1// SPDX-License-Identifier: GPL-2.0
2/*
3 * IIO driver for Bosch BNO055 IMU
4 *
5 * Copyright (C) 2021-2022 Istituto Italiano di Tecnologia
6 * Electronic Design Laboratory
7 * Written by Andrea Merello <andrea.merello@iit.it>
8 *
9 * Portions of this driver are taken from the BNO055 driver patch
10 * from Vlad Dogaru which is Copyright (c) 2016, Intel Corporation.
11 *
12 * This driver is also based on BMI160 driver, which is:
13 *	Copyright (c) 2016, Intel Corporation.
14 *	Copyright (c) 2019, Martin Kelly.
15 */
16
17#include <linux/bitfield.h>
18#include <linux/bitmap.h>
19#include <linux/clk.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/firmware.h>
23#include <linux/gpio/consumer.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/regmap.h>
27#include <linux/util_macros.h>
28
29#include <linux/iio/buffer.h>
30#include <linux/iio/iio.h>
31#include <linux/iio/sysfs.h>
32#include <linux/iio/trigger_consumer.h>
33#include <linux/iio/triggered_buffer.h>
34
35#include "bno055.h"
36
37#define BNO055_FW_UID_FMT "bno055-caldata-%*phN.dat"
38#define BNO055_FW_GENERIC_NAME "bno055-caldata.dat"
39
40/* common registers */
41#define BNO055_PAGESEL_REG		0x7
42
43/* page 0 registers */
44#define BNO055_CHIP_ID_REG		0x0
45#define BNO055_CHIP_ID_MAGIC 0xA0
46#define BNO055_SW_REV_LSB_REG		0x4
47#define BNO055_SW_REV_MSB_REG		0x5
48#define BNO055_ACC_DATA_X_LSB_REG	0x8
49#define BNO055_ACC_DATA_Y_LSB_REG	0xA
50#define BNO055_ACC_DATA_Z_LSB_REG	0xC
51#define BNO055_MAG_DATA_X_LSB_REG	0xE
52#define BNO055_MAG_DATA_Y_LSB_REG	0x10
53#define BNO055_MAG_DATA_Z_LSB_REG	0x12
54#define BNO055_GYR_DATA_X_LSB_REG	0x14
55#define BNO055_GYR_DATA_Y_LSB_REG	0x16
56#define BNO055_GYR_DATA_Z_LSB_REG	0x18
57#define BNO055_EUL_DATA_X_LSB_REG	0x1A
58#define BNO055_EUL_DATA_Y_LSB_REG	0x1C
59#define BNO055_EUL_DATA_Z_LSB_REG	0x1E
60#define BNO055_QUAT_DATA_W_LSB_REG	0x20
61#define BNO055_LIA_DATA_X_LSB_REG	0x28
62#define BNO055_LIA_DATA_Y_LSB_REG	0x2A
63#define BNO055_LIA_DATA_Z_LSB_REG	0x2C
64#define BNO055_GRAVITY_DATA_X_LSB_REG	0x2E
65#define BNO055_GRAVITY_DATA_Y_LSB_REG	0x30
66#define BNO055_GRAVITY_DATA_Z_LSB_REG	0x32
67#define BNO055_SCAN_CH_COUNT ((BNO055_GRAVITY_DATA_Z_LSB_REG - BNO055_ACC_DATA_X_LSB_REG) / 2)
68#define BNO055_TEMP_REG			0x34
69#define BNO055_CALIB_STAT_REG		0x35
70#define BNO055_CALIB_STAT_MAGN_SHIFT 0
71#define BNO055_CALIB_STAT_ACCEL_SHIFT 2
72#define BNO055_CALIB_STAT_GYRO_SHIFT 4
73#define BNO055_CALIB_STAT_SYS_SHIFT 6
74#define BNO055_SYS_ERR_REG		0x3A
75#define BNO055_POWER_MODE_REG		0x3E
76#define BNO055_POWER_MODE_NORMAL 0
77#define BNO055_SYS_TRIGGER_REG		0x3F
78#define BNO055_SYS_TRIGGER_RST_SYS BIT(5)
79#define BNO055_SYS_TRIGGER_CLK_SEL BIT(7)
80#define BNO055_OPR_MODE_REG		0x3D
81#define BNO055_OPR_MODE_CONFIG 0x0
82#define BNO055_OPR_MODE_AMG 0x7
83#define BNO055_OPR_MODE_FUSION_FMC_OFF 0xB
84#define BNO055_OPR_MODE_FUSION 0xC
85#define BNO055_UNIT_SEL_REG		0x3B
86/* Android orientation mode means: pitch value decreases turning clockwise */
87#define BNO055_UNIT_SEL_ANDROID BIT(7)
88#define BNO055_UNIT_SEL_GYR_RPS BIT(1)
89#define BNO055_CALDATA_START		0x55
90#define BNO055_CALDATA_END		0x6A
91#define BNO055_CALDATA_LEN 22
92
93/*
94 * The difference in address between the register that contains the
95 * value and the register that contains the offset.  This applies for
96 * accel, gyro and magn channels.
97 */
98#define BNO055_REG_OFFSET_ADDR		0x4D
99
100/* page 1 registers */
101#define BNO055_PG1(x) ((x) | 0x80)
102#define BNO055_ACC_CONFIG_REG		BNO055_PG1(0x8)
103#define BNO055_ACC_CONFIG_LPF_MASK GENMASK(4, 2)
104#define BNO055_ACC_CONFIG_RANGE_MASK GENMASK(1, 0)
105#define BNO055_MAG_CONFIG_REG		BNO055_PG1(0x9)
106#define BNO055_MAG_CONFIG_HIGHACCURACY 0x18
107#define BNO055_MAG_CONFIG_ODR_MASK GENMASK(2, 0)
108#define BNO055_GYR_CONFIG_REG		BNO055_PG1(0xA)
109#define BNO055_GYR_CONFIG_RANGE_MASK GENMASK(2, 0)
110#define BNO055_GYR_CONFIG_LPF_MASK GENMASK(5, 3)
111#define BNO055_GYR_AM_SET_REG		BNO055_PG1(0x1F)
112#define BNO055_UID_LOWER_REG		BNO055_PG1(0x50)
113#define BNO055_UID_HIGHER_REG		BNO055_PG1(0x5F)
114#define BNO055_UID_LEN 16
115
116struct bno055_sysfs_attr {
117	int *vals;
118	int len;
119	int *fusion_vals;
120	int *hw_xlate;
121	int type;
122};
123
124static int bno055_acc_lpf_vals[] = {
125	7, 810000, 15, 630000, 31, 250000, 62, 500000,
126	125, 0, 250, 0, 500, 0, 1000, 0,
127};
128
129static struct bno055_sysfs_attr bno055_acc_lpf = {
130	.vals = bno055_acc_lpf_vals,
131	.len = ARRAY_SIZE(bno055_acc_lpf_vals),
132	.fusion_vals = (int[]){62, 500000},
133	.type = IIO_VAL_INT_PLUS_MICRO,
134};
135
136static int bno055_acc_range_vals[] = {
137  /* G:    2,    4,    8,    16 */
138	1962, 3924, 7848, 15696
139};
140
141static struct bno055_sysfs_attr bno055_acc_range = {
142	.vals = bno055_acc_range_vals,
143	.len = ARRAY_SIZE(bno055_acc_range_vals),
144	.fusion_vals = (int[]){3924}, /* 4G */
145	.type = IIO_VAL_INT,
146};
147
148/*
149 * Theoretically the IMU should return data in a given (i.e. fixed) unit
150 * regardless of the range setting. This happens for the accelerometer, but not
151 * for the gyroscope; the gyroscope range setting affects the scale.
152 * This is probably due to this[0] bug.
153 * For this reason we map the internal range setting onto the standard IIO scale
154 * attribute for gyro.
155 * Since the bug[0] may be fixed in future, we check for the IMU FW version and
156 * eventually warn the user.
157 * Currently we just don't care about "range" attributes for gyro.
