1// SPDX-License-Identifier: BSD-3-Clause
2/*
3 * Copyright (c) 2020, MIPI Alliance, Inc.
4 *
5 * Author: Nicolas Pitre <npitre@baylibre.com>
6 *
7 * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
8 * v1.x of the spec and v2.0 will likely be split out.
9 */
10
11#include <linux/bitfield.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/errno.h>
15#include <linux/i3c/master.h>
16#include <linux/io.h>
17
18#include "hci.h"
19#include "cmd.h"
20#include "ibi.h"
21
22
23/*
24 * Software Parameter Values (somewhat arb itrary for now).
25 * Some of them could be determined at run time eventually.
26 */
27
28#define XFER_RINGS			1	/* max: 8 */
29#define XFER_RING_ENTRIES		16	/* max: 255 */
30
31#define IBI_RINGS			1	/* max: 8 */
32#define IBI_STATUS_RING_ENTRIES		32	/* max: 255 */
33#define IBI_CHUNK_CACHELINES		1	/* max: 256 bytes equivalent */
34#define IBI_CHUNK_POOL_SIZE		128	/* max: 1023 */
35
36/*
37 * Ring Header Preamble
38 */
39
40#define rhs_reg_read(r)		readl(hci->RHS_regs + (RHS_##r))
41#define rhs_reg_write(r, v)	writel(v, hci->RHS_regs + (RHS_##r))
42
43#define RHS_CONTROL			0x00
44#define PREAMBLE_SIZE			GENMASK(31, 24)	/* Preamble Section Size */
45#define HEADER_SIZE			GENMASK(23, 16)	/* Ring Header Size */
46#define MAX_HEADER_COUNT_CAP		GENMASK(7, 4) /* HC Max Header Count */
47#define MAX_HEADER_COUNT		GENMASK(3, 0) /* Driver Max Header Count */
48
49#define RHS_RHn_OFFSET(n)		(0x04 + (n)*4)
50
51/*
52 * Ring Header (Per-Ring Bundle)
53 */
54
55#define rh_reg_read(r)		readl(rh->regs + (RH_##r))
56#define rh_reg_write(r, v)	writel(v, rh->regs + (RH_##r))
57
58#define RH_CR_SETUP			0x00	/* Command/Response Ring */
59#define CR_XFER_STRUCT_SIZE		GENMASK(31, 24)
60#define CR_RESP_STRUCT_SIZE		GENMASK(23, 16)
61#define CR_RING_SIZE			GENMASK(8, 0)
62
63#define RH_IBI_SETUP			0x04
64#define IBI_STATUS_STRUCT_SIZE		GENMASK(31, 24)
65#define IBI_STATUS_RING_SIZE		GENMASK(23, 16)
66#define IBI_DATA_CHUNK_SIZE		GENMASK(12, 10)
67#define IBI_DATA_CHUNK_COUNT		GENMASK(9, 0)
68
69#define RH_CHUNK_CONTROL			0x08
70
71#define RH_INTR_STATUS			0x10
72#define RH_INTR_STATUS_ENABLE		0x14
73#define RH_INTR_SIGNAL_ENABLE		0x18
74#define RH_INTR_FORCE			0x1c
75#define INTR_IBI_READY			BIT(12)
76#define INTR_TRANSFER_COMPLETION	BIT(11)
77#define INTR_RING_OP			BIT(10)
78#define INTR_TRANSFER_ERR		BIT(9)
79#define INTR_WARN_INS_STOP_MODE		BIT(7)
80#define INTR_IBI_RING_FULL		BIT(6)
81#define INTR_TRANSFER_ABORT		BIT(5)
82
83#define RH_RING_STATUS			0x20
84#define RING_STATUS_LOCKED		BIT(3)
85#define RING_STATUS_ABORTED		BIT(2)
86#define RING_STATUS_RUNNING		BIT(1)
87#define RING_STATUS_ENABLED		BIT(0)
88
89#define RH_RING_CONTROL			0x24
90#define RING_CTRL_ABORT			BIT(2)
91#define RING_CTRL_RUN_STOP		BIT(1)
92#define RING_CTRL_ENABLE		BIT(0)
93
94#define RH_RING_OPERATION1		0x28
95#define RING_OP1_IBI_DEQ_PTR		GENMASK(23, 16)
96#define RING_OP1_CR_SW_DEQ_PTR		GENMASK(15, 8)
97#define RING_OP1_CR_ENQ_PTR		GENMASK(7, 0)
98
99#define RH_RING_OPERATION2		0x2c
100#define RING_OP2_IBI_ENQ_PTR		GENMASK(23, 16)
101#define RING_OP2_CR_DEQ_PTR		GENMASK(7, 0)
102
103#define RH_CMD_RING_BASE_LO		0x30
104#define RH_CMD_RING_BASE_HI		0x34
105#define RH_RESP_RING_BASE_LO		0x38
106#define RH_RESP_RING_BASE_HI		0x3c
107#define RH_IBI_STATUS_RING_BASE_LO	0x40
