1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MEMSensing digital 3-Axis accelerometer
4 *
5 * MSA311 is a tri-axial, low-g accelerometer with I2C digital output for
6 * sensitivity consumer applications. It has dynamic user-selectable full
7 * scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements
8 * with output data rates from 1Hz to 1000Hz.
9 *
10 * MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package
11 * and is guaranteed to operate over -40C to +85C.
12 *
13 * This driver supports following MSA311 features:
14 *     - IIO interface
15 *     - Different power modes: NORMAL, SUSPEND
16 *     - ODR (Output Data Rate) selection
17 *     - Scale selection
18 *     - IIO triggered buffer
19 *     - NEW_DATA interrupt + trigger
20 *
21 * Below features to be done:
22 *     - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL
23 *     - Low Power mode
24 *
25 * Copyright (c) 2022, SberDevices. All Rights Reserved.
26 *
27 * Author: Dmitry Rokosov <ddrokosov@sberdevices.ru>
28 */
29
30#include <linux/i2c.h>
31#include <linux/mod_devicetable.h>
32#include <linux/module.h>
33#include <linux/pm.h>
34#include <linux/pm_runtime.h>
35#include <linux/regmap.h>
36#include <linux/string_choices.h>
37#include <linux/units.h>
38
39#include <linux/iio/buffer.h>
40#include <linux/iio/iio.h>
41#include <linux/iio/sysfs.h>
42#include <linux/iio/trigger.h>
43#include <linux/iio/trigger_consumer.h>
44#include <linux/iio/triggered_buffer.h>
45
46#define MSA311_SOFT_RESET_REG     0x00
47#define MSA311_PARTID_REG         0x01
48#define MSA311_ACC_X_REG          0x02
49#define MSA311_ACC_Y_REG          0x04
50#define MSA311_ACC_Z_REG          0x06
51#define MSA311_MOTION_INT_REG     0x09
52#define MSA311_DATA_INT_REG       0x0A
53#define MSA311_TAP_ACTIVE_STS_REG 0x0B
54#define MSA311_ORIENT_STS_REG     0x0C
55#define MSA311_RANGE_REG          0x0F
56#define MSA311_ODR_REG            0x10
57#define MSA311_PWR_MODE_REG       0x11
58#define MSA311_SWAP_POLARITY_REG  0x12
59#define MSA311_INT_SET_0_REG      0x16
60#define MSA311_INT_SET_1_REG      0x17
61#define MSA311_INT_MAP_0_REG      0x19
62#define MSA311_INT_MAP_1_REG      0x1A
63#define MSA311_INT_CONFIG_REG     0x20
64#define MSA311_INT_LATCH_REG      0x21
65#define MSA311_FREEFALL_DUR_REG   0x22
66#define MSA311_FREEFALL_TH_REG    0x23
67#define MSA311_FREEFALL_HY_REG    0x24
68#define MSA311_ACTIVE_DUR_REG     0x27
69#define MSA311_ACTIVE_TH_REG      0x28
70#define MSA311_TAP_DUR_REG        0x2A
71#define MSA311_TAP_TH_REG         0x2B
72#define MSA311_ORIENT_HY_REG      0x2C
73#define MSA311_Z_BLOCK_REG        0x2D
74#define MSA311_OFFSET_X_REG       0x38
75#define MSA311_OFFSET_Y_REG       0x39
76#define MSA311_OFFSET_Z_REG       0x3A
77
78enum msa311_fields {
79	/* Soft_Reset */
80	F_SOFT_RESET_I2C, F_SOFT_RESET_SPI,
81	/* Motion_Interrupt */
82	F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT,
83	/* Data_Interrupt */
84	F_NEW_DATA_INT,
85	/* Tap_Active_Status */
86	F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN,
87	F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z,
88	/* Orientation_Status */
89	F_ORIENT_Z, F_ORIENT_X_Y,
90	/* Range */
91	F_FS,
92	/* ODR */
93	F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR,
94	/* Power Mode/Bandwidth */
95	F_PWR_MODE, F_LOW_POWER_BW,
96	/* Swap_Polarity */
97	F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP,
98	/* Int_Set_0 */
99	F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z,
100	F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X,
101	/* Int_Set_1 */
102	F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN,
103	/* Int_Map_0 */
104	F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE,
105	F_INT1_FREEFALL,
106	/* Int_Map_1 */
107	F_INT1_NEW_DATA,
108	/* Int_Config */
109	F_INT1_OD, F_INT1_LVL,
110	/* Int_Latch */
111	F_RESET_INT, F_LATCH_INT,
112	/* Freefall_Hy */
113	F_FREEFALL_MODE, F_FREEFALL_HY,
114	/* Active_Dur */
115	F_ACTIVE_DUR,
116	/* Tap_Dur */
117	F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR,
118	/* Tap_Th */
119	F_TAP_TH,
120	/* Orient_Hy */
121	F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE,
122	/* Z_Block */
123	F_Z_BLOCKING,
124	/* End of register map */
125	F_MAX_FIELDS,
126};
127
128static const struct reg_field msa311_reg_fields[] = {
129	/* Soft_Reset */
130	[F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2),
131	[F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5),
132	/* Motion_Interrupt */
133	[F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6),
134	[F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5),
135	[F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4),
136	[F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2),
137	[F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0),
138	/* Data_Interrupt */
139	[F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0),
140	/* Tap_Active_Status */
141	[F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7),
142	[F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6),
143	[F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5),
144	[F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4),
145	[F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3),
146	[F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2),
147	[F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1),
148	[F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0),
149	/* Orientation_Status */
150	[F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6),
151	[F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5),
152	/* Range */
153	[F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1),
154	/* ODR */
155	[F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7),
156	[F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6),
157	[F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5),
158	[F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3),
159	/* Power Mode/Bandwidth */