158 *
159 * [0]  https://community.bosch-sensortec.com/t5/MEMS-sensors-forum/BNO055-Wrong-sensitivity-resolution-in-datasheet/td-p/10266
160 */
161
162/*
163 * dps = hwval * (dps_range/2^15)
164 * rps = hwval * (rps_range/2^15)
165 *     = hwval * (dps_range/(2^15 * k))
166 * where k is rad-to-deg factor
167 */
168static int bno055_gyr_scale_vals[] = {
169	125, 1877467, 250, 1877467, 500, 1877467,
170	1000, 1877467, 2000, 1877467,
171};
172
173static struct bno055_sysfs_attr bno055_gyr_scale = {
174	.vals = bno055_gyr_scale_vals,
175	.len = ARRAY_SIZE(bno055_gyr_scale_vals),
176	.fusion_vals = (int[]){1, 900},
177	.hw_xlate = (int[]){4, 3, 2, 1, 0},
178	.type = IIO_VAL_FRACTIONAL,
179};
180
181static int bno055_gyr_lpf_vals[] = {12, 23, 32, 47, 64, 116, 230, 523};
182static struct bno055_sysfs_attr bno055_gyr_lpf = {
183	.vals = bno055_gyr_lpf_vals,
184	.len = ARRAY_SIZE(bno055_gyr_lpf_vals),
185	.fusion_vals = (int[]){32},
186	.hw_xlate = (int[]){5, 4, 7, 3, 6, 2, 1, 0},
187	.type = IIO_VAL_INT,
188};
189
190static int bno055_mag_odr_vals[] = {2, 6, 8, 10, 15, 20, 25, 30};
191static struct bno055_sysfs_attr bno055_mag_odr = {
192	.vals = bno055_mag_odr_vals,
193	.len =  ARRAY_SIZE(bno055_mag_odr_vals),
194	.fusion_vals = (int[]){20},
195	.type = IIO_VAL_INT,
196};
197
198struct bno055_priv {
199	struct regmap *regmap;
200	struct device *dev;
201	struct clk *clk;
202	int operation_mode;
203	int xfer_burst_break_thr;
204	struct mutex lock;
205	u8 uid[BNO055_UID_LEN];
206	struct gpio_desc *reset_gpio;
207	bool sw_reset;
208	struct {
209		__le16 chans[BNO055_SCAN_CH_COUNT];
210		s64 timestamp __aligned(8);
211	} buf;
212	struct dentry *debugfs;
213};
214
215static bool bno055_regmap_volatile(struct device *dev, unsigned int reg)
216{
217	/* data and status registers */
218	if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
219		return true;
220
221	/* when in fusion mode, config is updated by chip */
222	if (reg == BNO055_MAG_CONFIG_REG ||
223	    reg == BNO055_ACC_CONFIG_REG ||
224	    reg == BNO055_GYR_CONFIG_REG)
225		return true;
226
227	/* calibration data may be updated by the IMU */
228	if (reg >= BNO055_CALDATA_START && reg <= BNO055_CALDATA_END)
229		return true;
230
231	return false;
232}
233
234static bool bno055_regmap_readable(struct device *dev, unsigned int reg)
235{
236	/* unnamed PG0 reserved areas */
237	if ((reg < BNO055_PG1(0) && reg > BNO055_CALDATA_END) ||
238	    reg == 0x3C)
239		return false;
240
241	/* unnamed PG1 reserved areas */
242	if (reg > BNO055_PG1(BNO055_UID_HIGHER_REG) ||
243	    (reg < BNO055_PG1(BNO055_UID_LOWER_REG) && reg > BNO055_PG1(BNO055_GYR_AM_SET_REG)) ||
244	    reg == BNO055_PG1(0xE) ||
245	    (reg < BNO055_PG1(BNO055_PAGESEL_REG) && reg >= BNO055_PG1(0x0)))
246		return false;
247	return true;
248}
249
250static bool bno055_regmap_writeable(struct device *dev, unsigned int reg)
251{
252	/*
253	 * Unreadable registers are indeed reserved; there are no WO regs
254	 * (except for a single bit in SYS_TRIGGER register)
255	 */
256	if (!bno055_regmap_readable(dev, reg))
257		return false;
258
259	/* data and status registers */
260	if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
261		return false;
262
263	/* ID areas */
264	if (reg < BNO055_PAGESEL_REG ||
265	    (reg <= BNO055_UID_HIGHER_REG && reg >= BNO055_UID_LOWER_REG))
266		return false;
267
268	return true;
269}
270
271static const struct regmap_range_cfg bno055_regmap_ranges[] = {
272	{
273		.range_min = 0,
274		.range_max = 0x7f * 2,
275		.selector_reg = BNO055_PAGESEL_REG,
276		.selector_mask = GENMASK(7, 0),
277		.selector_shift = 0,
278		.window_start = 0,
279		.window_len = 0x80,
280	},
281};
282
283const struct regmap_config bno055_regmap_config = {
284	.name = "bno055",
285	.reg_bits = 8,
286	.val_bits = 8,
287	.ranges = bno055_regmap_ranges,
288	.num_ranges = 1,
289	.volatile_reg = bno055_regmap_volatile,
290	.max_register = 0x80 * 2,
291	.writeable_reg = bno055_regmap_writeable,
292	.readable_reg = bno055_regmap_readable,
293	.cache_type = REGCACHE_RBTREE,
294};
295EXPORT_SYMBOL_NS_GPL(bno055_regmap_config, IIO_BNO055);
296
297/* must be called in configuration mode */
298static int bno055_calibration_load(struct bno055_priv *priv, const u8 *data, int len)
299{
300	if (len != BNO055_CALDATA_LEN) {
301		dev_dbg(priv->dev, "Invalid calibration file size %d (expected %d)",
302			len, BNO055_CALDATA_LEN);
303		return -EINVAL;
304	}
305
306	dev_dbg(priv->dev, "loading cal data: %*ph", BNO055_CALDATA_LEN, data);
307	return regmap_bulk_write(priv->regmap, BNO055_CALDATA_START,
308				 data, BNO055_CALDATA_LEN);
309}
310
311static int bno055_operation_mode_do_set(struct bno055_priv *priv,
312					int operation_mode)
313{
314	int ret;
315
316	ret = regmap_write(priv->regmap, BNO055_OPR_MODE_REG,
317			   operation_mode);
318	if (ret)
319		return ret;
320
321	/* Following datasheet specifications: sensor takes 7mS up to 19 mS to switch mode */
322	msleep(20);
323
324	return 0;
325}
326
327static int bno055_system_reset(struct bno055_priv *priv)
328{
329	int ret;
330
331	if (priv->reset_gpio) {
332		gpiod_set_value_cansleep(priv->reset_gpio, 0);
333		usleep_range(5000, 10000);
334		gpiod_set_value_cansleep(priv->reset_gpio, 1);
335	} else if (priv->sw_reset) {
336		ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
337				   BNO055_SYS_TRIGGER_RST_SYS);
338		if (ret)
339			return ret;
340	} else {
341		return 0;
342	}
343
344	regcache_drop_region(priv->regmap, 0x0, 0xff);
345	usleep_range(650000, 700000);
346
347	return 0;
348}
349
350static int bno055_init(struct bno055_priv *priv, const u8 *caldata, int len)
351{
352	int ret;
353
354	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
355	if (ret)
356		return ret;
357
358	ret = regmap_write(priv->regmap, BNO055_POWER_MODE_REG,
359			   BNO055_POWER_MODE_NORMAL);
360	if (ret)
361		return ret;
362
363	ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
364			   priv->clk ? BNO055_SYS_TRIGGER_CLK_SEL : 0);
365	if (ret)
366		return ret;
367
368	/* use standard SI units */
369	ret = regmap_write(priv->regmap, BNO055_UNIT_SEL_REG,
370			   BNO055_UNIT_SEL_ANDROID | BNO055_UNIT_SEL_GYR_RPS);
371	if (ret)
372		return ret;
373
374	if (caldata) {
375		ret = bno055_calibration_load(priv, caldata, len);
376		if (ret)
377			dev_warn(priv->dev, "failed to load calibration data with error %d\n",
378				 ret);
379	}
380
381	return 0;
382}
383
384static ssize_t bno055_operation_mode_set(struct bno055_priv *priv,
385					 int operation_mode)
386{
387	u8 caldata[BNO055_CALDATA_LEN];
388	int ret;
389
390	mutex_lock(&priv->lock);
391
392	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
393	if (ret)
394		goto exit_unlock;
395
396	if (operation_mode == BNO055_OPR_MODE_FUSION ||
397	    operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF) {
398		/* for entering fusion mode, reset the chip to clear the algo state */
399		ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, caldata,
400				       BNO055_CALDATA_LEN);
401		if (ret)
402			goto exit_unlock;
403
404		ret = bno055_system_reset(priv);
405		if (ret)
406			goto exit_unlock;