108#define RH_IBI_STATUS_RING_BASE_HI	0x44
109#define RH_IBI_DATA_RING_BASE_LO	0x48
110#define RH_IBI_DATA_RING_BASE_HI	0x4c
111
112#define RH_CMD_RING_SG			0x50	/* Ring Scatter Gather Support */
113#define RH_RESP_RING_SG			0x54
114#define RH_IBI_STATUS_RING_SG		0x58
115#define RH_IBI_DATA_RING_SG		0x5c
116#define RING_SG_BLP			BIT(31)	/* Buffer Vs. List Pointer */
117#define RING_SG_LIST_SIZE		GENMASK(15, 0)
118
119/*
120 * Data Buffer Descriptor (in memory)
121 */
122
123#define DATA_BUF_BLP			BIT(31)	/* Buffer Vs. List Pointer */
124#define DATA_BUF_IOC			BIT(30)	/* Interrupt on Completion */
125#define DATA_BUF_BLOCK_SIZE		GENMASK(15, 0)
126
127
128struct hci_rh_data {
129	void __iomem *regs;
130	void *xfer, *resp, *ibi_status, *ibi_data;
131	dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
132	unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
133	unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
134	unsigned int done_ptr, ibi_chunk_ptr;
135	struct hci_xfer **src_xfers;
136	spinlock_t lock;
137	struct completion op_done;
138};
139
140struct hci_rings_data {
141	unsigned int total;
142	struct hci_rh_data headers[] __counted_by(total);
143};
144
145struct hci_dma_dev_ibi_data {
146	struct i3c_generic_ibi_pool *pool;
147	unsigned int max_len;
148};
149
150static inline u32 lo32(dma_addr_t physaddr)
151{
152	return physaddr;
153}
154
155static inline u32 hi32(dma_addr_t physaddr)
156{
157	/* trickery to avoid compiler warnings on 32-bit build targets */
158	if (sizeof(dma_addr_t) > 4) {
159		u64 hi = physaddr;
160		return hi >> 32;
161	}
162	return 0;
163}
164
165static void hci_dma_cleanup(struct i3c_hci *hci)
166{
167	struct hci_rings_data *rings = hci->io_data;
168	struct hci_rh_data *rh;
169	unsigned int i;
170
171	if (!rings)
172		return;
173
174	for (i = 0; i < rings->total; i++) {
175		rh = &rings->headers[i];
176
177		rh_reg_write(RING_CONTROL, 0);
178		rh_reg_write(CR_SETUP, 0);
179		rh_reg_write(IBI_SETUP, 0);
180		rh_reg_write(INTR_SIGNAL_ENABLE, 0);
181
182		if (rh->xfer)
183			dma_free_coherent(&hci->master.dev,
184					  rh->xfer_struct_sz * rh->xfer_entries,
185					  rh->xfer, rh->xfer_dma);
186		if (rh->resp)
187			dma_free_coherent(&hci->master.dev,
188					  rh->resp_struct_sz * rh->xfer_entries,
189					  rh->resp, rh->resp_dma);
190		kfree(rh->src_xfers);
191		if (rh->ibi_status)
192			dma_free_coherent(&hci->master.dev,
193					  rh->ibi_status_sz * rh->ibi_status_entries,
194					  rh->ibi_status, rh->ibi_status_dma);
195		if (rh->ibi_data_dma)
196			dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
197					 rh->ibi_chunk_sz * rh->ibi_chunks_total,
198					 DMA_FROM_DEVICE);
199		kfree(rh->ibi_data);
200	}
201
202	rhs_reg_write(CONTROL, 0);
203
204	kfree(rings);
205	hci->io_data = NULL;
206}
207
208static int hci_dma_init(struct i3c_hci *hci)
209{
210	struct hci_rings_data *rings;
211	struct hci_rh_data *rh;
212	u32 regval;
213	unsigned int i, nr_rings, xfers_sz, resps_sz;
214	unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
215	int ret;
216
217	regval = rhs_reg_read(CONTROL);
218	nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
219	dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
220	if (unlikely(nr_rings > 8)) {
221		dev_err(&hci->master.dev, "number of rings should be <= 8\n");
