1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  exynos_adc.c - Support for ADC in EXYNOS SoCs
4 *
5 *  8 ~ 10 channel, 10/12-bit ADC
6 *
7 *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8 */
9
10#include <linux/compiler.h>
11#include <linux/module.h>
12#include <linux/platform_device.h>
13#include <linux/interrupt.h>
14#include <linux/delay.h>
15#include <linux/errno.h>
16#include <linux/kernel.h>
17#include <linux/slab.h>
18#include <linux/io.h>
19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/of.h>
22#include <linux/of_irq.h>
23#include <linux/regulator/consumer.h>
24#include <linux/of_platform.h>
25#include <linux/err.h>
26#include <linux/input.h>
27
28#include <linux/iio/iio.h>
29#include <linux/iio/machine.h>
30#include <linux/iio/driver.h>
31#include <linux/mfd/syscon.h>
32#include <linux/regmap.h>
33
34#include <linux/platform_data/touchscreen-s3c2410.h>
35
36/* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
37#define ADC_V1_CON(x)		((x) + 0x00)
38#define ADC_V1_TSC(x)		((x) + 0x04)
39#define ADC_V1_DLY(x)		((x) + 0x08)
40#define ADC_V1_DATX(x)		((x) + 0x0C)
41#define ADC_V1_DATY(x)		((x) + 0x10)
42#define ADC_V1_UPDN(x)		((x) + 0x14)
43#define ADC_V1_INTCLR(x)	((x) + 0x18)
44#define ADC_V1_MUX(x)		((x) + 0x1c)
45#define ADC_V1_CLRINTPNDNUP(x)	((x) + 0x20)
46
47/* S3C2410 ADC registers definitions */
48#define ADC_S3C2410_MUX(x)	((x) + 0x18)
49
50/* Future ADC_V2 registers definitions */
51#define ADC_V2_CON1(x)		((x) + 0x00)
52#define ADC_V2_CON2(x)		((x) + 0x04)
53#define ADC_V2_STAT(x)		((x) + 0x08)
54#define ADC_V2_INT_EN(x)	((x) + 0x10)
55#define ADC_V2_INT_ST(x)	((x) + 0x14)
56#define ADC_V2_VER(x)		((x) + 0x20)
57
58/* Bit definitions for ADC_V1 */
59#define ADC_V1_CON_RES		(1u << 16)
60#define ADC_V1_CON_PRSCEN	(1u << 14)
61#define ADC_V1_CON_PRSCLV(x)	(((x) & 0xFF) << 6)
62#define ADC_V1_CON_STANDBY	(1u << 2)
63
64/* Bit definitions for S3C2410 ADC */
65#define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
66#define ADC_S3C2410_DATX_MASK	0x3FF
67#define ADC_S3C2416_CON_RES_SEL	(1u << 3)
68
69/* touch screen always uses channel 0 */
70#define ADC_S3C2410_MUX_TS	0
71
72/* ADCTSC Register Bits */
73#define ADC_S3C2443_TSC_UD_SEN		(1u << 8)
74#define ADC_S3C2410_TSC_YM_SEN		(1u << 7)
75#define ADC_S3C2410_TSC_YP_SEN		(1u << 6)
76#define ADC_S3C2410_TSC_XM_SEN		(1u << 5)
77#define ADC_S3C2410_TSC_XP_SEN		(1u << 4)
78#define ADC_S3C2410_TSC_PULL_UP_DISABLE	(1u << 3)
79#define ADC_S3C2410_TSC_AUTO_PST	(1u << 2)
80#define ADC_S3C2410_TSC_XY_PST(x)	(((x) & 0x3) << 0)
81
82#define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
83			 ADC_S3C2410_TSC_YP_SEN | \
84			 ADC_S3C2410_TSC_XP_SEN | \
85			 ADC_S3C2410_TSC_XY_PST(3))
86
87#define ADC_TSC_AUTOPST	(ADC_S3C2410_TSC_YM_SEN | \
88			 ADC_S3C2410_TSC_YP_SEN | \
89			 ADC_S3C2410_TSC_XP_SEN | \
90			 ADC_S3C2410_TSC_AUTO_PST | \
91			 ADC_S3C2410_TSC_XY_PST(0))
92
93/* Bit definitions for ADC_V2 */
94#define ADC_V2_CON1_SOFT_RESET	(1u << 2)
95
96#define ADC_V2_CON2_OSEL	(1u << 10)
97#define ADC_V2_CON2_ESEL	(1u << 9)
98#define ADC_V2_CON2_HIGHF	(1u << 8)
99#define ADC_V2_CON2_C_TIME(x)	(((x) & 7) << 4)
100#define ADC_V2_CON2_ACH_SEL(x)	(((x) & 0xF) << 0)
101#define ADC_V2_CON2_ACH_MASK	0xF
102
103#define MAX_ADC_V2_CHANNELS		10
104#define MAX_ADC_V1_CHANNELS		8
105#define MAX_EXYNOS3250_ADC_CHANNELS	2
106#define MAX_EXYNOS4212_ADC_CHANNELS	4
107#define MAX_S5PV210_ADC_CHANNELS	10
108
109/* Bit definitions common for ADC_V1 and ADC_V2 */
110#define ADC_CON_EN_START	(1u << 0)