407
408		ret = bno055_init(priv, caldata, BNO055_CALDATA_LEN);
409		if (ret)
410			goto exit_unlock;
411	}
412
413	ret = bno055_operation_mode_do_set(priv, operation_mode);
414	if (ret)
415		goto exit_unlock;
416
417	priv->operation_mode = operation_mode;
418
419exit_unlock:
420	mutex_unlock(&priv->lock);
421	return ret;
422}
423
424static void bno055_uninit(void *arg)
425{
426	struct bno055_priv *priv = arg;
427
428	/* stop the IMU */
429	bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
430}
431
432#define BNO055_CHANNEL(_type, _axis, _index, _address, _sep, _sh, _avail) {	\
433	.address = _address,							\
434	.type = _type,								\
435	.modified = 1,								\
436	.channel2 = IIO_MOD_##_axis,						\
437	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | (_sep),			\
438	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | (_sh),		\
439	.info_mask_shared_by_type_available = _avail,				\
440	.scan_index = _index,							\
441	.scan_type = {								\
442		.sign = 's',							\
443		.realbits = 16,							\
444		.storagebits = 16,						\
445		.endianness = IIO_LE,						\
446		.repeat = IIO_MOD_##_axis == IIO_MOD_QUATERNION ? 4 : 0,        \
447	},									\
448}
449
450/* scan indexes follow DATA register order */
451enum bno055_scan_axis {
452	BNO055_SCAN_ACCEL_X,
453	BNO055_SCAN_ACCEL_Y,
454	BNO055_SCAN_ACCEL_Z,
455	BNO055_SCAN_MAGN_X,
456	BNO055_SCAN_MAGN_Y,
457	BNO055_SCAN_MAGN_Z,
458	BNO055_SCAN_GYRO_X,
459	BNO055_SCAN_GYRO_Y,
460	BNO055_SCAN_GYRO_Z,
461	BNO055_SCAN_YAW,
462	BNO055_SCAN_ROLL,
463	BNO055_SCAN_PITCH,
464	BNO055_SCAN_QUATERNION,
465	BNO055_SCAN_LIA_X,
466	BNO055_SCAN_LIA_Y,
467	BNO055_SCAN_LIA_Z,
468	BNO055_SCAN_GRAVITY_X,
469	BNO055_SCAN_GRAVITY_Y,
470	BNO055_SCAN_GRAVITY_Z,
471	BNO055_SCAN_TIMESTAMP,
472	_BNO055_SCAN_MAX
473};
474
475static const struct iio_chan_spec bno055_channels[] = {
476	/* accelerometer */
477	BNO055_CHANNEL(IIO_ACCEL, X, BNO055_SCAN_ACCEL_X,
478		       BNO055_ACC_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
479		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
480		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
481	BNO055_CHANNEL(IIO_ACCEL, Y, BNO055_SCAN_ACCEL_Y,
482		       BNO055_ACC_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
483		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
484		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
485	BNO055_CHANNEL(IIO_ACCEL, Z, BNO055_SCAN_ACCEL_Z,
486		       BNO055_ACC_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
487		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
488		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
489	/* gyroscope */
490	BNO055_CHANNEL(IIO_ANGL_VEL, X, BNO055_SCAN_GYRO_X,
491		       BNO055_GYR_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
492		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
493		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
494		       BIT(IIO_CHAN_INFO_SCALE)),
495	BNO055_CHANNEL(IIO_ANGL_VEL, Y, BNO055_SCAN_GYRO_Y,
496		       BNO055_GYR_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
497		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
498		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
499		       BIT(IIO_CHAN_INFO_SCALE)),
500	BNO055_CHANNEL(IIO_ANGL_VEL, Z, BNO055_SCAN_GYRO_Z,
501		       BNO055_GYR_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
502		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
503		       BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
504		       BIT(IIO_CHAN_INFO_SCALE)),
505	/* magnetometer */
506	BNO055_CHANNEL(IIO_MAGN, X, BNO055_SCAN_MAGN_X,
507		       BNO055_MAG_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
508		       BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
509	BNO055_CHANNEL(IIO_MAGN, Y, BNO055_SCAN_MAGN_Y,
510		       BNO055_MAG_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
511		       BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
512	BNO055_CHANNEL(IIO_MAGN, Z, BNO055_SCAN_MAGN_Z,
513		       BNO055_MAG_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
514		       BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
515	/* euler angle */
516	BNO055_CHANNEL(IIO_ROT, YAW, BNO055_SCAN_YAW,
517		       BNO055_EUL_DATA_X_LSB_REG, 0, 0, 0),
518	BNO055_CHANNEL(IIO_ROT, ROLL, BNO055_SCAN_ROLL,
519		       BNO055_EUL_DATA_Y_LSB_REG, 0, 0, 0),
520	BNO055_CHANNEL(IIO_ROT, PITCH, BNO055_SCAN_PITCH,
521		       BNO055_EUL_DATA_Z_LSB_REG, 0, 0, 0),
522	/* quaternion */
523	BNO055_CHANNEL(IIO_ROT, QUATERNION, BNO055_SCAN_QUATERNION,
524		       BNO055_QUAT_DATA_W_LSB_REG, 0, 0, 0),
525
526	/* linear acceleration */
527	BNO055_CHANNEL(IIO_ACCEL, LINEAR_X, BNO055_SCAN_LIA_X,
528		       BNO055_LIA_DATA_X_LSB_REG, 0, 0, 0),
529	BNO055_CHANNEL(IIO_ACCEL, LINEAR_Y, BNO055_SCAN_LIA_Y,
530		       BNO055_LIA_DATA_Y_LSB_REG, 0, 0, 0),
531	BNO055_CHANNEL(IIO_ACCEL, LINEAR_Z, BNO055_SCAN_LIA_Z,
532		       BNO055_LIA_DATA_Z_LSB_REG, 0, 0, 0),
533
534	/* gravity vector */
535	BNO055_CHANNEL(IIO_GRAVITY, X, BNO055_SCAN_GRAVITY_X,
536		       BNO055_GRAVITY_DATA_X_LSB_REG, 0, 0, 0),
537	BNO055_CHANNEL(IIO_GRAVITY, Y, BNO055_SCAN_GRAVITY_Y,
538		       BNO055_GRAVITY_DATA_Y_LSB_REG, 0, 0, 0),
539	BNO055_CHANNEL(IIO_GRAVITY, Z, BNO055_SCAN_GRAVITY_Z,
540		       BNO055_GRAVITY_DATA_Z_LSB_REG, 0, 0, 0),
541
542	{
543		.type = IIO_TEMP,
544		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
545		.scan_index = -1,
546	},
547	IIO_CHAN_SOFT_TIMESTAMP(BNO055_SCAN_TIMESTAMP),
548};
549
550static int bno055_get_regmask(struct bno055_priv *priv, int *val, int *val2,
551			      int reg, int mask, struct bno055_sysfs_attr *attr)
552{
553	const int shift = __ffs(mask);
554	int hwval, idx;
555	int ret;
556	int i;
557
558	ret = regmap_read(priv->regmap, reg, &hwval);
559	if (ret)
560		return ret;
561
562	idx = (hwval & mask) >> shift;
563	if (attr->hw_xlate)
564		for (i = 0; i < attr->len; i++)
565			if (attr->hw_xlate[i] == idx) {
566				idx = i;
567				break;
568			}
569	if (attr->type == IIO_VAL_INT) {
570		*val = attr->vals[idx];
571	} else { /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL */
572		*val = attr->vals[idx * 2];
573		*val2 = attr->vals[idx * 2 + 1];
574	}
575
576	return attr->type;
577}
578
579static int bno055_set_regmask(struct bno055_priv *priv, int val, int val2,
580			      int reg, int mask, struct bno055_sysfs_attr *attr)
581{
582	const int shift = __ffs(mask);
583	int best_delta;
584	int req_val;
585	int tbl_val;
586	bool first;
587	int delta;
588	int hwval;
589	int ret;
590	int len;
591	int i;
592
593	/*
594	 * The closest value the HW supports is only one in fusion mode,
595	 * and it is autoselected, so don't do anything, just return OK,
596	 * as the closest possible value has been (virtually) selected
597	 */
598	if (priv->operation_mode != BNO055_OPR_MODE_AMG)
599		return 0;
600
601	len = attr->len;
602
603	/*
604	 * We always get a request in INT_PLUS_MICRO, but we
605	 * take care of the micro part only when we really have
606	 * non-integer tables. This prevents 32-bit overflow with
607	 * larger integers contained in integer tables.
