1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2020 Cornelis Networks, Inc.
4 * Copyright(c) 2015-2020 Intel Corporation.
5 */
6
7#include <linux/poll.h>
8#include <linux/cdev.h>
9#include <linux/vmalloc.h>
10#include <linux/io.h>
11#include <linux/sched/mm.h>
12#include <linux/bitmap.h>
13
14#include <rdma/ib.h>
15
16#include "hfi.h"
17#include "pio.h"
18#include "device.h"
19#include "common.h"
20#include "trace.h"
21#include "mmu_rb.h"
22#include "user_sdma.h"
23#include "user_exp_rcv.h"
24#include "aspm.h"
25
26#undef pr_fmt
27#define pr_fmt(fmt) DRIVER_NAME ": " fmt
28
29#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30
31/*
32 * File operation functions
33 */
34static int hfi1_file_open(struct inode *inode, struct file *fp);
35static int hfi1_file_close(struct inode *inode, struct file *fp);
36static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39
40static u64 kvirt_to_phys(void *addr);
41static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43			  const struct hfi1_user_info *uinfo);
44static int init_user_ctxt(struct hfi1_filedata *fd,
45			  struct hfi1_ctxtdata *uctxt);
46static void user_init(struct hfi1_ctxtdata *uctxt);
47static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50			      u32 len);
51static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52			      u32 len);
53static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54				u32 len);
55static int setup_base_ctxt(struct hfi1_filedata *fd,
56			   struct hfi1_ctxtdata *uctxt);
57static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58
59static int find_sub_ctxt(struct hfi1_filedata *fd,
60			 const struct hfi1_user_info *uinfo);
61static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62			 struct hfi1_user_info *uinfo,
63			 struct hfi1_ctxtdata **cd);
64static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68			  unsigned long arg);
69static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72		       unsigned long arg);
73static vm_fault_t vma_fault(struct vm_fault *vmf);
74static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75			    unsigned long arg);
76
77static const struct file_operations hfi1_file_ops = {
78	.owner = THIS_MODULE,
79	.write_iter = hfi1_write_iter,
80	.open = hfi1_file_open,
81	.release = hfi1_file_close,
82	.unlocked_ioctl = hfi1_file_ioctl,
83	.poll = hfi1_poll,
84	.mmap = hfi1_file_mmap,
85	.llseek = noop_llseek,
86};
87
88static const struct vm_operations_struct vm_ops = {
89	.fault = vma_fault,
90};
91
92/*
93 * Types of memories mapped into user processes' space
94 */
95enum mmap_types {
96	PIO_BUFS = 1,
97	PIO_BUFS_SOP,
98	PIO_CRED,
99	RCV_HDRQ,
100	RCV_EGRBUF,
101	UREGS,
102	EVENTS,
103	STATUS,
104	RTAIL,
105	SUBCTXT_UREGS,
106	SUBCTXT_RCV_HDRQ,
107	SUBCTXT_EGRBUF,
108	SDMA_COMP
109};
110
111/*
112 * Masks and offsets defining the mmap tokens
113 */
114#define HFI1_MMAP_OFFSET_MASK   0xfffULL
115#define HFI1_MMAP_OFFSET_SHIFT  0
116#define HFI1_MMAP_SUBCTXT_MASK  0xfULL
117#define HFI1_MMAP_SUBCTXT_SHIFT 12
118#define HFI1_MMAP_CTXT_MASK     0xffULL
119#define HFI1_MMAP_CTXT_SHIFT    16
120#define HFI1_MMAP_TYPE_MASK     0xfULL
121#define HFI1_MMAP_TYPE_SHIFT    24
122#define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
123#define HFI1_MMAP_MAGIC_SHIFT   32
124
125#define HFI1_MMAP_MAGIC         0xdabbad00
126
127#define HFI1_MMAP_TOKEN_SET(field, val)	\
128	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129#define HFI1_MMAP_TOKEN_GET(field, token) \
130	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
132	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137
138#define dbg(fmt, ...)				\
139	pr_info(fmt, ##__VA_ARGS__)
140
141static inline int is_valid_mmap(u64 token)
142{
143	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144}
145
146static int hfi1_file_open(struct inode *inode, struct file *fp)
147{
148	struct hfi1_filedata *fd;
149	struct hfi1_devdata *dd = container_of(inode->i_cdev,
150					       struct hfi1_devdata,
151					       user_cdev);
152
153	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154		return -EINVAL;
155
156	if (!refcount_inc_not_zero(&dd->user_refcount))
157		return -ENXIO;
158
159	/* The real work is performed later in assign_ctxt() */
160
161	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162
163	if (!fd || init_srcu_struct(&fd->pq_srcu))
164		goto nomem;
165	spin_lock_init(&fd->pq_rcu_lock);
166	spin_lock_init(&fd->tid_lock);
167	spin_lock_init(&fd->invalid_lock);
168	fd->rec_cpu_num = -1; /* no cpu affinity by default */
169	fd->dd = dd;
170	fp->private_data = fd;
171	return 0;
172nomem:
173	kfree(fd);
174	fp->private_data = NULL;
175	if (refcount_dec_and_test(&dd->user_refcount))
176		complete(&dd->user_comp);
177	return -ENOMEM;
178}
179
180static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181			    unsigned long arg)
182{
183	struct hfi1_filedata *fd = fp->private_data;
184	struct hfi1_ctxtdata *uctxt = fd->uctxt;
185	int ret = 0;
186	int uval = 0;
187
188	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190	    cmd != HFI1_IOCTL_GET_VERS &&
191	    !uctxt)
192		return -EINVAL;
193
194	switch (cmd) {
195	case HFI1_IOCTL_ASSIGN_CTXT:
196		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197		break;
198
199	case HFI1_IOCTL_CTXT_INFO:
200		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201		break;
202
203	case HFI1_IOCTL_USER_INFO:
204		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205		break;
206
207	case HFI1_IOCTL_CREDIT_UPD:
208		if (uctxt)
209			sc_return_credits(uctxt->sc);
210		break;
211
212	case HFI1_IOCTL_TID_UPDATE:
213		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214		break;
215
216	case HFI1_IOCTL_TID_FREE:
217		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218		break;
219
220	case HFI1_IOCTL_TID_INVAL_READ:
221		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222		break;
223
224	case HFI1_IOCTL_RECV_CTRL:
225		ret = manage_rcvq(uctxt, fd->subctxt, arg);
226		break;
227
228	case HFI1_IOCTL_POLL_TYPE:
229		if (get_user(uval, (int __user *)arg))
230			return -EFAULT;
231		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232		break;
233
234	case HFI1_IOCTL_ACK_EVENT:
235		ret = user_event_ack(uctxt, fd->subctxt, arg);
236		break;
237
238	case HFI1_IOCTL_SET_PKEY:
239		ret = set_ctxt_pkey(uctxt, arg);
240		break;
241
242	case HFI1_IOCTL_CTXT_RESET:
243		ret = ctxt_reset(uctxt);
244		break;
245
246	case HFI1_IOCTL_GET_VERS:
247		uval = HFI1_USER_SWVERSION;
248		if (put_user(uval, (int __user *)arg))
249			return -EFAULT;
250		break;
251
252	default:
253		return -EINVAL;
254	}
255
256	return ret;
257}
258
259static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260{
261	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262	struct hfi1_user_sdma_pkt_q *pq;
263	struct hfi1_user_sdma_comp_q *cq = fd->cq;
264	int done = 0, reqs = 0;
265	unsigned long dim = from->nr_segs;
266	int idx;
267
268	if (!HFI1_CAP_IS_KSET(SDMA))
269		return -EINVAL;
270	if (!user_backed_iter(from))
271		return -EINVAL;
272	idx = srcu_read_lock(&fd->pq_srcu);
273	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
274	if (!cq || !pq) {
275		srcu_read_unlock(&fd->pq_srcu, idx);
276		return -EIO;
277	}
278
279	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
280
281	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
282		srcu_read_unlock(&fd->pq_srcu, idx);
283		return -ENOSPC;
284	}
285
286	while (dim) {
287		const struct iovec *iov = iter_iov(from);
288		int ret;
289		unsigned long count = 0;
290
291		ret = hfi1_user_sdma_process_request(
292			fd, (struct iovec *)(iov + done),
293			dim, &count);
294		if (ret) {
295			reqs = ret;
296			break;
297		}
298		dim -= count;
299		done += count;
300		reqs++;
301	}
302
303	srcu_read_unlock(&fd->pq_srcu, idx);
304	return reqs;
305}
306
307static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
308			     u64 memaddr, void *memvirt, dma_addr_t memdma,
309			     ssize_t memlen, struct vm_area_struct *vma)
310{
311	hfi1_cdbg(PROC,
312		  "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
313		  ctxt, subctxt, type, mapio, vmf, !!memdma,
314		  memaddr ?: (u64)memvirt, memlen,
315		  vma->vm_end - vma->vm_start, vma->vm_flags);
316}
317
318static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
319{
320	struct hfi1_filedata *fd = fp->private_data;
321	struct hfi1_ctxtdata *uctxt = fd->uctxt;
322	struct hfi1_devdata *dd;
323	unsigned long flags;
324	u64 token = vma->vm_pgoff << PAGE_SHIFT,
325		memaddr = 0;
326	void *memvirt = NULL;
327	dma_addr_t memdma = 0;
328	u8 subctxt, mapio = 0, vmf = 0, type;
329	ssize_t memlen = 0;
330	int ret = 0;
331	u16 ctxt;
332
333	if (!is_valid_mmap(token) || !uctxt ||
334	    !(vma->vm_flags & VM_SHARED)) {
335		ret = -EINVAL;
336		goto done;
337	}
338	dd = uctxt->dd;
339	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
340	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
341	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
342	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
343		ret = -EINVAL;
344		goto done;
345	}
346
347	/*
348	 * vm_pgoff is used as a buffer selector cookie.  Always mmap from
349	 * the beginning.
350	 */
351	vma->vm_pgoff = 0;
352	flags = vma->vm_flags;
353
354	switch (type) {
355	case PIO_BUFS:
356	case PIO_BUFS_SOP:
357		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
358				/* chip pio base */
359			   (uctxt->sc->hw_context * BIT(16))) +
360				/* 64K PIO space / ctxt */
361			(type == PIO_BUFS_SOP ?
362				(TXE_PIO_SIZE / 2) : 0); /* sop? */
363		/*
364		 * Map only the amount allocated to the context, not the
365		 * entire available context's PIO space.
366		 */
367		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
368		flags &= ~VM_MAYREAD;
369		flags |= VM_DONTCOPY | VM_DONTEXPAND;
370		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
371		mapio = 1;
372		break;
373	case PIO_CRED: {
374		u64 cr_page_offset;
375		if (flags & VM_WRITE) {
376			ret = -EPERM;
377			goto done;
378		}
379		/*
380		 * The credit return location for this context could be on the
381		 * second or third page allocated for credit returns (if number
382		 * of enabled contexts > 64 and 128 respectively).
383		 */
384		cr_page_offset = ((u64)uctxt->sc->hw_free -
385			  	     (u64)dd->cr_base[uctxt->numa_id].va) &
386				   PAGE_MASK;
387		memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
388		memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
389		memlen = PAGE_SIZE;
390		flags &= ~VM_MAYWRITE;
391		flags |= VM_DONTCOPY | VM_DONTEXPAND;
392		/*
393		 * The driver has already allocated memory for credit
394		 * returns and programmed it into the chip. Has that
395		 * memory been flagged as non-cached?
396		 */
397		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
398		break;
399	}
400	case RCV_HDRQ:
401		memlen = rcvhdrq_size(uctxt);
402		memvirt = uctxt->rcvhdrq;
403		memdma = uctxt->rcvhdrq_dma;
404		break;
405	case RCV_EGRBUF: {
406		unsigned long vm_start_save;
407		unsigned long vm_end_save;
408		int i;
409		/*
410		 * The RcvEgr buffer need to be handled differently
411		 * as multiple non-contiguous pages need to be mapped
412		 * into the user process.
