1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 *   Haiyang Zhang <haiyangz@microsoft.com>
7 *   Hank Janssen  <hjanssen@microsoft.com>
8 *   K. Y. Srinivasan <kys@microsoft.com>
9 */
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/device.h>
15#include <linux/platform_device.h>
16#include <linux/interrupt.h>
17#include <linux/sysctl.h>
18#include <linux/slab.h>
19#include <linux/acpi.h>
20#include <linux/completion.h>
21#include <linux/hyperv.h>
22#include <linux/kernel_stat.h>
23#include <linux/of_address.h>
24#include <linux/clockchips.h>
25#include <linux/cpu.h>
26#include <linux/sched/isolation.h>
27#include <linux/sched/task_stack.h>
28
29#include <linux/delay.h>
30#include <linux/panic_notifier.h>
31#include <linux/ptrace.h>
32#include <linux/screen_info.h>
33#include <linux/efi.h>
34#include <linux/random.h>
35#include <linux/kernel.h>
36#include <linux/syscore_ops.h>
37#include <linux/dma-map-ops.h>
38#include <linux/pci.h>
39#include <clocksource/hyperv_timer.h>
40#include <asm/mshyperv.h>
41#include "hyperv_vmbus.h"
42
43struct vmbus_dynid {
44	struct list_head node;
45	struct hv_vmbus_device_id id;
46};
47
48static struct device  *hv_dev;
49
50static int hyperv_cpuhp_online;
51
52static long __percpu *vmbus_evt;
53
54/* Values parsed from ACPI DSDT */
55int vmbus_irq;
56int vmbus_interrupt;
57
58/*
59 * The panic notifier below is responsible solely for unloading the
60 * vmbus connection, which is necessary in a panic event.
61 *
62 * Notice an intrincate relation of this notifier with Hyper-V
63 * framebuffer panic notifier exists - we need vmbus connection alive
64 * there in order to succeed, so we need to order both with each other
65 * [see hvfb_on_panic()] - this is done using notifiers' priorities.
66 */
67static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
68			      void *args)
69{
70	vmbus_initiate_unload(true);
71	return NOTIFY_DONE;
72}
73static struct notifier_block hyperv_panic_vmbus_unload_block = {
74	.notifier_call	= hv_panic_vmbus_unload,
75	.priority	= INT_MIN + 1, /* almost the latest one to execute */
76};
77
78static const char *fb_mmio_name = "fb_range";
79static struct resource *fb_mmio;
80static struct resource *hyperv_mmio;
81static DEFINE_MUTEX(hyperv_mmio_lock);
82
83static int vmbus_exists(void)
84{
85	if (hv_dev == NULL)
86		return -ENODEV;
87
88	return 0;
89}
90
91static u8 channel_monitor_group(const struct vmbus_channel *channel)
92{
93	return (u8)channel->offermsg.monitorid / 32;
94}
95
96static u8 channel_monitor_offset(const struct vmbus_channel *channel)
97{
98	return (u8)channel->offermsg.monitorid % 32;
99}
100
101static u32 channel_pending(const struct vmbus_channel *channel,
102			   const struct hv_monitor_page *monitor_page)
103{
104	u8 monitor_group = channel_monitor_group(channel);
105
106	return monitor_page->trigger_group[monitor_group].pending;
107}
108
109static u32 channel_latency(const struct vmbus_channel *channel,
110			   const struct hv_monitor_page *monitor_page)
111{
112	u8 monitor_group = channel_monitor_group(channel);
113	u8 monitor_offset = channel_monitor_offset(channel);
114
115	return monitor_page->latency[monitor_group][monitor_offset];
116}
117
118static u32 channel_conn_id(struct vmbus_channel *channel,
119			   struct hv_monitor_page *monitor_page)
120{
121	u8 monitor_group = channel_monitor_group(channel);
122	u8 monitor_offset = channel_monitor_offset(channel);
123
124	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
125}
126
127static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
128		       char *buf)
129{
130	struct hv_device *hv_dev = device_to_hv_device(dev);
131
132	if (!hv_dev->channel)
133		return -ENODEV;
134	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
135}
136static DEVICE_ATTR_RO(id);
137
138static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
139			  char *buf)
140{
141	struct hv_device *hv_dev = device_to_hv_device(dev);
142
143	if (!hv_dev->channel)
144		return -ENODEV;
145	return sysfs_emit(buf, "%d\n", hv_dev->channel->state);
146}
147static DEVICE_ATTR_RO(state);
148
149static ssize_t monitor_id_show(struct device *dev,
150			       struct device_attribute *dev_attr, char *buf)
151{
152	struct hv_device *hv_dev = device_to_hv_device(dev);