608	 */
609	req_val = val;
610	if (attr->type != IIO_VAL_INT) {
611		len /= 2;
612		req_val = min(val, 2147) * 1000000 + val2;
613	}
614
615	first = true;
616	for (i = 0; i < len; i++) {
617		switch (attr->type) {
618		case IIO_VAL_INT:
619			tbl_val = attr->vals[i];
620			break;
621		case IIO_VAL_INT_PLUS_MICRO:
622			WARN_ON(attr->vals[i * 2] > 2147);
623			tbl_val = attr->vals[i * 2] * 1000000 +
624				attr->vals[i * 2 + 1];
625			break;
626		case IIO_VAL_FRACTIONAL:
627			WARN_ON(attr->vals[i * 2] > 4294);
628			tbl_val = attr->vals[i * 2] * 1000000 /
629				attr->vals[i * 2 + 1];
630			break;
631		default:
632			return -EINVAL;
633		}
634		delta = abs(tbl_val - req_val);
635		if (first || delta < best_delta) {
636			best_delta = delta;
637			hwval = i;
638			first = false;
639		}
640	}
641
642	if (attr->hw_xlate)
643		hwval = attr->hw_xlate[hwval];
644
645	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
646	if (ret)
647		return ret;
648
649	ret = regmap_update_bits(priv->regmap, reg, mask, hwval << shift);
650	if (ret)
651		return ret;
652
653	return bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_AMG);
654}
655
656static int bno055_read_simple_chan(struct iio_dev *indio_dev,
657				   struct iio_chan_spec const *chan,
658				   int *val, int *val2, long mask)
659{
660	struct bno055_priv *priv = iio_priv(indio_dev);
661	__le16 raw_val;
662	int ret;
663
664	switch (mask) {
665	case IIO_CHAN_INFO_RAW:
666		ret = regmap_bulk_read(priv->regmap, chan->address,
667				       &raw_val, sizeof(raw_val));
668		if (ret < 0)
669			return ret;
670		*val = sign_extend32(le16_to_cpu(raw_val), 15);
671		return IIO_VAL_INT;
672	case IIO_CHAN_INFO_OFFSET:
673		if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
674			*val = 0;
675		} else {
676			ret = regmap_bulk_read(priv->regmap,
677					       chan->address +
678					       BNO055_REG_OFFSET_ADDR,
679					       &raw_val, sizeof(raw_val));
680			if (ret < 0)
681				return ret;
682			/*
683			 * IMU reports sensor offsets; IIO wants correction
684			 * offsets, thus we need the 'minus' here.
685			 */
686			*val = -sign_extend32(le16_to_cpu(raw_val), 15);
687		}
688		return IIO_VAL_INT;
689	case IIO_CHAN_INFO_SCALE:
690		*val = 1;
691		switch (chan->type) {
692		case IIO_GRAVITY:
693			/* Table 3-35: 1 m/s^2 = 100 LSB */
694		case IIO_ACCEL:
695			/* Table 3-17: 1 m/s^2 = 100 LSB */
696			*val2 = 100;
697			break;
698		case IIO_MAGN:
699			/*
700			 * Table 3-19: 1 uT = 16 LSB.  But we need
701			 * Gauss: 1G = 0.1 uT.
702			 */
703			*val2 = 160;
704			break;
705		case IIO_ANGL_VEL:
706			/*
707			 * Table 3-22: 1 Rps = 900 LSB
708			 * .. but this is not exactly true. See comment at the
709			 * beginning of this file.
710			 */
711			if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
712				*val = bno055_gyr_scale.fusion_vals[0];
713				*val2 = bno055_gyr_scale.fusion_vals[1];
714				return IIO_VAL_FRACTIONAL;
715			}
716
717			return bno055_get_regmask(priv, val, val2,
718						  BNO055_GYR_CONFIG_REG,
719						  BNO055_GYR_CONFIG_RANGE_MASK,
720						  &bno055_gyr_scale);
721			break;
722		case IIO_ROT:
723			/* Table 3-28: 1 degree = 16 LSB */
724			*val2 = 16;
725			break;
726		default:
727			return -EINVAL;
728		}
729		return IIO_VAL_FRACTIONAL;
730
731	case IIO_CHAN_INFO_SAMP_FREQ:
732		if (chan->type != IIO_MAGN)
733			return -EINVAL;
734
735		return bno055_get_regmask(priv, val, val2,
736					  BNO055_MAG_CONFIG_REG,
737					  BNO055_MAG_CONFIG_ODR_MASK,
738					  &bno055_mag_odr);
739
740	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
741		switch (chan->type) {
742		case IIO_ANGL_VEL:
743			return bno055_get_regmask(priv, val, val2,
744						  BNO055_GYR_CONFIG_REG,
745						  BNO055_GYR_CONFIG_LPF_MASK,
746						  &bno055_gyr_lpf);
747		case IIO_ACCEL:
748			return bno055_get_regmask(priv, val, val2,
749						  BNO055_ACC_CONFIG_REG,
750						  BNO055_ACC_CONFIG_LPF_MASK,
751						  &bno055_acc_lpf);
752		default:
753			return -EINVAL;
754		}
755
756	default:
757		return -EINVAL;
758	}
759}
760
761static int bno055_sysfs_attr_avail(struct bno055_priv *priv, struct bno055_sysfs_attr *attr,
762				   const int **vals, int *length)
763{
764	if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
765		/* locked when fusion enabled */
766		*vals = attr->fusion_vals;
767		if (attr->type == IIO_VAL_INT)
768			*length = 1;
769		else
770			*length = 2; /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL*/
771	} else {
772		*vals = attr->vals;
773		*length = attr->len;
774	}
775
776	return attr->type;
777}
778
779static int bno055_read_avail(struct iio_dev *indio_dev,
780			     struct iio_chan_spec const *chan,
781			     const int **vals, int *type, int *length,
782			     long mask)
783{
784	struct bno055_priv *priv = iio_priv(indio_dev);
785
786	switch (mask) {
787	case IIO_CHAN_INFO_SCALE:
788		switch (chan->type) {
789		case IIO_ANGL_VEL:
790			*type = bno055_sysfs_attr_avail(priv, &bno055_gyr_scale,
791							vals, length);
792			return IIO_AVAIL_LIST;
793		default:
794			return -EINVAL;
795		}
796	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
797		switch (chan->type) {
798		case IIO_ANGL_VEL:
799			*type = bno055_sysfs_attr_avail(priv, &bno055_gyr_lpf,
800							vals, length);
801			return IIO_AVAIL_LIST;
802		case IIO_ACCEL:
803			*type = bno055_sysfs_attr_avail(priv, &bno055_acc_lpf,
804							vals, length);
805			return IIO_AVAIL_LIST;
806		default:
807			return -EINVAL;
808		}
809
810		break;
811	case IIO_CHAN_INFO_SAMP_FREQ:
812		switch (chan->type) {
813		case IIO_MAGN:
814			*type = bno055_sysfs_attr_avail(priv, &bno055_mag_odr,
815							vals, length);
816			return IIO_AVAIL_LIST;
817		default:
818			return -EINVAL;
819		}
820	default:
821		return -EINVAL;
822	}
823}
824
825static int bno055_read_temp_chan(struct iio_dev *indio_dev, int *val)
826{
827	struct bno055_priv *priv = iio_priv(indio_dev);
828	unsigned int raw_val;
829	int ret;
830
831	ret = regmap_read(priv->regmap, BNO055_TEMP_REG, &raw_val);
832	if (ret < 0)
833		return ret;
834
835	/*
836	 * Tables 3-36 and 3-37: one byte of priv, signed, 1 LSB = 1C.
