1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 *
8 * Inspired from: fsl-imx25-tsadc
9 *
10 */
11
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/interrupt.h>
15#include <linux/irqchip/chained_irq.h>
16#include <linux/irqdesc.h>
17#include <linux/irqdomain.h>
18#include <linux/mfd/syscon.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/property.h>
25#include <linux/regmap.h>
26#include <linux/regulator/consumer.h>
27#include <linux/slab.h>
28#include <linux/units.h>
29
30#include "stm32-adc-core.h"
31
32#define STM32_ADC_CORE_SLEEP_DELAY_MS	2000
33
34/* SYSCFG registers */
35#define STM32MP1_SYSCFG_PMCSETR		0x04
36#define STM32MP1_SYSCFG_PMCCLRR		0x44
37
38/* SYSCFG bit fields */
39#define STM32MP1_SYSCFG_ANASWVDD_MASK	BIT(9)
40
41/* SYSCFG capability flags */
42#define HAS_VBOOSTER		BIT(0)
43#define HAS_ANASWVDD		BIT(1)
44
45/**
46 * struct stm32_adc_common_regs - stm32 common registers
47 * @csr:	common status register offset
48 * @ccr:	common control register offset
49 * @eoc_msk:    array of eoc (end of conversion flag) masks in csr for adc1..n
50 * @ovr_msk:    array of ovr (overrun flag) masks in csr for adc1..n
51 * @ier:	interrupt enable register offset for each adc
52 * @eocie_msk:	end of conversion interrupt enable mask in @ier
53 */
54struct stm32_adc_common_regs {
55	u32 csr;
56	u32 ccr;
57	u32 eoc_msk[STM32_ADC_MAX_ADCS];
58	u32 ovr_msk[STM32_ADC_MAX_ADCS];
59	u32 ier;
60	u32 eocie_msk;
61};
62
63struct stm32_adc_priv;
64
65/**
66 * struct stm32_adc_priv_cfg - stm32 core compatible configuration data
67 * @regs:	common registers for all instances
68 * @clk_sel:	clock selection routine
69 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
70 * @ipid:	adc identification number
71 * @has_syscfg: SYSCFG capability flags
72 * @num_irqs:	number of interrupt lines
73 * @num_adcs:   maximum number of ADC instances in the common registers
74 */
75struct stm32_adc_priv_cfg {
76	const struct stm32_adc_common_regs *regs;
77	int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
78	u32 max_clk_rate_hz;
79	u32 ipid;
80	unsigned int has_syscfg;
81	unsigned int num_irqs;
82	unsigned int num_adcs;
83};
84
85/**
86 * struct stm32_adc_priv - stm32 ADC core private data
87 * @irq:		irq(s) for ADC block
88 * @nb_adc_max:		actual maximum number of instance per ADC block
89 * @domain:		irq domain reference
90 * @aclk:		clock reference for the analog circuitry
91 * @bclk:		bus clock common for all ADCs, depends on part used
92 * @max_clk_rate:	desired maximum clock rate
93 * @booster:		booster supply reference
94 * @vdd:		vdd supply reference
95 * @vdda:		vdda analog supply reference
96 * @vref:		regulator reference
97 * @vdd_uv:		vdd supply voltage (microvolts)
98 * @vdda_uv:		vdda supply voltage (microvolts)
99 * @cfg:		compatible configuration data
100 * @common:		common data for all ADC instances
101 * @ccr_bak:		backup CCR in low power mode
102 * @syscfg:		reference to syscon, system control registers
103 */
104struct stm32_adc_priv {
105	int				irq[STM32_ADC_MAX_ADCS];
106	unsigned int			nb_adc_max;
107	struct irq_domain		*domain;
108	struct clk			*aclk;
109	struct clk			*bclk;
110	u32				max_clk_rate;
111	struct regulator		*booster;
112	struct regulator		*vdd;
113	struct regulator		*vdda;
114	struct regulator		*vref;
115	int				vdd_uv;
116	int				vdda_uv;
117	const struct stm32_adc_priv_cfg	*cfg;
118	struct stm32_adc_common		common;
119	u32				ccr_bak;
120	struct regmap			*syscfg;
121};
122
123static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
124{
125	return container_of(com, struct stm32_adc_priv, common);
126}
127
128/* STM32F4 ADC internal common clock prescaler division ratios */
129static int stm32f4_pclk_div[] = {2, 4, 6, 8};
130
131/**
132 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
133 * @pdev: platform device
134 * @priv: stm32 ADC core private data
135 * Select clock prescaler used for analog conversions, before using ADC.
