1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4 *          monitoring
5 * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
6 *
7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
8 * Semiconductor. It reports up to two temperatures (its own plus up to
9 * one external one) with a 0.125 deg resolution (1 deg for local
10 * temperature) and a 3-4 deg accuracy.
11 *
12 * This driver also supports the LM89 and LM99, two other sensor chips
13 * made by National Semiconductor. Both have an increased remote
14 * temperature measurement accuracy (1 degree), and the LM99
15 * additionally shifts remote temperatures (measured and limits) by 16
16 * degrees, which allows for higher temperatures measurement.
17 * Note that there is no way to differentiate between both chips.
18 * When device is auto-detected, the driver will assume an LM99.
19 *
20 * This driver also supports the LM86, another sensor chip made by
21 * National Semiconductor. It is exactly similar to the LM90 except it
22 * has a higher accuracy.
23 *
24 * This driver also supports the ADM1032, a sensor chip made by Analog
25 * Devices. That chip is similar to the LM90, with a few differences
26 * that are not handled by this driver. Among others, it has a higher
27 * accuracy than the LM90, much like the LM86 does.
28 *
29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30 * chips made by Maxim. These chips are similar to the LM86.
31 * Note that there is no easy way to differentiate between the three
32 * variants. We use the device address to detect MAX6659, which will result
33 * in a detection as max6657 if it is on address 0x4c. The extra address
34 * and features of the MAX6659 are only supported if the chip is configured
35 * explicitly as max6659, or if its address is not 0x4c.
36 * These chips lack the remote temperature offset feature.
37 *
38 * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39 * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40 * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41 * limits. Extended range is available by setting the configuration register
42 * accordingly, and is done during initialization. Extended precision is only
43 * available at conversion rates of 1 Hz and slower. Note that extended
44 * precision is not enabled by default, as this driver initializes all chips
45 * to 2 Hz by design. The driver also supports MAX6690, which is practically
46 * identical to MAX6654.
47 *
48 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49 * MAX6692 chips made by Maxim.  These are again similar to the LM86,
50 * but they use unsigned temperature values and can report temperatures
51 * from 0 to 145 degrees.
52 *
53 * This driver also supports the MAX6680 and MAX6681, two other sensor
54 * chips made by Maxim. These are quite similar to the other Maxim
55 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56 * be treated identically.
57 *
58 * This driver also supports the MAX6695 and MAX6696, two other sensor
59 * chips made by Maxim. These are also quite similar to other Maxim
60 * chips, but support three temperature sensors instead of two. MAX6695
61 * and MAX6696 only differ in the pinout so they can be treated identically.
62 *
63 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65 * and extended mode. They are mostly compatible with LM90 except for a data
66 * format difference for the temperature value registers.
67 *
68 * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69 * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70 * temperature sensors.
71 *
72 * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73 * The chips are similar to ADT7461/ADT7461A but have full PEC support
74 * (undocumented).
75 *
76 * This driver also supports the SA56004 from Philips. This device is
77 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
78 *
79 * This driver also supports the G781 from GMT. This device is compatible
80 * with the ADM1032.
81 *
82 * This driver also supports TMP451 and TMP461 from Texas Instruments.
83 * Those devices are supported in both compatibility and extended mode.
84 * They are mostly compatible with ADT7461 except for local temperature
85 * low byte register and max conversion rate.
86 *
87 * This driver also supports MAX1617 and various clones such as G767
88 * and NE1617. Such clones will be detected as MAX1617.
89 *
90 * This driver also supports NE1618 from Philips. It is similar to NE1617
91 * but supports 11 bit external temperature values.
92 *
93 * Since the LM90 was the first chipset supported by this driver, most
94 * comments will refer to this chipset, but are actually general and
95 * concern all supported chipsets, unless mentioned otherwise.
96 */
97
98#include <linux/bits.h>
99#include <linux/device.h>
100#include <linux/err.h>
101#include <linux/i2c.h>
102#include <linux/init.h>
103#include <linux/interrupt.h>
104#include <linux/jiffies.h>
105#include <linux/hwmon.h>
106#include <linux/kstrtox.h>
107#include <linux/module.h>
108#include <linux/mutex.h>
109#include <linux/of.h>
110#include <linux/regulator/consumer.h>
111#include <linux/slab.h>
112#include <linux/workqueue.h>
113
114/* The maximum number of channels currently supported */
115#define MAX_CHANNELS	3
116
117/*
118 * Addresses to scan
119 * Address is fully defined internally and cannot be changed except for
120 * MAX6659, MAX6680 and MAX6681.
121 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
122 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
123 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
124 * have address 0x4d.
125 * MAX6647 has address 0x4e.
126 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
127 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
128 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
129 * SA56004 can have address 0x48 through 0x4F.
130 */
131
132static const unsigned short normal_i2c[] = {
133	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
134	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
135
136enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
137	g781, lm84, lm90, lm99,
138	max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
139	nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
140};
141
142/*
143 * The LM90 registers
144 */
145
146#define LM90_REG_MAN_ID			0xFE
147#define LM90_REG_CHIP_ID		0xFF
148#define LM90_REG_CONFIG1		0x03
149#define LM90_REG_CONFIG2		0xBF
150#define LM90_REG_CONVRATE		0x04
151#define LM90_REG_STATUS			0x02
152#define LM90_REG_LOCAL_TEMP		0x00
153#define LM90_REG_LOCAL_HIGH		0x05
154#define LM90_REG_LOCAL_LOW		0x06
155#define LM90_REG_LOCAL_CRIT		0x20
156#define LM90_REG_REMOTE_TEMPH		0x01
157#define LM90_REG_REMOTE_TEMPL		0x10
158#define LM90_REG_REMOTE_OFFSH		0x11
159#define LM90_REG_REMOTE_OFFSL		0x12
160#define LM90_REG_REMOTE_HIGHH		0x07
161#define LM90_REG_REMOTE_HIGHL		0x13
162#define LM90_REG_REMOTE_LOWH		0x08
163#define LM90_REG_REMOTE_LOWL		0x14
164#define LM90_REG_REMOTE_CRIT		0x19
165#define LM90_REG_TCRIT_HYST		0x21
166
167/* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
168
169#define MAX6657_REG_LOCAL_TEMPL		0x11
170#define MAX6696_REG_STATUS2		0x12
171#define MAX6659_REG_REMOTE_EMERG	0x16
172#define MAX6659_REG_LOCAL_EMERG		0x17
173
174/*  SA56004 registers */
175
176#define SA56004_REG_LOCAL_TEMPL		0x22
177
178#define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
179
180/* TMP451/TMP461 registers */
181#define TMP451_REG_LOCAL_TEMPL		0x15
182#define TMP451_REG_CONALERT		0x22
183
184#define TMP461_REG_CHEN			0x16
185#define TMP461_REG_DFC			0x24
186
187/* ADT7481 registers */
188#define ADT7481_REG_STATUS2		0x23
189#define ADT7481_REG_CONFIG2		0x24
190
191#define ADT7481_REG_MAN_ID		0x3e
192#define ADT7481_REG_CHIP_ID		0x3d
193
194/* Device features */
195#define LM90_HAVE_EXTENDED_TEMP	BIT(0)	/* extended temperature support	*/
196#define LM90_HAVE_OFFSET	BIT(1)	/* temperature offset register	*/
197#define LM90_HAVE_UNSIGNED_TEMP	BIT(2)	/* temperatures are unsigned	*/
198#define LM90_HAVE_REM_LIMIT_EXT	BIT(3)	/* extended remote limit	*/
199#define LM90_HAVE_EMERGENCY	BIT(4)	/* 3rd upper (emergency) limit	*/
200#define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm		*/
201#define LM90_HAVE_TEMP3		BIT(6)	/* 3rd temperature sensor	*/
202#define LM90_HAVE_BROKEN_ALERT	BIT(7)	/* Broken alert			*/
203#define LM90_PAUSE_FOR_CONFIG	BIT(8)	/* Pause conversion for config	*/
204#define LM90_HAVE_CRIT		BIT(9)	/* Chip supports CRIT/OVERT register	*/
205#define LM90_HAVE_CRIT_ALRM_SWP	BIT(10)	/* critical alarm bits swapped	*/
206#define LM90_HAVE_PEC		BIT(11)	/* Chip supports PEC		*/
207#define LM90_HAVE_PARTIAL_PEC	BIT(12)	/* Partial PEC support (adm1032)*/
208#define LM90_HAVE_ALARMS	BIT(13)	/* Create 'alarms' attribute	*/
209#define LM90_HAVE_EXT_UNSIGNED	BIT(14)	/* extended unsigned temperature*/
210#define LM90_HAVE_LOW		BIT(15)	/* low limits			*/
211#define LM90_HAVE_CONVRATE	BIT(16)	/* conversion rate		*/
212#define LM90_HAVE_REMOTE_EXT	BIT(17)	/* extended remote temperature	*/
213#define LM90_HAVE_FAULTQUEUE	BIT(18)	/* configurable samples count	*/
214
215/* LM90 status */
216#define LM90_STATUS_LTHRM	BIT(0)	/* local THERM limit tripped */
217#define LM90_STATUS_RTHRM	BIT(1)	/* remote THERM limit tripped */
218#define LM90_STATUS_ROPEN	BIT(2)	/* remote is an open circuit */
219#define LM90_STATUS_RLOW	BIT(3)	/* remote low temp limit tripped */
220#define LM90_STATUS_RHIGH	BIT(4)	/* remote high temp limit tripped */
221#define LM90_STATUS_LLOW	BIT(5)	/* local low temp limit tripped */
222#define LM90_STATUS_LHIGH	BIT(6)	/* local high temp limit tripped */
223#define LM90_STATUS_BUSY	BIT(7)	/* conversion is ongoing */
224
225/* MAX6695/6696 and ADT7481 2nd status register */
226#define MAX6696_STATUS2_R2THRM	BIT(1)	/* remote2 THERM limit tripped */
227#define MAX6696_STATUS2_R2OPEN	BIT(2)	/* remote2 is an open circuit */
228#define MAX6696_STATUS2_R2LOW	BIT(3)	/* remote2 low temp limit tripped */
229#define MAX6696_STATUS2_R2HIGH	BIT(4)	/* remote2 high temp limit tripped */
230#define MAX6696_STATUS2_ROT2	BIT(5)	/* remote emergency limit tripped */
231#define MAX6696_STATUS2_R2OT2	BIT(6)	/* remote2 emergency limit tripped */
232#define MAX6696_STATUS2_LOT2	BIT(7)	/* local emergency limit tripped */
233
234/*
235 * Driver data (common to all clients)
236 */
237
238static const struct i2c_device_id lm90_id[] = {
239	{ "adm1020", max1617 },
240	{ "adm1021", max1617 },
241	{ "adm1023", adm1023 },
242	{ "adm1032", adm1032 },
243	{ "adt7421", adt7461a },
244	{ "adt7461", adt7461 },
245	{ "adt7461a", adt7461a },
246	{ "adt7481", adt7481 },
247	{ "adt7482", adt7481 },
248	{ "adt7483a", adt7481 },
249	{ "g781", g781 },
250	{ "gl523sm", max1617 },
251	{ "lm84", lm84 },
252	{ "lm86", lm90 },
253	{ "lm89", lm90 },
254	{ "lm90", lm90 },
255	{ "lm99", lm99 },
256	{ "max1617", max1617 },