153
154	if (!hv_dev->channel)
155		return -ENODEV;
156	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
157}
158static DEVICE_ATTR_RO(monitor_id);
159
160static ssize_t class_id_show(struct device *dev,
161			       struct device_attribute *dev_attr, char *buf)
162{
163	struct hv_device *hv_dev = device_to_hv_device(dev);
164
165	if (!hv_dev->channel)
166		return -ENODEV;
167	return sysfs_emit(buf, "{%pUl}\n",
168			  &hv_dev->channel->offermsg.offer.if_type);
169}
170static DEVICE_ATTR_RO(class_id);
171
172static ssize_t device_id_show(struct device *dev,
173			      struct device_attribute *dev_attr, char *buf)
174{
175	struct hv_device *hv_dev = device_to_hv_device(dev);
176
177	if (!hv_dev->channel)
178		return -ENODEV;
179	return sysfs_emit(buf, "{%pUl}\n",
180			  &hv_dev->channel->offermsg.offer.if_instance);
181}
182static DEVICE_ATTR_RO(device_id);
183
184static ssize_t modalias_show(struct device *dev,
185			     struct device_attribute *dev_attr, char *buf)
186{
187	struct hv_device *hv_dev = device_to_hv_device(dev);
188
189	return sysfs_emit(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
190}
191static DEVICE_ATTR_RO(modalias);
192
193#ifdef CONFIG_NUMA
194static ssize_t numa_node_show(struct device *dev,
195			      struct device_attribute *attr, char *buf)
196{
197	struct hv_device *hv_dev = device_to_hv_device(dev);
198
199	if (!hv_dev->channel)
200		return -ENODEV;
201
202	return sysfs_emit(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
203}
204static DEVICE_ATTR_RO(numa_node);
205#endif
206
207static ssize_t server_monitor_pending_show(struct device *dev,
208					   struct device_attribute *dev_attr,
209					   char *buf)
210{
211	struct hv_device *hv_dev = device_to_hv_device(dev);
212
213	if (!hv_dev->channel)
214		return -ENODEV;
215	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
216			  vmbus_connection.monitor_pages[0]));
217}
218static DEVICE_ATTR_RO(server_monitor_pending);
219
220static ssize_t client_monitor_pending_show(struct device *dev,
221					   struct device_attribute *dev_attr,
222					   char *buf)
223{
224	struct hv_device *hv_dev = device_to_hv_device(dev);
225
226	if (!hv_dev->channel)
227		return -ENODEV;
228	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
229			  vmbus_connection.monitor_pages[1]));
230}
231static DEVICE_ATTR_RO(client_monitor_pending);
232
233static ssize_t server_monitor_latency_show(struct device *dev,
234					   struct device_attribute *dev_attr,
235					   char *buf)
236{
237	struct hv_device *hv_dev = device_to_hv_device(dev);
238
239	if (!hv_dev->channel)
240		return -ENODEV;
241	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
242			  vmbus_connection.monitor_pages[0]));
243}
244static DEVICE_ATTR_RO(server_monitor_latency);
245
246static ssize_t client_monitor_latency_show(struct device *dev,
247					   struct device_attribute *dev_attr,
248					   char *buf)
249{
250	struct hv_device *hv_dev = device_to_hv_device(dev);
251
252	if (!hv_dev->channel)
253		return -ENODEV;
254	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
255			  vmbus_connection.monitor_pages[1]));
256}
257static DEVICE_ATTR_RO(client_monitor_latency);
258
259static ssize_t server_monitor_conn_id_show(struct device *dev,
260					   struct device_attribute *dev_attr,
261					   char *buf)
262{
263	struct hv_device *hv_dev = device_to_hv_device(dev);
264
265	if (!hv_dev->channel)
266		return -ENODEV;
267	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
268			  vmbus_connection.monitor_pages[0]));
269}
270static DEVICE_ATTR_RO(server_monitor_conn_id);
271
272static ssize_t client_monitor_conn_id_show(struct device *dev,
273					   struct device_attribute *dev_attr,
274					   char *buf)
275{
276	struct hv_device *hv_dev = device_to_hv_device(dev);
277
278	if (!hv_dev->channel)
279		return -ENODEV;
280	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
281			  vmbus_connection.monitor_pages[1]));
282}
283static DEVICE_ATTR_RO(client_monitor_conn_id);
284
285static ssize_t out_intr_mask_show(struct device *dev,
286				  struct device_attribute *dev_attr, char *buf)
287{
288	struct hv_device *hv_dev = device_to_hv_device(dev);
289	struct hv_ring_buffer_debug_info outbound;