136 */
137static int stm32f4_adc_clk_sel(struct platform_device *pdev,
138			       struct stm32_adc_priv *priv)
139{
140	unsigned long rate;
141	u32 val;
142	int i;
143
144	/* stm32f4 has one clk input for analog (mandatory), enforce it here */
145	if (!priv->aclk) {
146		dev_err(&pdev->dev, "No 'adc' clock found\n");
147		return -ENOENT;
148	}
149
150	rate = clk_get_rate(priv->aclk);
151	if (!rate) {
152		dev_err(&pdev->dev, "Invalid clock rate: 0\n");
153		return -EINVAL;
154	}
155
156	for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
157		if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
158			break;
159	}
160	if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
161		dev_err(&pdev->dev, "adc clk selection failed\n");
162		return -EINVAL;
163	}
164
165	priv->common.rate = rate / stm32f4_pclk_div[i];
166	val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
167	val &= ~STM32F4_ADC_ADCPRE_MASK;
168	val |= i << STM32F4_ADC_ADCPRE_SHIFT;
169	writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
170
171	dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
172		priv->common.rate / 1000);
173
174	return 0;
175}
176
177/**
178 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
179 * @ckmode: ADC clock mode, Async or sync with prescaler.
180 * @presc: prescaler bitfield for async clock mode
181 * @div: prescaler division ratio
182 */
183struct stm32h7_adc_ck_spec {
184	u32 ckmode;
185	u32 presc;
186	int div;
187};
188
189static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
190	/* 00: CK_ADC[1..3]: Asynchronous clock modes */
191	{ 0, 0, 1 },
192	{ 0, 1, 2 },
193	{ 0, 2, 4 },
194	{ 0, 3, 6 },
195	{ 0, 4, 8 },
196	{ 0, 5, 10 },
197	{ 0, 6, 12 },
198	{ 0, 7, 16 },
199	{ 0, 8, 32 },
200	{ 0, 9, 64 },
201	{ 0, 10, 128 },
202	{ 0, 11, 256 },
203	/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
204	{ 1, 0, 1 },
205	{ 2, 0, 2 },
206	{ 3, 0, 4 },
207};
208
209static int stm32h7_adc_clk_sel(struct platform_device *pdev,
210			       struct stm32_adc_priv *priv)
211{
212	u32 ckmode, presc, val;
213	unsigned long rate;
214	int i, div, duty;
215
216	/* stm32h7 bus clock is common for all ADC instances (mandatory) */
217	if (!priv->bclk) {
218		dev_err(&pdev->dev, "No 'bus' clock found\n");
219		return -ENOENT;
220	}
221
222	/*
223	 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
224	 * So, choice is to have bus clock mandatory and adc clock optional.
225	 * If optional 'adc' clock has been found, then try to use it first.
226	 */
227	if (priv->aclk) {
228		/*
229		 * Asynchronous clock modes (e.g. ckmode == 0)
230		 * From spec: PLL output musn't exceed max rate
231		 */
232		rate = clk_get_rate(priv->aclk);
233		if (!rate) {
234			dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
235			return -EINVAL;
236		}
237
238		/* If duty is an error, kindly use at least /2 divider */
239		duty = clk_get_scaled_duty_cycle(priv->aclk, 100);
240		if (duty < 0)
241			dev_warn(&pdev->dev, "adc clock duty: %d\n", duty);
242
243		for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
244			ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
245			presc = stm32h7_adc_ckmodes_spec[i].presc;
246			div = stm32h7_adc_ckmodes_spec[i].div;
247
248			if (ckmode)
249				continue;
250
251			/*
252			 * For proper operation, clock duty cycle range is 49%
253			 * to 51%. Apply at least /2 prescaler otherwise.