257	{ "max6642", max6642 },
258	{ "max6646", max6646 },
259	{ "max6647", max6646 },
260	{ "max6648", max6648 },
261	{ "max6649", max6646 },
262	{ "max6654", max6654 },
263	{ "max6657", max6657 },
264	{ "max6658", max6657 },
265	{ "max6659", max6659 },
266	{ "max6680", max6680 },
267	{ "max6681", max6680 },
268	{ "max6690", max6654 },
269	{ "max6692", max6648 },
270	{ "max6695", max6696 },
271	{ "max6696", max6696 },
272	{ "mc1066", max1617 },
273	{ "nct1008", adt7461a },
274	{ "nct210", nct210 },
275	{ "nct214", nct72 },
276	{ "nct218", nct72 },
277	{ "nct72", nct72 },
278	{ "ne1618", ne1618 },
279	{ "w83l771", w83l771 },
280	{ "sa56004", sa56004 },
281	{ "thmc10", max1617 },
282	{ "tmp451", tmp451 },
283	{ "tmp461", tmp461 },
284	{ }
285};
286MODULE_DEVICE_TABLE(i2c, lm90_id);
287
288static const struct of_device_id __maybe_unused lm90_of_match[] = {
289	{
290		.compatible = "adi,adm1032",
291		.data = (void *)adm1032
292	},
293	{
294		.compatible = "adi,adt7461",
295		.data = (void *)adt7461
296	},
297	{
298		.compatible = "adi,adt7461a",
299		.data = (void *)adt7461a
300	},
301	{
302		.compatible = "adi,adt7481",
303		.data = (void *)adt7481
304	},
305	{
306		.compatible = "gmt,g781",
307		.data = (void *)g781
308	},
309	{
310		.compatible = "national,lm90",
311		.data = (void *)lm90
312	},
313	{
314		.compatible = "national,lm86",
315		.data = (void *)lm90
316	},
317	{
318		.compatible = "national,lm89",
319		.data = (void *)lm90
320	},
321	{
322		.compatible = "national,lm99",
323		.data = (void *)lm99
324	},
325	{
326		.compatible = "dallas,max6646",
327		.data = (void *)max6646
328	},
329	{
330		.compatible = "dallas,max6647",
331		.data = (void *)max6646
332	},
333	{
334		.compatible = "dallas,max6649",
335		.data = (void *)max6646
336	},
337	{
338		.compatible = "dallas,max6654",
339		.data = (void *)max6654
340	},
341	{
342		.compatible = "dallas,max6657",
343		.data = (void *)max6657
344	},
345	{
346		.compatible = "dallas,max6658",
347		.data = (void *)max6657
348	},
349	{
350		.compatible = "dallas,max6659",
351		.data = (void *)max6659
352	},
353	{
354		.compatible = "dallas,max6680",
355		.data = (void *)max6680
356	},
357	{
358		.compatible = "dallas,max6681",
359		.data = (void *)max6680
360	},
361	{
362		.compatible = "dallas,max6695",
363		.data = (void *)max6696
364	},
365	{
366		.compatible = "dallas,max6696",
367		.data = (void *)max6696
368	},
369	{
370		.compatible = "onnn,nct1008",
371		.data = (void *)adt7461a
372	},
373	{
374		.compatible = "onnn,nct214",
375		.data = (void *)nct72
376	},
377	{
378		.compatible = "onnn,nct218",
379		.data = (void *)nct72
380	},
381	{
382		.compatible = "onnn,nct72",
383		.data = (void *)nct72
384	},
385	{
386		.compatible = "winbond,w83l771",
387		.data = (void *)w83l771
388	},
389	{
390		.compatible = "nxp,sa56004",
391		.data = (void *)sa56004
392	},
393	{
394		.compatible = "ti,tmp451",
395		.data = (void *)tmp451
396	},
397	{
398		.compatible = "ti,tmp461",
399		.data = (void *)tmp461
400	},
401	{ },
402};
403MODULE_DEVICE_TABLE(of, lm90_of_match);
404
405/*
406 * chip type specific parameters
407 */
408struct lm90_params {
409	u32 flags;		/* Capabilities */
410	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
411				/* Upper 8 bits for max6695/96 */
412	u8 max_convrate;	/* Maximum conversion rate register value */
413	u8 resolution;		/* 16-bit resolution (default 11 bit) */
414	u8 reg_status2;		/* 2nd status register (optional) */
415	u8 reg_local_ext;	/* Extended local temp register (optional) */
416	u8 faultqueue_mask;	/* fault queue bit mask */
417	u8 faultqueue_depth;	/* fault queue depth if mask is used */
418};
419
420static const struct lm90_params lm90_params[] = {
421	[adm1023] = {
422		.flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
423		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
424		  | LM90_HAVE_REMOTE_EXT,
425		.alert_alarms = 0x7c,
426		.resolution = 8,
427		.max_convrate = 7,
428	},
429	[adm1032] = {
430		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
431		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
432		  | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
433		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
434		  | LM90_HAVE_FAULTQUEUE,
435		.alert_alarms = 0x7c,
436		.max_convrate = 10,
437	},
438	[adt7461] = {
439		/*
440		 * Standard temperature range is supposed to be unsigned,
441		 * but that does not match reality. Negative temperatures
442		 * are always reported.
443		 */
444		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
445		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
446		  | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
447		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
448		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
449		.alert_alarms = 0x7c,
450		.max_convrate = 10,
451		.resolution = 10,
452	},
453	[adt7461a] = {
454		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
455		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
456		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
457		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
458		  | LM90_HAVE_FAULTQUEUE,
459		.alert_alarms = 0x7c,
460		.max_convrate = 10,
461	},
462	[adt7481] = {
463		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
464		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
465		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
466		  | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
467		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
468		  | LM90_HAVE_FAULTQUEUE,
469		.alert_alarms = 0x1c7c,
470		.max_convrate = 11,
471		.resolution = 10,
472		.reg_status2 = ADT7481_REG_STATUS2,
473	},
474	[g781] = {
475		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
476		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
477		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
478		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
479		.alert_alarms = 0x7c,
480		.max_convrate = 7,
481	},
482	[lm84] = {
483		.flags = LM90_HAVE_ALARMS,
484		.resolution = 8,
485	},
486	[lm90] = {
487		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
488		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
489		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
490		  | LM90_HAVE_FAULTQUEUE,
491		.alert_alarms = 0x7b,
492		.max_convrate = 9,
493		.faultqueue_mask = BIT(0),
494		.faultqueue_depth = 3,
495	},
496	[lm99] = {
497		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
498		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
499		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
500		  | LM90_HAVE_FAULTQUEUE,
501		.alert_alarms = 0x7b,
502		.max_convrate = 9,
503		.faultqueue_mask = BIT(0),
504		.faultqueue_depth = 3,
505	},
506	[max1617] = {
507		.flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
508		  LM90_HAVE_LOW | LM90_HAVE_ALARMS,
509		.alert_alarms = 0x78,
510		.resolution = 8,
511		.max_convrate = 7,
512	},
513	[max6642] = {
514		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
515		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
516		.alert_alarms = 0x50,
517		.resolution = 10,
518		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
519		.faultqueue_mask = BIT(4),
520		.faultqueue_depth = 2,
521	},
522	[max6646] = {
523		.flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
524		  | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
525		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
526		.alert_alarms = 0x7c,
527		.max_convrate = 6,
528		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
529	},
530	[max6648] = {
531		.flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
532		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
533		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
534		.alert_alarms = 0x7c,
535		.max_convrate = 6,
536		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
537	},
538	[max6654] = {
539		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
540		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
541		.alert_alarms = 0x7c,
542		.max_convrate = 7,
543		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
544	},
545	[max6657] = {
546		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
547		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
548		  | LM90_HAVE_REMOTE_EXT,
549		.alert_alarms = 0x7c,
550		.max_convrate = 8,
551		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
552	},
553	[max6659] = {
554		.flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
555		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
556		  | LM90_HAVE_REMOTE_EXT,
557		.alert_alarms = 0x7c,
558		.max_convrate = 8,
559		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
560	},
561	[max6680] = {
562		/*
563		 * Apparent temperatures of 128 degrees C or higher are reported
564		 * and treated as negative temperatures (meaning min_alarm will
565		 * be set).
566		 */
567		.flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
568		  | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
569		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
570		  | LM90_HAVE_REMOTE_EXT,
571		.alert_alarms = 0x7c,
572		.max_convrate = 7,
573	},
574	[max6696] = {
575		.flags = LM90_HAVE_EMERGENCY
576		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
577		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
578		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
579		.alert_alarms = 0x1c7c,
580		.max_convrate = 6,
581		.reg_status2 = MAX6696_REG_STATUS2,
582		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
583		.faultqueue_mask = BIT(5),
584		.faultqueue_depth = 4,
585	},
586	[nct72] = {
587		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
588		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
589		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
590		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
591		  | LM90_HAVE_FAULTQUEUE,
592		.alert_alarms = 0x7c,
593		.max_convrate = 10,
594		.resolution = 10,
595	},
596	[nct210] = {
597		.flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
598		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
599		  | LM90_HAVE_REMOTE_EXT,
600		.alert_alarms = 0x7c,
601		.resolution = 11,
602		.max_convrate = 7,
603	},
604	[ne1618] = {
605		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
606		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
607		.alert_alarms = 0x7c,
608		.resolution = 11,
609		.max_convrate = 7,
610	},
611	[w83l771] = {
612		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
613		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
614		  | LM90_HAVE_REMOTE_EXT,
615		.alert_alarms = 0x7c,
616		.max_convrate = 8,
617	},
618	[sa56004] = {
619		/*
620		 * Apparent temperatures of 128 degrees C or higher are reported
621		 * and treated as negative temperatures (meaning min_alarm will
622		 * be set).