837	 * ABI wants milliC.
838	 */
839	*val = raw_val * 1000;
840
841	return IIO_VAL_INT;
842}
843
844static int bno055_read_quaternion(struct iio_dev *indio_dev,
845				  struct iio_chan_spec const *chan,
846				  int size, int *vals, int *val_len,
847				  long mask)
848{
849	struct bno055_priv *priv = iio_priv(indio_dev);
850	__le16 raw_vals[4];
851	int i, ret;
852
853	switch (mask) {
854	case IIO_CHAN_INFO_RAW:
855		if (size < 4)
856			return -EINVAL;
857		ret = regmap_bulk_read(priv->regmap,
858				       BNO055_QUAT_DATA_W_LSB_REG,
859				       raw_vals, sizeof(raw_vals));
860		if (ret < 0)
861			return ret;
862		for (i = 0; i < 4; i++)
863			vals[i] = sign_extend32(le16_to_cpu(raw_vals[i]), 15);
864		*val_len = 4;
865		return IIO_VAL_INT_MULTIPLE;
866	case IIO_CHAN_INFO_SCALE:
867		/* Table 3-31: 1 quaternion = 2^14 LSB */
868		if (size < 2)
869			return -EINVAL;
870		vals[0] = 1;
871		vals[1] = 14;
872		return IIO_VAL_FRACTIONAL_LOG2;
873	default:
874		return -EINVAL;
875	}
876}
877
878static bool bno055_is_chan_readable(struct iio_dev *indio_dev,
879				    struct iio_chan_spec const *chan)
880{
881	struct bno055_priv *priv = iio_priv(indio_dev);
882
883	if (priv->operation_mode != BNO055_OPR_MODE_AMG)
884		return true;
885
886	switch (chan->type) {
887	case IIO_GRAVITY:
888	case IIO_ROT:
889		return false;
890	case IIO_ACCEL:
891		if (chan->channel2 == IIO_MOD_LINEAR_X ||
892		    chan->channel2 == IIO_MOD_LINEAR_Y ||
893		    chan->channel2 == IIO_MOD_LINEAR_Z)
894			return false;
895		return true;
896	default:
897		return true;
898	}
899}
900
901static int _bno055_read_raw_multi(struct iio_dev *indio_dev,
902				  struct iio_chan_spec const *chan,
903				  int size, int *vals, int *val_len,
904				  long mask)
905{
906	if (!bno055_is_chan_readable(indio_dev, chan))
907		return -EBUSY;
908
909	switch (chan->type) {
910	case IIO_MAGN:
911	case IIO_ACCEL:
912	case IIO_ANGL_VEL:
913	case IIO_GRAVITY:
914		if (size < 2)
915			return -EINVAL;
916		*val_len = 2;
917		return bno055_read_simple_chan(indio_dev, chan,
918					       &vals[0], &vals[1],
919					       mask);
920	case IIO_TEMP:
921		*val_len = 1;
922		return bno055_read_temp_chan(indio_dev, &vals[0]);
923	case IIO_ROT:
924		/*
925		 * Rotation is exposed as either a quaternion or three
926		 * Euler angles.
927		 */
928		if (chan->channel2 == IIO_MOD_QUATERNION)
929			return bno055_read_quaternion(indio_dev, chan,
930						      size, vals,
931						      val_len, mask);
932		if (size < 2)
933			return -EINVAL;
934		*val_len = 2;
935		return bno055_read_simple_chan(indio_dev, chan,
936					       &vals[0], &vals[1],
937					       mask);
938	default:
939		return -EINVAL;
940	}
941}
942
943static int bno055_read_raw_multi(struct iio_dev *indio_dev,
944				 struct iio_chan_spec const *chan,
945				 int size, int *vals, int *val_len,
946				 long mask)
947{
948	struct bno055_priv *priv = iio_priv(indio_dev);
949	int ret;
950
951	mutex_lock(&priv->lock);
952	ret = _bno055_read_raw_multi(indio_dev, chan, size,
953				     vals, val_len, mask);
954	mutex_unlock(&priv->lock);
955	return ret;
956}
957
958static int _bno055_write_raw(struct iio_dev *iio_dev,
959			     struct iio_chan_spec const *chan,
960			     int val, int val2, long mask)
961{
962	struct bno055_priv *priv = iio_priv(iio_dev);
963
964	switch (chan->type) {
965	case IIO_MAGN:
966		switch (mask) {
967		case IIO_CHAN_INFO_SAMP_FREQ:
968			return bno055_set_regmask(priv, val, val2,
969						  BNO055_MAG_CONFIG_REG,
970						  BNO055_MAG_CONFIG_ODR_MASK,
971						  &bno055_mag_odr);
972		default:
973			return -EINVAL;
974		}
975	case IIO_ACCEL:
976		switch (mask) {
977		case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
978			return bno055_set_regmask(priv, val, val2,
979						  BNO055_ACC_CONFIG_REG,
980						  BNO055_ACC_CONFIG_LPF_MASK,
981						  &bno055_acc_lpf);
982
983		default:
984			return -EINVAL;
985		}
986	case IIO_ANGL_VEL:
987		switch (mask) {
988		case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
989			return bno055_set_regmask(priv, val, val2,
990						  BNO055_GYR_CONFIG_REG,
991						  BNO055_GYR_CONFIG_LPF_MASK,
992						  &bno055_gyr_lpf);
993		case IIO_CHAN_INFO_SCALE:
994			return bno055_set_regmask(priv, val, val2,
995						  BNO055_GYR_CONFIG_REG,
996						  BNO055_GYR_CONFIG_RANGE_MASK,
997						  &bno055_gyr_scale);
998		default:
999			return -EINVAL;
1000		}
1001	default:
1002		return -EINVAL;
1003	}
1004}
1005
1006static int bno055_write_raw(struct iio_dev *iio_dev,
1007			    struct iio_chan_spec const *chan,
1008			    int val, int val2, long mask)
1009{
1010	struct bno055_priv *priv = iio_priv(iio_dev);
1011	int ret;
1012
1013	mutex_lock(&priv->lock);
1014	ret = _bno055_write_raw(iio_dev, chan, val, val2, mask);
1015	mutex_unlock(&priv->lock);
1016
1017	return ret;
1018}
1019
1020static ssize_t in_accel_range_raw_available_show(struct device *dev,
1021						 struct device_attribute *attr,
1022						 char *buf)
1023{
1024	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1025	int len = 0;
1026	int i;
1027
1028	if (priv->operation_mode != BNO055_OPR_MODE_AMG)
1029		return sysfs_emit(buf, "%d\n", bno055_acc_range.fusion_vals[0]);
1030
1031	for (i = 0; i < bno055_acc_range.len; i++)
1032		len += sysfs_emit_at(buf, len, "%d ", bno055_acc_range.vals[i]);
1033	buf[len - 1] = '\n';
1034
1035	return len;
1036}
1037
1038static ssize_t fusion_enable_show(struct device *dev,
1039				  struct device_attribute *attr,
1040				  char *buf)
1041{
1042	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1043
1044	return sysfs_emit(buf, "%d\n",
1045			  priv->operation_mode != BNO055_OPR_MODE_AMG);
1046}
1047
1048static ssize_t fusion_enable_store(struct device *dev,
1049				   struct device_attribute *attr,
1050				   const char *buf, size_t len)
1051{
1052	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1053	struct bno055_priv *priv = iio_priv(indio_dev);
1054	bool en;
1055	int ret;
1056
1057	if (indio_dev->active_scan_mask &&
1058	    !bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
1059		return -EBUSY;
1060
1061	ret = kstrtobool(buf, &en);
1062	if (ret)
1063		return -EINVAL;
1064
1065	if (!en)
1066		return bno055_operation_mode_set(priv, BNO055_OPR_MODE_AMG) ?: len;
1067
1068	/*
1069	 * Coming from AMG means the FMC was off, just switch to fusion but
1070	 * don't change anything that doesn't belong to us (i.e let FMC stay off).
