1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ADXL355 3-Axis Digital Accelerometer IIO core driver
4 *
5 * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com>
6 *
7 * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf
8 */
9
10#include <linux/bits.h>
11#include <linux/bitfield.h>
12#include <linux/iio/buffer.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/trigger.h>
15#include <linux/iio/triggered_buffer.h>
16#include <linux/iio/trigger_consumer.h>
17#include <linux/limits.h>
18#include <linux/math64.h>
19#include <linux/module.h>
20#include <linux/mod_devicetable.h>
21#include <linux/property.h>
22#include <linux/regmap.h>
23#include <linux/units.h>
24
25#include <asm/unaligned.h>
26
27#include "adxl355.h"
28
29/* ADXL355 Register Definitions */
30#define ADXL355_DEVID_AD_REG		0x00
31#define ADXL355_DEVID_MST_REG		0x01
32#define ADXL355_PARTID_REG		0x02
33#define ADXL355_STATUS_REG		0x04
34#define ADXL355_FIFO_ENTRIES_REG	0x05
35#define ADXL355_TEMP2_REG		0x06
36#define ADXL355_XDATA3_REG		0x08
37#define ADXL355_YDATA3_REG		0x0B
38#define ADXL355_ZDATA3_REG		0x0E
39#define ADXL355_FIFO_DATA_REG		0x11
40#define ADXL355_OFFSET_X_H_REG		0x1E
41#define ADXL355_OFFSET_Y_H_REG		0x20
42#define ADXL355_OFFSET_Z_H_REG		0x22
43#define ADXL355_ACT_EN_REG		0x24
44#define ADXL355_ACT_THRESH_H_REG	0x25
45#define ADXL355_ACT_THRESH_L_REG	0x26
46#define ADXL355_ACT_COUNT_REG		0x27
47#define ADXL355_FILTER_REG		0x28
48#define  ADXL355_FILTER_ODR_MSK GENMASK(3, 0)
49#define  ADXL355_FILTER_HPF_MSK	GENMASK(6, 4)
50#define ADXL355_FIFO_SAMPLES_REG	0x29
51#define ADXL355_INT_MAP_REG		0x2A
52#define ADXL355_SYNC_REG		0x2B
53#define ADXL355_RANGE_REG		0x2C
54#define ADXL355_POWER_CTL_REG		0x2D
55#define  ADXL355_POWER_CTL_MODE_MSK	GENMASK(1, 0)
56#define  ADXL355_POWER_CTL_DRDY_MSK	BIT(2)
57#define ADXL355_SELF_TEST_REG		0x2E
58#define ADXL355_RESET_REG		0x2F
59
60#define ADXL355_DEVID_AD_VAL		0xAD
61#define ADXL355_DEVID_MST_VAL		0x1D
62#define ADXL355_PARTID_VAL		0xED
63#define ADXL359_PARTID_VAL		0xE9
64#define ADXL355_RESET_CODE		0x52
65
66static const struct regmap_range adxl355_read_reg_range[] = {
67	regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG),
68	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG),
69};
70
71const struct regmap_access_table adxl355_readable_regs_tbl = {
72	.yes_ranges = adxl355_read_reg_range,
73	.n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range),
74};
75EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, IIO_ADXL355);
76
77static const struct regmap_range adxl355_write_reg_range[] = {
78	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG),
79};
80
81const struct regmap_access_table adxl355_writeable_regs_tbl = {
82	.yes_ranges = adxl355_write_reg_range,
83	.n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range),
84};
85EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, IIO_ADXL355);
86
87const struct adxl355_chip_info adxl35x_chip_info[] = {
88	[ADXL355] = {
89		.name = "adxl355",
90		.part_id = ADXL355_PARTID_VAL,
91		/*
92		 * At +/- 2g with 20-bit resolution, scale is given in datasheet
93		 * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2.
94		 */
95		.accel_scale = {
96			.integer = 0,
97			.decimal = 38245,
98		},
99		/*
100		 * The datasheet defines an intercept of 1885 LSB at 25 degC
101		 * and a slope of -9.05 LSB/C. The following formula can be used
102		 * to find the temperature:
103		 * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow
104		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
105		 * Hence using some rearranging we get the scale as -110.497238
106		 * and offset as -2111.25.