623		 */
624		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
625		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
626		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
627		.alert_alarms = 0x7b,
628		.max_convrate = 9,
629		.reg_local_ext = SA56004_REG_LOCAL_TEMPL,
630		.faultqueue_mask = BIT(0),
631		.faultqueue_depth = 3,
632	},
633	[tmp451] = {
634		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
635		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
636		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
637		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
638		.alert_alarms = 0x7c,
639		.max_convrate = 9,
640		.resolution = 12,
641		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
642	},
643	[tmp461] = {
644		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
645		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
646		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
647		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
648		.alert_alarms = 0x7c,
649		.max_convrate = 9,
650		.resolution = 12,
651		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
652	},
653};
654
655/*
656 * temperature register index
657 */
658enum lm90_temp_reg_index {
659	LOCAL_LOW = 0,
660	LOCAL_HIGH,
661	LOCAL_CRIT,
662	REMOTE_CRIT,
663	LOCAL_EMERG,	/* max6659 and max6695/96 */
664	REMOTE_EMERG,	/* max6659 and max6695/96 */
665	REMOTE2_CRIT,	/* max6695/96 only */
666	REMOTE2_EMERG,	/* max6695/96 only */
667
668	REMOTE_TEMP,
669	REMOTE_LOW,
670	REMOTE_HIGH,
671	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
672	LOCAL_TEMP,
673	REMOTE2_TEMP,	/* max6695/96 only */
674	REMOTE2_LOW,	/* max6695/96 only */
675	REMOTE2_HIGH,	/* max6695/96 only */
676	REMOTE2_OFFSET,
677
678	TEMP_REG_NUM
679};
680
681/*
682 * Client data (each client gets its own)
683 */
684
685struct lm90_data {
686	struct i2c_client *client;
687	struct device *hwmon_dev;
688	u32 chip_config[2];
689	u32 channel_config[MAX_CHANNELS + 1];
690	const char *channel_label[MAX_CHANNELS];
691	struct hwmon_channel_info chip_info;
692	struct hwmon_channel_info temp_info;
693	const struct hwmon_channel_info *info[3];
694	struct hwmon_chip_info chip;
695	struct mutex update_lock;
696	struct delayed_work alert_work;
697	struct work_struct report_work;
698	bool valid;		/* true if register values are valid */
699	bool alarms_valid;	/* true if status register values are valid */
700	unsigned long last_updated; /* in jiffies */
701	unsigned long alarms_updated; /* in jiffies */
702	int kind;
703	u32 flags;
704
705	unsigned int update_interval; /* in milliseconds */
706
707	u8 config;		/* Current configuration register value */
708	u8 config_orig;		/* Original configuration register value */
709	u8 convrate_orig;	/* Original conversion rate register value */
710	u8 resolution;		/* temperature resolution in bit */
711	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
712				/* Upper 8 bits for max6695/96 */
713	u8 max_convrate;	/* Maximum conversion rate */
714	u8 reg_status2;		/* 2nd status register (optional) */
715	u8 reg_local_ext;	/* local extension register offset */
716	u8 reg_remote_ext;	/* remote temperature low byte */
717	u8 faultqueue_mask;	/* fault queue mask */
718	u8 faultqueue_depth;	/* fault queue mask */
719
720	/* registers values */
721	u16 temp[TEMP_REG_NUM];
722	u8 temp_hyst;
723	u8 conalert;
724	u16 reported_alarms;	/* alarms reported as sysfs/udev events */
725	u16 current_alarms;	/* current alarms, reported by chip */
726	u16 alarms;		/* alarms not yet reported to user */
727};
728
729/*
730 * Support functions
731 */
732
733/*
734 * If the chip supports PEC but not on write byte transactions, we need
735 * to explicitly ask for a transaction without PEC.
736 */
737static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
738{
739	return i2c_smbus_xfer(client->adapter, client->addr,
740			      client->flags & ~I2C_CLIENT_PEC,
741			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
742}
743
744/*
745 * It is assumed that client->update_lock is held (unless we are in
746 * detection or initialization steps). This matters when PEC is enabled
747 * for chips with partial PEC support, because we don't want the address
748 * pointer to change between the write byte and the read byte transactions.
749 */
750static int lm90_read_reg(struct i2c_client *client, u8 reg)
751{
752	struct lm90_data *data = i2c_get_clientdata(client);
753	bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
754			(data->flags & LM90_HAVE_PARTIAL_PEC);
755	int err;
756
757	if (partial_pec) {
758		err = lm90_write_no_pec(client, reg);
759		if (err)
760			return err;
761		return i2c_smbus_read_byte(client);
762	}
763	return i2c_smbus_read_byte_data(client, reg);
764}
765
766/*
767 * Return register write address
768 *
769 * The write address for registers 0x03 .. 0x08 is the read address plus 6.
770 * For other registers the write address matches the read address.
771 */
772static u8 lm90_write_reg_addr(u8 reg)
773{
774	if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
775		return reg + 6;
776	return reg;
777}
778
779/*
780 * Write into LM90 register.
781 * Convert register address to write address if needed, then execute the
782 * operation.
783 */
784static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
785{
786	return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
787}
788
789/*
790 * Write into 16-bit LM90 register.
791 * Convert register addresses to write address if needed, then execute the
792 * operation.
793 */
794static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
795{
796	int ret;
797
798	ret = lm90_write_reg(client, regh, val >> 8);
799	if (ret < 0 || !regl)
800		return ret;
801	return lm90_write_reg(client, regl, val & 0xff);
802}
803
804static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
805		       bool is_volatile)
806{
807	int oldh, newh, l;
808
809	oldh = lm90_read_reg(client, regh);
810	if (oldh < 0)
811		return oldh;
812
813	if (!regl)
814		return oldh << 8;
815
816	l = lm90_read_reg(client, regl);
817	if (l < 0)
818		return l;
819
820	if (!is_volatile)
821		return (oldh << 8) | l;
822
823	/*
824	 * For volatile registers we have to use a trick.
825	 * We have to read two registers to have the sensor temperature,
826	 * but we have to beware a conversion could occur between the
827	 * readings. The datasheet says we should either use
828	 * the one-shot conversion register, which we don't want to do
829	 * (disables hardware monitoring) or monitor the busy bit, which is
830	 * impossible (we can't read the values and monitor that bit at the
831	 * exact same time). So the solution used here is to read the high
832	 * the high byte again. If the new high byte matches the old one,
833	 * then we have a valid reading. Otherwise we have to read the low
834	 * byte again, and now we believe we have a correct reading.
835	 */
836	newh = lm90_read_reg(client, regh);
837	if (newh < 0)
838		return newh;
839	if (oldh != newh) {
840		l = lm90_read_reg(client, regl);
841		if (l < 0)
842			return l;
843	}
844	return (newh << 8) | l;
845}
846
847static int lm90_update_confreg(struct lm90_data *data, u8 config)
848{
849	if (data->config != config) {
850		int err;
851
852		err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
853		if (err)
854			return err;
855		data->config = config;
856	}
857	return 0;
858}
859
860/*
861 * client->update_lock must be held when calling this function (unless we are
862 * in detection or initialization steps), and while a remote channel other
863 * than channel 0 is selected. Also, calling code must make sure to re-select
864 * external channel 0 before releasing the lock. This is necessary because
865 * various registers have different meanings as a result of selecting a
866 * non-default remote channel.
867 */
868static int lm90_select_remote_channel(struct lm90_data *data, bool second)
869{
870	u8 config = data->config & ~0x08;
871
872	if (second)
873		config |= 0x08;
874
875	return lm90_update_confreg(data, config);
876}
877
878static int lm90_write_convrate(struct lm90_data *data, int val)
879{
880	u8 config = data->config;
881	int err;
882
883	/* Save config and pause conversion */
884	if (data->flags & LM90_PAUSE_FOR_CONFIG) {
885		err = lm90_update_confreg(data, config | 0x40);
886		if (err < 0)
887			return err;
888	}
889
890	/* Set conv rate */
891	err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
892
893	/* Revert change to config */
894	lm90_update_confreg(data, config);
895
896	return err;
897}
898
899/*
900 * Set conversion rate.
901 * client->update_lock must be held when calling this function (unless we are
902 * in detection or initialization steps).
903 */
904static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
905			     unsigned int interval)
906{
907	unsigned int update_interval;
908	int i, err;
909
910	/* Shift calculations to avoid rounding errors */
911	interval <<= 6;
912
913	/* find the nearest update rate */
914	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
915	     i < data->max_convrate; i++, update_interval >>= 1)
916		if (interval >= update_interval * 3 / 4)
917			break;
918
919	err = lm90_write_convrate(data, i);
920	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
921	return err;
922}
923
924static int lm90_set_faultqueue(struct i2c_client *client,
925			       struct lm90_data *data, int val)
926{
927	int err;
928
929	if (data->faultqueue_mask) {
930		err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
931					  data->config & ~data->faultqueue_mask :
932					  data->config | data->faultqueue_mask);
933	} else {
934		static const u8 values[4] = {0, 2, 6, 0x0e};
935
936		data->conalert = (data->conalert & 0xf1) | values[val - 1];
937		err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
938				     data->conalert);
939	}
940
941	return err;
942}
943
944static int lm90_update_limits(struct device *dev)
945{
946	struct lm90_data *data = dev_get_drvdata(dev);
947	struct i2c_client *client = data->client;
948	int val;
949
950	if (data->flags & LM90_HAVE_CRIT) {
951		val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
952		if (val < 0)
953			return val;
954		data->temp[LOCAL_CRIT] = val << 8;
955
956		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
957		if (val < 0)
958			return val;
959		data->temp[REMOTE_CRIT] = val << 8;
960
961		val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
962		if (val < 0)
963			return val;
964		data->temp_hyst = val;
965	}
966	if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
967		val = lm90_read_reg(client, TMP451_REG_CONALERT);
968		if (val < 0)
969			return val;
970		data->conalert = val;
971	}
972
973	val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
974			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
975			  false);
976	if (val < 0)
977		return val;
978	data->temp[REMOTE_LOW] = val;
979
980	val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
981			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
982			  false);
983	if (val < 0)
984		return val;
985	data->temp[REMOTE_HIGH] = val;
986
987	if (data->flags & LM90_HAVE_OFFSET) {
988		val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
989				  LM90_REG_REMOTE_OFFSL, false);
990		if (val < 0)
991			return val;
992		data->temp[REMOTE_OFFSET] = val;
993	}
994
995	if (data->flags & LM90_HAVE_EMERGENCY) {
996		val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
997		if (val < 0)
998			return val;
999		data->temp[LOCAL_EMERG] = val << 8;
1000
1001		val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1002		if (val < 0)
1003			return val;
1004		data->temp[REMOTE_EMERG] = val << 8;
1005	}
1006
1007	if (data->flags & LM90_HAVE_TEMP3) {
1008		val = lm90_select_remote_channel(data, true);
1009		if (val < 0)
1010			return val;
1011
1012		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1013		if (val < 0)
1014			return val;
1015		data->temp[REMOTE2_CRIT] = val << 8;
1016
1017		if (data->flags & LM90_HAVE_EMERGENCY) {
1018			val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1019			if (val < 0)
1020				return val;
1021			data->temp[REMOTE2_EMERG] = val << 8;
1022		}
1023
1024		val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1025		if (val < 0)
1026			return val;
1027		data->temp[REMOTE2_LOW] = val << 8;
1028
1029		val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1030		if (val < 0)
1031			return val;
1032		data->temp[REMOTE2_HIGH] = val << 8;
1033
1034		if (data->flags & LM90_HAVE_OFFSET) {
1035			val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1036					  LM90_REG_REMOTE_OFFSL, false);
1037			if (val < 0)
1038				return val;
1039			data->temp[REMOTE2_OFFSET] = val;
1040		}
1041
1042		lm90_select_remote_channel(data, false);
1043	}
1044
1045	return 0;
1046}
1047
1048static void lm90_report_alarms(struct work_struct *work)
1049{
1050	struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1051	u16 cleared_alarms, new_alarms, current_alarms;
1052	struct device *hwmon_dev = data->hwmon_dev;
1053	struct device *dev = &data->client->dev;
1054	int st, st2;
1055
1056	current_alarms = data->current_alarms;
1057	cleared_alarms = data->reported_alarms & ~current_alarms;
1058	new_alarms = current_alarms & ~data->reported_alarms;
1059
1060	if (!cleared_alarms && !new_alarms)
1061		return;
1062
1063	st = new_alarms & 0xff;
1064	st2 = new_alarms >> 8;
1065
1066	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1067	    (st2 & MAX6696_STATUS2_LOT2))
1068		dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1069	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1070	    (st2 & MAX6696_STATUS2_ROT2))
1071		dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1072	if (st & LM90_STATUS_ROPEN)
1073		dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1074	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1075		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1076		dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1077	if (st2 & MAX6696_STATUS2_R2OPEN)
1078		dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1079
1080	st |= cleared_alarms & 0xff;
1081	st2 |= cleared_alarms >> 8;
1082
1083	if (st & LM90_STATUS_LLOW)
1084		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1085	if (st & LM90_STATUS_RLOW)
1086		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1087	if (st2 & MAX6696_STATUS2_R2LOW)
1088		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1089
1090	if (st & LM90_STATUS_LHIGH)
1091		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1092	if (st & LM90_STATUS_RHIGH)
1093		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1094	if (st2 & MAX6696_STATUS2_R2HIGH)
1095		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1096
1097	if (st & LM90_STATUS_LTHRM)
1098		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1099	if (st & LM90_STATUS_RTHRM)
1100		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1101	if (st2 & MAX6696_STATUS2_R2THRM)
1102		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1103
1104	if (st2 & MAX6696_STATUS2_LOT2)
1105		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1106	if (st2 & MAX6696_STATUS2_ROT2)
1107		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1108	if (st2 & MAX6696_STATUS2_R2OT2)
1109		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1110
1111	data->reported_alarms = current_alarms;
1112}
1113
1114static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1115{
1116	if (force || !data->alarms_valid ||
1117	    time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1118		struct i2c_client *client = data->client;
1119		bool check_enable;
1120		u16 alarms;
1121		int val;
1122
1123		data->alarms_valid = false;
1124
1125		val = lm90_read_reg(client, LM90_REG_STATUS);
1126		if (val < 0)
1127			return val;
1128		alarms = val & ~LM90_STATUS_BUSY;
1129
1130		if (data->reg_status2) {
1131			val = lm90_read_reg(client, data->reg_status2);
1132			if (val < 0)
1133				return val;
1134			alarms |= val << 8;
1135		}
1136		/*
1137		 * If the update is forced (called from interrupt or alert
1138		 * handler) and alarm data is valid, the alarms may have been
1139		 * updated after the last update interval, and the status
1140		 * register may still be cleared. Only add additional alarms
1141		 * in this case. Alarms will be cleared later if appropriate.