413		 */
414		memlen = uctxt->egrbufs.size;
415		if ((vma->vm_end - vma->vm_start) != memlen) {
416			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
417				   (vma->vm_end - vma->vm_start), memlen);
418			ret = -EINVAL;
419			goto done;
420		}
421		if (vma->vm_flags & VM_WRITE) {
422			ret = -EPERM;
423			goto done;
424		}
425		vm_flags_clear(vma, VM_MAYWRITE);
426		/*
427		 * Mmap multiple separate allocations into a single vma.  From
428		 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
429		 * requires the mmap to exactly fill the vma starting at
430		 * vma_start.  Adjust the vma start and end for each eager
431		 * buffer segment mapped.  Restore the originals when done.
432		 */
433		vm_start_save = vma->vm_start;
434		vm_end_save = vma->vm_end;
435		vma->vm_end = vma->vm_start;
436		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
437			memlen = uctxt->egrbufs.buffers[i].len;
438			memvirt = uctxt->egrbufs.buffers[i].addr;
439			memdma = uctxt->egrbufs.buffers[i].dma;
440			vma->vm_end += memlen;
441			mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
442				  memvirt, memdma, memlen, vma);
443			ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
444						memvirt, memdma, memlen);
445			if (ret < 0) {
446				vma->vm_start = vm_start_save;
447				vma->vm_end = vm_end_save;
448				goto done;
449			}
450			vma->vm_start += memlen;
451		}
452		vma->vm_start = vm_start_save;
453		vma->vm_end = vm_end_save;
454		ret = 0;
455		goto done;
456	}
457	case UREGS:
458		/*
459		 * Map only the page that contains this context's user
460		 * registers.
461		 */
462		memaddr = (unsigned long)
463			(dd->physaddr + RXE_PER_CONTEXT_USER)
464			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
465		/*
466		 * TidFlow table is on the same page as the rest of the
467		 * user registers.
468		 */
469		memlen = PAGE_SIZE;
470		flags |= VM_DONTCOPY | VM_DONTEXPAND;
471		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
472		mapio = 1;
473		break;
474	case EVENTS:
475		/*
476		 * Use the page where this context's flags are. User level
477		 * knows where it's own bitmap is within the page.
478		 */
479		memaddr = (unsigned long)
480			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
481		memlen = PAGE_SIZE;
482		/*
483		 * v3.7 removes VM_RESERVED but the effect is kept by
484		 * using VM_IO.
485		 */
486		flags |= VM_IO | VM_DONTEXPAND;
487		vmf = 1;
488		break;
489	case STATUS:
490		if (flags & VM_WRITE) {
491			ret = -EPERM;
492			goto done;
493		}
494		memaddr = kvirt_to_phys((void *)dd->status);
495		memlen = PAGE_SIZE;
496		flags |= VM_IO | VM_DONTEXPAND;
497		break;
498	case RTAIL:
499		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
500			/*
501			 * If the memory allocation failed, the context alloc
502			 * also would have failed, so we would never get here
503			 */
504			ret = -EINVAL;
505			goto done;
506		}
507		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
508			ret = -EPERM;
509			goto done;
510		}
511		memlen = PAGE_SIZE;
512		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
513		memdma = uctxt->rcvhdrqtailaddr_dma;
514		flags &= ~VM_MAYWRITE;
515		break;
516	case SUBCTXT_UREGS:
517		memaddr = (u64)uctxt->subctxt_uregbase;
518		memlen = PAGE_SIZE;
519		flags |= VM_IO | VM_DONTEXPAND;
520		vmf = 1;
521		break;
522	case SUBCTXT_RCV_HDRQ:
523		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
524		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
525		flags |= VM_IO | VM_DONTEXPAND;
526		vmf = 1;
527		break;
528	case SUBCTXT_EGRBUF:
529		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
530		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
531		flags |= VM_IO | VM_DONTEXPAND;
532		flags &= ~VM_MAYWRITE;
533		vmf = 1;
534		break;
535	case SDMA_COMP: {
536		struct hfi1_user_sdma_comp_q *cq = fd->cq;
537
538		if (!cq) {
539			ret = -EFAULT;
540			goto done;
541		}
542		memaddr = (u64)cq->comps;
543		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
544		flags |= VM_IO | VM_DONTEXPAND;
545		vmf = 1;
546		break;
547	}
548	default:
549		ret = -EINVAL;
550		break;
551	}
552
553	if ((vma->vm_end - vma->vm_start) != memlen) {
554		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
555			  uctxt->ctxt, fd->subctxt,
556			  (vma->vm_end - vma->vm_start), memlen);
557		ret = -EINVAL;
558		goto done;
559	}
560
561	vm_flags_reset(vma, flags);
562	mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma,
563		  memlen, vma);
564	if (vmf) {
565		vma->vm_pgoff = PFN_DOWN(memaddr);
566		vma->vm_ops = &vm_ops;
567		ret = 0;
568	} else if (memdma) {
569		ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
570					memvirt, memdma, memlen);
571	} else if (mapio) {
572		ret = io_remap_pfn_range(vma, vma->vm_start,
573					 PFN_DOWN(memaddr),
574					 memlen,
575					 vma->vm_page_prot);
576	} else if (memvirt) {
577		ret = remap_pfn_range(vma, vma->vm_start,
578				      PFN_DOWN(__pa(memvirt)),
579				      memlen,
580				      vma->vm_page_prot);
581	} else {
582		ret = remap_pfn_range(vma, vma->vm_start,
583				      PFN_DOWN(memaddr),
584				      memlen,
585				      vma->vm_page_prot);
586	}
587done:
588	return ret;
589}
590
591/*
592 * Local (non-chip) user memory is not mapped right away but as it is
593 * accessed by the user-level code.