111#define ADC_CON_EN_START_MASK	(0x3 << 0)
112#define ADC_DATX_PRESSED	(1u << 15)
113#define ADC_DATX_MASK		0xFFF
114#define ADC_DATY_MASK		0xFFF
115
116#define EXYNOS_ADC_TIMEOUT	(msecs_to_jiffies(100))
117
118#define EXYNOS_ADCV1_PHY_OFFSET	0x0718
119#define EXYNOS_ADCV2_PHY_OFFSET	0x0720
120
121struct exynos_adc {
122	struct exynos_adc_data	*data;
123	struct device		*dev;
124	struct input_dev	*input;
125	void __iomem		*regs;
126	struct regmap		*pmu_map;
127	struct clk		*clk;
128	struct clk		*sclk;
129	unsigned int		irq;
130	unsigned int		tsirq;
131	unsigned int		delay;
132	struct regulator	*vdd;
133
134	struct completion	completion;
135
136	u32			value;
137	unsigned int            version;
138
139	bool			ts_enabled;
140
141	bool			read_ts;
142	u32			ts_x;
143	u32			ts_y;
144
145	/*
146	 * Lock to protect from potential concurrent access to the
147	 * completion callback during a manual conversion. For this driver
148	 * a wait-callback is used to wait for the conversion result,
149	 * so in the meantime no other read request (or conversion start)
150	 * must be performed, otherwise it would interfere with the
151	 * current conversion result.
152	 */
153	struct mutex		lock;
154};
155
156struct exynos_adc_data {
157	int num_channels;
158	bool needs_sclk;
159	bool needs_adc_phy;
160	int phy_offset;
161	u32 mask;
162
163	void (*init_hw)(struct exynos_adc *info);
164	void (*exit_hw)(struct exynos_adc *info);
165	void (*clear_irq)(struct exynos_adc *info);
166	void (*start_conv)(struct exynos_adc *info, unsigned long addr);
167};
168
169static void exynos_adc_unprepare_clk(struct exynos_adc *info)
170{
171	if (info->data->needs_sclk)
172		clk_unprepare(info->sclk);
173	clk_unprepare(info->clk);
174}
175
176static int exynos_adc_prepare_clk(struct exynos_adc *info)
177{
178	int ret;
179
180	ret = clk_prepare(info->clk);
181	if (ret) {
182		dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
183		return ret;
184	}
185
186	if (info->data->needs_sclk) {
187		ret = clk_prepare(info->sclk);
188		if (ret) {
189			clk_unprepare(info->clk);
190			dev_err(info->dev,
191				"failed preparing sclk_adc clock: %d\n", ret);
192			return ret;
193		}
194	}
195
196	return 0;
197}
198
199static void exynos_adc_disable_clk(struct exynos_adc *info)
200{
201	if (info->data->needs_sclk)
202		clk_disable(info->sclk);
203	clk_disable(info->clk);
204}
205
206static int exynos_adc_enable_clk(struct exynos_adc *info)
207{
208	int ret;
209
210	ret = clk_enable(info->clk);
211	if (ret) {
212		dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
213		return ret;
214	}
215
216	if (info->data->needs_sclk) {
217		ret = clk_enable(info->sclk);
218		if (ret) {
219			clk_disable(info->clk);
220			dev_err(info->dev,
221				"failed enabling sclk_adc clock: %d\n", ret);
222			return ret;
223		}
224	}
225
226	return 0;
227}
228
229static void exynos_adc_v1_init_hw(struct exynos_adc *info)
230{
231	u32 con1;
232
233	if (info->data->needs_adc_phy)
234		regmap_write(info->pmu_map, info->data->phy_offset, 1);
235
236	/* set default prescaler values and Enable prescaler */
237	con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
238
239	/* Enable 12-bit ADC resolution */
240	con1 |= ADC_V1_CON_RES;
241	writel(con1, ADC_V1_CON(info->regs));
242
243	/* set touchscreen delay */
244	writel(info->delay, ADC_V1_DLY(info->regs));
245}
246
247static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
248{
249	u32 con;
250
251	if (info->data->needs_adc_phy)
252		regmap_write(info->pmu_map, info->data->phy_offset, 0);
253
254	con = readl(ADC_V1_CON(info->regs));