1142		 */
1143		if (force && data->alarms_valid)
1144			data->current_alarms |= alarms;
1145		else
1146			data->current_alarms = alarms;
1147		data->alarms |= alarms;
1148
1149		check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1150			(data->config & 0x80);
1151
1152		if (force || check_enable)
1153			schedule_work(&data->report_work);
1154
1155		/*
1156		 * Re-enable ALERT# output if it was originally enabled, relevant
1157		 * alarms are all clear, and alerts are currently disabled.
1158		 * Otherwise (re)schedule worker if needed.
1159		 */
1160		if (check_enable) {
1161			if (!(data->current_alarms & data->alert_alarms)) {
1162				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1163				lm90_update_confreg(data, data->config & ~0x80);
1164				/*
1165				 * We may have been called from the update handler.
1166				 * If so, the worker, if scheduled, is no longer
1167				 * needed. Cancel it. Don't synchronize because
1168				 * it may already be running.
1169				 */
1170				cancel_delayed_work(&data->alert_work);
1171			} else {
1172				schedule_delayed_work(&data->alert_work,
1173					max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1174			}
1175		}
1176		data->alarms_updated = jiffies;
1177		data->alarms_valid = true;
1178	}
1179	return 0;
1180}
1181
1182static int lm90_update_alarms(struct lm90_data *data, bool force)
1183{
1184	int err;
1185
1186	mutex_lock(&data->update_lock);
1187	err = lm90_update_alarms_locked(data, force);
1188	mutex_unlock(&data->update_lock);
1189
1190	return err;
1191}
1192
1193static void lm90_alert_work(struct work_struct *__work)
1194{
1195	struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1196	struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1197
1198	/* Nothing to do if alerts are enabled */
1199	if (!(data->config & 0x80))
1200		return;
1201
1202	lm90_update_alarms(data, true);
1203}
1204
1205static int lm90_update_device(struct device *dev)
1206{
1207	struct lm90_data *data = dev_get_drvdata(dev);
1208	struct i2c_client *client = data->client;
1209	unsigned long next_update;
1210	int val;
1211
1212	if (!data->valid) {
1213		val = lm90_update_limits(dev);
1214		if (val < 0)
1215			return val;
1216	}
1217
1218	next_update = data->last_updated +
1219		      msecs_to_jiffies(data->update_interval);
1220	if (time_after(jiffies, next_update) || !data->valid) {
1221		dev_dbg(&client->dev, "Updating lm90 data.\n");
1222
1223		data->valid = false;
1224
1225		val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1226		if (val < 0)
1227			return val;
1228		data->temp[LOCAL_LOW] = val << 8;
1229
1230		val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1231		if (val < 0)
1232			return val;
1233		data->temp[LOCAL_HIGH] = val << 8;
1234
1235		val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1236				  data->reg_local_ext, true);
1237		if (val < 0)
1238			return val;
1239		data->temp[LOCAL_TEMP] = val;
1240		val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1241				  data->reg_remote_ext, true);
1242		if (val < 0)
1243			return val;
1244		data->temp[REMOTE_TEMP] = val;
1245
1246		if (data->flags & LM90_HAVE_TEMP3) {
1247			val = lm90_select_remote_channel(data, true);
1248			if (val < 0)
1249				return val;
1250
1251			val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1252					  data->reg_remote_ext, true);
1253			if (val < 0) {
1254				lm90_select_remote_channel(data, false);
1255				return val;
1256			}
1257			data->temp[REMOTE2_TEMP] = val;
1258
1259			lm90_select_remote_channel(data, false);
1260		}
1261
1262		val = lm90_update_alarms_locked(data, false);
1263		if (val < 0)
1264			return val;
1265
1266		data->last_updated = jiffies;
1267		data->valid = true;
1268	}
1269
1270	return 0;
1271}
1272
1273/* pec used for devices with PEC support */
1274static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
1275			char *buf)
1276{
1277	struct i2c_client *client = to_i2c_client(dev);
1278
1279	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1280}
1281
1282static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
1283			 const char *buf, size_t count)
1284{
1285	struct i2c_client *client = to_i2c_client(dev);
1286	long val;
1287	int err;
1288
1289	err = kstrtol(buf, 10, &val);
1290	if (err < 0)
1291		return err;
1292
1293	switch (val) {
1294	case 0:
1295		client->flags &= ~I2C_CLIENT_PEC;
1296		break;
1297	case 1:
1298		client->flags |= I2C_CLIENT_PEC;
1299		break;
1300	default:
1301		return -EINVAL;
1302	}
1303
1304	return count;
1305}
1306
1307static DEVICE_ATTR_RW(pec);
1308
1309static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1310{
1311	switch (index) {
1312	case REMOTE_TEMP:
1313		if (data->reg_remote_ext)
1314			return data->resolution;
1315		return 8;
1316	case REMOTE_OFFSET:
1317	case REMOTE2_OFFSET:
1318	case REMOTE2_TEMP:
1319		return data->resolution;
1320	case LOCAL_TEMP:
1321		if (data->reg_local_ext)
1322			return data->resolution;
1323		return 8;
1324	case REMOTE_LOW:
1325	case REMOTE_HIGH:
1326	case REMOTE2_LOW:
1327	case REMOTE2_HIGH:
1328		if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1329			return data->resolution;
1330		return 8;
1331	default:
1332		return 8;
1333	}
1334}
1335
1336static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1337{
1338	int val;
1339
1340	if (flags & LM90_HAVE_EXTENDED_TEMP)
1341		val = regval - 0x4000;
1342	else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1343		val = regval;
1344	else
1345		val = (s16)regval;
1346
1347	return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1348}
1349
1350static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1351{
1352	int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1353				      lm90_temp_get_resolution(data, index));
1354
1355	/* +16 degrees offset for remote temperature on LM99 */
1356	if (data->kind == lm99 && channel)
1357		temp += 16000;
1358
1359	return temp;
1360}
1361
1362static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1363{
1364	int fraction = resolution > 8 ?