222		nr_rings = 8;
223	}
224	if (nr_rings > XFER_RINGS)
225		nr_rings = XFER_RINGS;
226	rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL);
227	if (!rings)
228		return -ENOMEM;
229	hci->io_data = rings;
230	rings->total = nr_rings;
231
232	regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
233	rhs_reg_write(CONTROL, regval);
234
235	for (i = 0; i < rings->total; i++) {
236		u32 offset = rhs_reg_read(RHn_OFFSET(i));
237
238		dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
239		ret = -EINVAL;
240		if (!offset)
241			goto err_out;
242		rh = &rings->headers[i];
243		rh->regs = hci->base_regs + offset;
244		spin_lock_init(&rh->lock);
245		init_completion(&rh->op_done);
246
247		rh->xfer_entries = XFER_RING_ENTRIES;
248
249		regval = rh_reg_read(CR_SETUP);
250		rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
251		rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
252		DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
253		    rh->xfer_struct_sz, rh->resp_struct_sz);
254		xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
255		resps_sz = rh->resp_struct_sz * rh->xfer_entries;
256
257		rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
258					      &rh->xfer_dma, GFP_KERNEL);
259		rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
260					      &rh->resp_dma, GFP_KERNEL);
261		rh->src_xfers =
262			kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
263				      GFP_KERNEL);
264		ret = -ENOMEM;
265		if (!rh->xfer || !rh->resp || !rh->src_xfers)
266			goto err_out;
267
268		rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
269		rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
270		rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
271		rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));
272
273		regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
274		rh_reg_write(CR_SETUP, regval);
275
276		rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
277		rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
278						 INTR_TRANSFER_COMPLETION |
279						 INTR_RING_OP |
280						 INTR_TRANSFER_ERR |
281						 INTR_WARN_INS_STOP_MODE |
282						 INTR_IBI_RING_FULL |
283						 INTR_TRANSFER_ABORT);
284
285		/* IBIs */
286
287		if (i >= IBI_RINGS)
288			goto ring_ready;
289
290		regval = rh_reg_read(IBI_SETUP);
291		rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
292		rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
293		rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
294
295		rh->ibi_chunk_sz = dma_get_cache_alignment();
296		rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
297		BUG_ON(rh->ibi_chunk_sz > 256);
298
299		ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
300		ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
301
302		rh->ibi_status =
303			dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
304					   &rh->ibi_status_dma, GFP_KERNEL);
305		rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
306		ret = -ENOMEM;
307		if (!rh->ibi_status || !rh->ibi_data)
308			goto err_out;
309		rh->ibi_data_dma =
310			dma_map_single(&hci->master.dev, rh->ibi_data,
311				       ibi_data_ring_sz, DMA_FROM_DEVICE);
312		if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
313			rh->ibi_data_dma = 0;
314			ret = -ENOMEM;