594 */
595static vm_fault_t vma_fault(struct vm_fault *vmf)
596{
597	struct page *page;
598
599	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
600	if (!page)
601		return VM_FAULT_SIGBUS;
602
603	get_page(page);
604	vmf->page = page;
605
606	return 0;
607}
608
609static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
610{
611	struct hfi1_ctxtdata *uctxt;
612	__poll_t pollflag;
613
614	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
615	if (!uctxt)
616		pollflag = EPOLLERR;
617	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
618		pollflag = poll_urgent(fp, pt);
619	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
620		pollflag = poll_next(fp, pt);
621	else /* invalid */
622		pollflag = EPOLLERR;
623
624	return pollflag;
625}
626
627static int hfi1_file_close(struct inode *inode, struct file *fp)
628{
629	struct hfi1_filedata *fdata = fp->private_data;
630	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
631	struct hfi1_devdata *dd = container_of(inode->i_cdev,
632					       struct hfi1_devdata,
633					       user_cdev);
634	unsigned long flags, *ev;
635
636	fp->private_data = NULL;
637
638	if (!uctxt)
639		goto done;
640
641	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
642
643	flush_wc();
644	/* drain user sdma queue */
645	hfi1_user_sdma_free_queues(fdata, uctxt);
646
647	/* release the cpu */
648	hfi1_put_proc_affinity(fdata->rec_cpu_num);
649
650	/* clean up rcv side */
651	hfi1_user_exp_rcv_free(fdata);
652
653	/*
654	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
655	 * removed until here.
656	 */
657	fdata->uctxt = NULL;
658	hfi1_rcd_put(uctxt);
659
660	/*
661	 * Clear any left over, unhandled events so the next process that
662	 * gets this context doesn't get confused.
663	 */
664	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
665	*ev = 0;
666
667	spin_lock_irqsave(&dd->uctxt_lock, flags);
668	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
669	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
670		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
671		goto done;
672	}
673	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
674
675	/*
676	 * Disable receive context and interrupt available, reset all
677	 * RcvCtxtCtrl bits to default values.
678	 */
679	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
680		     HFI1_RCVCTRL_TIDFLOW_DIS |
681		     HFI1_RCVCTRL_INTRAVAIL_DIS |
682		     HFI1_RCVCTRL_TAILUPD_DIS |
683		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
684		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
685		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
686		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
687	/* Clear the context's J_KEY */
688	hfi1_clear_ctxt_jkey(dd, uctxt);
689	/*
690	 * If a send context is allocated, reset context integrity
691	 * checks to default and disable the send context.
692	 */
693	if (uctxt->sc) {
694		sc_disable(uctxt->sc);
695		set_pio_integrity(uctxt->sc);
696	}
697
698	hfi1_free_ctxt_rcv_groups(uctxt);
699	hfi1_clear_ctxt_pkey(dd, uctxt);
700
701	uctxt->event_flags = 0;
702
703	deallocate_ctxt(uctxt);
704done:
705
706	if (refcount_dec_and_test(&dd->user_refcount))
707		complete(&dd->user_comp);
708
709	cleanup_srcu_struct(&fdata->pq_srcu);
710	kfree(fdata);
711	return 0;
712}
713
714/*
715 * Convert kernel *virtual* addresses to physical addresses.
716 * This is used to vmalloc'ed addresses.
717 */
718static u64 kvirt_to_phys(void *addr)
719{
720	struct page *page;
721	u64 paddr = 0;
722
723	page = vmalloc_to_page(addr);
724	if (page)
725		paddr = page_to_pfn(page) << PAGE_SHIFT;
726
727	return paddr;
728}
729
730/**
731 * complete_subctxt - complete sub-context info
732 * @fd: valid filedata pointer
733 *
734 * Sub-context info can only be set up after the base context
735 * has been completed.  This is indicated by the clearing of the
736 * HFI1_CTXT_BASE_UINIT bit.
737 *
738 * Wait for the bit to be cleared, and then complete the subcontext
739 * initialization.
740 *
741 */
742static int complete_subctxt(struct hfi1_filedata *fd)
743{
744	int ret;
745	unsigned long flags;
746
747	/*
748	 * sub-context info can only be set up after the base context
749	 * has been completed.
750	 */
751	ret = wait_event_interruptible(
752		fd->uctxt->wait,
753		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
754
755	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
756		ret = -ENOMEM;
757
758	/* Finish the sub-context init */
759	if (!ret) {
760		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
761		ret = init_user_ctxt(fd, fd->uctxt);
762	}
763
764	if (ret) {
765		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
766		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
767		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
768		hfi1_rcd_put(fd->uctxt);
769		fd->uctxt = NULL;
770	}
771
772	return ret;
773}
774
775static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
776{
777	int ret;
778	unsigned int swmajor;
779	struct hfi1_ctxtdata *uctxt = NULL;
780	struct hfi1_user_info uinfo;
781
782	if (fd->uctxt)
783		return -EINVAL;
784
785	if (sizeof(uinfo) != len)
786		return -EINVAL;
787
788	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
789		return -EFAULT;
790
791	swmajor = uinfo.userversion >> 16;
792	if (swmajor != HFI1_USER_SWMAJOR)
793		return -ENODEV;
794
795	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
796		return -EINVAL;
797
798	/*
799	 * Acquire the mutex to protect against multiple creations of what
800	 * could be a shared base context.
801	 */
802	mutex_lock(&hfi1_mutex);
803	/*
804	 * Get a sub context if available  (fd->uctxt will be set).
805	 * ret < 0 error, 0 no context, 1 sub-context found
806	 */
807	ret = find_sub_ctxt(fd, &uinfo);
808
809	/*
810	 * Allocate a base context if context sharing is not required or a
811	 * sub context wasn't found.
812	 */
813	if (!ret)
814		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
815
816	mutex_unlock(&hfi1_mutex);
817
818	/* Depending on the context type, finish the appropriate init */
819	switch (ret) {
820	case 0:
821		ret = setup_base_ctxt(fd, uctxt);
822		if (ret)
823			deallocate_ctxt(uctxt);
824		break;
825	case 1:
826		ret = complete_subctxt(fd);
827		break;
828	default:
829		break;
830	}
831
832	return ret;
833}
834
835/**
836 * match_ctxt - match context
837 * @fd: valid filedata pointer
838 * @uinfo: user info to compare base context with
839 * @uctxt: context to compare uinfo to.
840 *
841 * Compare the given context with the given information to see if it
842 * can be used for a sub context.
