depends on parse_platform_config() having populated the
2016 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2017 * validate the sanity of the cache.
2018 *
2019 * The non-obvious parameters:
2020 * @table_index: Acts as a look up key into which instance of the tables the
2021 * relevant field is fetched from.
2022 *
2023 * This applies to the data tables that have multiple instances. The port table
2024 * is an exception to this rule as each HFI only has one port and thus the
2025 * relevant table can be distinguished by hfi_id.
2026 *
2027 * @data: pointer to memory that will be populated with the field requested.
2028 * @len: length of memory pointed by @data in bytes.
2029 */
2030int get_platform_config_field(struct hfi1_devdata *dd,
2031			      enum platform_config_table_type_encoding
2032			      table_type, int table_index, int field_index,
2033			      u32 *data, u32 len)
2034{
2035	int ret = 0, wlen = 0, seek = 0;
2036	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2037	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2038	struct hfi1_pportdata *ppd = dd->pport;
2039
2040	if (data)
2041		memset(data, 0, len);
2042	else
2043		return -EINVAL;
2044
2045	if (ppd->config_from_scratch) {
2046		/*
2047		 * Use saved configuration from ppd for integrated platforms
2048		 */
2049		get_integrated_platform_config_field(dd, table_type,
2050						     field_index, data);
2051		return 0;
2052	}
2053
2054	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2055					     &field_len_bits,
2056					     &field_start_bits);
2057	if (ret)
2058		return -EINVAL;
2059
2060	/* Convert length to bits */
2061	len *= 8;
2062
2063	/* Our metadata function checked cache_valid and field_index for us */
2064	switch (table_type) {
2065	case PLATFORM_CONFIG_SYSTEM_TABLE:
2066		src_ptr = pcfgcache->config_tables[table_type].table;
2067
2068		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2069			if (len < field_len_bits)
2070				return -EINVAL;
2071
2072			seek = field_start_bits / 8;
2073			wlen = field_len_bits / 8;
2074
2075			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2076
2077			/*
2078			 * We expect the field to be byte aligned and whole byte
2079			 * lengths if we are here
2080			 */
2081			memcpy(data, src_ptr, wlen);
2082			return 0;
2083		}
2084		break;
2085	case PLATFORM_CONFIG_PORT_TABLE:
2086		/* Port table is 4 DWORDS */
2087		src_ptr = dd->hfi1_id ?
2088			pcfgcache->config_tables[table_type].table + 4 :
2089			pcfgcache->config_tables[table_type].table;
2090		break;
2091	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2092	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2093	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2094	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2095		src_ptr = pcfgcache->config_tables[table_type].table;
2096
2097		if (table_index <
2098			pcfgcache->config_tables[table_type].num_table)
2099			src_ptr += table_index;
2100		else
2101			src_ptr = NULL;
2102		break;
2103	default:
2104		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2105		break;
2106	}
2107
2108	if (!src_ptr || len < field_len_bits)
2109		return -EINVAL;
2110
2111	src_ptr += (field_start_bits / 32);
2112	*data = (*src_ptr >> (field_start_bits % 32)) &
2113			((1 << field_len_bits) - 1);
2114
2115	return 0;
2116}
2117
2118/*
2119 * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2120 * to the SBus firmware is needed before updating the PCIe firmware.
2121 *
2122 * Note: caller must be holding the SBus resource.
2123 */
2124int load_pcie_firmware(struct hfi1_devdata *dd)
2125{
2126	int ret = 0;
2127
2128	/* both firmware loads below use the SBus */
2129	set_sbus_fast_mode(dd);
2130
2131	if (fw_sbus_load) {
2132		turn_off_spicos(dd, SPICO_SBUS);
2133		do {
2134			ret = load_sbus_firmware(dd, &fw_sbus);
2135		} while (retry_firmware(dd, ret));
2136		if (ret)
2137			goto done;
2138	}
2139
2140	if (fw_pcie_serdes_load) {
2141		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2142		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2143				     pcie_serdes_broadcast[dd->hfi1_id],
2144				     pcie_serdes_addrs[dd->hfi1_id],
2145				     NUM_PCIE_SERDES);
2146		do {
2147			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2148		} while (retry_firmware(dd, ret));
2149		if (ret)
2150			goto done;
2151	}
2152
2153done:
2154	clear_sbus_fast_mode(dd);
2155
2156	return ret;
2157}
2158
2159/*
2160 * Read the GUID from the hardware, store it in dd.
2161 */
2162void read_guid(struct hfi1_devdata *dd)
2163{
2164	/* Take the DC out of reset to get a valid GUID value */
2165	write_csr(dd, CCE_DC_CTRL, 0);
2166	(void)read_csr(dd, CCE_DC_CTRL);
2167
2168	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2169	dd_dev_info(dd, "GUID %llx",
2170		    (unsigned long long)dd->base_guid);
2171}
2172
2173/* read and display firmware version info */
2174static void dump_fw_version(struct hfi1_devdata *dd)
2175{
2176	u32 pcie_vers[NUM_PCIE_SERDES];
2177	u32 fabric_vers[NUM_FABRIC_SERDES];
2178	u32 sbus_vers;
2179	int i;
2180	int all_same;
2181	int ret;
2182	u8 rcv_addr;
2183
2184	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2185	if (ret) {
2186		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2187		return;
2188	}
2189
2190	/* set fast mode */
2191	set_sbus_fast_mode(dd);
2192
2193	/* read version for SBus Master */
2194	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2195	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2196	/* wait for interrupt to be processed */
2197	usleep_range(10000, 11000);
2198	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2199	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2200
2201	/* read version for PCIe SerDes */
2202	all_same = 1;
2203	pcie_vers[0] = 0;
2204	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2205		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2206		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2207		/* wait for interrupt to be processed */
2208		usleep_range(10000, 11000);
2209		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2210		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2211			all_same = 0;
2212	}
2213
2214	if (all_same) {
2215		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2216			    pcie_vers[0]);
2217	} else {
2218		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2219		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2220			dd_dev_info(dd,
2221				    "PCIe SerDes lane %d firmware version 0x%x\n",
2222				    i, pcie_vers[i]);
2223		}
2224	}
2225
2226	/* read version for fabric SerDes */
2227	all_same = 1;
2228	fabric_vers[0] = 0;
2229	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2230		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2231		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2232		/* wait for interrupt to be processed */
2233		usleep_range(10000, 11000);
2234		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2235		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2236			all_same = 0;
2237	}
2238
2239	if (all_same) {
2240		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2241			    fabric_vers[0]);
2242	} else {
2243		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2244		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2245			dd_dev_info(dd,
2246				    "Fabric SerDes lane %d firmware version 0x%x\n",
2247				    i, fabric_vers[i]);
2248		}
2249	}
2250
2251	clear_sbus_fast_mode(dd);
2252	release_chip_resource(dd, CR_SBUS);
2253}
2254