107		 */
108		.temp_offset = {
109			.integer =  -2111,
110			.decimal = 250000,
111		},
112	},
113	[ADXL359] = {
114		.name = "adxl359",
115		.part_id = ADXL359_PARTID_VAL,
116		/*
117		 * At +/- 10g with 20-bit resolution, scale is given in datasheet
118		 * as 19.5ug/LSB = 0.0000195 * 9.80665 = 0.0.00019122967 m/s^2.
119		 */
120		.accel_scale = {
121			.integer = 0,
122			.decimal = 191229,
123		},
124		/*
125		 * The datasheet defines an intercept of 1852 LSB at 25 degC
126		 * and a slope of -9.05 LSB/C. The following formula can be used
127		 * to find the temperature:
128		 * Temp = ((RAW - 1852)/(-9.05)) + 25 but this doesn't follow
129		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
130		 * Hence using some rearranging we get the scale as -110.497238
131		 * and offset as -2079.25.
132		 */
133		.temp_offset = {
134			.integer = -2079,
135			.decimal = 250000,
136		},
137	},
138};
139EXPORT_SYMBOL_NS_GPL(adxl35x_chip_info, IIO_ADXL355);
140
141enum adxl355_op_mode {
142	ADXL355_MEASUREMENT,
143	ADXL355_STANDBY,
144	ADXL355_TEMP_OFF,
145};
146
147enum adxl355_odr {
148	ADXL355_ODR_4000HZ,
149	ADXL355_ODR_2000HZ,
150	ADXL355_ODR_1000HZ,
151	ADXL355_ODR_500HZ,
152	ADXL355_ODR_250HZ,
153	ADXL355_ODR_125HZ,
154	ADXL355_ODR_62_5HZ,
155	ADXL355_ODR_31_25HZ,
156	ADXL355_ODR_15_625HZ,
157	ADXL355_ODR_7_813HZ,
158	ADXL355_ODR_3_906HZ,
159};
160
161enum adxl355_hpf_3db {
162	ADXL355_HPF_OFF,
163	ADXL355_HPF_24_7,
164	ADXL355_HPF_6_2084,
165	ADXL355_HPF_1_5545,
166	ADXL355_HPF_0_3862,
167	ADXL355_HPF_0_0954,
168	ADXL355_HPF_0_0238,
169};
170
171static const int adxl355_odr_table[][2] = {
172	[0] = {4000, 0},
173	[1] = {2000, 0},
174	[2] = {1000, 0},
175	[3] = {500, 0},
176	[4] = {250, 0},
177	[5] = {125, 0},
178	[6] = {62, 500000},
179	[7] = {31, 250000},
180	[8] = {15, 625000},
181	[9] = {7, 813000},
182	[10] = {3, 906000},
183};
184
185static const int adxl355_hpf_3db_multipliers[] = {
186	0,
187	247000,
188	62084,
189	15545,
190	3862,
191	954,
192	238,
193};
194
195enum adxl355_chans {
196	chan_x, chan_y, chan_z,
197};
198
199struct adxl355_chan_info {
200	u8 data_reg;
201	u8 offset_reg;
202};
203
204static const struct adxl355_chan_info adxl355_chans[] = {
205	[chan_x] = {
206		.data_reg = ADXL355_XDATA3_REG,
207		.offset_reg = ADXL355_OFFSET_X_H_REG
208	},
209	[chan_y] = {
210		.data_reg = ADXL355_YDATA3_REG,
211		.offset_reg = ADXL355_OFFSET_Y_H_REG
212	},
213	[chan_z] = {
214		.data_reg = ADXL355_ZDATA3_REG,
215		.offset_reg = ADXL355_OFFSET_Z_H_REG
216	},
217};
218
219struct adxl355_data {
220	const struct adxl355_chip_info *chip_info;
221	struct regmap *regmap;
222	struct device *dev;
223	struct mutex lock; /* lock to protect op_mode */
224	enum adxl355_op_mode op_mode;
225	enum adxl355_odr odr;
226	enum adxl355_hpf_3db hpf_3db;
227	int calibbias[3];
228	int adxl355_hpf_3db_table[7][2];
229	struct iio_trigger *dready_trig;
230	union {
231		u8 transf_buf[3];
232		struct {
233			u8 buf[14];
234			s64 ts;
235		} buffer;
236	} __aligned(IIO_DMA_MINALIGN);
237};
238
239static int adxl355_set_op_mode(struct adxl355_data *data,
240			       enum adxl355_op_mode op_mode)
241{
242	int ret;
243
244	if (data->op_mode == op_mode)
245		return 0;
246
247	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
248				 ADXL355_POWER_CTL_MODE_MSK, op_mode);
249	if (ret)
250		return ret;
251
252	data->op_mode = op_mode;
253
254	return ret;
255}
256
257static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig,
258					      bool state)
259{
260	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