1365			1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1366
1367	if (flags & LM90_HAVE_EXTENDED_TEMP) {
1368		val = clamp_val(val, -64000, 191000 + fraction);
1369		val += 64000;
1370	} else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1371		val = clamp_val(val, 0, 255000 + fraction);
1372	} else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1373		val = clamp_val(val, 0, 127000 + fraction);
1374	} else {
1375		val = clamp_val(val, -128000, 127000 + fraction);
1376	}
1377
1378	return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1379}
1380
1381static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1382{
1383	static const u8 regs[] = {
1384		[LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1385		[LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1386		[LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1387		[REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1388		[LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1389		[REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1390		[REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1391		[REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1392		[REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1393		[REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1394		[REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1395		[REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1396	};
1397	struct i2c_client *client = data->client;
1398	u8 regh = regs[index];
1399	u8 regl = 0;
1400	int err;
1401
1402	if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1403		if (index == REMOTE_LOW || index == REMOTE2_LOW)
1404			regl = LM90_REG_REMOTE_LOWL;
1405		else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1406			regl = LM90_REG_REMOTE_HIGHL;
1407	}
1408
1409	/* +16 degrees offset for remote temperature on LM99 */
1410	if (data->kind == lm99 && channel) {
1411		/* prevent integer underflow */
1412		val = max(val, -128000l);
1413		val -= 16000;
1414	}
1415
1416	data->temp[index] = lm90_temp_to_reg(data->flags, val,
1417					     lm90_temp_get_resolution(data, index));
1418
1419	if (channel > 1)
1420		lm90_select_remote_channel(data, true);
1421
1422	err = lm90_write16(client, regh, regl, data->temp[index]);
1423
1424	if (channel > 1)
1425		lm90_select_remote_channel(data, false);
1426
1427	return err;
1428}
1429
1430static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1431{
1432	int temp = lm90_get_temp(data, index, channel);
1433
1434	return temp - data->temp_hyst * 1000;
1435}
1436
1437static int lm90_set_temphyst(struct lm90_data *data, long val)
1438{
1439	int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1440
1441	/* prevent integer overflow/underflow */
1442	val = clamp_val(val, -128000l, 255000l);
1443	data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1444
1445	return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1446}
1447
1448static int lm90_get_temp_offset(struct lm90_data *data, int index)
1449{
1450	int res = lm90_temp_get_resolution(data, index);
1451
1452	return lm90_temp_from_reg(0, data->temp[index], res);
1453}
1454
1455static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1456{
1457	int err;
1458
1459	val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1460
1461	/* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1462	if (channel > 1)
1463		lm90_select_remote_channel(data, true);
1464
1465	err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1466
1467	if (channel > 1)
1468		lm90_select_remote_channel(data, false);
1469
1470	if (err)
1471		return err;
1472
1473	data->temp[index] = val;
1474
1475	return 0;
1476}
1477
1478static const u8 lm90_temp_index[MAX_CHANNELS] = {
1479	LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1480};
1481
1482static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1483	LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1484};
1485
1486static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1487	LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1488};
1489
1490static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1491	LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1492};
1493
1494static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1495	LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1496};
1497
1498static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1499	-1, REMOTE_OFFSET, REMOTE2_OFFSET
1500};
1501
1502static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1503static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1504static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1505static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1506static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1507static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1508
1509static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1510{
1511	struct lm90_data *data = dev_get_drvdata(dev);
1512	int err;
1513	u16 bit;
1514
1515	mutex_lock(&data->update_lock);
1516	err = lm90_update_device(dev);
1517	mutex_unlock(&data->update_lock);
1518	if (err)
1519		return err;
1520
1521	switch (attr) {
1522	case hwmon_temp_input:
1523		*val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1524		break;
1525	case hwmon_temp_min_alarm:
1526	case hwmon_temp_max_alarm:
1527	case hwmon_temp_crit_alarm:
1528	case hwmon_temp_emergency_alarm:
1529	case hwmon_temp_fault:
1530		switch (attr) {
1531		case hwmon_temp_min_alarm:
1532			bit = lm90_min_alarm_bits[channel];
1533			break;
1534		case hwmon_temp_max_alarm:
1535			bit = lm90_max_alarm_bits[channel];
1536			break;
1537		case hwmon_temp_crit_alarm:
1538			if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1539				bit = lm90_crit_alarm_bits_swapped[channel];
1540			else
1541				bit = lm90_crit_alarm_bits[channel];
1542			break;
1543		case hwmon_temp_emergency_alarm:
1544			bit = lm90_emergency_alarm_bits[channel];
1545			break;
1546		case hwmon_temp_fault:
1547			bit = lm90_fault_bits[channel];
1548			break;
1549		}
1550		*val = !!(data->alarms & bit);
1551		data->alarms &= ~bit;
1552		data->alarms |= data->current_alarms;
1553		break;
1554	case hwmon_temp_min:
1555		*val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1556		break;
1557	case hwmon_temp_max:
1558		*val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1559		break;
1560	case hwmon_temp_crit:
1561		*val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1562		break;
1563	case hwmon_temp_crit_hyst:
1564		*val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1565		break;
1566	case hwmon_temp_emergency:
1567		*val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1568		break;
1569	case hwmon_temp_emergency_hyst:
1570		*val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1571		break;
1572	case hwmon_temp_offset:
1573		*val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1574		break;
1575	default:
1576		return -EOPNOTSUPP;
1577	}
1578	return 0;
1579}
1580
1581static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1582{
1583	struct lm90_data *data = dev_get_drvdata(dev);
1584	int err;
1585
1586	mutex_lock(&data->update_lock);
1587
1588	err = lm90_update_device(dev);
1589	if (err)
1590		goto error;
1591
1592	switch (attr) {
1593	case hwmon_temp_min:
1594		err = lm90_set_temp(data, lm90_temp_min_index[channel],
1595				    channel, val);
1596		break;
1597	case hwmon_temp_max:
1598		err = lm90_set_temp(data, lm90_temp_max_index[channel],
1599				    channel, val);
1600		break;
1601	case hwmon_temp_crit:
1602		err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1603				    channel, val);
1604		break;
1605	case hwmon_temp_crit_hyst:
1606		err = lm90_set_temphyst(data, val);
1607		break;
1608	case hwmon_temp_emergency:
1609		err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1610				    channel, val);
1611		break;
1612	case hwmon_temp_offset:
1613		err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1614					   channel, val);
1615		break;
1616	default:
1617		err = -EOPNOTSUPP;
1618		break;
1619	}
1620error:
1621	mutex_unlock(&data->update_lock);
1622
1623	return err;
1624}
1625
1626static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1627{
1628	switch (attr) {
1629	case hwmon_temp_input:
1630	case hwmon_temp_min_alarm:
1631	case hwmon_temp_max_alarm:
1632	case hwmon_temp_crit_alarm:
1633	case hwmon_temp_emergency_alarm:
1634	case hwmon_temp_emergency_hyst:
1635	case hwmon_temp_fault:
1636	case hwmon_temp_label:
1637		return 0444;
1638	case hwmon_temp_min:
1639	case hwmon_temp_max:
1640	case hwmon_temp_crit:
1641	case hwmon_temp_emergency:
1642	case hwmon_temp_offset:
1643		return 0644;
1644	case hwmon_temp_crit_hyst:
1645		if (channel == 0)
1646			return 0644;
1647		return 0444;
1648	default:
1649		return 0;
1650	}
1651}
1652
1653static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1654{
1655	struct lm90_data *data = dev_get_drvdata(dev);
1656	int err;
1657
1658	mutex_lock(&data->update_lock);
1659	err = lm90_update_device(dev);
1660	mutex_unlock(&data->update_lock);
1661	if (err)
1662		return err;
1663
1664	switch (attr) {
1665	case hwmon_chip_update_interval:
1666		*val = data->update_interval;
1667		break;
1668	case hwmon_chip_alarms:
1669		*val = data->alarms;
1670		break;
1671	case hwmon_chip_temp_samples:
1672		if (data->faultqueue_mask) {
1673			*val = (data->config & data->faultqueue_mask) ?
1674				data->faultqueue_depth : 1;
1675		} else {
1676			switch (data->conalert & 0x0e) {
1677			case 0x0:
1678			default:
1679				*val = 1;
1680				break;
1681			case 0x2:
1682				*val = 2;
1683				break;
1684			case 0x6:
1685				*val = 3;
1686				break;
1687			case 0xe:
1688				*val = 4;
1689				break;
1690			}
1691		}
1692		break;
1693	default:
1694		return -EOPNOTSUPP;
1695	}
1696
1697	return 0;
1698}
1699
1700static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1701{
1702	struct lm90_data *data = dev_get_drvdata(dev);
1703	struct i2c_client *client = data->client;
1704	int err;
1705
1706	mutex_lock(&data->update_lock);
1707
1708	err = lm90_update_device(dev);
1709	if (err)
1710		goto error;
1711
1712	switch (attr) {
1713	case hwmon_chip_update_interval:
1714		err = lm90_set_convrate(client, data,
1715					clamp_val(val, 0, 100000));
1716		break;
1717	case hwmon_chip_temp_samples:
1718		err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1719		break;
1720	default:
1721		err = -EOPNOTSUPP;
1722		break;
1723	}
1724error:
1725	mutex_unlock(&data->update_lock);
1726
1727	return err;
1728}
1729
1730static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1731{
1732	switch (attr) {
1733	case hwmon_chip_update_interval:
1734	case hwmon_chip_temp_samples:
1735		return 0644;
1736	case hwmon_chip_alarms:
1737		return 0444;
1738	default:
1739		return 0;
1740	}
1741}
1742
1743static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1744		     u32 attr, int channel, long *val)
1745{
1746	switch (type) {
1747	case hwmon_chip:
1748		return lm90_chip_read(dev, attr, channel, val);
1749	case hwmon_temp:
1750		return lm90_temp_read(dev, attr, channel, val);
1751	default:
1752		return -EOPNOTSUPP;
1753	}
1754}
1755
1756static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1757			    u32 attr, int channel, const char **str)
1758{
1759	struct lm90_data *data = dev_get_drvdata(dev);
1760
1761	*str = data->channel_label[channel];
1762
1763	return 0;
1764}
1765
1766static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1767		      u32 attr, int channel, long val)
1768{
1769	switch (type) {
1770	case hwmon_chip:
1771		return lm90_chip_write(dev, attr, channel, val);
1772	case hwmon_temp:
1773		return lm90_temp_write(dev, attr, channel, val);
1774	default:
1775		return -EOPNOTSUPP;
1776	}
1777}
1778
1779static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1780			       u32 attr, int channel)
1781{
1782	switch (type) {
1783	case hwmon_chip:
1784		return lm90_chip_is_visible(data, attr, channel);
1785	case hwmon_temp:
1786		return lm90_temp_is_visible(data, attr, channel);
1787	default:
1788		return 0;
1789	}
1790}
1791
1792static const char *lm90_detect_lm84(struct i2c_client *client)
1793{
1794	static const u8 regs[] = {
1795		LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1796		LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1797	};
1798	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1799	int reg1, reg2, reg3, reg4;
1800	bool nonzero = false;
1801	u8 ff = 0xff;
1802	int i;
1803
1804	if (status < 0 || (status & 0xab))
1805		return NULL;
1806
1807	/*
1808	 * For LM84, undefined registers return the most recent value.
1809	 * Repeat several times, each time checking against a different
1810	 * (presumably) existing register.
1811	 */
1812	for (i = 0; i < ARRAY_SIZE(regs); i++) {
1813		reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1814		reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1815		reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1816		reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1817
1818		if (reg1 < 0)
1819			return NULL;
1820
1821		/* If any register has a different value, this is not an LM84 */
1822		if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1823			return NULL;
1824
1825		nonzero |= reg1 || reg2 || reg3 || reg4;
1826		ff &= reg1;
1827	}
1828	/*
1829	 * If all registers always returned 0 or 0xff, all bets are off,
1830	 * and we can not make any predictions about the chip type.
1831	 */
1832	return nonzero && ff != 0xff ? "lm84" : NULL;
1833}
1834
1835static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1836{
1837	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1838	int llo, rlo, lhi, rhi;
1839
1840	if (status < 0 || (status & 0x03))
1841		return NULL;
1842
1843	if (config1 & 0x3f)
1844		return NULL;
1845
1846	/*
1847	 * Fail if unsupported registers return anything but 0xff.
1848	 * The calling code already checked man_id and chip_id.
1849	 * A byte read operation repeats the most recent read operation
1850	 * and should also return 0xff.
1851	 */
1852	if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1853	    i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1854	    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1855	    i2c_smbus_read_byte(client) != 0xff)
1856		return NULL;
1857
1858	llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1859	rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1860
1861	lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1862	rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1863
1864	if (llo < 0 || rlo < 0)
1865		return NULL;
1866
1867	/*
1868	 * A byte read operation repeats the most recent read and should
1869	 * return the same value.
1870	 */
1871	if (i2c_smbus_read_byte(client) != rhi)
1872		return NULL;
1873
1874	/*
1875	 * The following two checks are marginal since the checked values
1876	 * are strictly speaking valid.