1071	 * Coming from any other fusion mode means we don't need to do anything.
1072	 */
1073	if (priv->operation_mode == BNO055_OPR_MODE_AMG)
1074		return  bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF) ?: len;
1075
1076	return len;
1077}
1078
1079static ssize_t in_magn_calibration_fast_enable_show(struct device *dev,
1080						    struct device_attribute *attr,
1081						    char *buf)
1082{
1083	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1084
1085	return sysfs_emit(buf, "%d\n",
1086			  priv->operation_mode == BNO055_OPR_MODE_FUSION);
1087}
1088
1089static ssize_t in_magn_calibration_fast_enable_store(struct device *dev,
1090						     struct device_attribute *attr,
1091						     const char *buf, size_t len)
1092{
1093	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1094	struct bno055_priv *priv = iio_priv(indio_dev);
1095	int ret;
1096
1097	if (indio_dev->active_scan_mask &&
1098	    !bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
1099		return -EBUSY;
1100
1101	if (sysfs_streq(buf, "0")) {
1102		if (priv->operation_mode == BNO055_OPR_MODE_FUSION) {
1103			ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF);
1104			if (ret)
1105				return ret;
1106		}
1107	} else {
1108		if (priv->operation_mode == BNO055_OPR_MODE_AMG)
1109			return -EINVAL;
1110
1111		if (priv->operation_mode != BNO055_OPR_MODE_FUSION) {
1112			ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION);
1113			if (ret)
1114				return ret;
1115		}
1116	}
1117
1118	return len;
1119}
1120
1121static ssize_t in_accel_range_raw_show(struct device *dev,
1122				       struct device_attribute *attr,
1123				       char *buf)
1124{
1125	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1126	int val;
1127	int ret;
1128
1129	ret = bno055_get_regmask(priv, &val, NULL,
1130				 BNO055_ACC_CONFIG_REG,
1131				 BNO055_ACC_CONFIG_RANGE_MASK,
1132				 &bno055_acc_range);
1133	if (ret < 0)
1134		return ret;
1135
1136	return sysfs_emit(buf, "%d\n", val);
1137}
1138
1139static ssize_t in_accel_range_raw_store(struct device *dev,
1140					struct device_attribute *attr,
1141					const char *buf, size_t len)
1142{
1143	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1144	unsigned long val;
1145	int ret;
1146
1147	ret = kstrtoul(buf, 10, &val);
1148	if (ret)
1149		return ret;
1150
1151	mutex_lock(&priv->lock);
1152	ret = bno055_set_regmask(priv, val, 0,
1153				 BNO055_ACC_CONFIG_REG,
1154				 BNO055_ACC_CONFIG_RANGE_MASK,
1155				 &bno055_acc_range);
1156	mutex_unlock(&priv->lock);
1157
1158	return ret ?: len;
1159}
1160
1161static ssize_t bno055_get_calib_status(struct device *dev, char *buf, int which)
1162{
1163	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1164	int calib;
1165	int ret;
1166	int val;
1167
1168	if (priv->operation_mode == BNO055_OPR_MODE_AMG ||
1169	    (priv->operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF &&
1170	     which == BNO055_CALIB_STAT_MAGN_SHIFT)) {
1171		calib = 0;
1172	} else {
1173		mutex_lock(&priv->lock);
1174		ret = regmap_read(priv->regmap, BNO055_CALIB_STAT_REG, &val);
1175		mutex_unlock(&priv->lock);
1176
1177		if (ret)
1178			return -EIO;
1179
1180		calib = ((val >> which) & GENMASK(1, 0)) + 1;
1181	}
1182
1183	return sysfs_emit(buf, "%d\n", calib);
1184}
1185
1186static ssize_t serialnumber_show(struct device *dev,
1187				 struct device_attribute *attr,
1188				 char *buf)
1189{
1190	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1191
1192	return sysfs_emit(buf, "%*ph\n", BNO055_UID_LEN, priv->uid);
1193}
1194
1195static ssize_t calibration_data_read(struct file *filp, struct kobject *kobj,
1196				     struct bin_attribute *bin_attr, char *buf,
1197				     loff_t pos, size_t count)
1198{
1199	struct bno055_priv *priv = iio_priv(dev_to_iio_dev(kobj_to_dev(kobj)));
1200	u8 data[BNO055_CALDATA_LEN];
1201	int ret;
1202
1203	/*
1204	 * Calibration data is volatile; reading it in chunks will possibly
1205	 * results in inconsistent data. We require the user to read the whole
1206	 * blob in a single chunk
1207	 */
1208	if (count < BNO055_CALDATA_LEN || pos)
1209		return -EINVAL;
1210
1211	mutex_lock(&priv->lock);
1212	ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
1213	if (ret)
1214		goto exit_unlock;
1215
1216	ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, data,
1217			       BNO055_CALDATA_LEN);
1218	if (ret)
1219		goto exit_unlock;
1220
1221	ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
1222	if (ret)
1223		goto exit_unlock;
1224
1225	memcpy(buf, data, BNO055_CALDATA_LEN);
1226
1227	ret = BNO055_CALDATA_LEN;
1228exit_unlock:
1229	mutex_unlock(&priv->lock);
1230	return ret;
1231}
1232
1233static ssize_t sys_calibration_auto_status_show(struct device *dev,
1234						struct device_attribute *a,
1235						char *buf)
1236{
1237	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_SYS_SHIFT);
1238}
1239
1240static ssize_t in_accel_calibration_auto_status_show(struct device *dev,
1241						     struct device_attribute *a,
1242						     char *buf)
1243{
1244	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_ACCEL_SHIFT);
1245}
1246
1247static ssize_t in_gyro_calibration_auto_status_show(struct device *dev,
1248						    struct device_attribute *a,
1249						    char *buf)
1250{
1251	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_GYRO_SHIFT);
1252}
1253
1254static ssize_t in_magn_calibration_auto_status_show(struct device *dev,
1255						    struct device_attribute *a,
1256						    char *buf)
1257{
1258	return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_MAGN_SHIFT);
1259}
1260
1261static int bno055_debugfs_reg_access(struct iio_dev *iio_dev, unsigned int reg,
1262				     unsigned int writeval, unsigned int *readval)
1263{
1264	struct bno055_priv *priv = iio_priv(iio_dev);
1265
1266	if (readval)
1267		return regmap_read(priv->regmap, reg, readval);
1268	else
1269		return regmap_write(priv->regmap, reg, writeval);
1270}
1271
1272static ssize_t bno055_show_fw_version(struct file *file, char __user *userbuf,
1273				      size_t count, loff_t *ppos)
1274{
1275	struct bno055_priv *priv = file->private_data;
1276	int rev, ver;
1277	char *buf;
1278	int ret;
1279
1280	ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
1281	if (ret)
1282		return ret;
1283
1284	ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
1285	if (ret)
1286		return ret;
1287
1288	buf = kasprintf(GFP_KERNEL, "ver: 0x%x, rev: 0x%x\n", ver, rev);
1289	if (!buf)
1290		return -ENOMEM;
1291
1292	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1293	kfree(buf);
1294
1295	return ret;
1296}
1297
1298static const struct file_operations bno055_fw_version_ops = {
1299	.open = simple_open,