290	int ret;
291
292	if (!hv_dev->channel)
293		return -ENODEV;
294
295	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
296					  &outbound);
297	if (ret < 0)
298		return ret;
299
300	return sysfs_emit(buf, "%d\n", outbound.current_interrupt_mask);
301}
302static DEVICE_ATTR_RO(out_intr_mask);
303
304static ssize_t out_read_index_show(struct device *dev,
305				   struct device_attribute *dev_attr, char *buf)
306{
307	struct hv_device *hv_dev = device_to_hv_device(dev);
308	struct hv_ring_buffer_debug_info outbound;
309	int ret;
310
311	if (!hv_dev->channel)
312		return -ENODEV;
313
314	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
315					  &outbound);
316	if (ret < 0)
317		return ret;
318	return sysfs_emit(buf, "%d\n", outbound.current_read_index);
319}
320static DEVICE_ATTR_RO(out_read_index);
321
322static ssize_t out_write_index_show(struct device *dev,
323				    struct device_attribute *dev_attr,
324				    char *buf)
325{
326	struct hv_device *hv_dev = device_to_hv_device(dev);
327	struct hv_ring_buffer_debug_info outbound;
328	int ret;
329
330	if (!hv_dev->channel)
331		return -ENODEV;
332
333	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
334					  &outbound);
335	if (ret < 0)
336		return ret;
337	return sysfs_emit(buf, "%d\n", outbound.current_write_index);
338}
339static DEVICE_ATTR_RO(out_write_index);
340
341static ssize_t out_read_bytes_avail_show(struct device *dev,
342					 struct device_attribute *dev_attr,
343					 char *buf)
344{
345	struct hv_device *hv_dev = device_to_hv_device(dev);
346	struct hv_ring_buffer_debug_info outbound;
347	int ret;
348
349	if (!hv_dev->channel)
350		return -ENODEV;
351
352	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
353					  &outbound);
354	if (ret < 0)
355		return ret;
356	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_toread);
357}
358static DEVICE_ATTR_RO(out_read_bytes_avail);
359
360static ssize_t out_write_bytes_avail_show(struct device *dev,
361					  struct device_attribute *dev_attr,
362					  char *buf)
363{
364	struct hv_device *hv_dev = device_to_hv_device(dev);
365	struct hv_ring_buffer_debug_info outbound;
366	int ret;
367
368	if (!hv_dev->channel)
369		return -ENODEV;
370
371	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
372					  &outbound);
373	if (ret < 0)
374		return ret;
375	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_towrite);
376}
377static DEVICE_ATTR_RO(out_write_bytes_avail);
378
379static ssize_t in_intr_mask_show(struct device *dev,
380				 struct device_attribute *dev_attr, char *buf)
381{
382	struct hv_device *hv_dev = device_to_hv_device(dev);
383	struct hv_ring_buffer_debug_info inbound;
384	int ret;
385
386	if (!hv_dev->channel)
387		return -ENODEV;
388
389	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
390	if (ret < 0)
391		return ret;
392
393	return sysfs_emit(buf, "%d\n", inbound.current_interrupt_mask);
394}
395static DEVICE_ATTR_RO(in_intr_mask);
396
397static ssize_t in_read_index_show(struct device *dev,
398				  struct device_attribute *dev_attr, char *buf)
399{
400	struct hv_device *hv_dev = device_to_hv_device(dev);
401	struct hv_ring_buffer_debug_info inbound;
402	int ret;
403
404	if (!hv_dev->channel)
405		return -ENODEV;
406
407	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
408	if (ret < 0)
409		return ret;
410
411	return sysfs_emit(buf, "%d\n", inbound.current_read_index);
412}
413static DEVICE_ATTR_RO(in_read_index);
414
415static ssize_t in_write_index_show(struct device *dev,
416				   struct device_attribute *dev_attr, char *buf)
417{
418	struct hv_device *hv_dev = device_to_hv_device(dev);
419	struct hv_ring_buffer_debug_info inbound;
420	int ret;
421
422	if (!hv_dev->channel)
423		return -ENODEV;
424
425	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426	if (ret < 0)
427		return ret;
428
429	return sysfs_emit(buf, "%d\n", inbound.current_write_index);
430}
431static DEVICE_ATTR_RO(in_write_index);
432
433static ssize_t in_read_bytes_avail_show(struct device *dev,
434					struct device_attribute *dev_attr,
435					char *buf)
436{
437	struct hv_device *hv_dev = device_to_hv_device(dev);
438	struct hv_ring_buffer_debug_info inbound;
439	int ret;
440
441	if (!hv_dev->channel)