1877	 */
1878
1879	/* fail for negative high limits; this also catches read errors */
1880	if ((s8)lhi < 0 || (s8)rhi < 0)
1881		return NULL;
1882
1883	/* fail if low limits are larger than or equal to high limits */
1884	if ((s8)llo >= lhi || (s8)rlo >= rhi)
1885		return NULL;
1886
1887	if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1888		/*
1889		 * Word read operations return 0xff in second byte
1890		 */
1891		if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1892						0xffff)
1893			return NULL;
1894		if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1895						(config1 | 0xff00))
1896			return NULL;
1897		if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1898						(lhi | 0xff00))
1899			return NULL;
1900	}
1901
1902	return "max1617";
1903}
1904
1905static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1906					int config1, int convrate)
1907{
1908	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1909	int address = client->addr;
1910	const char *name = NULL;
1911
1912	if (config2 < 0)
1913		return NULL;
1914
1915	if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1916		return NULL;
1917
1918	if (address != 0x4c && address != 0x4d)
1919		return NULL;
1920
1921	switch (chip_id & 0xf0) {
1922	case 0x10:	/* LM86 */
1923		if (address == 0x4c)
1924			name = "lm86";
1925		break;
1926	case 0x20:	/* LM90 */
1927		if (address == 0x4c)
1928			name = "lm90";
1929		break;
1930	case 0x30:	/* LM89/LM99 */
1931		name = "lm99";	/* detect LM89 as LM99 */
1932		break;
1933	default:
1934		break;
1935	}
1936
1937	return name;
1938}
1939
1940static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1941				  int convrate)
1942{
1943	int address = client->addr;
1944	const char *name = NULL;
1945
1946	switch (chip_id) {
1947	case 0xca:		/* NCT218 */
1948		if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1949		    convrate <= 0x0a)
1950			name = "nct218";
1951		break;
1952	default:
1953		break;
1954	}
1955	return name;
1956}
1957
1958static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1959				      int chip_id, int config1, int convrate)
1960{
1961	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1962	int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1963	int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1964	int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1965	int address = client->addr;
1966	const char *name = NULL;
1967
1968	if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1969		return NULL;
1970
1971	/*
1972	 * The following chips should be detected by this function. Known
1973	 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1974	 * for most of the chips, yet appear to return a well defined value.
1975	 * Register 0xff is undocumented for some of the chips. Register 0x3f
1976	 * is undocumented for all chips, but also returns a well defined value.
1977	 * Values are as reported from real chips unless mentioned otherwise.
1978	 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1979	 * but not for register 0x3f.
1980	 *
1981	 * Chip			Register
1982	 *		3d	3e	3f	fe	ff	Notes
1983	 * ----------------------------------------------------------
1984	 * adm1020	00	00	00	41	39
1985	 * adm1021	00	00	00	41	03
1986	 * adm1021a	00	00	00	41	3c
1987	 * adm1023	00	00	00	41	3c	same as adm1021a
1988	 * adm1032	00	00	00	41	42
1989	 *
1990	 * adt7421	21	41	04	41	04
1991	 * adt7461	00	00	00	41	51
1992	 * adt7461a	61	41	05	41	57
1993	 * adt7481	81	41	02	41	62
1994	 * adt7482	-	-	-	41	65	datasheet
1995	 *		82	41	05	41	75	real chip
1996	 * adt7483	83	41	04	41	94
1997	 *
1998	 * nct72	61	41	07	41	55
1999	 * nct210	00	00	00	41	3f
2000	 * nct214	61	41	08	41	5a
2001	 * nct1008	-	-	-	41	57	datasheet rev. 3
2002	 *		61	41	06	41	54	real chip
2003	 *
2004	 * nvt210	-	-	-	41	-	datasheet
2005	 * nvt211	-	-	-	41	-	datasheet
2006	 */
2007	switch (chip_id) {
2008	case 0x00 ... 0x03:	/* ADM1021 */
2009	case 0x05 ... 0x0f:
2010		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2011		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2012			name = "adm1021";
2013		break;
2014	case 0x04:		/* ADT7421 (undocumented) */
2015		if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2016		    (address == 0x4c || address == 0x4d) &&
2017		    (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2018			name = "adt7421";
2019		break;
2020	case 0x30 ... 0x38:	/* ADM1021A, ADM1023 */
2021	case 0x3a ... 0x3e:
2022		/*
2023		 * ADM1021A and compatible chips will be mis-detected as
2024		 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2025		 * found to have a Chip ID of 0x3c.
2026		 * ADM1021A does not officially support low byte registers
2027		 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2028		 * Official support for the temperature offset high byte
2029		 * register (0x11) was added to revision F of the ADM1021A
2030		 * datasheet.
2031		 * It is currently unknown if there is a means to distinguish
2032		 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2033		 * which differ in functionality from ADM1023.
2034		 */
2035		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2036		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2037			name = "adm1023";
2038		break;
2039	case 0x39:		/* ADM1020 (undocumented) */
2040		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2041		    (address == 0x4c || address == 0x4d || address == 0x4e) &&
2042		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2043			name = "adm1020";
2044		break;
2045	case 0x3f:		/* NCT210 */
2046		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2047		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2048			name = "nct210";
2049		break;
2050	case 0x40 ... 0x4f:	/* ADM1032 */
2051		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2052		    (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2053		    convrate <= 0x0a)
2054			name = "adm1032";
2055		break;
2056	case 0x51:	/* ADT7461 */
2057		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2058		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2059		    convrate <= 0x0a)
2060			name = "adt7461";
2061		break;
2062	case 0x54:	/* NCT1008 */
2063		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2064		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2065		    convrate <= 0x0a)
2066			name = "nct1008";
2067		break;
2068	case 0x55:	/* NCT72 */
2069		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2070		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2071		    convrate <= 0x0a)
2072			name = "nct72";
2073		break;
2074	case 0x57:	/* ADT7461A, NCT1008 (datasheet rev. 3) */
2075		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2076		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2077		    convrate <= 0x0a)
2078			name = "adt7461a";
2079		break;
2080	case 0x5a:	/* NCT214 */
2081		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2082		    common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2083			name = "nct214";
2084		break;
2085	case 0x62:	/* ADT7481, undocumented */
2086		if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2087		    (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2088		    !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2089			name = "adt7481";
2090		}
2091		break;
2092	case 0x65:	/* ADT7482, datasheet */
2093	case 0x75:	/* ADT7482, real chip */
2094		if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2095		    address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2096		    convrate <= 0x0a)
2097			name = "adt7482";
2098		break;
2099	case 0x94:	/* ADT7483 */
2100		if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2101		    common_address &&
2102		    ((address >= 0x18 && address <= 0x1a) ||
2103		     (address >= 0x29 && address <= 0x2b) ||
2104		     (address >= 0x4c && address <= 0x4e)) &&
2105		    !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2106			name = "adt7483a";
2107		break;
2108	default:
2109		break;
2110	}
2111
2112	return name;
2113}
2114
2115static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2116				     int chip_id, int config1, int convrate)
2117{
2118	int man_id, emerg, emerg2, status2;
2119	int address = client->addr;
2120	const char *name = NULL;
2121
2122	switch (chip_id) {
2123	case 0x01:
2124		if (!common_address)
2125			break;
2126
2127		/*
2128		 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2129		 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2130		 * exists, both readings will reflect the same value. Otherwise,
2131		 * the readings will be different.
2132		 */
2133		emerg = i2c_smbus_read_byte_data(client,
2134						 MAX6659_REG_REMOTE_EMERG);
2135		man_id = i2c_smbus_read_byte_data(client,
2136						  LM90_REG_MAN_ID);
2137		emerg2 = i2c_smbus_read_byte_data(client,
2138						  MAX6659_REG_REMOTE_EMERG);
2139		status2 = i2c_smbus_read_byte_data(client,
2140						   MAX6696_REG_STATUS2);
2141		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2142			return NULL;
2143
2144		/*
2145		 * Even though MAX6695 and MAX6696 do not have a chip ID
2146		 * register, reading it returns 0x01. Bit 4 of the config1
2147		 * register is unused and should return zero when read. Bit 0 of
2148		 * the status2 register is unused and should return zero when
2149		 * read.
2150		 *
2151		 * MAX6695 and MAX6696 have an additional set of temperature
2152		 * limit registers. We can detect those chips by checking if
2153		 * one of those registers exists.
2154		 */
2155		if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2156		    convrate <= 0x07)
2157			name = "max6696";
2158		/*
2159		 * The chip_id register of the MAX6680 and MAX6681 holds the
2160		 * revision of the chip. The lowest bit of the config1 register
2161		 * is unused and should return zero when read, so should the
2162		 * second to last bit of config1 (software reset). Register
2163		 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2164		 * should differ from emerg2, and emerg2 should match man_id
2165		 * since it does not exist.
2166		 */
2167		else if (!(config1 & 0x03) && convrate <= 0x07 &&
2168			 emerg2 == man_id && emerg2 != status2)
2169			name = "max6680";
2170		/*
2171		 * MAX1617A does not have any extended registers (register
2172		 * address 0x10 or higher) except for manufacturer and
2173		 * device ID registers. Unlike other chips of this series,
2174		 * unsupported registers were observed to return a fixed value
2175		 * of 0x01.
2176		 * Note: Multiple chips with different markings labeled as
2177		 * "MAX1617" (no "A") were observed to report manufacturer ID
2178		 * 0x4d and device ID 0x01. It is unknown if other variants of
2179		 * MAX1617/MAX617A with different behavior exist. The detection
2180		 * code below works for those chips.
2181		 */
2182		else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2183			 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2184			name = "max1617";
2185		break;
2186	case 0x08:
2187		/*
2188		 * The chip_id of the MAX6654 holds the revision of the chip.
2189		 * The lowest 3 bits of the config1 register are unused and
2190		 * should return zero when read.
2191		 */
2192		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2193			name = "max6654";
2194		break;
2195	case 0x09:
2196		/*
2197		 * The chip_id of the MAX6690 holds the revision of the chip.
2198		 * The lowest 3 bits of the config1 register are unused and
2199		 * should return zero when read.
2200		 * Note that MAX6654 and MAX6690 are practically the same chips.
2201		 * The only diference is the rated accuracy. Rev. 1 of the
2202		 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2203		 * MAX6654 was observed to have a chip ID of 0x09.
2204		 */
2205		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2206			name = "max6690";
2207		break;
2208	case 0x4d:
2209		/*
2210		 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2211		 * register. Reading from that address will return the last
2212		 * read value, which in our case is those of the man_id
2213		 * register, or 0x4d.
2214		 * MAX6642 does not have a conversion rate register, nor low
2215		 * limit registers. Reading from those registers returns the
2216		 * last read value.
2217		 *
2218		 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2219		 * a low nibble, so the value will be those of the previous
2220		 * read, so in our case again those of the man_id register.
2221		 * MAX6659 has a third set of upper temperature limit registers.
2222		 * Those registers also return values on MAX6657 and MAX6658,
2223		 * thus the only way to detect MAX6659 is by its address.
2224		 * For this reason it will be mis-detected as MAX6657 if its
2225		 * address is 0x4c.