160	[F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7),
161	[F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4),
162	/* Swap_Polarity */
163	[F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3),
164	[F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2),
165	[F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1),
166	[F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0),
167	/* Int_Set_0 */
168	[F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6),
169	[F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5),
170	[F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4),
171	[F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2),
172	[F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1),
173	[F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0),
174	/* Int_Set_1 */
175	[F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4),
176	[F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3),
177	/* Int_Map_0 */
178	[F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6),
179	[F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5),
180	[F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4),
181	[F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2),
182	[F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0),
183	/* Int_Map_1 */
184	[F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0),
185	/* Int_Config */
186	[F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1),
187	[F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0),
188	/* Int_Latch */
189	[F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7),
190	[F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3),
191	/* Freefall_Hy */
192	[F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2),
193	[F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1),
194	/* Active_Dur */
195	[F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1),
196	/* Tap_Dur */
197	[F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7),
198	[F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6),
199	[F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2),
200	/* Tap_Th */
201	[F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4),
202	/* Orient_Hy */
203	[F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6),
204	[F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3),
205	[F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1),
206	/* Z_Block */
207	[F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3),
208};
209
210#define MSA311_WHO_AM_I 0x13
211
212/*
213 * Possible Full Scale ranges
214 *
215 * Axis data is 12-bit signed value, so
216 *
217 * fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580
218 * fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160
219 * fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320
220 * fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641
221 */
222enum {
223	MSA311_FS_2G,
224	MSA311_FS_4G,
225	MSA311_FS_8G,
226	MSA311_FS_16G,
227};
228
229struct iio_decimal_fract {
230	int integral;
231	int microfract;
232};
233
234static const struct iio_decimal_fract msa311_fs_table[] = {
235	{0, 9580}, {0, 19160}, {0, 38320}, {0, 76641},
236};
237
238/* Possible Output Data Rate values */
239enum {
240	MSA311_ODR_1_HZ,
241	MSA311_ODR_1_95_HZ,
242	MSA311_ODR_3_9_HZ,
243	MSA311_ODR_7_81_HZ,
244	MSA311_ODR_15_63_HZ,
245	MSA311_ODR_31_25_HZ,
246	MSA311_ODR_62_5_HZ,
247	MSA311_ODR_125_HZ,
248	MSA311_ODR_250_HZ,
249	MSA311_ODR_500_HZ,
250	MSA311_ODR_1000_HZ,
251};
252
253static const struct iio_decimal_fract msa311_odr_table[] = {
254	{1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000},
255	{31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0},
256};
257
258/* All supported power modes */
259#define MSA311_PWR_MODE_NORMAL  0b00
260#define MSA311_PWR_MODE_LOW     0b01
261#define MSA311_PWR_MODE_UNKNOWN 0b10
262#define MSA311_PWR_MODE_SUSPEND 0b11
263static const char * const msa311_pwr_modes[] = {
264	[MSA311_PWR_MODE_NORMAL] = "normal",
265	[MSA311_PWR_MODE_LOW] = "low",
266	[MSA311_PWR_MODE_UNKNOWN] = "unknown",
267	[MSA311_PWR_MODE_SUSPEND] = "suspend",
268};
269
270/* Autosuspend delay */
271#define MSA311_PWR_SLEEP_DELAY_MS 2000
272
273/* Possible INT1 types and levels */
274enum {
275	MSA311_INT1_OD_PUSH_PULL,
276	MSA311_INT1_OD_OPEN_DRAIN,
277};
278
279enum {
280	MSA311_INT1_LVL_LOW,
281	MSA311_INT1_LVL_HIGH,
282};
283
284/* Latch INT modes */
285#define MSA311_LATCH_INT_NOT_LATCHED 0b0000
286#define MSA311_LATCH_INT_250MS       0b0001
287#define MSA311_LATCH_INT_500MS       0b0010
288#define MSA311_LATCH_INT_1S          0b0011
289#define MSA311_LATCH_INT_2S          0b0100
290#define MSA311_LATCH_INT_4S          0b0101
291#define MSA311_LATCH_INT_8S          0b0110
292#define MSA311_LATCH_INT_1MS         0b1010
293#define MSA311_LATCH_INT_2MS         0b1011
294#define MSA311_LATCH_INT_25MS        0b1100
295#define MSA311_LATCH_INT_50MS        0b1101
296#define MSA311_LATCH_INT_100MS       0b1110
297#define MSA311_LATCH_INT_LATCHED     0b0111
298
299static const struct regmap_range msa311_readonly_registers[] = {
300	regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG),
301};
302
303static const struct regmap_access_table msa311_writeable_table = {
304	.no_ranges = msa311_readonly_registers,
305	.n_no_ranges = ARRAY_SIZE(msa311_readonly_registers),
306};
307
308static const struct regmap_range msa311_writeonly_registers[] = {
309	regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG),
310};
311
312static const struct regmap_access_table msa311_readable_table = {
313	.no_ranges = msa311_writeonly_registers,
314	.n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers),
315};
316
317static const struct regmap_range msa311_volatile_registers[] = {
318	regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG),
319};
320
321static const struct regmap_access_table msa311_volatile_table = {
322	.yes_ranges = msa311_volatile_registers,