255	con |= ADC_V1_CON_STANDBY;
256	writel(con, ADC_V1_CON(info->regs));
257}
258
259static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
260{
261	writel(1, ADC_V1_INTCLR(info->regs));
262}
263
264static void exynos_adc_v1_start_conv(struct exynos_adc *info,
265				     unsigned long addr)
266{
267	u32 con1;
268
269	writel(addr, ADC_V1_MUX(info->regs));
270
271	con1 = readl(ADC_V1_CON(info->regs));
272	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
273}
274
275/* Exynos4212 and 4412 is like ADCv1 but with four channels only */
276static const struct exynos_adc_data exynos4212_adc_data = {
277	.num_channels	= MAX_EXYNOS4212_ADC_CHANNELS,
278	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
279	.needs_adc_phy	= true,
280	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
281
282	.init_hw	= exynos_adc_v1_init_hw,
283	.exit_hw	= exynos_adc_v1_exit_hw,
284	.clear_irq	= exynos_adc_v1_clear_irq,
285	.start_conv	= exynos_adc_v1_start_conv,
286};
287
288static const struct exynos_adc_data exynos_adc_v1_data = {
289	.num_channels	= MAX_ADC_V1_CHANNELS,
290	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
291	.needs_adc_phy	= true,
292	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
293
294	.init_hw	= exynos_adc_v1_init_hw,
295	.exit_hw	= exynos_adc_v1_exit_hw,
296	.clear_irq	= exynos_adc_v1_clear_irq,
297	.start_conv	= exynos_adc_v1_start_conv,
298};
299
300static const struct exynos_adc_data exynos_adc_s5pv210_data = {
301	.num_channels	= MAX_S5PV210_ADC_CHANNELS,
302	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
303
304	.init_hw	= exynos_adc_v1_init_hw,
305	.exit_hw	= exynos_adc_v1_exit_hw,
306	.clear_irq	= exynos_adc_v1_clear_irq,
307	.start_conv	= exynos_adc_v1_start_conv,
308};
309
310static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
311					  unsigned long addr)
312{
313	u32 con1;
314
315	/* Enable 12 bit ADC resolution */
316	con1 = readl(ADC_V1_CON(info->regs));
317	con1 |= ADC_S3C2416_CON_RES_SEL;
318	writel(con1, ADC_V1_CON(info->regs));
319
320	/* Select channel for S3C2416 */
321	writel(addr, ADC_S3C2410_MUX(info->regs));
322
323	con1 = readl(ADC_V1_CON(info->regs));
324	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
325}
326
327static struct exynos_adc_data const exynos_adc_s3c2416_data = {
328	.num_channels	= MAX_ADC_V1_CHANNELS,
329	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
330
331	.init_hw	= exynos_adc_v1_init_hw,
332	.exit_hw	= exynos_adc_v1_exit_hw,
333	.start_conv	= exynos_adc_s3c2416_start_conv,
334};
335
336static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
337					  unsigned long addr)
338{
339	u32 con1;
340
341	/* Select channel for S3C2433 */
342	writel(addr, ADC_S3C2410_MUX(info->regs));
343
344	con1 = readl(ADC_V1_CON(info->regs));
345	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
346}
347
348static struct exynos_adc_data const exynos_adc_s3c2443_data = {
349	.num_channels	= MAX_ADC_V1_CHANNELS,
350	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
351
352	.init_hw	= exynos_adc_v1_init_hw,
353	.exit_hw	= exynos_adc_v1_exit_hw,
354	.start_conv	= exynos_adc_s3c2443_start_conv,
355};
356
357static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
358					  unsigned long addr)
359{
360	u32 con1;
361
362	con1 = readl(ADC_V1_CON(info->regs));
363	con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
364	con1 |= ADC_S3C2410_CON_SELMUX(addr);
365	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
366}
367
368static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