442		return -ENODEV;
443
444	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
445	if (ret < 0)
446		return ret;
447
448	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_toread);
449}
450static DEVICE_ATTR_RO(in_read_bytes_avail);
451
452static ssize_t in_write_bytes_avail_show(struct device *dev,
453					 struct device_attribute *dev_attr,
454					 char *buf)
455{
456	struct hv_device *hv_dev = device_to_hv_device(dev);
457	struct hv_ring_buffer_debug_info inbound;
458	int ret;
459
460	if (!hv_dev->channel)
461		return -ENODEV;
462
463	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
464	if (ret < 0)
465		return ret;
466
467	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_towrite);
468}
469static DEVICE_ATTR_RO(in_write_bytes_avail);
470
471static ssize_t channel_vp_mapping_show(struct device *dev,
472				       struct device_attribute *dev_attr,
473				       char *buf)
474{
475	struct hv_device *hv_dev = device_to_hv_device(dev);
476	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
477	int n_written;
478	struct list_head *cur;
479
480	if (!channel)
481		return -ENODEV;
482
483	mutex_lock(&vmbus_connection.channel_mutex);
484
485	n_written = sysfs_emit(buf, "%u:%u\n",
486			       channel->offermsg.child_relid,
487			       channel->target_cpu);
488
489	list_for_each(cur, &channel->sc_list) {
490
491		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
492		n_written += sysfs_emit_at(buf, n_written, "%u:%u\n",
493					  cur_sc->offermsg.child_relid,
494					  cur_sc->target_cpu);
495	}
496
497	mutex_unlock(&vmbus_connection.channel_mutex);
498
499	return n_written;
500}
501static DEVICE_ATTR_RO(channel_vp_mapping);
502
503static ssize_t vendor_show(struct device *dev,
504			   struct device_attribute *dev_attr,
505			   char *buf)
506{
507	struct hv_device *hv_dev = device_to_hv_device(dev);
508
509	return sysfs_emit(buf, "0x%x\n", hv_dev->vendor_id);
510}
511static DEVICE_ATTR_RO(vendor);
512
513static ssize_t device_show(struct device *dev,
514			   struct device_attribute *dev_attr,
515			   char *buf)
516{
517	struct hv_device *hv_dev = device_to_hv_device(dev);
518
519	return sysfs_emit(buf, "0x%x\n", hv_dev->device_id);
520}
521static DEVICE_ATTR_RO(device);
522
523static ssize_t driver_override_store(struct device *dev,
524				     struct device_attribute *attr,
525				     const char *buf, size_t count)
526{
527	struct hv_device *hv_dev = device_to_hv_device(dev);
528	int ret;
529
530	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
531	if (ret)
532		return ret;
533
534	return count;
535}
536
537static ssize_t driver_override_show(struct device *dev,
538				    struct device_attribute *attr, char *buf)
539{
540	struct hv_device *hv_dev = device_to_hv_device(dev);
541	ssize_t len;
542
543	device_lock(dev);
544	len = sysfs_emit(buf, "%s\n", hv_dev->driver_override);
545	device_unlock(dev);
546
547	return len;
548}
549static DEVICE_ATTR_RW(driver_override);
550
551/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
552static struct attribute *vmbus_dev_attrs[] = {
553	&dev_attr_id.attr,
554	&dev_attr_state.attr,
555	&dev_attr_monitor_id.attr,
556	&dev_attr_class_id.attr,
557	&dev_attr_device_id.attr,
558	&dev_attr_modalias.attr,
559#ifdef CONFIG_NUMA
560	&dev_attr_numa_node.attr,
561#endif
562	&dev_attr_server_monitor_pending.attr,
563	&dev_attr_client_monitor_pending.attr,
564	&dev_attr_server_monitor_latency.attr,
565	&dev_attr_client_monitor_latency.attr,
566	&dev_attr_server_monitor_conn_id.attr,
567	&dev_attr_client_monitor_conn_id.attr,
568	&dev_attr_out_intr_mask.attr,
569	&dev_attr_out_read_index.attr,
570	&dev_attr_out_write_index.attr,
571	&dev_attr_out_read_bytes_avail.attr,
572	&dev_attr_out_write_bytes_avail.attr,
573	&dev_attr_in_intr_mask.attr,
574	&dev_attr_in_read_index.attr,
575	&dev_attr_in_write_index.attr,
576	&dev_attr_in_read_bytes_avail.attr,
577	&dev_attr_in_write_bytes_avail.attr,
578	&dev_attr_channel_vp_mapping.attr,
579	&dev_attr_vendor.attr,
580	&dev_attr_device.attr,
581	&dev_attr_driver_override.attr,
582	NULL,
583};
584
585/*
586 * Device-level attribute_group callback function. Returns the permission for
587 * each attribute, and returns 0 if an attribute is not visible.