261	struct adxl355_data *data = iio_priv(indio_dev);
262	int ret;
263
264	mutex_lock(&data->lock);
265	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
266				 ADXL355_POWER_CTL_DRDY_MSK,
267				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK,
268					    state ? 0 : 1));
269	mutex_unlock(&data->lock);
270
271	return ret;
272}
273
274static void adxl355_fill_3db_frequency_table(struct adxl355_data *data)
275{
276	u32 multiplier;
277	u64 div, rem;
278	u64 odr;
279	int i;
280
281	odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) +
282			      adxl355_odr_table[data->odr][1];
283
284	for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) {
285		multiplier = adxl355_hpf_3db_multipliers[i];
286		div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0),
287				    TERA * 100, &rem);
288
289		data->adxl355_hpf_3db_table[i][0] = div;
290		data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100);
291	}
292}
293
294static int adxl355_setup(struct adxl355_data *data)
295{
296	unsigned int regval;
297	int ret;
298
299	ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, &regval);
300	if (ret)
301		return ret;
302
303	if (regval != ADXL355_DEVID_AD_VAL) {
304		dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval);
305		return -ENODEV;
306	}
307
308	ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, &regval);
309	if (ret)
310		return ret;
311
312	if (regval != ADXL355_DEVID_MST_VAL) {
313		dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval);
314		return -ENODEV;
315	}
316
317	ret = regmap_read(data->regmap, ADXL355_PARTID_REG, &regval);
318	if (ret)
319		return ret;
320
321	if (regval != ADXL355_PARTID_VAL)
322		dev_warn(data->dev, "Invalid DEV ID 0x%02x\n", regval);
323
324	/*
325	 * Perform a software reset to make sure the device is in a consistent
326	 * state after start-up.
327	 */
328	ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE);
329	if (ret)
330		return ret;
331
332	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
333				 ADXL355_POWER_CTL_DRDY_MSK,
334				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1));
335	if (ret)
336		return ret;
337
338	adxl355_fill_3db_frequency_table(data);
339
340	return adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
341}
342
343static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr)
344{
345	return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2);
346}
347
348static int adxl355_read_axis(struct adxl355_data *data, u8 addr)
349{
350	int ret;
351
352	ret = regmap_bulk_read(data->regmap, addr, data->transf_buf,
353			       ARRAY_SIZE(data->transf_buf));
354	if (ret)
355		return ret;
356
357	return get_unaligned_be24(data->transf_buf);
358}
359
360static int adxl355_find_match(const int (*freq_tbl)[2], const int n,
361			      const int val, const int val2)
362{
363	int i;
364
365	for (i = 0; i < n; i++) {
366		if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
367			return i;
368	}
369
370	return -EINVAL;
371}
372
373static int adxl355_set_odr(struct adxl355_data *data,
374			   enum adxl355_odr odr)
375{
376	int ret;
377
378	mutex_lock(&data->lock);
379
380	if (data->odr == odr) {
381		mutex_unlock(&data->lock);
382		return 0;
383	}
384
385	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
386	if (ret)
387		goto err_unlock;
388
389	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
390				 ADXL355_FILTER_ODR_MSK,
391				 FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr));
392	if (ret)
393		goto err_set_opmode;
394
395	data->odr = odr;