369	.num_channels	= MAX_ADC_V1_CHANNELS,
370	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
371
372	.init_hw	= exynos_adc_v1_init_hw,
373	.exit_hw	= exynos_adc_v1_exit_hw,
374	.start_conv	= exynos_adc_s3c64xx_start_conv,
375};
376
377static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
378	.num_channels	= MAX_ADC_V1_CHANNELS,
379	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
380
381	.init_hw	= exynos_adc_v1_init_hw,
382	.exit_hw	= exynos_adc_v1_exit_hw,
383	.clear_irq	= exynos_adc_v1_clear_irq,
384	.start_conv	= exynos_adc_s3c64xx_start_conv,
385};
386
387static void exynos_adc_v2_init_hw(struct exynos_adc *info)
388{
389	u32 con1, con2;
390
391	if (info->data->needs_adc_phy)
392		regmap_write(info->pmu_map, info->data->phy_offset, 1);
393
394	con1 = ADC_V2_CON1_SOFT_RESET;
395	writel(con1, ADC_V2_CON1(info->regs));
396
397	con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
398		ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
399	writel(con2, ADC_V2_CON2(info->regs));
400
401	/* Enable interrupts */
402	writel(1, ADC_V2_INT_EN(info->regs));
403}
404
405static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
406{
407	u32 con;
408
409	if (info->data->needs_adc_phy)
410		regmap_write(info->pmu_map, info->data->phy_offset, 0);
411
412	con = readl(ADC_V2_CON1(info->regs));
413	con &= ~ADC_CON_EN_START;
414	writel(con, ADC_V2_CON1(info->regs));
415}
416
417static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
418{
419	writel(1, ADC_V2_INT_ST(info->regs));
420}
421
422static void exynos_adc_v2_start_conv(struct exynos_adc *info,
423				     unsigned long addr)
424{
425	u32 con1, con2;
426
427	con2 = readl(ADC_V2_CON2(info->regs));
428	con2 &= ~ADC_V2_CON2_ACH_MASK;
429	con2 |= ADC_V2_CON2_ACH_SEL(addr);
430	writel(con2, ADC_V2_CON2(info->regs));
431
432	con1 = readl(ADC_V2_CON1(info->regs));
433	writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
434}
435
436static const struct exynos_adc_data exynos_adc_v2_data = {
437	.num_channels	= MAX_ADC_V2_CHANNELS,
438	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
439	.needs_adc_phy	= true,
440	.phy_offset	= EXYNOS_ADCV2_PHY_OFFSET,
441
442	.init_hw	= exynos_adc_v2_init_hw,
443	.exit_hw	= exynos_adc_v2_exit_hw,
444	.clear_irq	= exynos_adc_v2_clear_irq,
445	.start_conv	= exynos_adc_v2_start_conv,
446};
447
448static const struct exynos_adc_data exynos3250_adc_data = {
449	.num_channels	= MAX_EXYNOS3250_ADC_CHANNELS,
450	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
451	.needs_sclk	= true,
452	.needs_adc_phy	= true,
453	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
454
455	.init_hw	= exynos_adc_v2_init_hw,
456	.exit_hw	= exynos_adc_v2_exit_hw,
457	.clear_irq	= exynos_adc_v2_clear_irq,
458	.start_conv	= exynos_adc_v2_start_conv,
459};
460
461static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
462{
463	u32 con1, con2;
464
465	con1 = ADC_V2_CON1_SOFT_RESET;
466	writel(con1, ADC_V2_CON1(info->regs));
467
468	con2 = readl(ADC_V2_CON2(info->regs));
469	con2 &= ~ADC_V2_CON2_C_TIME(7);
470	con2 |= ADC_V2_CON2_C_TIME(0);
471	writel(con2, ADC_V2_CON2(info->regs));
472
473	/* Enable interrupts */
474	writel(1, ADC_V2_INT_EN(info->regs));
475}
476
477static const struct exynos_adc_data exynos7_adc_data = {
478	.num_channels	= MAX_ADC_V1_CHANNELS,
479	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
480
481	.init_hw	= exynos_adc_exynos7_init_hw,
482	.exit_hw	= exynos_adc_v2_exit_hw,
483	.clear_irq	= exynos_adc_v2_clear_irq,
484	.start_conv	= exynos_adc_v2_start_conv,
485};
486