588 */
589static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
590					 struct attribute *attr, int idx)
591{
592	struct device *dev = kobj_to_dev(kobj);
593	const struct hv_device *hv_dev = device_to_hv_device(dev);
594
595	/* Hide the monitor attributes if the monitor mechanism is not used. */
596	if (!hv_dev->channel->offermsg.monitor_allocated &&
597	    (attr == &dev_attr_monitor_id.attr ||
598	     attr == &dev_attr_server_monitor_pending.attr ||
599	     attr == &dev_attr_client_monitor_pending.attr ||
600	     attr == &dev_attr_server_monitor_latency.attr ||
601	     attr == &dev_attr_client_monitor_latency.attr ||
602	     attr == &dev_attr_server_monitor_conn_id.attr ||
603	     attr == &dev_attr_client_monitor_conn_id.attr))
604		return 0;
605
606	return attr->mode;
607}
608
609static const struct attribute_group vmbus_dev_group = {
610	.attrs = vmbus_dev_attrs,
611	.is_visible = vmbus_dev_attr_is_visible
612};
613__ATTRIBUTE_GROUPS(vmbus_dev);
614
615/* Set up the attribute for /sys/bus/vmbus/hibernation */
616static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
617{
618	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
619}
620
621static BUS_ATTR_RO(hibernation);
622
623static struct attribute *vmbus_bus_attrs[] = {
624	&bus_attr_hibernation.attr,
625	NULL,
626};
627static const struct attribute_group vmbus_bus_group = {
628	.attrs = vmbus_bus_attrs,
629};
630__ATTRIBUTE_GROUPS(vmbus_bus);
631
632/*
633 * vmbus_uevent - add uevent for our device
634 *
635 * This routine is invoked when a device is added or removed on the vmbus to
636 * generate a uevent to udev in the userspace. The udev will then look at its
637 * rule and the uevent generated here to load the appropriate driver
638 *
639 * The alias string will be of the form vmbus:guid where guid is the string
640 * representation of the device guid (each byte of the guid will be
641 * represented with two hex characters.
642 */
643static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
644{
645	const struct hv_device *dev = device_to_hv_device(device);
646	const char *format = "MODALIAS=vmbus:%*phN";
647
648	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
649}
650
651static const struct hv_vmbus_device_id *
652hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
653{
654	if (id == NULL)
655		return NULL; /* empty device table */
656
657	for (; !guid_is_null(&id->guid); id++)
658		if (guid_equal(&id->guid, guid))
659			return id;
660
661	return NULL;
662}
663
664static const struct hv_vmbus_device_id *
665hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
666{
667	const struct hv_vmbus_device_id *id = NULL;
668	struct vmbus_dynid *dynid;
669
670	spin_lock(&drv->dynids.lock);
671	list_for_each_entry(dynid, &drv->dynids.list, node) {
672		if (guid_equal(&dynid->id.guid, guid)) {
673			id = &dynid->id;
674			break;
675		}
676	}
677	spin_unlock(&drv->dynids.lock);
678
679	return id;
680}
681
682static const struct hv_vmbus_device_id vmbus_device_null;
683
684/*
685 * Return a matching hv_vmbus_device_id pointer.
686 * If there is no match, return NULL.