315			goto err_out;
316		}
317
318		regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
319				    rh->ibi_status_entries) |
320			 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
321				    ilog2(rh->ibi_chunk_sz) - 2) |
322			 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
323				    rh->ibi_chunks_total);
324		rh_reg_write(IBI_SETUP, regval);
325
326		regval = rh_reg_read(INTR_SIGNAL_ENABLE);
327		regval |= INTR_IBI_READY;
328		rh_reg_write(INTR_SIGNAL_ENABLE, regval);
329
330ring_ready:
331		rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE |
332					   RING_CTRL_RUN_STOP);
333	}
334
335	return 0;
336
337err_out:
338	hci_dma_cleanup(hci);
339	return ret;
340}
341
342static void hci_dma_unmap_xfer(struct i3c_hci *hci,
343			       struct hci_xfer *xfer_list, unsigned int n)
344{
345	struct hci_xfer *xfer;
346	unsigned int i;
347
348	for (i = 0; i < n; i++) {
349		xfer = xfer_list + i;
350		if (!xfer->data)
351			continue;
352		dma_unmap_single(&hci->master.dev,
353				 xfer->data_dma, xfer->data_len,
354				 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
355	}
356}
357
358static int hci_dma_queue_xfer(struct i3c_hci *hci,
359			      struct hci_xfer *xfer_list, int n)
360{
361	struct hci_rings_data *rings = hci->io_data;
362	struct hci_rh_data *rh;
363	unsigned int i, ring, enqueue_ptr;
364	u32 op1_val, op2_val;
365	void *buf;
366
367	/* For now we only use ring 0 */
368	ring = 0;
369	rh = &rings->headers[ring];
370
371	op1_val = rh_reg_read(RING_OPERATION1);
372	enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
373	for (i = 0; i < n; i++) {
374		struct hci_xfer *xfer = xfer_list + i;
375		u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
376
377		/* store cmd descriptor */
378		*ring_data++ = xfer->cmd_desc[0];
379		*ring_data++ = xfer->cmd_desc[1];
380		if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
381			*ring_data++ = xfer->cmd_desc[2];
382			*ring_data++ = xfer->cmd_desc[3];
383		}
384
385		/* first word of Data Buffer Descriptor Structure */
386		if (!xfer->data)
387			xfer->data_len = 0;
388		*ring_data++ =
389			FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
390			((i == n - 1) ? DATA_BUF_IOC : 0);
391
392		/* 2nd and 3rd words of Data Buffer Descriptor Structure */
393		if (xfer->data) {
394			buf = xfer->bounce_buf ? xfer->bounce_buf : xfer->data;
395			xfer->data_dma =
396				dma_map_single(&hci->master.dev,
397					       buf,
398					       xfer->data_len,
399					       xfer->rnw ?
400						  DMA_FROM_DEVICE :
401						  DMA_TO_DEVICE);
402			if (dma_mapping_error(&hci->master.dev,
403					      xfer->data_dma)) {
404				hci_dma_unmap_xfer(hci, xfer_list, i);
405				return -ENOMEM;
406			}
407			*ring_data++ = lo32(xfer->data_dma);
408			*ring_data++ = hi32(xfer->data_dma);
409		} else {
410			*ring_data++ = 0;
411			*ring_data++ = 0;
412		}
413
414		/* remember corresponding xfer struct */
415		rh->src_xfers[enqueue_ptr] = xfer;
416		/* remember corresponding ring/entry for this xfer structure */
417		xfer->ring_number = ring;
418		xfer->ring_entry = enqueue_ptr;
419
420		enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
421
422		/*
423		 * We may update the hardware view of the enqueue pointer
424		 * only if we didn't reach its dequeue pointer.