843 */
844static int match_ctxt(struct hfi1_filedata *fd,
845		      const struct hfi1_user_info *uinfo,
846		      struct hfi1_ctxtdata *uctxt)
847{
848	struct hfi1_devdata *dd = fd->dd;
849	unsigned long flags;
850	u16 subctxt;
851
852	/* Skip dynamically allocated kernel contexts */
853	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
854		return 0;
855
856	/* Skip ctxt if it doesn't match the requested one */
857	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
858	    uctxt->jkey != generate_jkey(current_uid()) ||
859	    uctxt->subctxt_id != uinfo->subctxt_id ||
860	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
861		return 0;
862
863	/* Verify the sharing process matches the base */
864	if (uctxt->userversion != uinfo->userversion)
865		return -EINVAL;
866
867	/* Find an unused sub context */
868	spin_lock_irqsave(&dd->uctxt_lock, flags);
869	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
870		/* context is being closed, do not use */
871		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
872		return 0;
873	}
874
875	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
876				      HFI1_MAX_SHARED_CTXTS);
877	if (subctxt >= uctxt->subctxt_cnt) {
878		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
879		return -EBUSY;
880	}
881
882	fd->subctxt = subctxt;
883	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
884	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
885
886	fd->uctxt = uctxt;
887	hfi1_rcd_get(uctxt);
888
889	return 1;
890}
891
892/**
893 * find_sub_ctxt - fund sub-context
894 * @fd: valid filedata pointer
895 * @uinfo: matching info to use to find a possible context to share.
896 *
897 * The hfi1_mutex must be held when this function is called.  It is
898 * necessary to ensure serialized creation of shared contexts.
899 *
900 * Return:
901 *    0      No sub-context found
902 *    1      Subcontext found and allocated
903 *    errno  EINVAL (incorrect parameters)
904 *           EBUSY (all sub contexts in use)
905 */
906static int find_sub_ctxt(struct hfi1_filedata *fd,
907			 const struct hfi1_user_info *uinfo)
908{
909	struct hfi1_ctxtdata *uctxt;
910	struct hfi1_devdata *dd = fd->dd;
911	u16 i;
912	int ret;
913
914	if (!uinfo->subctxt_cnt)
915		return 0;
916
917	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
918		uctxt = hfi1_rcd_get_by_index(dd, i);
919		if (uctxt) {
920			ret = match_ctxt(fd, uinfo, uctxt);
921			hfi1_rcd_put(uctxt);
922			/* value of != 0 will return */
923			if (ret)
924				return ret;
925		}
926	}
927
928	return 0;
929}
930
931static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
932			 struct hfi1_user_info *uinfo,
933			 struct hfi1_ctxtdata **rcd)
934{
935	struct hfi1_ctxtdata *uctxt;
936	int ret, numa;
937
938	if (dd->flags & HFI1_FROZEN) {
939		/*
940		 * Pick an error that is unique from all other errors
941		 * that are returned so the user process knows that
942		 * it tried to allocate while the SPC was frozen.  It
943		 * it should be able to retry with success in a short
944		 * while.
945		 */
946		return -EIO;
947	}
948
949	if (!dd->freectxts)
950		return -EBUSY;
951
952	/*
953	 * If we don't have a NUMA node requested, preference is towards
954	 * device NUMA node.
955	 */
956	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
957	if (fd->rec_cpu_num != -1)
958		numa = cpu_to_node(fd->rec_cpu_num);
959	else
960		numa = numa_node_id();
961	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
962	if (ret < 0) {
963		dd_dev_err(dd, "user ctxtdata allocation failed\n");
964		return ret;
965	}
966	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
967		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
968		  uctxt->numa_id);
969
970	/*
971	 * Allocate and enable a PIO send context.
972	 */
973	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
974	if (!uctxt->sc) {
975		ret = -ENOMEM;
976		goto ctxdata_free;
977	}
978	hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index,
979		  uctxt->sc->hw_context);
980	ret = sc_enable(uctxt->sc);
981	if (ret)
982		goto ctxdata_free;
983
984	/*
985	 * Setup sub context information if the user-level has requested
986	 * sub contexts.
987	 * This has to be done here so the rest of the sub-contexts find the
988	 * proper base context.
989	 * NOTE: _set_bit() can be used here because the context creation is
990	 * protected by the mutex (rather than the spin_lock), and will be the
991	 * very first instance of this context.
992	 */
993	__set_bit(0, uctxt->in_use_ctxts);
994	if (uinfo->subctxt_cnt)
995		init_subctxts(uctxt, uinfo);
996	uctxt->userversion = uinfo->userversion;
997	uctxt->flags = hfi1_cap_mask; /* save current flag state */
998	init_waitqueue_head(&uctxt->wait);
999	strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1000	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1001	uctxt->jkey = generate_jkey(current_uid());
1002	hfi1_stats.sps_ctxts++;
1003	/*
1004	 * Disable ASPM when there are open user/PSM contexts to avoid
1005	 * issues with ASPM L1 exit latency
1006	 */
1007	if (dd->freectxts-- == dd->num_user_contexts)
1008		aspm_disable_all(dd);
1009
1010	*rcd = uctxt;
1011
1012	return 0;
1013
1014ctxdata_free:
1015	hfi1_free_ctxt(uctxt);
1016	return ret;
1017}
1018
1019static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1020{
1021	mutex_lock(&hfi1_mutex);
1022	hfi1_stats.sps_ctxts--;
1023	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1024		aspm_enable_all(uctxt->dd);
1025	mutex_unlock(&hfi1_mutex);
1026
1027	hfi1_free_ctxt(uctxt);
1028}
1029
1030static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1031			  const struct hfi1_user_info *uinfo)
1032{
1033	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1034	uctxt->subctxt_id = uinfo->subctxt_id;
1035	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1036}
1037
1038static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1039{
1040	int ret = 0;
1041	u16 num_subctxts = uctxt->subctxt_cnt;
1042
1043	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1044	if (!uctxt->subctxt_uregbase)
1045		return -ENOMEM;
1046
1047	/* We can take the size of the RcvHdr Queue from the master */
1048	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1049						  num_subctxts);
1050	if (!uctxt->subctxt_rcvhdr_base) {
1051		ret = -ENOMEM;
1052		goto bail_ureg;
1053	}
1054
1055	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1056						num_subctxts);
1057	if (!uctxt->subctxt_rcvegrbuf) {
1058		ret = -ENOMEM;
1059		goto bail_rhdr;
1060	}
1061
1062	return 0;
1063
1064bail_rhdr:
1065	vfree(uctxt->subctxt_rcvhdr_base);
1066	uctxt->subctxt_rcvhdr_base = NULL;
1067bail_ureg:
1068	vfree(uctxt->subctxt_uregbase);
1069	uctxt->subctxt_uregbase = NULL;
1070
1071	return ret;
1072}
1073
1074static void user_init(struct hfi1_ctxtdata *uctxt)
1075{
1076	unsigned int rcvctrl_ops = 0;
1077
1078	/* initialize poll variables... */
1079	uctxt->urgent = 0;
1080	uctxt->urgent_poll = 0;
1081
1082	/*
1083	 * Now enable the ctxt for receive.