323	.n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers),
324};
325
326static const struct regmap_config msa311_regmap_config = {
327	.name = "msa311",
328	.reg_bits = 8,
329	.val_bits = 8,
330	.max_register = MSA311_OFFSET_Z_REG,
331	.wr_table = &msa311_writeable_table,
332	.rd_table = &msa311_readable_table,
333	.volatile_table = &msa311_volatile_table,
334	.cache_type = REGCACHE_RBTREE,
335};
336
337#define MSA311_GENMASK(field) ({                \
338	typeof(&(msa311_reg_fields)[0]) _field; \
339	_field = &msa311_reg_fields[(field)];   \
340	GENMASK(_field->msb, _field->lsb);      \
341})
342
343/**
344 * struct msa311_priv - MSA311 internal private state
345 * @regs: Underlying I2C bus adapter used to abstract slave
346 *        register accesses
347 * @fields: Abstract objects for each registers fields access
348 * @dev: Device handler associated with appropriate bus client
349 * @lock: Protects msa311 device state between setup and data access routines
350 *        (power transitions, samp_freq/scale tune, retrieving axes data, etc)
351 * @chip_name: Chip name in the format "msa311-%02x" % partid
352 * @new_data_trig: Optional NEW_DATA interrupt driven trigger used
353 *                 to notify external consumers a new sample is ready
354 */
355struct msa311_priv {
356	struct regmap *regs;
357	struct regmap_field *fields[F_MAX_FIELDS];
358
359	struct device *dev;
360	struct mutex lock;
361	char *chip_name;
362
363	struct iio_trigger *new_data_trig;
364};
365
366enum msa311_si {
367	MSA311_SI_X,
368	MSA311_SI_Y,
369	MSA311_SI_Z,
370	MSA311_SI_TIMESTAMP,
371};
372
373#define MSA311_ACCEL_CHANNEL(axis) {                                        \
374	.type = IIO_ACCEL,                                                  \
375	.modified = 1,                                                      \
376	.channel2 = IIO_MOD_##axis,                                         \
377	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                       \
378	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |              \
379				    BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
380	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) |    \
381					      BIT(IIO_CHAN_INFO_SAMP_FREQ), \
382	.scan_index = MSA311_SI_##axis,                                     \
383	.scan_type = {                                                      \
384		.sign = 's',                                                \
385		.realbits = 12,                                             \
386		.storagebits = 16,                                          \
387		.shift = 4,                                                 \
388		.endianness = IIO_LE,                                       \
389	},                                                                  \
390	.datasheet_name = "ACC_"#axis,                                      \
391}
392
393static const struct iio_chan_spec msa311_channels[] = {
394	MSA311_ACCEL_CHANNEL(X),
395	MSA311_ACCEL_CHANNEL(Y),
396	MSA311_ACCEL_CHANNEL(Z),
397	IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP),
398};
399
400/**
401 * msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel
402 * @msa311: MSA311 internal private state
403 * @odr: output ODR value
404 *
405 * This function should be called under msa311->lock.
406 *
407 * Return: 0 on success, -ERRNO in other failures
408 */
409static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr)
410{
411	int err;
412
413	err = regmap_field_read(msa311->fields[F_ODR], odr);
414	if (err)
415		return err;
416
417	/*
418	 * Filter the same 1000Hz ODR register values based on datasheet info.
419	 * ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010
420	 * all the time.
421	 */
422	if (*odr > MSA311_ODR_1000_HZ)
423		*odr = MSA311_ODR_1000_HZ;
424
425	return 0;
426}
427
428/**
429 * msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel
430 * @msa311: MSA311 internal private state
431 * @odr: requested ODR value
432 *
433 * This function should be called under msa311->lock. Possible ODR values:
434 *     - 1Hz (not available in normal mode)
435 *     - 1.95Hz (not available in normal mode)
436 *     - 3.9Hz
437 *     - 7.81Hz
438 *     - 15.63Hz
439 *     - 31.25Hz
440 *     - 62.5Hz
441 *     - 125Hz
442 *     - 250Hz
443 *     - 500Hz
444 *     - 1000Hz
445 *
446 * Return: 0 on success, -EINVAL for bad ODR value in the certain power mode,
447 *         -ERRNO in other failures
448 */
449static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr)
450{
451	struct device *dev = msa311->dev;
452	unsigned int pwr_mode;
453	bool good_odr;
454	int err;
455
456	err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode);
457	if (err)
458		return err;
459
460	/* Filter bad ODR values */
461	if (pwr_mode == MSA311_PWR_MODE_NORMAL)
462		good_odr = (odr > MSA311_ODR_1_95_HZ);
463	else
464		good_odr = false;
465
466	if (!good_odr) {
467		dev_err(dev,
468			"can't set odr %u.%06uHz, not available in %s mode\n",
469			msa311_odr_table[odr].integral,
470			msa311_odr_table[odr].microfract,
471			msa311_pwr_modes[pwr_mode]);
472		return -EINVAL;
473	}
474
475	return regmap_field_write(msa311->fields[F_ODR], odr);
476}
477
478/**
479 * msa311_wait_for_next_data() - Wait next accel data available after resume
480 * @msa311: MSA311 internal private state
481 *
482 * Return: 0 on success, -EINTR if msleep() was interrupted,
483 *         -ERRNO in other failures
484 */
485static int msa311_wait_for_next_data(struct msa311_priv *msa311)
486{
487	static const unsigned int unintr_thresh_ms = 20;
488	struct device *dev = msa311->dev;
489	unsigned long freq_uhz;
490	unsigned long wait_ms;
491	unsigned int odr;
492	int err;
493
494	err = msa311_get_odr(msa311, &odr);
495	if (err) {
496		dev_err(dev, "can't get actual frequency (%pe)\n",
497			ERR_PTR(err));
498		return err;
499	}
500
501	/*
502	 * After msa311 resuming is done, we need to wait for data
503	 * to be refreshed by accel logic.