396	adxl355_fill_3db_frequency_table(data);
397
398	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
399	if (ret)
400		goto err_set_opmode;
401
402	mutex_unlock(&data->lock);
403	return 0;
404
405err_set_opmode:
406	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
407err_unlock:
408	mutex_unlock(&data->lock);
409	return ret;
410}
411
412static int adxl355_set_hpf_3db(struct adxl355_data *data,
413			       enum adxl355_hpf_3db hpf)
414{
415	int ret;
416
417	mutex_lock(&data->lock);
418
419	if (data->hpf_3db == hpf) {
420		mutex_unlock(&data->lock);
421		return 0;
422	}
423
424	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
425	if (ret)
426		goto err_unlock;
427
428	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
429				 ADXL355_FILTER_HPF_MSK,
430				 FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf));
431	if (ret)
432		goto err_set_opmode;
433
434	data->hpf_3db = hpf;
435
436	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
437	if (ret)
438		goto err_set_opmode;
439
440	mutex_unlock(&data->lock);
441	return 0;
442
443err_set_opmode:
444	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
445err_unlock:
446	mutex_unlock(&data->lock);
447	return ret;
448}
449
450static int adxl355_set_calibbias(struct adxl355_data *data,
451				 enum adxl355_chans chan, int calibbias)
452{
453	int ret;
454
455	mutex_lock(&data->lock);
456
457	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
458	if (ret)
459		goto err_unlock;
460
461	put_unaligned_be16(calibbias, data->transf_buf);
462	ret = regmap_bulk_write(data->regmap,
463				adxl355_chans[chan].offset_reg,
464				data->transf_buf, 2);
465	if (ret)
466		goto err_set_opmode;
467
468	data->calibbias[chan] = calibbias;
469
470	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
471	if (ret)
472		goto err_set_opmode;
473
474	mutex_unlock(&data->lock);
475	return 0;
476
477err_set_opmode:
478	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
479err_unlock:
480	mutex_unlock(&data->lock);
481	return ret;
482}
483
484static int adxl355_read_raw(struct iio_dev *indio_dev,
485			    struct iio_chan_spec const *chan,
486			    int *val, int *val2, long mask)
487{
488	struct adxl355_data *data = iio_priv(indio_dev);
489	int ret;
490
491	switch (mask) {
492	case IIO_CHAN_INFO_RAW:
493		switch (chan->type) {
494		case IIO_TEMP:
495			ret = adxl355_get_temp_data(data, chan->address);
496			if (ret < 0)
497				return ret;
498			*val = get_unaligned_be16(data->transf_buf);
499
500			return IIO_VAL_INT;
501		case IIO_ACCEL:
502			ret = adxl355_read_axis(data, adxl355_chans[
503						chan->address].data_reg);
504			if (ret < 0)
505				return ret;
506			*val = sign_extend32(ret >> chan->scan_type.shift,
507					     chan->scan_type.realbits - 1);
508			return IIO_VAL_INT;
509		default:
510			return -EINVAL;
511		}
512
513	case IIO_CHAN_INFO_SCALE:
514		switch (chan->type) {
515		case IIO_TEMP:
516			/*
517			 * Temperature scale is -110.497238.
518			 * See the detailed explanation in adxl35x_chip_info
519			 * definition above.
520			 */
521			*val = -110;
522			*val2 = 497238;
523			return IIO_VAL_INT_PLUS_MICRO;
524		case IIO_ACCEL:
525			*val = data->chip_info->accel_scale.integer;
526			*val2 = data->chip_info->accel_scale.decimal;
527			return IIO_VAL_INT_PLUS_NANO;
528		default:
529			return -EINVAL;
530		}
531	case IIO_CHAN_INFO_OFFSET:
532		*val = data->chip_info->temp_offset.integer;
533		*val2 = data->chip_info->temp_offset.decimal;
534		return IIO_VAL_INT_PLUS_MICRO;
535	case IIO_CHAN_INFO_CALIBBIAS:
536		*val = sign_extend32(data->calibbias[chan->address], 15);