1300	.read = bno055_show_fw_version,
1301	.llseek = default_llseek,
1302	.owner = THIS_MODULE,
1303};
1304
1305static void bno055_debugfs_remove(void *_priv)
1306{
1307	struct bno055_priv *priv = _priv;
1308
1309	debugfs_remove(priv->debugfs);
1310	priv->debugfs = NULL;
1311}
1312
1313static void bno055_debugfs_init(struct iio_dev *iio_dev)
1314{
1315	struct bno055_priv *priv = iio_priv(iio_dev);
1316
1317	priv->debugfs = debugfs_create_file("firmware_version", 0400,
1318					    iio_get_debugfs_dentry(iio_dev),
1319					    priv, &bno055_fw_version_ops);
1320	if (!IS_ERR(priv->debugfs))
1321		devm_add_action_or_reset(priv->dev, bno055_debugfs_remove,
1322					 priv);
1323	if (IS_ERR_OR_NULL(priv->debugfs))
1324		dev_warn(priv->dev, "failed to setup debugfs");
1325}
1326
1327static IIO_DEVICE_ATTR_RW(fusion_enable, 0);
1328static IIO_DEVICE_ATTR_RW(in_magn_calibration_fast_enable, 0);
1329static IIO_DEVICE_ATTR_RW(in_accel_range_raw, 0);
1330
1331static IIO_DEVICE_ATTR_RO(in_accel_range_raw_available, 0);
1332static IIO_DEVICE_ATTR_RO(sys_calibration_auto_status, 0);
1333static IIO_DEVICE_ATTR_RO(in_accel_calibration_auto_status, 0);
1334static IIO_DEVICE_ATTR_RO(in_gyro_calibration_auto_status, 0);
1335static IIO_DEVICE_ATTR_RO(in_magn_calibration_auto_status, 0);
1336static IIO_DEVICE_ATTR_RO(serialnumber, 0);
1337
1338static struct attribute *bno055_attrs[] = {
1339	&iio_dev_attr_in_accel_range_raw_available.dev_attr.attr,
1340	&iio_dev_attr_in_accel_range_raw.dev_attr.attr,
1341	&iio_dev_attr_fusion_enable.dev_attr.attr,
1342	&iio_dev_attr_in_magn_calibration_fast_enable.dev_attr.attr,
1343	&iio_dev_attr_sys_calibration_auto_status.dev_attr.attr,
1344	&iio_dev_attr_in_accel_calibration_auto_status.dev_attr.attr,
1345	&iio_dev_attr_in_gyro_calibration_auto_status.dev_attr.attr,
1346	&iio_dev_attr_in_magn_calibration_auto_status.dev_attr.attr,
1347	&iio_dev_attr_serialnumber.dev_attr.attr,
1348	NULL
1349};
1350
1351static BIN_ATTR_RO(calibration_data, BNO055_CALDATA_LEN);
1352
1353static struct bin_attribute *bno055_bin_attrs[] = {
1354	&bin_attr_calibration_data,
1355	NULL
1356};
1357
1358static const struct attribute_group bno055_attrs_group = {
1359	.attrs = bno055_attrs,
1360	.bin_attrs = bno055_bin_attrs,
1361};
1362
1363static const struct iio_info bno055_info = {
1364	.read_raw_multi = bno055_read_raw_multi,
1365	.read_avail = bno055_read_avail,
1366	.write_raw = bno055_write_raw,
1367	.attrs = &bno055_attrs_group,
1368	.debugfs_reg_access = bno055_debugfs_reg_access,
1369};
1370
1371/*
1372 * Reads len samples from the HW, stores them in buf starting from buf_idx,
1373 * and applies mask to cull (skip) unneeded samples.
1374 * Updates buf_idx incrementing with the number of stored samples.
1375 * Samples from HW are transferred into buf, then in-place copy on buf is
1376 * performed in order to cull samples that need to be skipped.
1377 * This avoids copies of the first samples until we hit the 1st sample to skip,
1378 * and also avoids having an extra bounce buffer.
1379 * buf must be able to contain len elements in spite of how many samples we are
1380 * going to cull.
1381 */
1382static int bno055_scan_xfer(struct bno055_priv *priv,
1383			    int start_ch, int len, unsigned long mask,
1384			    __le16 *buf, int *buf_idx)
1385{
1386	const int base = BNO055_ACC_DATA_X_LSB_REG;
1387	bool quat_in_read = false;
1388	int buf_base = *buf_idx;
1389	__le16 *dst, *src;
1390	int offs_fixup = 0;
1391	int xfer_len = len;
1392	int ret;
1393	int i, n;
1394
1395	if (!mask)
1396		return 0;
1397
1398	/*
1399	 * All channels are made up 1 16-bit sample, except for quaternion that
1400	 * is made up 4 16-bit values.
1401	 * For us the quaternion CH is just like 4 regular CHs.
1402	 * If our read starts past the quaternion make sure to adjust the
1403	 * starting offset; if the quaternion is contained in our scan then make
1404	 * sure to adjust the read len.
1405	 */
1406	if (start_ch > BNO055_SCAN_QUATERNION) {
1407		start_ch += 3;
1408	} else if ((start_ch <= BNO055_SCAN_QUATERNION) &&
1409		 ((start_ch + len) > BNO055_SCAN_QUATERNION)) {
1410		quat_in_read = true;
1411		xfer_len += 3;
1412	}
1413
1414	ret = regmap_bulk_read(priv->regmap,
1415			       base + start_ch * sizeof(__le16),
1416			       buf + buf_base,
1417			       xfer_len * sizeof(__le16));
1418	if (ret)
1419		return ret;
1420
1421	for_each_set_bit(i, &mask, len) {
1422		if (quat_in_read && ((start_ch + i) > BNO055_SCAN_QUATERNION))
1423			offs_fixup = 3;
1424
1425		dst = buf + *buf_idx;
1426		src = buf + buf_base + offs_fixup + i;
1427
1428		n = (start_ch + i == BNO055_SCAN_QUATERNION) ? 4 : 1;
1429
1430		if (dst != src)
1431			memcpy(dst, src, n * sizeof(__le16));
1432
1433		*buf_idx += n;
1434	}
1435	return 0;
1436}
1437
1438static irqreturn_t bno055_trigger_handler(int irq, void *p)
1439{
1440	struct iio_poll_func *pf = p;
1441	struct iio_dev *iio_dev = pf->indio_dev;
1442	struct bno055_priv *priv = iio_priv(iio_dev);
1443	int xfer_start, start, end, prev_end;
1444	unsigned long mask;
1445	int quat_extra_len;
1446	bool first = true;
1447	int buf_idx = 0;
1448	bool thr_hit;
1449	int ret;
1450
1451	mutex_lock(&priv->lock);
1452
1453	/*
1454	 * Walk the bitmap and eventually perform several transfers.
1455	 * Bitmap ones-fields that are separated by gaps <= xfer_burst_break_thr
1456	 * will be included in same transfer.
1457	 * Every time the bitmap contains a gap wider than xfer_burst_break_thr
1458	 * then we split the transfer, skipping the gap.
1459	 */
1460	for_each_set_bitrange(start, end, iio_dev->active_scan_mask,
1461			      iio_dev->masklength) {
1462		/*
1463		 * First transfer will start from the beginning of the first
1464		 * ones-field in the bitmap
1465		 */
1466		if (first) {
1467			xfer_start = start;
1468		} else {
1469			/*
1470			 * We found the next ones-field; check whether to
1471			 * include it in * the current transfer or not (i.e.
1472			 * let's perform the current * transfer and prepare for
1473			 * another one).
1474			 */
1475
1476			/*
1477			 * In case the zeros-gap contains the quaternion bit,
1478			 * then its length is actually 4 words instead of 1
1479			 * (i.e. +3 wrt other channels).
1480			 */
1481			quat_extra_len = ((start > BNO055_SCAN_QUATERNION) &&
1482					  (prev_end <= BNO055_SCAN_QUATERNION)) ? 3 : 0;
1483
1484			/* If the gap is wider than xfer_burst_break_thr then.. */
1485			thr_hit = (start - prev_end + quat_extra_len) >
1486				priv->xfer_burst_break_thr;
1487
1488			/*
1489			 * .. transfer all the data up to the gap. Then set the
1490			 * next transfer start index at right after the gap
1491			 * (i.e. at the start of this ones-field).