504	 * A certain timeout is calculated based on the current ODR value.
505	 * If requested timeout isn't so long (let's assume 20ms),
506	 * we can wait for next data in uninterruptible sleep.
507	 */
508	freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ +
509		   msa311_odr_table[odr].microfract;
510	wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC;
511
512	if (wait_ms < unintr_thresh_ms)
513		usleep_range(wait_ms * USEC_PER_MSEC,
514			     unintr_thresh_ms * USEC_PER_MSEC);
515	else if (msleep_interruptible(wait_ms))
516		return -EINTR;
517
518	return 0;
519}
520
521/**
522 * msa311_set_pwr_mode() - Install certain MSA311 power mode
523 * @msa311: MSA311 internal private state
524 * @mode: Power mode can be equal to NORMAL or SUSPEND
525 *
526 * This function should be called under msa311->lock.
527 *
528 * Return: 0 on success, -ERRNO on failure
529 */
530static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode)
531{
532	struct device *dev = msa311->dev;
533	unsigned int prev_mode;
534	int err;
535
536	if (mode >= ARRAY_SIZE(msa311_pwr_modes))
537		return -EINVAL;
538
539	dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]);
540
541	err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode);
542	if (err)
543		return err;
544
545	err = regmap_field_write(msa311->fields[F_PWR_MODE], mode);
546	if (err)
547		return err;
548
549	/* Wait actual data if we wake up */
550	if (prev_mode == MSA311_PWR_MODE_SUSPEND &&
551	    mode == MSA311_PWR_MODE_NORMAL)
552		return msa311_wait_for_next_data(msa311);
553
554	return 0;
555}
556
557/**
558 * msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec
559 * @msa311: MSA311 internal private state
560 * @chan: IIO channel specification
561 * @axis: Output accel axis data for requested IIO channel spec
562 *
563 * This function should be called under msa311->lock.
564 *
565 * Return: 0 on success, -EINVAL for unknown IIO channel specification,
566 *         -ERRNO in other failures
567 */
568static int msa311_get_axis(struct msa311_priv *msa311,
569			   const struct iio_chan_spec * const chan,
570			   __le16 *axis)
571{
572	struct device *dev = msa311->dev;
573	unsigned int axis_reg;
574
575	if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) {
576		dev_err(dev, "invalid scan_index value [%d]\n",
577			chan->scan_index);
578		return -EINVAL;
579	}
580
581	/* Axes data layout has 2 byte gap for each axis starting from X axis */
582	axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1);
583
584	return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis));
585}
586
587static int msa311_read_raw_data(struct iio_dev *indio_dev,
588				struct iio_chan_spec const *chan,
589				int *val, int *val2)
590{
591	struct msa311_priv *msa311 = iio_priv(indio_dev);
592	struct device *dev = msa311->dev;
593	__le16 axis;
594	int err;
595
596	err = pm_runtime_resume_and_get(dev);
597	if (err)
598		return err;
599
600	err = iio_device_claim_direct_mode(indio_dev);
601	if (err)
602		return err;
603
604	mutex_lock(&msa311->lock);
605	err = msa311_get_axis(msa311, chan, &axis);
606	mutex_unlock(&msa311->lock);
607
608	iio_device_release_direct_mode(indio_dev);
609
610	pm_runtime_mark_last_busy(dev);
611	pm_runtime_put_autosuspend(dev);
612
613	if (err) {
614		dev_err(dev, "can't get axis %s (%pe)\n",
615			chan->datasheet_name, ERR_PTR(err));
616		return err;
617	}
618
619	/*
620	 * Axis data format is:
621	 * ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4]
622	 */
623	*val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift,
624			     chan->scan_type.realbits - 1);
625
626	return IIO_VAL_INT;
627}
628
629static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2)
630{
631	struct msa311_priv *msa311 = iio_priv(indio_dev);
632	struct device *dev = msa311->dev;
633	unsigned int fs;
634	int err;
635
636	mutex_lock(&msa311->lock);
637	err = regmap_field_read(msa311->fields[F_FS], &fs);
638	mutex_unlock(&msa311->lock);
639	if (err) {
640		dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err));
641		return err;
642	}
643
644	*val = msa311_fs_table[fs].integral;
645	*val2 = msa311_fs_table[fs].microfract;
646
647	return IIO_VAL_INT_PLUS_MICRO;
648}
649
650static int msa311_read_samp_freq(struct iio_dev *indio_dev,
651				 int *val, int *val2)
652{
653	struct msa311_priv *msa311 = iio_priv(indio_dev);
654	struct device *dev = msa311->dev;
655	unsigned int odr;
656	int err;
657
658	mutex_lock(&msa311->lock);
659	err = msa311_get_odr(msa311, &odr);
660	mutex_unlock(&msa311->lock);
661	if (err) {
662		dev_err(dev, "can't get actual frequency (%pe)\n",
663			ERR_PTR(err));
664		return err;
665	}
666
667	*val = msa311_odr_table[odr].integral;
668	*val2 = msa311_odr_table[odr].microfract;
669
670	return IIO_VAL_INT_PLUS_MICRO;
671}
672
673static int msa311_read_raw(struct iio_dev *indio_dev,
674			   struct iio_chan_spec const *chan,