537		return IIO_VAL_INT;
538	case IIO_CHAN_INFO_SAMP_FREQ:
539		*val = adxl355_odr_table[data->odr][0];
540		*val2 = adxl355_odr_table[data->odr][1];
541		return IIO_VAL_INT_PLUS_MICRO;
542	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
543		*val = data->adxl355_hpf_3db_table[data->hpf_3db][0];
544		*val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1];
545		return IIO_VAL_INT_PLUS_MICRO;
546	default:
547		return -EINVAL;
548	}
549}
550
551static int adxl355_write_raw(struct iio_dev *indio_dev,
552			     struct iio_chan_spec const *chan,
553			     int val, int val2, long mask)
554{
555	struct adxl355_data *data = iio_priv(indio_dev);
556	int odr_idx, hpf_idx, calibbias;
557
558	switch (mask) {
559	case IIO_CHAN_INFO_SAMP_FREQ:
560		odr_idx = adxl355_find_match(adxl355_odr_table,
561					     ARRAY_SIZE(adxl355_odr_table),
562					     val, val2);
563		if (odr_idx < 0)
564			return odr_idx;
565
566		return adxl355_set_odr(data, odr_idx);
567	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
568		hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table,
569					ARRAY_SIZE(data->adxl355_hpf_3db_table),
570					     val, val2);
571		if (hpf_idx < 0)
572			return hpf_idx;
573
574		return adxl355_set_hpf_3db(data, hpf_idx);
575	case IIO_CHAN_INFO_CALIBBIAS:
576		calibbias = clamp_t(int, val, S16_MIN, S16_MAX);
577
578		return adxl355_set_calibbias(data, chan->address, calibbias);
579	default:
580		return -EINVAL;
581	}
582}
583
584static int adxl355_read_avail(struct iio_dev *indio_dev,
585			      struct iio_chan_spec const *chan,
586			      const int **vals, int *type, int *length,
587			      long mask)
588{
589	struct adxl355_data *data = iio_priv(indio_dev);
590
591	switch (mask) {
592	case IIO_CHAN_INFO_SAMP_FREQ:
593		*vals = (const int *)adxl355_odr_table;
594		*type = IIO_VAL_INT_PLUS_MICRO;
595		/* Values are stored in a 2D matrix */
596		*length = ARRAY_SIZE(adxl355_odr_table) * 2;
597
598		return IIO_AVAIL_LIST;
599	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
600		*vals = (const int *)data->adxl355_hpf_3db_table;
601		*type = IIO_VAL_INT_PLUS_MICRO;
602		/* Values are stored in a 2D matrix */
603		*length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2;
604
605		return IIO_AVAIL_LIST;
606	default:
607		return -EINVAL;
608	}
609}
610
611static const unsigned long adxl355_avail_scan_masks[] = {
612	GENMASK(3, 0),
613	0
614};
615
616static const struct iio_info adxl355_info = {
617	.read_raw	= adxl355_read_raw,
618	.write_raw	= adxl355_write_raw,
619	.read_avail	= &adxl355_read_avail,
620};
621
622static const struct iio_trigger_ops adxl355_trigger_ops = {
623	.set_trigger_state = &adxl355_data_rdy_trigger_set_state,
624	.validate_device = &iio_trigger_validate_own_device,
625};
626
627static irqreturn_t adxl355_trigger_handler(int irq, void *p)
628{
629	struct iio_poll_func *pf = p;
630	struct iio_dev *indio_dev = pf->indio_dev;
631	struct adxl355_data *data = iio_priv(indio_dev);
632	int ret;
633
634	mutex_lock(&data->lock);
635
636	/*
637	 * data->buffer is used both for triggered buffer support
638	 * and read/write_raw(), hence, it has to be zeroed here before usage.
639	 */
640	data->buffer.buf[0] = 0;
641
642	/*
643	 * The acceleration data is 24 bits and big endian. It has to be saved
644	 * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer.
645	 * The buf array is 14 bytes as it includes 3x4=12 bytes for
646	 * accelaration data of x, y, and z axis. It also includes 2 bytes for
647	 * temperature data.