1084	 * For chips that are set to DMA the tail register to memory
1085	 * when they change (and when the update bit transitions from
1086	 * 0 to 1.  So for those chips, we turn it off and then back on.
1087	 * This will (very briefly) affect any other open ctxts, but the
1088	 * duration is very short, and therefore isn't an issue.  We
1089	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1090	 * don't have to wait to be sure the DMA update has happened
1091	 * (chip resets head/tail to 0 on transition to enable).
1092	 */
1093	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1094		clear_rcvhdrtail(uctxt);
1095
1096	/* Setup J_KEY before enabling the context */
1097	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1098
1099	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1100	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1101	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1102		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1103	/*
1104	 * Ignore the bit in the flags for now until proper
1105	 * support for multiple packet per rcv array entry is
1106	 * added.
1107	 */
1108	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1109		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1110	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1111		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1112	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1113		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1114	/*
1115	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116	 * We can't rely on the correct value to be set from prior
1117	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1118	 * for both cases.
1119	 */
1120	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1121		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1122	else
1123		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1124	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1125}
1126
1127static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1128{
1129	struct hfi1_ctxt_info cinfo;
1130	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1131
1132	if (sizeof(cinfo) != len)
1133		return -EINVAL;
1134
1135	memset(&cinfo, 0, sizeof(cinfo));
1136	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1137				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1138			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1139			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1140	/* adjust flag if this fd is not able to cache */
1141	if (!fd->use_mn)
1142		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1143
1144	cinfo.num_active = hfi1_count_active_units();
1145	cinfo.unit = uctxt->dd->unit;
1146	cinfo.ctxt = uctxt->ctxt;
1147	cinfo.subctxt = fd->subctxt;
1148	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1149				uctxt->dd->rcv_entries.group_size) +
1150		uctxt->expected_count;
1151	cinfo.credits = uctxt->sc->credits;
1152	cinfo.numa_node = uctxt->numa_id;
1153	cinfo.rec_cpu = fd->rec_cpu_num;
1154	cinfo.send_ctxt = uctxt->sc->hw_context;
1155
1156	cinfo.egrtids = uctxt->egrbufs.alloced;
1157	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1158	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1159	cinfo.sdma_ring_size = fd->cq->nentries;
1160	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1161
1162	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1163	if (copy_to_user((void __user *)arg, &cinfo, len))
1164		return -EFAULT;
1165
1166	return 0;
1167}
1168
1169static int init_user_ctxt(struct hfi1_filedata *fd,
1170			  struct hfi1_ctxtdata *uctxt)
1171{
1172	int ret;
1173
1174	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1175	if (ret)
1176		return ret;
1177
1178	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1179	if (ret)
1180		hfi1_user_sdma_free_queues(fd, uctxt);
1181
1182	return ret;
1183}
1184
1185static int setup_base_ctxt(struct hfi1_filedata *fd,
1186			   struct hfi1_ctxtdata *uctxt)
1187{
1188	struct hfi1_devdata *dd = uctxt->dd;
1189	int ret = 0;
1190
1191	hfi1_init_ctxt(uctxt->sc);
1192
1193	/* Now allocate the RcvHdr queue and eager buffers. */
1194	ret = hfi1_create_rcvhdrq(dd, uctxt);
1195	if (ret)
1196		goto done;
1197
1198	ret = hfi1_setup_eagerbufs(uctxt);
1199	if (ret)
1200		goto done;
1201
1202	/* If sub-contexts are enabled, do the appropriate setup */
1203	if (uctxt->subctxt_cnt)
1204		ret = setup_subctxt(uctxt);
1205	if (ret)
1206		goto done;
1207
1208	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1209	if (ret)
1210		goto done;
1211
1212	ret = init_user_ctxt(fd, uctxt);
1213	if (ret) {
1214		hfi1_free_ctxt_rcv_groups(uctxt);
1215		goto done;
1216	}
1217
1218	user_init(uctxt);
1219
1220	/* Now that the context is set up, the fd can get a reference. */
1221	fd->uctxt = uctxt;
1222	hfi1_rcd_get(uctxt);
1223
1224done:
1225	if (uctxt->subctxt_cnt) {
1226		/*
1227		 * On error, set the failed bit so sub-contexts will clean up
1228		 * correctly.
1229		 */
1230		if (ret)
1231			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1232
1233		/*
1234		 * Base context is done (successfully or not), notify anybody
1235		 * using a sub-context that is waiting for this completion.
1236		 */
1237		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1238		wake_up(&uctxt->wait);
1239	}
1240
1241	return ret;
1242}
1243
1244static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1245{
1246	struct hfi1_base_info binfo;
1247	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248	struct hfi1_devdata *dd = uctxt->dd;
1249	unsigned offset;
1250
1251	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1252
1253	if (sizeof(binfo) != len)
1254		return -EINVAL;
1255
1256	memset(&binfo, 0, sizeof(binfo));
1257	binfo.hw_version = dd->revision;
1258	binfo.sw_version = HFI1_USER_SWVERSION;
1259	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1260	binfo.jkey = uctxt->jkey;
1261	/*
1262	 * If more than 64 contexts are enabled the allocated credit
1263	 * return will span two or three contiguous pages. Since we only
1264	 * map the page containing the context's credit return address,
1265	 * we need to calculate the offset in the proper page.