254			 */
255			if (div == 1 && (duty < 49 || duty > 51))
256				continue;
257
258			if ((rate / div) <= priv->max_clk_rate)
259				goto out;
260		}
261	}
262
263	/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
264	rate = clk_get_rate(priv->bclk);
265	if (!rate) {
266		dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
267		return -EINVAL;
268	}
269
270	duty = clk_get_scaled_duty_cycle(priv->bclk, 100);
271	if (duty < 0)
272		dev_warn(&pdev->dev, "bus clock duty: %d\n", duty);
273
274	for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
275		ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
276		presc = stm32h7_adc_ckmodes_spec[i].presc;
277		div = stm32h7_adc_ckmodes_spec[i].div;
278
279		if (!ckmode)
280			continue;
281
282		if (div == 1 && (duty < 49 || duty > 51))
283			continue;
284
285		if ((rate / div) <= priv->max_clk_rate)
286			goto out;
287	}
288
289	dev_err(&pdev->dev, "adc clk selection failed\n");
290	return -EINVAL;
291
292out:
293	/* rate used later by each ADC instance to control BOOST mode */
294	priv->common.rate = rate / div;
295
296	/* Set common clock mode and prescaler */
297	val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
298	val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
299	val |= ckmode << STM32H7_CKMODE_SHIFT;
300	val |= presc << STM32H7_PRESC_SHIFT;
301	writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
302
303	dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
304		ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
305
306	return 0;
307}
308
309/* STM32F4 common registers definitions */
310static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
311	.csr = STM32F4_ADC_CSR,
312	.ccr = STM32F4_ADC_CCR,
313	.eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3 },
314	.ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3 },
315	.ier = STM32F4_ADC_CR1,
316	.eocie_msk = STM32F4_EOCIE,
317};
318
319/* STM32H7 common registers definitions */
320static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
321	.csr = STM32H7_ADC_CSR,
322	.ccr = STM32H7_ADC_CCR,
323	.eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV },
324	.ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV },
325	.ier = STM32H7_ADC_IER,
326	.eocie_msk = STM32H7_EOCIE,
327};
328
329/* STM32MP13 common registers definitions */
330static const struct stm32_adc_common_regs stm32mp13_adc_common_regs = {
331	.csr = STM32H7_ADC_CSR,
332	.ccr = STM32H7_ADC_CCR,
333	.eoc_msk = { STM32H7_EOC_MST },
334	.ovr_msk = { STM32H7_OVR_MST },
335	.ier = STM32H7_ADC_IER,
336	.eocie_msk = STM32H7_EOCIE,
337};
338
339static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
340	0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
341};
342
343static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
344					  unsigned int adc)
345{
346	u32 ier, offset = stm32_adc_offset[adc];
347
348	ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
349
350	return ier & priv->cfg->regs->eocie_msk;
351}
352
353/* ADC common interrupt for all instances */
354static void stm32_adc_irq_handler(struct irq_desc *desc)
355{
356	struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
357	struct irq_chip *chip = irq_desc_get_chip(desc);
358	int i;
359	u32 status;
360
361	chained_irq_enter(chip, desc);
362	status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
363
364	/*
365	 * End of conversion may be handled by using IRQ or DMA. There may be a
366	 * race here when two conversions complete at the same time on several
367	 * ADCs. EOC may be read 'set' for several ADCs, with:
368	 * - an ADC configured to use DMA (EOC triggers the DMA request, and
369	 *   is then automatically cleared by DR read in hardware)
370	 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
371	 *   be called in this case)
372	 * So both EOC status bit in CSR and EOCIE control bit must be checked
373	 * before invoking the interrupt handler (e.g. call ISR only for
374	 * IRQ-enabled ADCs).
375	 */
376	for (i = 0; i < priv->nb_adc_max; i++) {
377		if ((status & priv->cfg->regs->eoc_msk[i] &&
378		     stm32_adc_eoc_enabled(priv, i)) ||
379		     (status & priv->cfg->regs->ovr_msk[i]))
380			generic_handle_domain_irq(priv->domain, i);
381	}
382
383	chained_irq_exit(chip, desc);
384};
385
386static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
387				irq_hw_number_t hwirq)
388{
389	irq_set_chip_data(irq, d->host_data);
390	irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
391
392	return 0;
393}
394
395static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
396{
397	irq_set_chip_and_handler(irq, NULL, NULL);
398	irq_set_chip_data(irq, NULL);
399}
400
401static const struct irq_domain_ops stm32_adc_domain_ops = {
402	.map = stm32_adc_domain_map,
403	.unmap  = stm32_adc_domain_unmap,
404	.xlate = irq_domain_xlate_onecell,
405};
406
407static int stm32_adc_irq_probe(struct platform_device *pdev,
408			       struct stm32_adc_priv *priv)
409{
410	struct device_node *np = pdev->dev.of_node;
411	unsigned int i;
412
413	/*
414	 * Interrupt(s) must be provided, depending on the compatible:
415	 * - stm32f4/h7 shares a common interrupt line.