648	 */
649	ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG,
650			       &data->buffer.buf[1], 3);
651	if (ret)
652		goto out_unlock_notify;
653
654	ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG,
655			       &data->buffer.buf[5], 3);
656	if (ret)
657		goto out_unlock_notify;
658
659	ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG,
660			       &data->buffer.buf[9], 3);
661	if (ret)
662		goto out_unlock_notify;
663
664	ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG,
665			       &data->buffer.buf[12], 2);
666	if (ret)
667		goto out_unlock_notify;
668
669	iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
670					   pf->timestamp);
671
672out_unlock_notify:
673	mutex_unlock(&data->lock);
674	iio_trigger_notify_done(indio_dev->trig);
675
676	return IRQ_HANDLED;
677}
678
679#define ADXL355_ACCEL_CHANNEL(index, reg, axis) {			\
680	.type = IIO_ACCEL,						\
681	.address = reg,							\
682	.modified = 1,							\
683	.channel2 = IIO_MOD_##axis,					\
684	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
685			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
686	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
687				    BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
688		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
689	.info_mask_shared_by_type_available =				\
690		BIT(IIO_CHAN_INFO_SAMP_FREQ) |				\
691		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
692	.scan_index = index,						\
693	.scan_type = {							\
694		.sign = 's',						\
695		.realbits = 20,						\
696		.storagebits = 32,					\
697		.shift = 4,						\
698		.endianness = IIO_BE,					\
699	}								\
700}
701
702static const struct iio_chan_spec adxl355_channels[] = {
703	ADXL355_ACCEL_CHANNEL(0, chan_x, X),
704	ADXL355_ACCEL_CHANNEL(1, chan_y, Y),
705	ADXL355_ACCEL_CHANNEL(2, chan_z, Z),
706	{
707		.type = IIO_TEMP,
708		.address = ADXL355_TEMP2_REG,
709		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
710				      BIT(IIO_CHAN_INFO_SCALE) |
711				      BIT(IIO_CHAN_INFO_OFFSET),
712		.scan_index = 3,
713		.scan_type = {
714			.sign = 's',
715			.realbits = 12,
716			.storagebits = 16,
717			.endianness = IIO_BE,
718		},
719	},
720	IIO_CHAN_SOFT_TIMESTAMP(4),
721};
722
723static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq)
724{
725	struct adxl355_data *data = iio_priv(indio_dev);
726	int ret;
727
728	data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d",
729						   indio_dev->name,
730						   iio_device_id(indio_dev));
731	if (!data->dready_trig)
732		return -ENOMEM;
733
734	data->dready_trig->ops = &adxl355_trigger_ops;
735	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
736
737	ret = devm_request_irq(data->dev, irq,
738			       &iio_trigger_generic_data_rdy_poll,
739			       IRQF_ONESHOT, "adxl355_irq", data->dready_trig);
740	if (ret)
741		return dev_err_probe(data->dev, ret, "request irq %d failed\n",
742				     irq);
743
744	ret = devm_iio_trigger_register(data->dev, data->dready_trig);
745	if (ret) {
746		dev_err(data->dev, "iio trigger register failed\n");
747		return ret;
748	}
749
750	indio_dev->trig = iio_trigger_get(data->dready_trig);
751
752	return 0;
753}
754
755int adxl355_core_probe(struct device *dev, struct regmap *regmap,
756		       const struct adxl355_chip_info *chip_info)
757{
758	struct adxl355_data *data;
759	struct iio_dev *indio_dev;
760	int ret;
761	int irq;
762
763	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
764	if (!indio_dev)
765		return -ENOMEM;
766
767	data = iio_priv(indio_dev);
768	data->regmap = regmap;
769	data->dev = dev;
770	data->op_mode = ADXL355_STANDBY;
771	data->chip_info = chip_info;
772	mutex_init(&data->lock);
773
774	indio_dev->name = chip_info->name;
775	indio_dev->info = &adxl355_info;
776	indio_dev->modes = INDIO_DIRECT_MODE;
777	indio_dev->channels = adxl355_channels;
778	indio_dev->num_channels = ARRAY_SIZE(adxl355_channels);
779	indio_dev->available_scan_masks = adxl355_avail_scan_masks;
780
781	ret = adxl355_setup(data);
782	if (ret) {
783		dev_err(dev, "ADXL355 setup failed\n");
784		return ret;
785	}
786
787	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
788					      &iio_pollfunc_store_time,
789					      &adxl355_trigger_handler, NULL);
790	if (ret) {
791		dev_err(dev, "iio triggered buffer setup failed\n");
792		return ret;
793	}
794
795	irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY");
796	if (irq > 0) {
797		ret = adxl355_probe_trigger(indio_dev, irq);
798		if (ret)
799			return ret;
800	}
801
802	return devm_iio_device_register(dev, indio_dev);
803}
804EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, IIO_ADXL355);
805
806MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>");
807MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver");
808MODULE_LICENSE("GPL v2");
809