687 */
688static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
689							struct hv_device *dev)
690{
691	const guid_t *guid = &dev->dev_type;
692	const struct hv_vmbus_device_id *id;
693
694	/* When driver_override is set, only bind to the matching driver */
695	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
696		return NULL;
697
698	/* Look at the dynamic ids first, before the static ones */
699	id = hv_vmbus_dynid_match(drv, guid);
700	if (!id)
701		id = hv_vmbus_dev_match(drv->id_table, guid);
702
703	/* driver_override will always match, send a dummy id */
704	if (!id && dev->driver_override)
705		id = &vmbus_device_null;
706
707	return id;
708}
709
710/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
711static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
712{
713	struct vmbus_dynid *dynid;
714
715	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
716	if (!dynid)
717		return -ENOMEM;
718
719	dynid->id.guid = *guid;
720
721	spin_lock(&drv->dynids.lock);
722	list_add_tail(&dynid->node, &drv->dynids.list);
723	spin_unlock(&drv->dynids.lock);
724
725	return driver_attach(&drv->driver);
726}
727
728static void vmbus_free_dynids(struct hv_driver *drv)
729{
730	struct vmbus_dynid *dynid, *n;
731
732	spin_lock(&drv->dynids.lock);
733	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
734		list_del(&dynid->node);
735		kfree(dynid);
736	}
737	spin_unlock(&drv->dynids.lock);
738}
739
740/*
741 * store_new_id - sysfs frontend to vmbus_add_dynid()
742 *
743 * Allow GUIDs to be added to an existing driver via sysfs.
744 */
745static ssize_t new_id_store(struct device_driver *driver, const char *buf,
746			    size_t count)
747{
748	struct hv_driver *drv = drv_to_hv_drv(driver);
749	guid_t guid;
750	ssize_t retval;
751
752	retval = guid_parse(buf, &guid);
753	if (retval)
754		return retval;
755
756	if (hv_vmbus_dynid_match(drv, &guid))
757		return -EEXIST;
758
759	retval = vmbus_add_dynid(drv, &guid);
760	if (retval)
761		return retval;
762	return count;
763}
764static DRIVER_ATTR_WO(new_id);
765
766/*
767 * store_remove_id - remove a PCI device ID from this driver
768 *
769 * Removes a dynamic pci device ID to this driver.
770 */
771static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
772			       size_t count)
773{
774	struct hv_driver *drv = drv_to_hv_drv(driver);
775	struct vmbus_dynid *dynid, *n;
776	guid_t guid;
777	ssize_t retval;
778
779	retval = guid_parse(buf, &guid);
780	if (retval)
781		return retval;
782
783	retval = -ENODEV;
784	spin_lock(&drv->dynids.lock);
785	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
786		struct hv_vmbus_device_id *id = &dynid->id;
787
788		if (guid_equal(&id->guid, &guid)) {
789			list_del(&dynid->node);
790			kfree(dynid);
791			retval = count;
792			break;
793		}
794	}
795	spin_unlock(&drv->dynids.lock);
796
797	return retval;
798}
799static DRIVER_ATTR_WO(remove_id);
800
801static struct attribute *vmbus_drv_attrs[] = {
802	&driver_attr_new_id.attr,
803	&driver_attr_remove_id.attr,
804	NULL,
805};
806ATTRIBUTE_GROUPS(vmbus_drv);
807
808
809/*
810 * vmbus_match - Attempt to match the specified device to the specified driver
811 */
812static int vmbus_match(struct device *device, struct device_driver *driver)
813{
814	struct hv_driver *drv = drv_to_hv_drv(driver);
815	struct hv_device *hv_dev = device_to_hv_device(device);
816
817	/* The hv_sock driver handles all hv_sock offers. */
818	if (is_hvsock_channel(hv_dev->channel))
819		return drv->hvsock;
820
821	if (hv_vmbus_get_id(drv, hv_dev))
822		return 1;
823
824	return 0;
825}
826
827/*
828 * vmbus_probe - Add the new vmbus's child device
829 */
830static int vmbus_probe(struct device *child_device)
831{
832	int ret = 0;
833	struct hv_driver *drv =
834			drv_to_hv_drv(child_device->driver);
835	struct hv_device *dev = device_to_hv_device(child_device);
836	const struct hv_vmbus_device_id *dev_id;
837
838	dev_id = hv_vmbus_get_id(drv, dev);
839	if (drv->probe) {
840		ret = drv->probe(dev, dev_id);
841		if (ret != 0)
842			pr_err("probe failed for device %s (%d)\n",
843			       dev_name(child_device), ret);
844
845	} else {
846		pr_err("probe not set for driver %s\n",
847		       dev_name(child_device));
848		ret = -ENODEV;
849	}
850	return ret;
851}
852
853/*
854 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
855 */
856static int vmbus_dma_configure(struct device *child_device)
857{
858	/*
859	 * On ARM64, propagate the DMA coherence setting from the top level
860	 * VMbus ACPI device to the child VMbus device being added here.