2226		 */
2227		if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2228		    !(config1 & 0x0f)) {
2229			int regval;
2230
2231			/*
2232			 * We know that this is not a MAX6657/58/59 because its
2233			 * configuration register has the wrong value and it does
2234			 * not appear to have a conversion rate register.
2235			 */
2236
2237			/* re-read manufacturer ID to have a good baseline */
2238			if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2239				break;
2240
2241			/* check various non-existing registers */
2242			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2243			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2244			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2245				break;
2246
2247			/* check for unused status register bits */
2248			regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2249			if (regval < 0 || (regval & 0x2b))
2250				break;
2251
2252			/* re-check unsupported registers */
2253			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2254			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2255			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2256				break;
2257
2258			name = "max6642";
2259		} else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2260			   (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2261			if (address == 0x4c)
2262				name = "max6657";
2263			else
2264				name = "max6659";
2265		}
2266		break;
2267	case 0x59:
2268		/*
2269		 * The chip_id register of the MAX6646/6647/6649 holds the
2270		 * revision of the chip. The lowest 6 bits of the config1
2271		 * register are unused and should return zero when read.
2272		 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2273		 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2274		 * and MAX6649 is at address 0x4c. A slight difference between
2275		 * the two sets of chips is that the remote temperature register
2276		 * reports different values if the DXP pin is open or shorted.
2277		 * We can use that information to help distinguish between the
2278		 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2279		 * diode is connected, but there isn't really anything we can
2280		 * do about that.
2281		 */
2282		if (!(config1 & 0x3f) && convrate <= 0x07) {
2283			int temp;
2284
2285			switch (address) {
2286			case 0x4c:
2287				/*
2288				 * MAX6649 reports an external temperature
2289				 * value of 0xff if DXP is open or shorted.
2290				 * MAX6648 reports 0x80 in that case.
2291				 */
2292				temp = i2c_smbus_read_byte_data(client,
2293								LM90_REG_REMOTE_TEMPH);
2294				if (temp == 0x80)
2295					name = "max6648";
2296				else
2297					name = "max6649";
2298				break;
2299			case 0x4d:
2300				name = "max6646";
2301				break;
2302			case 0x4e:
2303				name = "max6647";
2304				break;
2305			default:
2306				break;
2307			}
2308		}
2309		break;
2310	default:
2311		break;
2312	}
2313
2314	return name;
2315}
2316
2317static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2318				       int config1, int convrate)
2319{
2320	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2321	int address = client->addr;
2322	const char *name = NULL;
2323
2324	if (config2 < 0)
2325		return NULL;
2326
2327	if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2328		if (chip_id == 0x01 && convrate <= 0x09) {
2329			/* W83L771W/G */
2330			name = "w83l771";
2331		} else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2332			/* W83L771AWG/ASG */
2333			name = "w83l771";
2334		}
2335	}
2336	return name;
2337}
2338
2339static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2340				   int chip_id, int config1, int convrate)
2341{
2342	int address = client->addr;
2343	const char *name = NULL;
2344	int config2;
2345
2346	switch (chip_id) {
2347	case 0x00:
2348		config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2349		if (config2 < 0)
2350			return NULL;
2351		if (address >= 0x48 && address <= 0x4f &&
2352		    !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2353			name = "sa56004";
2354		break;
2355	case 0x80:
2356		if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2357			name = "ne1618";
2358		break;
2359	default:
2360		break;
2361	}
2362	return name;
2363}
2364
2365static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2366				   int config1, int convrate)
2367{
2368	int address = client->addr;
2369
2370	/*
2371	 * According to the datasheet, G781 is supposed to be at I2C Address
2372	 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2373	 * address 0x4d and have a chip ID of 0x03. However, when support
2374	 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2375	 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2376	 * chip ID 0x03.
2377	 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2378	 * addresses.
2379	 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2380	 * datasheet is not available. Extensive testing suggests that
2381	 * the chip appears to be fully compatible with G781.
2382	 * Available register dumps show that G751 also reports manufacturer
2383	 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2384	 * support those registers. This makes chip detection somewhat
2385	 * vulnerable. To improve detection quality, read the offset low byte
2386	 * and alert fault queue registers and verify that only expected bits
2387	 * are set.
2388	 */
2389	if ((chip_id == 0x01 || chip_id == 0x03) &&
2390	    (address == 0x4c || address == 0x4d) &&
2391	    !(config1 & 0x3f) && convrate <= 0x08) {
2392		int reg;
2393
2394		reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2395		if (reg < 0 || reg & 0x1f)
2396			return NULL;
2397		reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2398		if (reg < 0 || reg & 0xf1)
2399			return NULL;
2400
2401		return "g781";
2402	}
2403
2404	return NULL;
2405}
2406
2407static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2408				    int chip_id, int config1, int convrate)
2409{
2410	if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2411		/* THMC10: Unsupported registers return 0xff */
2412		if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2413		    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2414			return "thmc10";
2415	}
2416	return NULL;
2417}
2418
2419static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2420				  int config1, int convrate)
2421{
2422	int address = client->addr;
2423	const char *name = NULL;
2424
2425	if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2426		int local_ext, conalert, chen, dfc;
2427
2428		local_ext = i2c_smbus_read_byte_data(client,
2429						     TMP451_REG_LOCAL_TEMPL);
2430		conalert = i2c_smbus_read_byte_data(client,
2431						    TMP451_REG_CONALERT);
2432		chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2433		dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2434
2435		if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2436		    (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2437			if (address == 0x4c && !(chen & 0x03))
2438				name = "tmp451";
2439			else if (address >= 0x48 && address <= 0x4f)
2440				name = "tmp461";
2441		}
2442	}
2443
2444	return name;
2445}
2446
2447/* Return 0 if detection is successful, -ENODEV otherwise */
2448static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2449{
2450	struct i2c_adapter *adapter = client->adapter;
2451	int man_id, chip_id, config1, convrate, lhigh;
2452	const char *name = NULL;
2453	int address = client->addr;
2454	bool common_address =
2455			(address >= 0x18 && address <= 0x1a) ||
2456			(address >= 0x29 && address <= 0x2b) ||
2457			(address >= 0x4c && address <= 0x4e);
2458
2459	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2460		return -ENODEV;
2461
2462	/*
2463	 * Get well defined register value for chips with neither man_id nor
2464	 * chip_id registers.
2465	 */
2466	lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2467
2468	/* detection and identification */
2469	man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2470	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2471	config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2472	convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2473	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2474		return -ENODEV;
2475
2476	/* Bail out immediately if all register report the same value */
2477	if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2478		return -ENODEV;
2479
2480	/*
2481	 * If reading man_id and chip_id both return the same value as lhigh,
2482	 * the chip may not support those registers and return the most recent read
2483	 * value. Check again with a different register and handle accordingly.
2484	 */
2485	if (man_id == lhigh && chip_id == lhigh) {
2486		convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2487		man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2488		chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2489		if (convrate < 0 || man_id < 0 || chip_id < 0)
2490			return -ENODEV;
2491		if (man_id == convrate && chip_id == convrate)
2492			man_id = -1;
2493	}
2494	switch (man_id) {
2495	case -1:	/* Chip does not support man_id / chip_id */
2496		if (common_address && !convrate && !(config1 & 0x7f))
2497			name = lm90_detect_lm84(client);
2498		break;
2499	case 0x01:	/* National Semiconductor */
2500		name = lm90_detect_national(client, chip_id, config1, convrate);
2501		break;
2502	case 0x1a:	/* ON */
2503		name = lm90_detect_on(client, chip_id, config1, convrate);
2504		break;
2505	case 0x23:	/* Genesys Logic */
2506		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2507			name = "gl523sm";
2508		break;
2509	case 0x41:	/* Analog Devices */
2510		name = lm90_detect_analog(client, common_address, chip_id, config1,
2511					  convrate);
2512		break;
2513	case 0x47:	/* GMT */
2514		name = lm90_detect_gmt(client, chip_id, config1, convrate);
2515		break;
2516	case 0x49:	/* TI */
2517		name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2518		break;
2519	case 0x4d:	/* Maxim Integrated */
2520		name = lm90_detect_maxim(client, common_address, chip_id,
2521					 config1, convrate);
2522		break;
2523	case 0x54:	/* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2524		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2525			name = "mc1066";
2526		break;
2527	case 0x55:	/* TI */
2528		name = lm90_detect_ti(client, chip_id, config1, convrate);
2529		break;
2530	case 0x5c:	/* Winbond/Nuvoton */
2531		name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2532		break;
2533	case 0xa1:	/*  NXP Semiconductor/Philips */
2534		name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2535		break;
2536	case 0xff:	/* MAX1617, G767, NE1617 */
2537		if (common_address && chip_id == 0xff && convrate < 8)
2538			name = lm90_detect_max1617(client, config1);
2539		break;
2540	default:
2541		break;
2542	}
2543
2544	if (!name) {	/* identification failed */
2545		dev_dbg(&adapter->dev,
2546			"Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2547			client->addr, man_id, chip_id);
2548		return -ENODEV;
2549	}
2550
2551	strscpy(info->type, name, I2C_NAME_SIZE);
2552
2553	return 0;
2554}
2555
2556static void lm90_restore_conf(void *_data)
2557{
2558	struct lm90_data *data = _data;
2559	struct i2c_client *client = data->client;
2560
2561	cancel_delayed_work_sync(&data->alert_work);
2562	cancel_work_sync(&data->report_work);
2563
2564	/* Restore initial configuration */
2565	if (data->flags & LM90_HAVE_CONVRATE)
2566		lm90_write_convrate(data, data->convrate_orig);
2567	lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2568}
2569
2570static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2571{
2572	struct device_node *np = client->dev.of_node;
2573	int config, convrate;
2574
2575	if (data->flags & LM90_HAVE_CONVRATE) {
2576		convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2577		if (convrate < 0)
2578			return convrate;
2579		data->convrate_orig = convrate;
2580		lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2581	} else {
2582		data->update_interval = 500;
2583	}
2584
2585	/*
2586	 * Start the conversions.
2587	 */
2588	config = lm90_read_reg(client, LM90_REG_CONFIG1);
2589	if (config < 0)
2590		return config;
2591	data->config_orig = config;
2592	data->config = config;
2593
2594	/* Check Temperature Range Select */
2595	if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2596		if (of_property_read_bool(np, "ti,extended-range-enable"))
2597			config |= 0x04;
2598		if (!(config & 0x04))
2599			data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2600	}
2601
2602	/*
2603	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2604	 * 0.125 degree resolution) and range (0x08, extend range
2605	 * to -64 degree) mode for the remote temperature sensor.
2606	 * Note that expeciments with an actual chip do not show a difference
2607	 * if bit 3 is set or not.
2608	 */
2609	if (data->kind == max6680)
2610		config |= 0x18;
2611
2612	/*
2613	 * Put MAX6654 into extended range (0x20, extend minimum range from
2614	 * 0 degrees to -64 degrees). Note that extended resolution is not
2615	 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2616	 * slower, which is intentionally not done by default.