416	 * - stm32mp1, has one line per ADC
417	 */
418	for (i = 0; i < priv->cfg->num_irqs; i++) {
419		priv->irq[i] = platform_get_irq(pdev, i);
420		if (priv->irq[i] < 0)
421			return priv->irq[i];
422	}
423
424	priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
425					     &stm32_adc_domain_ops,
426					     priv);
427	if (!priv->domain) {
428		dev_err(&pdev->dev, "Failed to add irq domain\n");
429		return -ENOMEM;
430	}
431
432	for (i = 0; i < priv->cfg->num_irqs; i++) {
433		irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
434		irq_set_handler_data(priv->irq[i], priv);
435	}
436
437	return 0;
438}
439
440static void stm32_adc_irq_remove(struct platform_device *pdev,
441				 struct stm32_adc_priv *priv)
442{
443	int hwirq;
444	unsigned int i;
445
446	for (hwirq = 0; hwirq < priv->nb_adc_max; hwirq++)
447		irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
448	irq_domain_remove(priv->domain);
449
450	for (i = 0; i < priv->cfg->num_irqs; i++)
451		irq_set_chained_handler(priv->irq[i], NULL);
452}
453
454static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
455					     struct device *dev)
456{
457	int ret;
458
459	/*
460	 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
461	 * switches (via PCSEL) which have reduced performances when their
462	 * supply is below 2.7V (vdda by default):
463	 * - Voltage booster can be used, to get full ADC performances
464	 *   (increases power consumption).
465	 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
466	 *
467	 * Recommended settings for ANASWVDD and EN_BOOSTER:
468	 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
469	 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
470	 * - vdda >= 2.7V:               ANASWVDD = 0, EN_BOOSTER = 0 (default)
471	 */
472	if (priv->vdda_uv < 2700000) {
473		if (priv->syscfg && priv->vdd_uv > 2700000) {
474			ret = regulator_enable(priv->vdd);
475			if (ret < 0) {
476				dev_err(dev, "vdd enable failed %d\n", ret);
477				return ret;
478			}
479
480			ret = regmap_write(priv->syscfg,
481					   STM32MP1_SYSCFG_PMCSETR,
482					   STM32MP1_SYSCFG_ANASWVDD_MASK);
483			if (ret < 0) {
484				regulator_disable(priv->vdd);
485				dev_err(dev, "vdd select failed, %d\n", ret);
486				return ret;
487			}
488			dev_dbg(dev, "analog switches supplied by vdd\n");
489
490			return 0;
491		}
492
493		if (priv->booster) {
494			/*
495			 * This is optional, as this is a trade-off between
496			 * analog performance and power consumption.