487static const struct of_device_id exynos_adc_match[] = {
488	{
489		.compatible = "samsung,s3c2410-adc",
490		.data = &exynos_adc_s3c24xx_data,
491	}, {
492		.compatible = "samsung,s3c2416-adc",
493		.data = &exynos_adc_s3c2416_data,
494	}, {
495		.compatible = "samsung,s3c2440-adc",
496		.data = &exynos_adc_s3c24xx_data,
497	}, {
498		.compatible = "samsung,s3c2443-adc",
499		.data = &exynos_adc_s3c2443_data,
500	}, {
501		.compatible = "samsung,s3c6410-adc",
502		.data = &exynos_adc_s3c64xx_data,
503	}, {
504		.compatible = "samsung,s5pv210-adc",
505		.data = &exynos_adc_s5pv210_data,
506	}, {
507		.compatible = "samsung,exynos4212-adc",
508		.data = &exynos4212_adc_data,
509	}, {
510		.compatible = "samsung,exynos-adc-v1",
511		.data = &exynos_adc_v1_data,
512	}, {
513		.compatible = "samsung,exynos-adc-v2",
514		.data = &exynos_adc_v2_data,
515	}, {
516		.compatible = "samsung,exynos3250-adc",
517		.data = &exynos3250_adc_data,
518	}, {
519		.compatible = "samsung,exynos7-adc",
520		.data = &exynos7_adc_data,
521	},
522	{},
523};
524MODULE_DEVICE_TABLE(of, exynos_adc_match);
525
526static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
527{
528	const struct of_device_id *match;
529
530	match = of_match_node(exynos_adc_match, pdev->dev.of_node);
531	return (struct exynos_adc_data *)match->data;
532}
533
534static int exynos_read_raw(struct iio_dev *indio_dev,
535				struct iio_chan_spec const *chan,
536				int *val,
537				int *val2,
538				long mask)
539{
540	struct exynos_adc *info = iio_priv(indio_dev);
541	unsigned long timeout;
542	int ret;
543
544	if (mask == IIO_CHAN_INFO_SCALE) {
545		ret = regulator_get_voltage(info->vdd);
546		if (ret < 0)
547			return ret;
548
549		/* Regulator voltage is in uV, but need mV */
550		*val = ret / 1000;
551		*val2 = info->data->mask;
552
553		return IIO_VAL_FRACTIONAL;
554	} else if (mask != IIO_CHAN_INFO_RAW) {
555		return -EINVAL;
556	}
557
558	mutex_lock(&info->lock);
559	reinit_completion(&info->completion);
560
561	/* Select the channel to be used and Trigger conversion */
562	if (info->data->start_conv)
563		info->data->start_conv(info, chan->address);
564
565	timeout = wait_for_completion_timeout(&info->completion,
566					      EXYNOS_ADC_TIMEOUT);
567	if (timeout == 0) {
568		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
569		if (info->data->init_hw)
570			info->data->init_hw(info);
571		ret = -ETIMEDOUT;
572	} else {
573		*val = info->value;
574		*val2 = 0;
575		ret = IIO_VAL_INT;
576	}
577
578	mutex_unlock(&info->lock);
579
580	return ret;
581}
582
583static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
584{
585	struct exynos_adc *info = iio_priv(indio_dev);
586	unsigned long timeout;
587	int ret;
588
589	mutex_lock(&info->lock);
590	info->read_ts = true;
591
592	reinit_completion(&info->completion);
593
594	writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
595	       ADC_V1_TSC(info->regs));
596
597	/* Select the ts channel to be used and Trigger conversion */
598	info->data->start_conv(info, ADC_S3C2410_MUX_TS);
599
600	timeout = wait_for_completion_timeout(&info->completion,
601					      EXYNOS_ADC_TIMEOUT);
602	if (timeout == 0) {
603		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
604		if (info->data->init_hw)
605			info->data->init_hw(info);
606		ret = -ETIMEDOUT;
607	} else {
608		*x = info->ts_x;
609		*y = info->ts_y;
610		ret = 0;
611	}
612
613	info->read_ts = false;
614	mutex_unlock(&info->lock);
615
616	return ret;
617}
618
619static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
620{