2617	 */
2618	if (data->kind == max6654)
2619		config |= 0x20;
2620
2621	/*
2622	 * Select external channel 0 for devices with three sensors
2623	 */
2624	if (data->flags & LM90_HAVE_TEMP3)
2625		config &= ~0x08;
2626
2627	/*
2628	 * Interrupt is enabled by default on reset, but it may be disabled
2629	 * by bootloader, unmask it.
2630	 */
2631	if (client->irq)
2632		config &= ~0x80;
2633
2634	config &= 0xBF;	/* run */
2635	lm90_update_confreg(data, config);
2636
2637	return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2638}
2639
2640static bool lm90_is_tripped(struct i2c_client *client)
2641{
2642	struct lm90_data *data = i2c_get_clientdata(client);
2643	int ret;
2644
2645	ret = lm90_update_alarms(data, true);
2646	if (ret < 0)
2647		return false;
2648
2649	return !!data->current_alarms;
2650}
2651
2652static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2653{
2654	struct i2c_client *client = dev_id;
2655
2656	if (lm90_is_tripped(client))
2657		return IRQ_HANDLED;
2658	else
2659		return IRQ_NONE;
2660}
2661
2662static void lm90_remove_pec(void *dev)
2663{
2664	device_remove_file(dev, &dev_attr_pec);
2665}
2666
2667static int lm90_probe_channel_from_dt(struct i2c_client *client,
2668				      struct device_node *child,
2669				      struct lm90_data *data)
2670{
2671	u32 id;
2672	s32 val;
2673	int err;
2674	struct device *dev = &client->dev;
2675
2676	err = of_property_read_u32(child, "reg", &id);
2677	if (err) {
2678		dev_err(dev, "missing reg property of %pOFn\n", child);
2679		return err;
2680	}
2681
2682	if (id >= MAX_CHANNELS) {
2683		dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2684		return -EINVAL;
2685	}
2686
2687	err = of_property_read_string(child, "label", &data->channel_label[id]);
2688	if (err == -ENODATA || err == -EILSEQ) {
2689		dev_err(dev, "invalid label property in %pOFn\n", child);
2690		return err;
2691	}
2692
2693	if (data->channel_label[id])
2694		data->channel_config[id] |= HWMON_T_LABEL;
2695
2696	err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2697	if (!err) {
2698		if (id == 0) {
2699			dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2700			return -EINVAL;
2701		}
2702
2703		err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2704		if (err) {
2705			dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2706				val, id, err);
2707			return err;
2708		}
2709	}
2710
2711	return 0;
2712}
2713
2714static int lm90_parse_dt_channel_info(struct i2c_client *client,
2715				      struct lm90_data *data)
2716{
2717	int err;
2718	struct device_node *child;
2719	struct device *dev = &client->dev;
2720	const struct device_node *np = dev->of_node;
2721
2722	for_each_child_of_node(np, child) {
2723		if (strcmp(child->name, "channel"))
2724			continue;
2725
2726		err = lm90_probe_channel_from_dt(client, child, data);
2727		if (err) {
2728			of_node_put(child);
2729			return err;
2730		}
2731	}
2732
2733	return 0;
2734}
2735
2736static const struct hwmon_ops lm90_ops = {
2737	.is_visible = lm90_is_visible,
2738	.read = lm90_read,
2739	.read_string = lm90_read_string,
2740	.write = lm90_write,
2741};
2742
2743static int lm90_probe(struct i2c_client *client)
2744{
2745	struct device *dev = &client->dev;
2746	struct i2c_adapter *adapter = client->adapter;
2747	struct hwmon_channel_info *info;
2748	struct device *hwmon_dev;
2749	struct lm90_data *data;
2750	int err;
2751
2752	err = devm_regulator_get_enable(dev, "vcc");
2753	if (err)
2754		return dev_err_probe(dev, err, "Failed to enable regulator\n");
2755
2756	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2757	if (!data)
2758		return -ENOMEM;
2759
2760	data->client = client;
2761	i2c_set_clientdata(client, data);
2762	mutex_init(&data->update_lock);
2763	INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2764	INIT_WORK(&data->report_work, lm90_report_alarms);
2765
2766	/* Set the device type */
2767	if (client->dev.of_node)
2768		data->kind = (uintptr_t)of_device_get_match_data(&client->dev);
2769	else
2770		data->kind = i2c_match_id(lm90_id, client)->driver_data;
2771
2772	/*
2773	 * Different devices have different alarm bits triggering the
2774	 * ALERT# output
2775	 */
2776	data->alert_alarms = lm90_params[data->kind].alert_alarms;
2777	data->resolution = lm90_params[data->kind].resolution ? : 11;
2778
2779	/* Set chip capabilities */
2780	data->flags = lm90_params[data->kind].flags;
2781
2782	if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2783	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2784		data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2785
2786	if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2787	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2788		data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2789
2790	data->chip.ops = &lm90_ops;
2791	data->chip.info = data->info;
2792
2793	data->info[0] = &data->chip_info;
2794	info = &data->chip_info;
2795	info->type = hwmon_chip;
2796	info->config = data->chip_config;
2797
2798	data->chip_config[0] = HWMON_C_REGISTER_TZ;
2799	if (data->flags & LM90_HAVE_ALARMS)
2800		data->chip_config[0] |= HWMON_C_ALARMS;
2801	if (data->flags & LM90_HAVE_CONVRATE)
2802		data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2803	if (data->flags & LM90_HAVE_FAULTQUEUE)
2804		data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2805	data->info[1] = &data->temp_info;
2806
2807	info = &data->temp_info;
2808	info->type = hwmon_temp;
2809	info->config = data->channel_config;
2810
2811	data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2812		HWMON_T_MAX_ALARM;
2813	data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2814		HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2815
2816	if (data->flags & LM90_HAVE_LOW) {
2817		data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2818		data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2819	}
2820
2821	if (data->flags & LM90_HAVE_CRIT) {
2822		data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2823		data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2824	}
2825
2826	if (data->flags & LM90_HAVE_OFFSET)
2827		data->channel_config[1] |= HWMON_T_OFFSET;
2828
2829	if (data->flags & LM90_HAVE_EMERGENCY) {
2830		data->channel_config[0] |= HWMON_T_EMERGENCY |
2831			HWMON_T_EMERGENCY_HYST;
2832		data->channel_config[1] |= HWMON_T_EMERGENCY |
2833			HWMON_T_EMERGENCY_HYST;
2834	}
2835
2836	if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2837		data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2838		data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2839	}
2840
2841	if (data->flags & LM90_HAVE_TEMP3) {
2842		data->channel_config[2] = HWMON_T_INPUT |
2843			HWMON_T_MIN | HWMON_T_MAX |
2844			HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2845			HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2846			HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2847		if (data->flags & LM90_HAVE_EMERGENCY) {
2848			data->channel_config[2] |= HWMON_T_EMERGENCY |
2849				HWMON_T_EMERGENCY_HYST;
2850		}
2851		if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2852			data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2853		if (data->flags & LM90_HAVE_OFFSET)
2854			data->channel_config[2] |= HWMON_T_OFFSET;
2855	}
2856
2857	data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2858	data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2859	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2860	if (data->flags & LM90_HAVE_REMOTE_EXT)
2861		data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2862	data->reg_status2 = lm90_params[data->kind].reg_status2;
2863
2864	/* Set maximum conversion rate */
2865	data->max_convrate = lm90_params[data->kind].max_convrate;
2866
2867	/* Parse device-tree channel information */
2868	if (client->dev.of_node) {
2869		err = lm90_parse_dt_channel_info(client, data);
2870		if (err)
2871			return err;
2872	}
2873
2874	/* Initialize the LM90 chip */
2875	err = lm90_init_client(client, data);
2876	if (err < 0) {
2877		dev_err(dev, "Failed to initialize device\n");
2878		return err;
2879	}
2880
2881	/*
2882	 * The 'pec' attribute is attached to the i2c device and thus created
2883	 * separately.
2884	 */
2885	if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
2886		err = device_create_file(dev, &dev_attr_pec);
2887		if (err)
2888			return err;
2889		err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
2890		if (err)
2891			return err;
2892	}
2893
2894	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2895							 data, &data->chip,
2896							 NULL);
2897	if (IS_ERR(hwmon_dev))
2898		return PTR_ERR(hwmon_dev);
2899
2900	data->hwmon_dev = hwmon_dev;
2901
2902	if (client->irq) {
2903		dev_dbg(dev, "IRQ: %d\n", client->irq);
2904		err = devm_request_threaded_irq(dev, client->irq,
2905						NULL, lm90_irq_thread,
2906						IRQF_ONESHOT, "lm90", client);
2907		if (err < 0) {
2908			dev_err(dev, "cannot request IRQ %d\n", client->irq);
2909			return err;
2910		}
2911	}
2912
2913	return 0;
2914}
2915
2916static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2917		       unsigned int flag)
2918{
2919	if (type != I2C_PROTOCOL_SMBUS_ALERT)
2920		return;
2921
2922	if (lm90_is_tripped(client)) {
2923		/*
2924		 * Disable ALERT# output, because these chips don't implement
2925		 * SMBus alert correctly; they should only hold the alert line
2926		 * low briefly.
2927		 */
2928		struct lm90_data *data = i2c_get_clientdata(client);
2929
2930		if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2931		    (data->current_alarms & data->alert_alarms)) {
2932			if (!(data->config & 0x80)) {
2933				dev_dbg(&client->dev, "Disabling ALERT#\n");
2934				lm90_update_confreg(data, data->config | 0x80);
2935			}
2936			schedule_delayed_work(&data->alert_work,
2937				max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2938		}
2939	} else {
2940		dev_dbg(&client->dev, "Everything OK\n");
2941	}
2942}
2943
2944static int lm90_suspend(struct device *dev)
2945{
2946	struct lm90_data *data = dev_get_drvdata(dev);
2947	struct i2c_client *client = data->client;
2948
2949	if (client->irq)
2950		disable_irq(client->irq);
2951
2952	return 0;
2953}
2954
2955static int lm90_resume(struct device *dev)
2956{
2957	struct lm90_data *data = dev_get_drvdata(dev);
2958	struct i2c_client *client = data->client;
2959
2960	if (client->irq)
2961		enable_irq(client->irq);
2962
2963	return 0;
2964}
2965
2966static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2967
2968static struct i2c_driver lm90_driver = {
2969	.class		= I2C_CLASS_HWMON,
2970	.driver = {
2971		.name	= "lm90",
2972		.of_match_table = of_match_ptr(lm90_of_match),
2973		.pm	= pm_sleep_ptr(&lm90_pm_ops),
2974	},
2975	.probe		= lm90_probe,
2976	.alert		= lm90_alert,
2977	.id_table	= lm90_id,
2978	.detect		= lm90_detect,
2979	.address_list	= normal_i2c,
2980};
2981
2982module_i2c_driver(lm90_driver);
2983
2984MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2985MODULE_DESCRIPTION("LM90/ADM1032 driver");
2986MODULE_LICENSE("GPL");
2987