497			 */
498			ret = regulator_enable(priv->booster);
499			if (ret < 0) {
500				dev_err(dev, "booster enable failed %d\n", ret);
501				return ret;
502			}
503			dev_dbg(dev, "analog switches supplied by booster\n");
504
505			return 0;
506		}
507	}
508
509	/* Fallback using vdda (default), nothing to do */
510	dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
511		priv->vdda_uv);
512
513	return 0;
514}
515
516static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
517{
518	if (priv->vdda_uv < 2700000) {
519		if (priv->syscfg && priv->vdd_uv > 2700000) {
520			regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
521				     STM32MP1_SYSCFG_ANASWVDD_MASK);
522			regulator_disable(priv->vdd);
523			return;
524		}
525		if (priv->booster)
526			regulator_disable(priv->booster);
527	}
528}
529
530static int stm32_adc_core_hw_start(struct device *dev)
531{
532	struct stm32_adc_common *common = dev_get_drvdata(dev);
533	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
534	int ret;
535
536	ret = regulator_enable(priv->vdda);
537	if (ret < 0) {
538		dev_err(dev, "vdda enable failed %d\n", ret);
539		return ret;
540	}
541
542	ret = regulator_get_voltage(priv->vdda);
543	if (ret < 0) {
544		dev_err(dev, "vdda get voltage failed, %d\n", ret);
545		goto err_vdda_disable;
546	}
547	priv->vdda_uv = ret;
548
549	ret = stm32_adc_core_switches_supply_en(priv, dev);
550	if (ret < 0)
551		goto err_vdda_disable;
552
553	ret = regulator_enable(priv->vref);
554	if (ret < 0) {
555		dev_err(dev, "vref enable failed\n");
556		goto err_switches_dis;
557	}
558
559	ret = clk_prepare_enable(priv->bclk);
560	if (ret < 0) {
561		dev_err(dev, "bus clk enable failed\n");
562		goto err_regulator_disable;
563	}
564
565	ret = clk_prepare_enable(priv->aclk);
566	if (ret < 0) {
567		dev_err(dev, "adc clk enable failed\n");
568		goto err_bclk_disable;
569	}
570
571	writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
572
573	return 0;
574
575err_bclk_disable:
576	clk_disable_unprepare(priv->bclk);
577err_regulator_disable:
578	regulator_disable(priv->vref);
579err_switches_dis:
580	stm32_adc_core_switches_supply_dis(priv);
581err_vdda_disable:
582	regulator_disable(priv->vdda);
583
584	return ret;
585}
586
587static void stm32_adc_core_hw_stop(struct device *dev)
588{
589	struct stm32_adc_common *common = dev_get_drvdata(dev);
590	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
591
592	/* Backup CCR that may be lost (depends on power state to achieve) */
593	priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
594	clk_disable_unprepare(priv->aclk);
595	clk_disable_unprepare(priv->bclk);
596	regulator_disable(priv->vref);
597	stm32_adc_core_switches_supply_dis(priv);
598	regulator_disable(priv->vdda);
599}
600
601static int stm32_adc_core_switches_probe(struct device *dev,
602					 struct stm32_adc_priv *priv)
603{
604	struct device_node *np = dev->of_node;
605	int ret;
606
607	/* Analog switches supply can be controlled by syscfg (optional) */
608	priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
609	if (IS_ERR(priv->syscfg)) {
610		ret = PTR_ERR(priv->syscfg);
611		if (ret != -ENODEV)
612			return dev_err_probe(dev, ret, "Can't probe syscfg\n");
613
614		priv->syscfg = NULL;
615	}
616
617	/* Booster can be used to supply analog switches (optional) */
618	if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
619	    of_property_read_bool(np, "booster-supply")) {
620		priv->booster = devm_regulator_get_optional(dev, "booster");
621		if (IS_ERR(priv->booster)) {
622			ret = PTR_ERR(priv->booster);
623			if (ret != -ENODEV)
624				return dev_err_probe(dev, ret, "can't get booster\n");
625
626			priv->booster = NULL;
627		}
628	}
629
630	/* Vdd can be used to supply analog switches (optional) */
631	if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
632	    of_property_read_bool(np, "vdd-supply")) {
633		priv->vdd = devm_regulator_get_optional(dev, "vdd");
634		if (IS_ERR(priv->vdd)) {
635			ret = PTR_ERR(priv->vdd);
636			if (ret != -ENODEV)