621	struct exynos_adc *info = dev_id;
622	u32 mask = info->data->mask;
623
624	/* Read value */
625	if (info->read_ts) {
626		info->ts_x = readl(ADC_V1_DATX(info->regs));
627		info->ts_y = readl(ADC_V1_DATY(info->regs));
628		writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
629	} else {
630		info->value = readl(ADC_V1_DATX(info->regs)) & mask;
631	}
632
633	/* clear irq */
634	if (info->data->clear_irq)
635		info->data->clear_irq(info);
636
637	complete(&info->completion);
638
639	return IRQ_HANDLED;
640}
641
642/*
643 * Here we (ab)use a threaded interrupt handler to stay running
644 * for as long as the touchscreen remains pressed, we report
645 * a new event with the latest data and then sleep until the
646 * next timer tick. This mirrors the behavior of the old
647 * driver, with much less code.
648 */
649static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
650{
651	struct exynos_adc *info = dev_id;
652	struct iio_dev *dev = dev_get_drvdata(info->dev);
653	u32 x, y;
654	bool pressed;
655	int ret;
656
657	while (READ_ONCE(info->ts_enabled)) {
658		ret = exynos_read_s3c64xx_ts(dev, &x, &y);
659		if (ret == -ETIMEDOUT)
660			break;
661
662		pressed = x & y & ADC_DATX_PRESSED;
663		if (!pressed) {
664			input_report_key(info->input, BTN_TOUCH, 0);
665			input_sync(info->input);
666			break;
667		}
668
669		input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
670		input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
671		input_report_key(info->input, BTN_TOUCH, 1);
672		input_sync(info->input);
673
674		usleep_range(1000, 1100);
675	}
676
677	writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
678
679	return IRQ_HANDLED;
680}
681
682static int exynos_adc_reg_access(struct iio_dev *indio_dev,
683			      unsigned reg, unsigned writeval,
684			      unsigned *readval)
685{
686	struct exynos_adc *info = iio_priv(indio_dev);
687
688	if (readval == NULL)
689		return -EINVAL;
690
691	*readval = readl(info->regs + reg);
692
693	return 0;
694}
695
696static const struct iio_info exynos_adc_iio_info = {
697	.read_raw = &exynos_read_raw,
698	.debugfs_reg_access = &exynos_adc_reg_access,
699};
700
701#define ADC_CHANNEL(_index, _id) {			\
702	.type = IIO_VOLTAGE,				\
703	.indexed = 1,					\
704	.channel = _index,				\
705	.address = _index,				\
706	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
707	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE),	\
708	.datasheet_name = _id,				\
709}
710
711static const struct iio_chan_spec exynos_adc_iio_channels[] = {
712	ADC_CHANNEL(0, "adc0"),
713	ADC_CHANNEL(1, "adc1"),
714	ADC_CHANNEL(2, "adc2"),
715	ADC_CHANNEL(3, "adc3"),
716	ADC_CHANNEL(4, "adc4"),
717	ADC_CHANNEL(5, "adc5"),
718	ADC_CHANNEL(6, "adc6"),
719	ADC_CHANNEL(7, "adc7"),
720	ADC_CHANNEL(8, "adc8"),
721	ADC_CHANNEL(9, "adc9"),
722};
723
724static int exynos_adc_remove_devices(struct device *dev, void *c)
725{
726	struct platform_device *pdev = to_platform_device(dev);
727
728	platform_device_unregister(pdev);
729
730	return 0;
731}
732
733static int exynos_adc_ts_open(struct input_dev *dev)
734{
735	struct exynos_adc *info = input_get_drvdata(dev);
736
737	WRITE_ONCE(info->ts_enabled, true);
738	enable_irq(info->tsirq);
739
740	return 0;
741}
742
743static void exynos_adc_ts_close(struct input_dev *dev)
744{
745	struct exynos_adc *info = input_get_drvdata(dev);
746
747	WRITE_ONCE(info->ts_enabled, false);
748	disable_irq(info->tsirq);
749}
750
751static int exynos_adc_ts_init(struct exynos_adc *info)
752{
753	int ret;
754
755	if (info->tsirq <= 0)