1492			 */
1493			if (thr_hit) {
1494				mask = *iio_dev->active_scan_mask >> xfer_start;
1495				ret = bno055_scan_xfer(priv, xfer_start,
1496						       prev_end - xfer_start,
1497						       mask, priv->buf.chans, &buf_idx);
1498				if (ret)
1499					goto done;
1500				xfer_start = start;
1501			}
1502		}
1503		first = false;
1504		prev_end = end;
1505	}
1506
1507	/*
1508	 * We finished walking the bitmap; no more gaps to check for. Just
1509	 * perform the current transfer.
1510	 */
1511	mask = *iio_dev->active_scan_mask >> xfer_start;
1512	ret = bno055_scan_xfer(priv, xfer_start,
1513			       prev_end - xfer_start,
1514			       mask, priv->buf.chans, &buf_idx);
1515
1516	if (!ret)
1517		iio_push_to_buffers_with_timestamp(iio_dev,
1518						   &priv->buf, pf->timestamp);
1519done:
1520	mutex_unlock(&priv->lock);
1521	iio_trigger_notify_done(iio_dev->trig);
1522	return IRQ_HANDLED;
1523}
1524
1525static int bno055_buffer_preenable(struct iio_dev *indio_dev)
1526{
1527	struct bno055_priv *priv = iio_priv(indio_dev);
1528	const unsigned long fusion_mask =
1529		BIT(BNO055_SCAN_YAW) |
1530		BIT(BNO055_SCAN_ROLL) |
1531		BIT(BNO055_SCAN_PITCH) |
1532		BIT(BNO055_SCAN_QUATERNION) |
1533		BIT(BNO055_SCAN_LIA_X) |
1534		BIT(BNO055_SCAN_LIA_Y) |
1535		BIT(BNO055_SCAN_LIA_Z) |
1536		BIT(BNO055_SCAN_GRAVITY_X) |
1537		BIT(BNO055_SCAN_GRAVITY_Y) |
1538		BIT(BNO055_SCAN_GRAVITY_Z);
1539
1540	if (priv->operation_mode == BNO055_OPR_MODE_AMG &&
1541	    bitmap_intersects(indio_dev->active_scan_mask, &fusion_mask,
1542			      _BNO055_SCAN_MAX))
1543		return -EBUSY;
1544	return 0;
1545}
1546
1547static const struct iio_buffer_setup_ops bno055_buffer_setup_ops = {
1548	.preenable = bno055_buffer_preenable,
1549};
1550
1551int bno055_probe(struct device *dev, struct regmap *regmap,
1552		 int xfer_burst_break_thr, bool sw_reset)
1553{
1554	const struct firmware *caldata = NULL;
1555	struct bno055_priv *priv;
1556	struct iio_dev *iio_dev;
1557	char *fw_name_buf;
1558	unsigned int val;
1559	int rev, ver;
1560	int ret;
1561
1562	iio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
1563	if (!iio_dev)
1564		return -ENOMEM;
1565
1566	iio_dev->name = "bno055";
1567	priv = iio_priv(iio_dev);
1568	mutex_init(&priv->lock);
1569	priv->regmap = regmap;
1570	priv->dev = dev;
1571	priv->xfer_burst_break_thr = xfer_burst_break_thr;
1572	priv->sw_reset = sw_reset;
1573
1574	priv->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
1575	if (IS_ERR(priv->reset_gpio))
1576		return dev_err_probe(dev, PTR_ERR(priv->reset_gpio), "Failed to get reset GPIO\n");
1577
1578	priv->clk = devm_clk_get_optional_enabled(dev, "clk");
1579	if (IS_ERR(priv->clk))
1580		return dev_err_probe(dev, PTR_ERR(priv->clk), "Failed to get CLK\n");
1581
1582	if (priv->reset_gpio) {
1583		usleep_range(5000, 10000);
1584		gpiod_set_value_cansleep(priv->reset_gpio, 1);
1585		usleep_range(650000, 750000);
1586	} else if (!sw_reset) {
1587		dev_warn(dev, "No usable reset method; IMU may be unreliable\n");
1588	}
1589
1590	ret = regmap_read(priv->regmap, BNO055_CHIP_ID_REG, &val);
1591	if (ret)
1592		return ret;
1593
1594	if (val != BNO055_CHIP_ID_MAGIC)
1595		dev_warn(dev, "Unrecognized chip ID 0x%x\n", val);
1596
1597	/*
1598	 * In case we haven't a HW reset pin, we can still reset the chip via
1599	 * register write. This is probably nonsense in case we can't even
1600	 * communicate with the chip or the chip isn't the one we expect (i.e.
1601	 * we don't write to unknown chips), so we perform SW reset only after
1602	 * chip magic ID check
1603	 */
1604	if (!priv->reset_gpio) {
1605		ret = bno055_system_reset(priv);
1606		if (ret)
1607			return ret;
1608	}
1609
1610	ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
1611	if (ret)
1612		return ret;
1613
1614	ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
1615	if (ret)
1616		return ret;
1617
1618	/*
1619	 * The stock FW version contains a bug (see comment at the beginning of
1620	 * this file) that causes the anglvel scale to be changed depending on
1621	 * the chip range setting. We workaround this, but we don't know what
1622	 * other FW versions might do.
1623	 */
1624	if (ver != 0x3 || rev != 0x11)
1625		dev_warn(dev, "Untested firmware version. Anglvel scale may not work as expected\n");
1626
1627	ret = regmap_bulk_read(priv->regmap, BNO055_UID_LOWER_REG,
1628			       priv->uid, BNO055_UID_LEN);
1629	if (ret)
1630		return ret;
1631
1632	/* Sensor calibration data */
1633	fw_name_buf = kasprintf(GFP_KERNEL, BNO055_FW_UID_FMT,
1634				BNO055_UID_LEN, priv->uid);
1635	if (!fw_name_buf)
1636		return -ENOMEM;
1637
1638	ret = request_firmware(&caldata, fw_name_buf, dev);
1639	kfree(fw_name_buf);
1640	if (ret)
1641		ret = request_firmware(&caldata, BNO055_FW_GENERIC_NAME, dev);
1642	if (ret) {
1643		dev_notice(dev, "Calibration file load failed. See instruction in kernel Documentation/iio/bno055.rst\n");
1644		ret = bno055_init(priv, NULL, 0);
1645	} else {
1646		ret = bno055_init(priv, caldata->data, caldata->size);
1647		release_firmware(caldata);
1648	}
1649	if (ret)
1650		return ret;
1651
1652	priv->operation_mode = BNO055_OPR_MODE_FUSION;
1653	ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
1654	if (ret)
1655		return ret;
1656
1657	ret = devm_add_action_or_reset(dev, bno055_uninit, priv);
1658	if (ret)
1659		return ret;
1660
1661	iio_dev->channels = bno055_channels;
1662	iio_dev->num_channels = ARRAY_SIZE(bno055_channels);
1663	iio_dev->info = &bno055_info;
1664	iio_dev->modes = INDIO_DIRECT_MODE;
1665
1666	ret = devm_iio_triggered_buffer_setup(dev, iio_dev,
1667					      iio_pollfunc_store_time,
1668					      bno055_trigger_handler,
1669					      &bno055_buffer_setup_ops);
1670	if (ret)
1671		return ret;
1672
1673	ret = devm_iio_device_register(dev, iio_dev);
1674	if (ret)
1675		return ret;
1676
1677	bno055_debugfs_init(iio_dev);
1678
1679	return 0;
1680}
1681EXPORT_SYMBOL_NS_GPL(bno055_probe, IIO_BNO055);
1682
1683MODULE_AUTHOR("Andrea Merello <andrea.merello@iit.it>");
1684MODULE_DESCRIPTION("Bosch BNO055 driver");
1685MODULE_LICENSE("GPL");
1686