1266	 */
1267	offset = ((u64)uctxt->sc->hw_free -
1268		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1269	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1270						fd->subctxt, offset);
1271	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1272					    fd->subctxt,
1273					    uctxt->sc->base_addr);
1274	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1275						uctxt->ctxt,
1276						fd->subctxt,
1277						uctxt->sc->base_addr);
1278	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1279					       fd->subctxt,
1280					       uctxt->rcvhdrq);
1281	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1282					       fd->subctxt,
1283					       uctxt->egrbufs.rcvtids[0].dma);
1284	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1285						  fd->subctxt, 0);
1286	/*
1287	 * user regs are at
1288	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1289	 */
1290	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1291					     fd->subctxt, 0);
1292	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1293				sizeof(*dd->events));
1294	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1295					       fd->subctxt,
1296					       offset);
1297	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1298					       fd->subctxt,
1299					       dd->status);
1300	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1301		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1302							fd->subctxt, 0);
1303	if (uctxt->subctxt_cnt) {
1304		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1305							 uctxt->ctxt,
1306							 fd->subctxt, 0);
1307		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1308							  uctxt->ctxt,
1309							  fd->subctxt, 0);
1310		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1311							  uctxt->ctxt,
1312							  fd->subctxt, 0);
1313	}
1314
1315	if (copy_to_user((void __user *)arg, &binfo, len))
1316		return -EFAULT;
1317
1318	return 0;
1319}
1320
1321/**
1322 * user_exp_rcv_setup - Set up the given tid rcv list
1323 * @fd: file data of the current driver instance
1324 * @arg: ioctl argumnent for user space information
1325 * @len: length of data structure associated with ioctl command
1326 *
1327 * Wrapper to validate ioctl information before doing _rcv_setup.
1328 *
1329 */
1330static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1331			      u32 len)
1332{
1333	int ret;
1334	unsigned long addr;
1335	struct hfi1_tid_info tinfo;
1336
1337	if (sizeof(tinfo) != len)
1338		return -EINVAL;
1339
1340	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1341		return -EFAULT;
1342
1343	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1344	if (!ret) {
1345		/*
1346		 * Copy the number of tidlist entries we used
1347		 * and the length of the buffer we registered.
1348		 */
1349		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1350		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1351				 sizeof(tinfo.tidcnt)))
1352			ret = -EFAULT;
1353
1354		addr = arg + offsetof(struct hfi1_tid_info, length);
1355		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1356				 sizeof(tinfo.length)))
1357			ret = -EFAULT;
1358
1359		if (ret)
1360			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1361	}
1362
1363	return ret;
1364}
1365
1366/**
1367 * user_exp_rcv_clear - Clear the given tid rcv list
1368 * @fd: file data of the current driver instance
1369 * @arg: ioctl argumnent for user space information
1370 * @len: length of data structure associated with ioctl command
1371 *
1372 * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1373 * of this, we need to use this wrapper to copy the user space information
1374 * before doing the clear.
1375 */
1376static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1377			      u32 len)
1378{
1379	int ret;
1380	unsigned long addr;
1381	struct hfi1_tid_info tinfo;
1382
1383	if (sizeof(tinfo) != len)
1384		return -EINVAL;
1385
1386	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1387		return -EFAULT;
1388
1389	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1390	if (!ret) {
1391		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1393				 sizeof(tinfo.tidcnt)))
1394			return -EFAULT;
1395	}
1396
1397	return ret;
1398}
1399
1400/**
1401 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402 * @fd: file data of the current driver instance
1403 * @arg: ioctl argumnent for user space information
1404 * @len: length of data structure associated with ioctl command
1405 *
1406 * Wrapper to validate ioctl information before doing _rcv_invalid.
1407 *
1408 */
1409static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1410				u32 len)
1411{
1412	int ret;
1413	unsigned long addr;
1414	struct hfi1_tid_info tinfo;
1415
1416	if (sizeof(tinfo) != len)
1417		return -EINVAL;
1418
1419	if (!fd->invalid_tids)
1420		return -EINVAL;
1421
1422	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1423		return -EFAULT;
1424
1425	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1426	if (ret)
1427		return ret;
1428
1429	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1430	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1431			 sizeof(tinfo.tidcnt)))
1432		ret = -EFAULT;
1433
1434	return ret;
1435}
1436
1437static __poll_t poll_urgent(struct file *fp,
1438				struct poll_table_struct *pt)
1439{
1440	struct hfi1_filedata *fd = fp->private_data;
1441	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1442	struct hfi1_devdata *dd = uctxt->dd;
1443	__poll_t pollflag;
1444
1445	poll_wait(fp, &uctxt->wait, pt);
1446
1447	spin_lock_irq(&dd->uctxt_lock);
1448	if (uctxt->urgent != uctxt->urgent_poll) {
1449		pollflag = EPOLLIN | EPOLLRDNORM;
1450		uctxt->urgent_poll = uctxt->urgent;
1451	} else {
1452		pollflag = 0;
1453		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1454	}
1455	spin_unlock_irq(&dd->uctxt_lock);
1456
1457	return pollflag;
1458}
1459
1460static __poll_t poll_next(struct file *fp,
1461			      struct poll_table_struct *pt)
1462{
1463	struct hfi1_filedata *fd = fp->private_data;
1464	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1465	struct hfi1_devdata *dd = uctxt->dd;
1466	__poll_t pollflag;
1467
1468	poll_wait(fp, &uctxt->wait, pt);
1469
1470	spin_lock_irq(&dd->uctxt_lock);
1471	if (hdrqempty(uctxt)) {
1472		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1473		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1474		pollflag = 0;
1475	} else {
1476		pollflag = EPOLLIN | EPOLLRDNORM;
1477	}
1478	spin_unlock_irq(&dd->uctxt_lock);
1479
1480	return pollflag;
1481}
1482
1483/*
1484 * Find all user contexts in use, and set the specified bit in their
1485 * event mask.
1486 * See also find_ctxt() for a similar use, that is specific to send buffers.