637				return dev_err_probe(dev, ret, "can't get vdd\n");
638
639			priv->vdd = NULL;
640		}
641	}
642
643	if (priv->vdd) {
644		ret = regulator_enable(priv->vdd);
645		if (ret < 0) {
646			dev_err(dev, "vdd enable failed %d\n", ret);
647			return ret;
648		}
649
650		ret = regulator_get_voltage(priv->vdd);
651		if (ret < 0) {
652			dev_err(dev, "vdd get voltage failed %d\n", ret);
653			regulator_disable(priv->vdd);
654			return ret;
655		}
656		priv->vdd_uv = ret;
657
658		regulator_disable(priv->vdd);
659	}
660
661	return 0;
662}
663
664static int stm32_adc_probe_identification(struct platform_device *pdev,
665					  struct stm32_adc_priv *priv)
666{
667	struct device_node *np = pdev->dev.of_node;
668	struct device_node *child;
669	const char *compat;
670	int ret, count = 0;
671	u32 id, val;
672
673	if (!priv->cfg->ipid)
674		return 0;
675
676	id = FIELD_GET(STM32MP1_IPIDR_MASK,
677		       readl_relaxed(priv->common.base + STM32MP1_ADC_IPDR));
678	if (id != priv->cfg->ipid) {
679		dev_err(&pdev->dev, "Unexpected IP version: 0x%x", id);
680		return -EINVAL;
681	}
682
683	for_each_child_of_node(np, child) {
684		ret = of_property_read_string(child, "compatible", &compat);
685		if (ret)
686			continue;
687		/* Count child nodes with stm32 adc compatible */
688		if (strstr(compat, "st,stm32") && strstr(compat, "adc"))
689			count++;
690	}
691
692	val = readl_relaxed(priv->common.base + STM32MP1_ADC_HWCFGR0);
693	priv->nb_adc_max = FIELD_GET(STM32MP1_ADCNUM_MASK, val);
694	if (count > priv->nb_adc_max) {
695		dev_err(&pdev->dev, "Unexpected child number: %d", count);
696		return -EINVAL;
697	}
698
699	val = readl_relaxed(priv->common.base + STM32MP1_ADC_VERR);
700	dev_dbg(&pdev->dev, "ADC version: %lu.%lu\n",
701		FIELD_GET(STM32MP1_MAJREV_MASK, val),
702		FIELD_GET(STM32MP1_MINREV_MASK, val));
703
704	return 0;
705}
706
707static int stm32_adc_probe(struct platform_device *pdev)
708{
709	struct stm32_adc_priv *priv;
710	struct device *dev = &pdev->dev;
711	struct device_node *np = pdev->dev.of_node;
712	struct resource *res;
713	u32 max_rate;
714	int ret;
715
716	if (!pdev->dev.of_node)
717		return -ENODEV;
718
719	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
720	if (!priv)
721		return -ENOMEM;
722	platform_set_drvdata(pdev, &priv->common);
723
724	priv->cfg = device_get_match_data(dev);
725	priv->nb_adc_max = priv->cfg->num_adcs;
726	spin_lock_init(&priv->common.lock);
727
728	priv->common.base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
729	if (IS_ERR(priv->common.base))
730		return PTR_ERR(priv->common.base);
731	priv->common.phys_base = res->start;
732
733	priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
734	if (IS_ERR(priv->vdda))
735		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
736				     "vdda get failed\n");
737
738	priv->vref = devm_regulator_get(&pdev->dev, "vref");
739	if (IS_ERR(priv->vref))
740		return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
741				     "vref get failed\n");
742
743	priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
744	if (IS_ERR(priv->aclk))
745		return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
746				     "Can't get 'adc' clock\n");
747
748	priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
749	if (IS_ERR(priv->bclk))
750		return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
751				     "Can't get 'bus' clock\n");
752
753	ret = stm32_adc_core_switches_probe(dev, priv);
754	if (ret)
755		return ret;
756
757	pm_runtime_get_noresume(dev);
758	pm_runtime_set_active(dev);
759	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
760	pm_runtime_use_autosuspend(dev);
761	pm_runtime_enable(dev);
762
763	ret = stm32_adc_core_hw_start(dev);
764	if (ret)
765		goto err_pm_stop;
766
767	ret = stm32_adc_probe_identification(pdev, priv);
768	if (ret < 0)
769		goto err_hw_stop;
770
771	ret = regulator_get_voltage(priv->vref);
772	if (ret < 0) {
773		dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
774		goto err_hw_stop;
775	}
776	priv->common.vref_mv = ret / 1000;