675			   int *val, int *val2, long mask)
676{
677	switch (mask) {
678	case IIO_CHAN_INFO_RAW:
679		return msa311_read_raw_data(indio_dev, chan, val, val2);
680
681	case IIO_CHAN_INFO_SCALE:
682		return msa311_read_scale(indio_dev, val, val2);
683
684	case IIO_CHAN_INFO_SAMP_FREQ:
685		return msa311_read_samp_freq(indio_dev, val, val2);
686
687	default:
688		return -EINVAL;
689	}
690}
691
692static int msa311_read_avail(struct iio_dev *indio_dev,
693			     struct iio_chan_spec const *chan,
694			     const int **vals, int *type,
695			     int *length, long mask)
696{
697	switch (mask) {
698	case IIO_CHAN_INFO_SAMP_FREQ:
699		*vals = (int *)msa311_odr_table;
700		*type = IIO_VAL_INT_PLUS_MICRO;
701		/* ODR value has 2 ints (integer and fractional parts) */
702		*length = ARRAY_SIZE(msa311_odr_table) * 2;
703		return IIO_AVAIL_LIST;
704
705	case IIO_CHAN_INFO_SCALE:
706		*vals = (int *)msa311_fs_table;
707		*type = IIO_VAL_INT_PLUS_MICRO;
708		/* FS value has 2 ints (integer and fractional parts) */
709		*length = ARRAY_SIZE(msa311_fs_table) * 2;
710		return IIO_AVAIL_LIST;
711
712	default:
713		return -EINVAL;
714	}
715}
716
717static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2)
718{
719	struct msa311_priv *msa311 = iio_priv(indio_dev);
720	struct device *dev = msa311->dev;
721	unsigned int fs;
722	int err;
723
724	/* We do not have fs >= 1, so skip such values */
725	if (val)
726		return 0;
727
728	err = pm_runtime_resume_and_get(dev);
729	if (err)
730		return err;
731
732	err = -EINVAL;
733	for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++)
734		/* Do not check msa311_fs_table[fs].integral, it's always 0 */
735		if (val2 == msa311_fs_table[fs].microfract) {
736			mutex_lock(&msa311->lock);
737			err = regmap_field_write(msa311->fields[F_FS], fs);
738			mutex_unlock(&msa311->lock);
739			break;
740		}
741
742	pm_runtime_mark_last_busy(dev);
743	pm_runtime_put_autosuspend(dev);
744
745	if (err)
746		dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err));
747
748	return err;
749}
750
751static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2)
752{
753	struct msa311_priv *msa311 = iio_priv(indio_dev);
754	struct device *dev = msa311->dev;
755	unsigned int odr;
756	int err;
757
758	err = pm_runtime_resume_and_get(dev);
759	if (err)
760		return err;
761
762	/*
763	 * Sampling frequency changing is prohibited when buffer mode is
764	 * enabled, because sometimes MSA311 chip returns outliers during
765	 * frequency values growing up in the read operation moment.
766	 */
767	err = iio_device_claim_direct_mode(indio_dev);
768	if (err)
769		return err;
770
771	err = -EINVAL;
772	for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++)
773		if (val == msa311_odr_table[odr].integral &&
774		    val2 == msa311_odr_table[odr].microfract) {
775			mutex_lock(&msa311->lock);
776			err = msa311_set_odr(msa311, odr);
777			mutex_unlock(&msa311->lock);
778			break;
779		}
780
781	iio_device_release_direct_mode(indio_dev);
782
783	pm_runtime_mark_last_busy(dev);
784	pm_runtime_put_autosuspend(dev);
785
786	if (err)
787		dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err));
788
789	return err;
790}
791
792static int msa311_write_raw(struct iio_dev *indio_dev,
793			    struct iio_chan_spec const *chan,
794			    int val, int val2, long mask)
795{
796	switch (mask) {
797	case IIO_CHAN_INFO_SCALE:
798		return msa311_write_scale(indio_dev, val, val2);
799
800	case IIO_CHAN_INFO_SAMP_FREQ:
801		return msa311_write_samp_freq(indio_dev, val, val2);
802
803	default:
804		return -EINVAL;
805	}
806}
807
808static int msa311_debugfs_reg_access(struct iio_dev *indio_dev,
809				     unsigned int reg, unsigned int writeval,
810				     unsigned int *readval)
811{
812	struct msa311_priv *msa311 = iio_priv(indio_dev);
813	struct device *dev = msa311->dev;
814	int err;
815
816	if (reg > regmap_get_max_register(msa311->regs))
817		return -EINVAL;
818
819	err = pm_runtime_resume_and_get(dev);
820	if (err)
821		return err;
822
823	mutex_lock(&msa311->lock);
824
825	if (readval)
826		err = regmap_read(msa311->regs, reg, readval);
827	else
828		err = regmap_write(msa311->regs, reg, writeval);
829
830	mutex_unlock(&msa311->lock);
831
832	pm_runtime_mark_last_busy(dev);
833	pm_runtime_put_autosuspend(dev);
834
835	if (err)
836		dev_err(dev, "can't %s register %u from debugfs (%pe)\n",
837			str_read_write(readval), reg, ERR_PTR(err));
838
839	return err;
840}
841
842static int msa311_buffer_preenable(struct iio_dev *indio_dev)
843{
844	struct msa311_priv *msa311 = iio_priv(indio_dev);
845	struct device *dev = msa311->dev;
846
847	return pm_runtime_resume_and_get(dev);
848}
849
850static int msa311_buffer_postdisable(struct iio_dev *indio_dev)
851{
852	struct msa311_priv *msa311 = iio_priv(indio_dev);
853	struct device *dev = msa311->dev;
854
855	pm_runtime_mark_last_busy(dev);
856	pm_runtime_put_autosuspend(dev);