425		 */
426		op2_val = rh_reg_read(RING_OPERATION2);
427		if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
428			/* the ring is full */
429			hci_dma_unmap_xfer(hci, xfer_list, i + 1);
430			return -EBUSY;
431		}
432	}
433
434	/* take care to update the hardware enqueue pointer atomically */
435	spin_lock_irq(&rh->lock);
436	op1_val = rh_reg_read(RING_OPERATION1);
437	op1_val &= ~RING_OP1_CR_ENQ_PTR;
438	op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
439	rh_reg_write(RING_OPERATION1, op1_val);
440	spin_unlock_irq(&rh->lock);
441
442	return 0;
443}
444
445static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
446				 struct hci_xfer *xfer_list, int n)
447{
448	struct hci_rings_data *rings = hci->io_data;
449	struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
450	unsigned int i;
451	bool did_unqueue = false;
452
453	/* stop the ring */
454	rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
455	if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
456		/*
457		 * We're deep in it if ever this condition is ever met.
458		 * Hardware might still be writing to memory, etc.
459		 */
460		dev_crit(&hci->master.dev, "unable to abort the ring\n");
461		WARN_ON(1);
462	}
463
464	for (i = 0; i < n; i++) {
465		struct hci_xfer *xfer = xfer_list + i;
466		int idx = xfer->ring_entry;
467
468		/*
469		 * At the time the abort happened, the xfer might have
470		 * completed already. If not then replace corresponding
471		 * descriptor entries with a no-op.
472		 */
473		if (idx >= 0) {
474			u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
475
476			/* store no-op cmd descriptor */
477			*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
478			*ring_data++ = 0;
479			if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
480				*ring_data++ = 0;
481				*ring_data++ = 0;
482			}
483
484			/* disassociate this xfer struct */
485			rh->src_xfers[idx] = NULL;
486
487			/* and unmap it */
488			hci_dma_unmap_xfer(hci, xfer, 1);
489
490			did_unqueue = true;
491		}
492	}
493
494	/* restart the ring */
495	rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
496
497	return did_unqueue;
498}
499
500static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
501{
502	u32 op1_val, op2_val, resp, *ring_resp;
503	unsigned int tid, done_ptr = rh->done_ptr;
504	struct hci_xfer *xfer;
505
506	for (;;) {
507		op2_val = rh_reg_read(RING_OPERATION2);
508		if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
509			break;
510
511		ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
512		resp = *ring_resp;
513		tid = RESP_TID(resp);
514		DBG("resp = 0x%08x", resp);
515
516		xfer = rh->src_xfers[done_ptr];
517		if (!xfer) {
518			DBG("orphaned ring entry");
519		} else {
520			hci_dma_unmap_xfer(hci, xfer, 1);
521			xfer->ring_entry = -1;
522			xfer->response = resp;
523			if (tid != xfer->cmd_tid) {
524				dev_err(&hci->master.dev,
525					"response tid=%d when expecting %d\n",
526					tid, xfer->cmd_tid);
527				/* TODO: do something about it? */
528			}
529			if (xfer->completion)
530				complete(xfer->completion);
531		}
532
533		done_ptr = (done_ptr + 1) % rh->xfer_entries;
534		rh->done_ptr = done_ptr;
535	}
536
537	/* take care to update the software dequeue pointer atomically */
538	spin_lock(&rh->lock);
539	op1_val = rh_reg_read(RING_OPERATION1);
540	op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
541	op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
542	rh_reg_write(RING_OPERATION1, op1_val);
543	spin_unlock(&rh->lock);
544}
545
546static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
547			       const struct i3c_ibi_setup *req)
548{
549	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
550	struct i3c_generic_ibi_pool *pool;
551	struct hci_dma_dev_ibi_data *dev_ibi;
552
553	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
554	if (!dev_ibi)
555		return -ENOMEM;
556	pool = i3c_generic_ibi_alloc_pool(dev, req);
557	if (IS_ERR(pool)) {