1487 */
1488int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1489{
1490	struct hfi1_ctxtdata *uctxt;
1491	struct hfi1_devdata *dd = ppd->dd;
1492	u16 ctxt;
1493
1494	if (!dd->events)
1495		return -EINVAL;
1496
1497	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1498	     ctxt++) {
1499		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1500		if (uctxt) {
1501			unsigned long *evs;
1502			int i;
1503			/*
1504			 * subctxt_cnt is 0 if not shared, so do base
1505			 * separately, first, then remaining subctxt, if any
1506			 */
1507			evs = dd->events + uctxt_offset(uctxt);
1508			set_bit(evtbit, evs);
1509			for (i = 1; i < uctxt->subctxt_cnt; i++)
1510				set_bit(evtbit, evs + i);
1511			hfi1_rcd_put(uctxt);
1512		}
1513	}
1514
1515	return 0;
1516}
1517
1518/**
1519 * manage_rcvq - manage a context's receive queue
1520 * @uctxt: the context
1521 * @subctxt: the sub-context
1522 * @arg: start/stop action to carry out
1523 *
1524 * start_stop == 0 disables receive on the context, for use in queue
1525 * overflow conditions.  start_stop==1 re-enables, to be used to
1526 * re-init the software copy of the head register
1527 */
1528static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1529		       unsigned long arg)
1530{
1531	struct hfi1_devdata *dd = uctxt->dd;
1532	unsigned int rcvctrl_op;
1533	int start_stop;
1534
1535	if (subctxt)
1536		return 0;
1537
1538	if (get_user(start_stop, (int __user *)arg))
1539		return -EFAULT;
1540
1541	/* atomically clear receive enable ctxt. */
1542	if (start_stop) {
1543		/*
1544		 * On enable, force in-memory copy of the tail register to
1545		 * 0, so that protocol code doesn't have to worry about
1546		 * whether or not the chip has yet updated the in-memory
1547		 * copy or not on return from the system call. The chip
1548		 * always resets it's tail register back to 0 on a
1549		 * transition from disabled to enabled.
1550		 */
1551		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1552			clear_rcvhdrtail(uctxt);
1553		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1554	} else {
1555		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1556	}
1557	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1558	/* always; new head should be equal to new tail; see above */
1559
1560	return 0;
1561}
1562
1563/*
1564 * clear the event notifier events for this context.
1565 * User process then performs actions appropriate to bit having been
1566 * set, if desired, and checks again in future.
1567 */
1568static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1569			  unsigned long arg)
1570{
1571	int i;
1572	struct hfi1_devdata *dd = uctxt->dd;
1573	unsigned long *evs;
1574	unsigned long events;
1575
1576	if (!dd->events)
1577		return 0;
1578
1579	if (get_user(events, (unsigned long __user *)arg))
1580		return -EFAULT;
1581
1582	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1583
1584	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1585		if (!test_bit(i, &events))
1586			continue;
1587		clear_bit(i, evs);
1588	}
1589	return 0;
1590}
1591
1592static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1593{
1594	int i;
1595	struct hfi1_pportdata *ppd = uctxt->ppd;
1596	struct hfi1_devdata *dd = uctxt->dd;
1597	u16 pkey;
1598
1599	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1600		return -EPERM;
1601
1602	if (get_user(pkey, (u16 __user *)arg))
1603		return -EFAULT;
1604
1605	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1606		return -EINVAL;
1607
1608	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1609		if (pkey == ppd->pkeys[i])
1610			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1611
1612	return -ENOENT;
1613}
1614
1615/**
1616 * ctxt_reset - Reset the user context
1617 * @uctxt: valid user context
1618 */
1619static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1620{
1621	struct send_context *sc;
1622	struct hfi1_devdata *dd;
1623	int ret = 0;
1624
1625	if (!uctxt || !uctxt->dd || !uctxt->sc)
1626		return -EINVAL;
1627
1628	/*
1629	 * There is no protection here. User level has to guarantee that
1630	 * no one will be writing to the send context while it is being
1631	 * re-initialized.  If user level breaks that guarantee, it will
1632	 * break it's own context and no one else's.
1633	 */
1634	dd = uctxt->dd;
1635	sc = uctxt->sc;
1636
1637	/*
1638	 * Wait until the interrupt handler has marked the context as
1639	 * halted or frozen. Report error if we time out.
1640	 */
1641	wait_event_interruptible_timeout(
1642		sc->halt_wait, (sc->flags & SCF_HALTED),
1643		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1644	if (!(sc->flags & SCF_HALTED))
1645		return -ENOLCK;
1646
1647	/*
1648	 * If the send context was halted due to a Freeze, wait until the
1649	 * device has been "unfrozen" before resetting the context.
1650	 */
1651	if (sc->flags & SCF_FROZEN) {
1652		wait_event_interruptible_timeout(
1653			dd->event_queue,
1654			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1655			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1656		if (dd->flags & HFI1_FROZEN)
1657			return -ENOLCK;
1658
1659		if (dd->flags & HFI1_FORCED_FREEZE)
1660			/*
1661			 * Don't allow context reset if we are into
1662			 * forced freeze
1663			 */
1664			return -ENODEV;
1665
1666		sc_disable(sc);
1667		ret = sc_enable(sc);
1668		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1669	} else {
1670		ret = sc_restart(sc);
1671	}
1672	if (!ret)
1673		sc_return_credits(sc);
1674
1675	return ret;
1676}
1677
1678static void user_remove(struct hfi1_devdata *dd)
1679{
1680
1681	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1682}
1683
1684static int user_add(struct hfi1_devdata *dd)
1685{
1686	char name[10];
1687	int ret;
1688
1689	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1690	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1691			     &dd->user_cdev, &dd->user_device,
1692			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1693	if (ret)
1694		user_remove(dd);
1695
1696	return ret;
1697}
1698
1699/*
1700 * Create per-unit files in /dev
1701 */
1702int hfi1_device_create(struct hfi1_devdata *dd)
1703{
1704	return user_add(dd);
1705}
1706
1707/*
1708 * Remove per-unit files in /dev
1709 * void, core kernel returns no errors for this stuff
1710 */
1711void hfi1_device_remove(struct hfi1_devdata *dd)
1712{
1713	user_remove(dd);
1714}
1715