857
858	return 0;
859}
860
861static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state)
862{
863	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
864	struct msa311_priv *msa311 = iio_priv(indio_dev);
865	struct device *dev = msa311->dev;
866	int err;
867
868	mutex_lock(&msa311->lock);
869	err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state);
870	mutex_unlock(&msa311->lock);
871	if (err)
872		dev_err(dev,
873			"can't %s buffer due to new_data_int failure (%pe)\n",
874			str_enable_disable(state), ERR_PTR(err));
875
876	return err;
877}
878
879static int msa311_validate_device(struct iio_trigger *trig,
880				  struct iio_dev *indio_dev)
881{
882	return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL;
883}
884
885static irqreturn_t msa311_buffer_thread(int irq, void *p)
886{
887	struct iio_poll_func *pf = p;
888	struct msa311_priv *msa311 = iio_priv(pf->indio_dev);
889	struct iio_dev *indio_dev = pf->indio_dev;
890	const struct iio_chan_spec *chan;
891	struct device *dev = msa311->dev;
892	int bit, err, i = 0;
893	__le16 axis;
894	struct {
895		__le16 channels[MSA311_SI_Z + 1];
896		s64 ts __aligned(8);
897	} buf;
898
899	memset(&buf, 0, sizeof(buf));
900
901	mutex_lock(&msa311->lock);
902
903	for_each_set_bit(bit, indio_dev->active_scan_mask,
904			 indio_dev->masklength) {
905		chan = &msa311_channels[bit];
906
907		err = msa311_get_axis(msa311, chan, &axis);
908		if (err) {
909			mutex_unlock(&msa311->lock);
910			dev_err(dev, "can't get axis %s (%pe)\n",
911				chan->datasheet_name, ERR_PTR(err));
912			goto notify_done;
913		}
914
915		buf.channels[i++] = axis;
916	}
917
918	mutex_unlock(&msa311->lock);
919
920	iio_push_to_buffers_with_timestamp(indio_dev, &buf,
921					   iio_get_time_ns(indio_dev));
922
923notify_done:
924	iio_trigger_notify_done(indio_dev->trig);
925
926	return IRQ_HANDLED;
927}
928
929static irqreturn_t msa311_irq_thread(int irq, void *p)
930{
931	struct msa311_priv *msa311 = iio_priv(p);
932	unsigned int new_data_int_enabled;
933	struct device *dev = msa311->dev;
934	int err;
935
936	mutex_lock(&msa311->lock);
937
938	/*
939	 * We do not check NEW_DATA int status, because based on the
940	 * specification it's cleared automatically after a fixed time.
941	 * So just check that is enabled by driver logic.
942	 */
943	err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN],
944				&new_data_int_enabled);
945
946	mutex_unlock(&msa311->lock);
947	if (err) {
948		dev_err(dev, "can't read new_data interrupt state (%pe)\n",
949			ERR_PTR(err));
950		return IRQ_NONE;
951	}
952
953	if (new_data_int_enabled)
954		iio_trigger_poll_nested(msa311->new_data_trig);
955
956	return IRQ_HANDLED;
957}
958
959static const struct iio_info msa311_info = {
960	.read_raw = msa311_read_raw,
961	.read_avail = msa311_read_avail,
962	.write_raw = msa311_write_raw,
963	.debugfs_reg_access = msa311_debugfs_reg_access,
964};
965
966static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = {
967	.preenable = msa311_buffer_preenable,
968	.postdisable = msa311_buffer_postdisable,
969};
970
971static const struct iio_trigger_ops msa311_new_data_trig_ops = {
972	.set_trigger_state = msa311_set_new_data_trig_state,
973	.validate_device = msa311_validate_device,
974};
975
976static int msa311_check_partid(struct msa311_priv *msa311)
977{
978	struct device *dev = msa311->dev;
979	unsigned int partid;
980	int err;
981
982	err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid);
983	if (err)
984		return dev_err_probe(dev, err, "failed to read partid\n");
985
986	if (partid != MSA311_WHO_AM_I)
987		dev_warn(dev, "invalid partid (%#x), expected (%#x)\n",
988			 partid, MSA311_WHO_AM_I);
989
990	msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL,
991					   "msa311-%02x", partid);
992	if (!msa311->chip_name)
993		return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n");
994
995	return 0;
996}
997
998static int msa311_soft_reset(struct msa311_priv *msa311)
999{
1000	struct device *dev = msa311->dev;
1001	int err;
1002
1003	err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG,
1004			   MSA311_GENMASK(F_SOFT_RESET_I2C) |
1005			   MSA311_GENMASK(F_SOFT_RESET_SPI));
1006	if (err)
1007		return dev_err_probe(dev, err, "can't soft reset all logic\n");
1008
1009	return 0;
1010}
1011
1012static int msa311_chip_init(struct msa311_priv *msa311)
1013{
1014	struct device *dev = msa311->dev;
1015	const char zero_bulk[2] = { };
1016	int err;
1017
1018	err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G);
1019	if (err)
1020		return dev_err_probe(dev, err, "failed to setup accel range\n");
1021
1022	/* Disable all interrupts by default */
1023	err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG,
1024				zero_bulk, sizeof(zero_bulk));
1025	if (err)
1026		return dev_err_probe(dev, err,
1027				     "can't disable set0/set1 interrupts\n");
1028