558		kfree(dev_ibi);
559		return PTR_ERR(pool);
560	}
561	dev_ibi->pool = pool;
562	dev_ibi->max_len = req->max_payload_len;
563	dev_data->ibi_data = dev_ibi;
564	return 0;
565}
566
567static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
568{
569	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
570	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
571
572	dev_data->ibi_data = NULL;
573	i3c_generic_ibi_free_pool(dev_ibi->pool);
574	kfree(dev_ibi);
575}
576
577static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
578				     struct i3c_dev_desc *dev,
579				     struct i3c_ibi_slot *slot)
580{
581	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
582	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
583
584	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
585}
586
587static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
588{
589	struct i3c_dev_desc *dev;
590	struct i3c_hci_dev_data *dev_data;
591	struct hci_dma_dev_ibi_data *dev_ibi;
592	struct i3c_ibi_slot *slot;
593	u32 op1_val, op2_val, ibi_status_error;
594	unsigned int ptr, enq_ptr, deq_ptr;
595	unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
596	int ibi_addr, last_ptr;
597	void *ring_ibi_data;
598	dma_addr_t ring_ibi_data_dma;
599
600	op1_val = rh_reg_read(RING_OPERATION1);
601	deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
602
603	op2_val = rh_reg_read(RING_OPERATION2);
604	enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
605
606	ibi_status_error = 0;
607	ibi_addr = -1;
608	ibi_chunks = 0;
609	ibi_size = 0;
610	last_ptr = -1;
611
612	/* let's find all we can about this IBI */
613	for (ptr = deq_ptr; ptr != enq_ptr;
614	     ptr = (ptr + 1) % rh->ibi_status_entries) {
615		u32 ibi_status, *ring_ibi_status;
616		unsigned int chunks;
617
618		ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
619		ibi_status = *ring_ibi_status;
620		DBG("status = %#x", ibi_status);
621
622		if (ibi_status_error) {
623			/* we no longer care */
624		} else if (ibi_status & IBI_ERROR) {
625			ibi_status_error = ibi_status;
626		} else if (ibi_addr ==  -1) {
627			ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
628		} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
629			/* the address changed unexpectedly */
630			ibi_status_error = ibi_status;
631		}
632
633		chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
634		ibi_chunks += chunks;
635		if (!(ibi_status & IBI_LAST_STATUS)) {
636			ibi_size += chunks * rh->ibi_chunk_sz;
637		} else {
638			ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
639			last_ptr = ptr;
640			break;
641		}
642	}
643
644	/* validate what we've got */
645
646	if (last_ptr == -1) {
647		/* this IBI sequence is not yet complete */
648		DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
649		return;
650	}
651	deq_ptr = last_ptr + 1;
652	deq_ptr %= rh->ibi_status_entries;
653
654	if (ibi_status_error) {
655		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
656		goto done;
657	}
658
659	/* determine who this is for */
660	dev = i3c_hci_addr_to_dev(hci, ibi_addr);
661	if (!dev) {
662		dev_err(&hci->master.dev,
663			"IBI for unknown device %#x\n", ibi_addr);
664		goto done;
665	}
666
667	dev_data = i3c_dev_get_master_data(dev);
668	dev_ibi = dev_data->ibi_data;
669	if (ibi_size > dev_ibi->max_len) {
670		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
671			ibi_size, dev_ibi->max_len);
672		goto done;
673	}
674
675	/*
676	 * This ring model is not suitable for zero-copy processing of IBIs.
677	 * We have the data chunk ring wrap-around to deal with, meaning
678	 * that the payload might span multiple chunks beginning at the
679	 * end of the ring and wrap to the start of the ring. Furthermore
680	 * there is no guarantee that those chunks will be released in order
681	 * and in a timely manner by the upper driver. So let's just copy
682	 * them to a discrete buffer. In practice they're supposed to be
683	 * small anyway.