777	dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
778
779	ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
780				   &max_rate);
781	if (!ret)
782		priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
783	else
784		priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
785
786	ret = priv->cfg->clk_sel(pdev, priv);
787	if (ret < 0)
788		goto err_hw_stop;
789
790	ret = stm32_adc_irq_probe(pdev, priv);
791	if (ret < 0)
792		goto err_hw_stop;
793
794	ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
795	if (ret < 0) {
796		dev_err(&pdev->dev, "failed to populate DT children\n");
797		goto err_irq_remove;
798	}
799
800	pm_runtime_mark_last_busy(dev);
801	pm_runtime_put_autosuspend(dev);
802
803	return 0;
804
805err_irq_remove:
806	stm32_adc_irq_remove(pdev, priv);
807err_hw_stop:
808	stm32_adc_core_hw_stop(dev);
809err_pm_stop:
810	pm_runtime_disable(dev);
811	pm_runtime_set_suspended(dev);
812	pm_runtime_put_noidle(dev);
813
814	return ret;
815}
816
817static void stm32_adc_remove(struct platform_device *pdev)
818{
819	struct stm32_adc_common *common = platform_get_drvdata(pdev);
820	struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
821
822	pm_runtime_get_sync(&pdev->dev);
823	of_platform_depopulate(&pdev->dev);
824	stm32_adc_irq_remove(pdev, priv);
825	stm32_adc_core_hw_stop(&pdev->dev);
826	pm_runtime_disable(&pdev->dev);
827	pm_runtime_set_suspended(&pdev->dev);
828	pm_runtime_put_noidle(&pdev->dev);
829}
830
831static int stm32_adc_core_runtime_suspend(struct device *dev)
832{
833	stm32_adc_core_hw_stop(dev);
834
835	return 0;
836}
837
838static int stm32_adc_core_runtime_resume(struct device *dev)
839{
840	return stm32_adc_core_hw_start(dev);
841}
842
843static int stm32_adc_core_runtime_idle(struct device *dev)
844{
845	pm_runtime_mark_last_busy(dev);
846
847	return 0;
848}
849
850static DEFINE_RUNTIME_DEV_PM_OPS(stm32_adc_core_pm_ops,
851				stm32_adc_core_runtime_suspend,
852				stm32_adc_core_runtime_resume,
853				stm32_adc_core_runtime_idle);
854
855static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
856	.regs = &stm32f4_adc_common_regs,
857	.clk_sel = stm32f4_adc_clk_sel,
858	.max_clk_rate_hz = 36000000,
859	.num_irqs = 1,
860	.num_adcs = 3,
861};
862
863static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
864	.regs = &stm32h7_adc_common_regs,
865	.clk_sel = stm32h7_adc_clk_sel,
866	.max_clk_rate_hz = 36000000,
867	.has_syscfg = HAS_VBOOSTER,
868	.num_irqs = 1,
869	.num_adcs = 2,
870};
871
872static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
873	.regs = &stm32h7_adc_common_regs,
874	.clk_sel = stm32h7_adc_clk_sel,
875	.max_clk_rate_hz = 36000000,
876	.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
877	.ipid = STM32MP15_IPIDR_NUMBER,
878	.num_irqs = 2,
879};
880
881static const struct stm32_adc_priv_cfg stm32mp13_adc_priv_cfg = {
882	.regs = &stm32mp13_adc_common_regs,
883	.clk_sel = stm32h7_adc_clk_sel,
884	.max_clk_rate_hz = 75 * HZ_PER_MHZ,
885	.ipid = STM32MP13_IPIDR_NUMBER,
886	.num_irqs = 1,
887};
888
889static const struct of_device_id stm32_adc_of_match[] = {
890	{
891		.compatible = "st,stm32f4-adc-core",
892		.data = (void *)&stm32f4_adc_priv_cfg
893	}, {
894		.compatible = "st,stm32h7-adc-core",
895		.data = (void *)&stm32h7_adc_priv_cfg
896	}, {
897		.compatible = "st,stm32mp1-adc-core",
898		.data = (void *)&stm32mp1_adc_priv_cfg
899	}, {
900		.compatible = "st,stm32mp13-adc-core",
901		.data = (void *)&stm32mp13_adc_priv_cfg
902	}, {
903	},
904};
905MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
906
907static struct platform_driver stm32_adc_driver = {
908	.probe = stm32_adc_probe,
909	.remove_new = stm32_adc_remove,
910	.driver = {
911		.name = "stm32-adc-core",
912		.of_match_table = stm32_adc_of_match,
913		.pm = pm_ptr(&stm32_adc_core_pm_ops),
914	},
915};
916module_platform_driver(stm32_adc_driver);
917
918MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
919MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
920MODULE_LICENSE("GPL v2");
921MODULE_ALIAS("platform:stm32-adc-core");
922