1029	/* Unmap all INT1 interrupts by default */
1030	err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG,
1031				zero_bulk, sizeof(zero_bulk));
1032	if (err)
1033		return dev_err_probe(dev, err,
1034				     "failed to unmap map0/map1 interrupts\n");
1035
1036	/* Disable all axes by default */
1037	err = regmap_update_bits(msa311->regs, MSA311_ODR_REG,
1038				 MSA311_GENMASK(F_X_AXIS_DIS) |
1039				 MSA311_GENMASK(F_Y_AXIS_DIS) |
1040				 MSA311_GENMASK(F_Z_AXIS_DIS), 0);
1041	if (err)
1042		return dev_err_probe(dev, err, "can't enable all axes\n");
1043
1044	err = msa311_set_odr(msa311, MSA311_ODR_125_HZ);
1045	if (err)
1046		return dev_err_probe(dev, err,
1047				     "failed to set accel frequency\n");
1048
1049	return 0;
1050}
1051
1052static int msa311_setup_interrupts(struct msa311_priv *msa311)
1053{
1054	struct device *dev = msa311->dev;
1055	struct i2c_client *i2c = to_i2c_client(dev);
1056	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
1057	struct iio_trigger *trig;
1058	int err;
1059
1060	/* Keep going without interrupts if no initialized I2C IRQ */
1061	if (i2c->irq <= 0)
1062		return 0;
1063
1064	err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL,
1065					msa311_irq_thread, IRQF_ONESHOT,
1066					msa311->chip_name, indio_dev);
1067	if (err)
1068		return dev_err_probe(dev, err, "failed to request IRQ\n");
1069
1070	trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name);
1071	if (!trig)
1072		return dev_err_probe(dev, -ENOMEM,
1073				     "can't allocate newdata trigger\n");
1074
1075	msa311->new_data_trig = trig;
1076	msa311->new_data_trig->ops = &msa311_new_data_trig_ops;
1077	iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev);
1078
1079	err = devm_iio_trigger_register(dev, msa311->new_data_trig);
1080	if (err)
1081		return dev_err_probe(dev, err,
1082				     "can't register newdata trigger\n");
1083
1084	err = regmap_field_write(msa311->fields[F_INT1_OD],
1085				 MSA311_INT1_OD_PUSH_PULL);
1086	if (err)
1087		return dev_err_probe(dev, err,
1088				     "can't enable push-pull interrupt\n");
1089
1090	err = regmap_field_write(msa311->fields[F_INT1_LVL],
1091				 MSA311_INT1_LVL_HIGH);
1092	if (err)
1093		return dev_err_probe(dev, err,
1094				     "can't set active interrupt level\n");
1095
1096	err = regmap_field_write(msa311->fields[F_LATCH_INT],
1097				 MSA311_LATCH_INT_LATCHED);
1098	if (err)
1099		return dev_err_probe(dev, err,
1100				     "can't latch interrupt\n");
1101
1102	err = regmap_field_write(msa311->fields[F_RESET_INT], 1);
1103	if (err)
1104		return dev_err_probe(dev, err,
1105				     "can't reset interrupt\n");
1106
1107	err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1);
1108	if (err)
1109		return dev_err_probe(dev, err,
1110				     "can't map new data interrupt\n");
1111
1112	return 0;
1113}
1114
1115static int msa311_regmap_init(struct msa311_priv *msa311)
1116{
1117	struct regmap_field **fields = msa311->fields;
1118	struct device *dev = msa311->dev;
1119	struct i2c_client *i2c = to_i2c_client(dev);
1120	struct regmap *regmap;
1121	int i;
1122
1123	regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config);
1124	if (IS_ERR(regmap))
1125		return dev_err_probe(dev, PTR_ERR(regmap),
1126				     "failed to register i2c regmap\n");
1127
1128	msa311->regs = regmap;
1129
1130	for (i = 0; i < F_MAX_FIELDS; i++) {
1131		fields[i] = devm_regmap_field_alloc(dev,
1132						    msa311->regs,
1133						    msa311_reg_fields[i]);
1134		if (IS_ERR(msa311->fields[i]))
1135			return dev_err_probe(dev, PTR_ERR(msa311->fields[i]),
1136					     "can't alloc field[%d]\n", i);
1137	}
1138
1139	return 0;
1140}
1141
1142static void msa311_powerdown(void *msa311)
1143{
1144	msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1145}
1146
1147static int msa311_probe(struct i2c_client *i2c)
1148{
1149	struct device *dev = &i2c->dev;
1150	struct msa311_priv *msa311;
1151	struct iio_dev *indio_dev;
1152	int err;
1153
1154	indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311));
1155	if (!indio_dev)
1156		return dev_err_probe(dev, -ENOMEM,
1157				     "IIO device allocation failed\n");
1158
1159	msa311 = iio_priv(indio_dev);
1160	msa311->dev = dev;
1161	i2c_set_clientdata(i2c, indio_dev);
1162
1163	err = msa311_regmap_init(msa311);
1164	if (err)
1165		return err;
1166
1167	mutex_init(&msa311->lock);
1168
1169	err = devm_regulator_get_enable(dev, "vdd");
1170	if (err)
1171		return dev_err_probe(dev, err, "can't get vdd supply\n");
1172
1173	err = msa311_check_partid(msa311);
1174	if (err)
1175		return err;
1176
1177	err = msa311_soft_reset(msa311);
1178	if (err)
1179		return err;
1180
1181	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1182	if (err)
1183		return dev_err_probe(dev, err, "failed to power on device\n");
1184
1185	/*
1186	 * Register powerdown deferred callback which suspends the chip
1187	 * after module unloaded.