756		return -ENODEV;
757
758	info->input = input_allocate_device();
759	if (!info->input)
760		return -ENOMEM;
761
762	info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
763	info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
764
765	input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
766	input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
767
768	info->input->name = "S3C24xx TouchScreen";
769	info->input->id.bustype = BUS_HOST;
770	info->input->open = exynos_adc_ts_open;
771	info->input->close = exynos_adc_ts_close;
772
773	input_set_drvdata(info->input, info);
774
775	ret = input_register_device(info->input);
776	if (ret) {
777		input_free_device(info->input);
778		return ret;
779	}
780
781	ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
782				   IRQF_ONESHOT | IRQF_NO_AUTOEN,
783				   "touchscreen", info);
784	if (ret)
785		input_unregister_device(info->input);
786
787	return ret;
788}
789
790static int exynos_adc_probe(struct platform_device *pdev)
791{
792	struct exynos_adc *info = NULL;
793	struct device_node *np = pdev->dev.of_node;
794	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
795	struct iio_dev *indio_dev = NULL;
796	bool has_ts = false;
797	int ret;
798	int irq;
799
800	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
801	if (!indio_dev) {
802		dev_err(&pdev->dev, "failed allocating iio device\n");
803		return -ENOMEM;
804	}
805
806	info = iio_priv(indio_dev);
807
808	info->data = exynos_adc_get_data(pdev);
809	if (!info->data) {
810		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
811		return -EINVAL;
812	}
813
814	info->regs = devm_platform_ioremap_resource(pdev, 0);
815	if (IS_ERR(info->regs))
816		return PTR_ERR(info->regs);
817
818
819	if (info->data->needs_adc_phy) {
820		info->pmu_map = syscon_regmap_lookup_by_phandle(
821					pdev->dev.of_node,
822					"samsung,syscon-phandle");
823		if (IS_ERR(info->pmu_map)) {
824			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
825			return PTR_ERR(info->pmu_map);
826		}
827	}
828
829	/* leave out any TS related code if unreachable */
830	if (IS_REACHABLE(CONFIG_INPUT)) {
831		has_ts = of_property_read_bool(pdev->dev.of_node,
832					       "has-touchscreen") || pdata;
833	}
834
835	irq = platform_get_irq(pdev, 0);
836	if (irq < 0)
837		return irq;
838	info->irq = irq;
839
840	if (has_ts) {
841		irq = platform_get_irq(pdev, 1);
842		if (irq == -EPROBE_DEFER)
843			return irq;
844
845		info->tsirq = irq;
846	} else {
847		info->tsirq = -1;
848	}
849
850	info->dev = &pdev->dev;
851
852	init_completion(&info->completion);
853
854	info->clk = devm_clk_get(&pdev->dev, "adc");
855	if (IS_ERR(info->clk)) {
856		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
857							PTR_ERR(info->clk));
858		return PTR_ERR(info->clk);
859	}
860
861	if (info->data->needs_sclk) {
862		info->sclk = devm_clk_get(&pdev->dev, "sclk");
863		if (IS_ERR(info->sclk)) {
864			dev_err(&pdev->dev,
865				"failed getting sclk clock, err = %ld\n",
866				PTR_ERR(info->sclk));
867			return PTR_ERR(info->sclk);
868		}
869	}
870
871	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
872	if (IS_ERR(info->vdd))
873		return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
874				     "failed getting regulator");
875
876	ret = regulator_enable(info->vdd);
877	if (ret)
878		return ret;
879
880	ret = exynos_adc_prepare_clk(info);
881	if (ret)
882		goto err_disable_reg;
883
884	ret = exynos_adc_enable_clk(info);
885	if (ret)
886		goto err_unprepare_clk;
887
888	platform_set_drvdata(pdev, indio_dev);
889