684	 */
685	slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
686	if (!slot) {
687		dev_err(&hci->master.dev, "no free slot for IBI\n");
688		goto done;
689	}
690
691	/* copy first part of the payload */
692	ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
693	ring_ibi_data = rh->ibi_data + ibi_data_offset;
694	ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
695	first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
696			* rh->ibi_chunk_sz;
697	if (first_part > ibi_size)
698		first_part = ibi_size;
699	dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
700				first_part, DMA_FROM_DEVICE);
701	memcpy(slot->data, ring_ibi_data, first_part);
702
703	/* copy second part if any */
704	if (ibi_size > first_part) {
705		/* we wrap back to the start and copy remaining data */
706		ring_ibi_data = rh->ibi_data;
707		ring_ibi_data_dma = rh->ibi_data_dma;
708		dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
709					ibi_size - first_part, DMA_FROM_DEVICE);
710		memcpy(slot->data + first_part, ring_ibi_data,
711		       ibi_size - first_part);
712	}
713
714	/* submit it */
715	slot->dev = dev;
716	slot->len = ibi_size;
717	i3c_master_queue_ibi(dev, slot);
718
719done:
720	/* take care to update the ibi dequeue pointer atomically */
721	spin_lock(&rh->lock);
722	op1_val = rh_reg_read(RING_OPERATION1);
723	op1_val &= ~RING_OP1_IBI_DEQ_PTR;
724	op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
725	rh_reg_write(RING_OPERATION1, op1_val);
726	spin_unlock(&rh->lock);
727
728	/* update the chunk pointer */
729	rh->ibi_chunk_ptr += ibi_chunks;
730	rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
731
732	/* and tell the hardware about freed chunks */
733	rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
734}
735
736static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
737{
738	struct hci_rings_data *rings = hci->io_data;
739	unsigned int i;
740	bool handled = false;
741
742	for (i = 0; mask && i < rings->total; i++) {
743		struct hci_rh_data *rh;
744		u32 status;
745
746		if (!(mask & BIT(i)))
747			continue;
748		mask &= ~BIT(i);
749
750		rh = &rings->headers[i];
751		status = rh_reg_read(INTR_STATUS);
752		DBG("rh%d status: %#x", i, status);
753		if (!status)
754			continue;
755		rh_reg_write(INTR_STATUS, status);
756
757		if (status & INTR_IBI_READY)
758			hci_dma_process_ibi(hci, rh);
759		if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
760			hci_dma_xfer_done(hci, rh);
761		if (status & INTR_RING_OP)
762			complete(&rh->op_done);
763
764		if (status & INTR_TRANSFER_ABORT) {
765			dev_notice_ratelimited(&hci->master.dev,
766				"ring %d: Transfer Aborted\n", i);
767			mipi_i3c_hci_resume(hci);
768		}
769		if (status & INTR_WARN_INS_STOP_MODE)
770			dev_warn_ratelimited(&hci->master.dev,
771				"ring %d: Inserted Stop on Mode Change\n", i);
772		if (status & INTR_IBI_RING_FULL)
773			dev_err_ratelimited(&hci->master.dev,
774				"ring %d: IBI Ring Full Condition\n", i);
775
776		handled = true;
777	}
778
779	return handled;
780}
781
782const struct hci_io_ops mipi_i3c_hci_dma = {
783	.init			= hci_dma_init,
784	.cleanup		= hci_dma_cleanup,
785	.queue_xfer		= hci_dma_queue_xfer,
786	.dequeue_xfer		= hci_dma_dequeue_xfer,
787	.irq_handler		= hci_dma_irq_handler,
788	.request_ibi		= hci_dma_request_ibi,
789	.free_ibi		= hci_dma_free_ibi,
790	.recycle_ibi_slot	= hci_dma_recycle_ibi_slot,
791};
792