1188	 *
1189	 * MSA311 should be in SUSPEND mode in the two cases:
1190	 * 1) When driver is loaded, but we do not have any data or
1191	 *    configuration requests to it (we are solving it using
1192	 *    autosuspend feature).
1193	 * 2) When driver is unloaded and device is not used (devm action is
1194	 *    used in this case).
1195	 */
1196	err = devm_add_action_or_reset(dev, msa311_powerdown, msa311);
1197	if (err)
1198		return dev_err_probe(dev, err, "can't add powerdown action\n");
1199
1200	err = pm_runtime_set_active(dev);
1201	if (err)
1202		return err;
1203
1204	err = devm_pm_runtime_enable(dev);
1205	if (err)
1206		return err;
1207
1208	pm_runtime_get_noresume(dev);
1209	pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS);
1210	pm_runtime_use_autosuspend(dev);
1211
1212	err = msa311_chip_init(msa311);
1213	if (err)
1214		return err;
1215
1216	indio_dev->modes = INDIO_DIRECT_MODE;
1217	indio_dev->channels = msa311_channels;
1218	indio_dev->num_channels = ARRAY_SIZE(msa311_channels);
1219	indio_dev->name = msa311->chip_name;
1220	indio_dev->info = &msa311_info;
1221
1222	err = devm_iio_triggered_buffer_setup(dev, indio_dev,
1223					      iio_pollfunc_store_time,
1224					      msa311_buffer_thread,
1225					      &msa311_buffer_setup_ops);
1226	if (err)
1227		return dev_err_probe(dev, err,
1228				     "can't setup IIO trigger buffer\n");
1229
1230	err = msa311_setup_interrupts(msa311);
1231	if (err)
1232		return err;
1233
1234	pm_runtime_mark_last_busy(dev);
1235	pm_runtime_put_autosuspend(dev);
1236
1237	err = devm_iio_device_register(dev, indio_dev);
1238	if (err)
1239		return dev_err_probe(dev, err, "IIO device register failed\n");
1240
1241	return 0;
1242}
1243
1244static int msa311_runtime_suspend(struct device *dev)
1245{
1246	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1247	struct msa311_priv *msa311 = iio_priv(indio_dev);
1248	int err;
1249
1250	mutex_lock(&msa311->lock);
1251	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1252	mutex_unlock(&msa311->lock);
1253	if (err)
1254		dev_err(dev, "failed to power off device (%pe)\n",
1255			ERR_PTR(err));
1256
1257	return err;
1258}
1259
1260static int msa311_runtime_resume(struct device *dev)
1261{
1262	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1263	struct msa311_priv *msa311 = iio_priv(indio_dev);
1264	int err;
1265
1266	mutex_lock(&msa311->lock);
1267	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1268	mutex_unlock(&msa311->lock);
1269	if (err)
1270		dev_err(dev, "failed to power on device (%pe)\n",
1271			ERR_PTR(err));
1272
1273	return err;
1274}
1275
1276static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend,
1277				 msa311_runtime_resume, NULL);
1278
1279static const struct i2c_device_id msa311_i2c_id[] = {
1280	{ .name = "msa311" },
1281	{ }
1282};
1283MODULE_DEVICE_TABLE(i2c, msa311_i2c_id);
1284
1285static const struct of_device_id msa311_of_match[] = {
1286	{ .compatible = "memsensing,msa311" },
1287	{ }
1288};
1289MODULE_DEVICE_TABLE(of, msa311_of_match);
1290
1291static struct i2c_driver msa311_driver = {
1292	.driver = {
1293		.name = "msa311",
1294		.of_match_table = msa311_of_match,
1295		.pm = pm_ptr(&msa311_pm_ops),
1296	},
1297	.probe		= msa311_probe,
1298	.id_table	= msa311_i2c_id,
1299};
1300module_i2c_driver(msa311_driver);
1301
1302MODULE_AUTHOR("Dmitry Rokosov <ddrokosov@sberdevices.ru>");
1303MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver");
1304MODULE_LICENSE("GPL");
1305