890	indio_dev->name = dev_name(&pdev->dev);
891	indio_dev->info = &exynos_adc_iio_info;
892	indio_dev->modes = INDIO_DIRECT_MODE;
893	indio_dev->channels = exynos_adc_iio_channels;
894	indio_dev->num_channels = info->data->num_channels;
895
896	mutex_init(&info->lock);
897
898	ret = request_irq(info->irq, exynos_adc_isr,
899					0, dev_name(&pdev->dev), info);
900	if (ret < 0) {
901		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
902							info->irq);
903		goto err_disable_clk;
904	}
905
906	ret = iio_device_register(indio_dev);
907	if (ret)
908		goto err_irq;
909
910	if (info->data->init_hw)
911		info->data->init_hw(info);
912
913	if (pdata)
914		info->delay = pdata->delay;
915	else
916		info->delay = 10000;
917
918	if (has_ts)
919		ret = exynos_adc_ts_init(info);
920	if (ret)
921		goto err_iio;
922
923	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
924	if (ret < 0) {
925		dev_err(&pdev->dev, "failed adding child nodes\n");
926		goto err_of_populate;
927	}
928
929	return 0;
930
931err_of_populate:
932	device_for_each_child(&indio_dev->dev, NULL,
933				exynos_adc_remove_devices);
934	if (has_ts) {
935		input_unregister_device(info->input);
936		free_irq(info->tsirq, info);
937	}
938err_iio:
939	iio_device_unregister(indio_dev);
940err_irq:
941	free_irq(info->irq, info);
942err_disable_clk:
943	if (info->data->exit_hw)
944		info->data->exit_hw(info);
945	exynos_adc_disable_clk(info);
946err_unprepare_clk:
947	exynos_adc_unprepare_clk(info);
948err_disable_reg:
949	regulator_disable(info->vdd);
950	return ret;
951}
952
953static void exynos_adc_remove(struct platform_device *pdev)
954{
955	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
956	struct exynos_adc *info = iio_priv(indio_dev);
957
958	if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
959		free_irq(info->tsirq, info);
960		input_unregister_device(info->input);
961	}
962	device_for_each_child(&indio_dev->dev, NULL,
963				exynos_adc_remove_devices);
964	iio_device_unregister(indio_dev);
965	free_irq(info->irq, info);
966	if (info->data->exit_hw)
967		info->data->exit_hw(info);
968	exynos_adc_disable_clk(info);
969	exynos_adc_unprepare_clk(info);
970	regulator_disable(info->vdd);
971}
972
973static int exynos_adc_suspend(struct device *dev)
974{
975	struct iio_dev *indio_dev = dev_get_drvdata(dev);
976	struct exynos_adc *info = iio_priv(indio_dev);
977
978	if (info->data->exit_hw)
979		info->data->exit_hw(info);
980	exynos_adc_disable_clk(info);
981	regulator_disable(info->vdd);
982
983	return 0;
984}
985
986static int exynos_adc_resume(struct device *dev)
987{
988	struct iio_dev *indio_dev = dev_get_drvdata(dev);
989	struct exynos_adc *info = iio_priv(indio_dev);
990	int ret;
991
992	ret = regulator_enable(info->vdd);
993	if (ret)
994		return ret;
995
996	ret = exynos_adc_enable_clk(info);
997	if (ret)
998		return ret;
999
1000	if (info->data->init_hw)
1001		info->data->init_hw(info);
1002
1003	return 0;
1004}
1005
1006static DEFINE_SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops, exynos_adc_suspend,
1007				exynos_adc_resume);
1008
1009static struct platform_driver exynos_adc_driver = {
1010	.probe		= exynos_adc_probe,
1011	.remove_new	= exynos_adc_remove,
1012	.driver		= {
1013		.name	= "exynos-adc",
1014		.of_match_table = exynos_adc_match,
1015		.pm	= pm_sleep_ptr(&exynos_adc_pm_ops),
1016	},
1017};
1018
1019module_platform_driver(exynos_adc_driver);
1020
1021MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1022MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1023MODULE_LICENSE("GPL v2");
1024