861	 * On x86/x64 coherence is assumed and these calls have no effect.
862	 */
863	hv_setup_dma_ops(child_device,
864		device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT);
865	return 0;
866}
867
868/*
869 * vmbus_remove - Remove a vmbus device
870 */
871static void vmbus_remove(struct device *child_device)
872{
873	struct hv_driver *drv;
874	struct hv_device *dev = device_to_hv_device(child_device);
875
876	if (child_device->driver) {
877		drv = drv_to_hv_drv(child_device->driver);
878		if (drv->remove)
879			drv->remove(dev);
880	}
881}
882
883/*
884 * vmbus_shutdown - Shutdown a vmbus device
885 */
886static void vmbus_shutdown(struct device *child_device)
887{
888	struct hv_driver *drv;
889	struct hv_device *dev = device_to_hv_device(child_device);
890
891
892	/* The device may not be attached yet */
893	if (!child_device->driver)
894		return;
895
896	drv = drv_to_hv_drv(child_device->driver);
897
898	if (drv->shutdown)
899		drv->shutdown(dev);
900}
901
902#ifdef CONFIG_PM_SLEEP
903/*
904 * vmbus_suspend - Suspend a vmbus device
905 */
906static int vmbus_suspend(struct device *child_device)
907{
908	struct hv_driver *drv;
909	struct hv_device *dev = device_to_hv_device(child_device);
910
911	/* The device may not be attached yet */
912	if (!child_device->driver)
913		return 0;
914
915	drv = drv_to_hv_drv(child_device->driver);
916	if (!drv->suspend)
917		return -EOPNOTSUPP;
918
919	return drv->suspend(dev);
920}
921
922/*
923 * vmbus_resume - Resume a vmbus device
924 */
925static int vmbus_resume(struct device *child_device)
926{
927	struct hv_driver *drv;
928	struct hv_device *dev = device_to_hv_device(child_device);
929
930	/* The device may not be attached yet */
931	if (!child_device->driver)
932		return 0;
933
934	drv = drv_to_hv_drv(child_device->driver);
935	if (!drv->resume)
936		return -EOPNOTSUPP;
937
938	return drv->resume(dev);
939}
940#else
941#define vmbus_suspend NULL
942#define vmbus_resume NULL
943#endif /* CONFIG_PM_SLEEP */
944
945/*
946 * vmbus_device_release - Final callback release of the vmbus child device
947 */
948static void vmbus_device_release(struct device *device)
949{
950	struct hv_device *hv_dev = device_to_hv_device(device);
951	struct vmbus_channel *channel = hv_dev->channel;
952
953	hv_debug_rm_dev_dir(hv_dev);
954
955	mutex_lock(&vmbus_connection.channel_mutex);
956	hv_process_channel_removal(channel);
957	mutex_unlock(&vmbus_connection.channel_mutex);
958	kfree(hv_dev);
959}
960
961/*
962 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
963 *
964 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
965 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
966 * is no way to wake up a Generation-2 VM.
967 *
968 * The other 4 ops are for hibernation.
969 */
970
971static const struct dev_pm_ops vmbus_pm = {
972	.suspend_noirq	= NULL,
973	.resume_noirq	= NULL,
974	.freeze_noirq	= vmbus_suspend,
975	.thaw_noirq	= vmbus_resume,
976	.poweroff_noirq	= vmbus_suspend,
977	.restore_noirq	= vmbus_resume,
978};
979
980/* The one and only one */
981static const struct bus_type  hv_bus = {
982	.name =		"vmbus",
983	.match =		vmbus_match,
984	.shutdown =		vmbus_shutdown,
985	.remove =		vmbus_remove,
986	.probe =		vmbus_probe,
987	.uevent =		vmbus_uevent,
988	.dma_configure =	vmbus_dma_configure,
989	.dev_groups =		vmbus_dev_groups,
990	.drv_groups =		vmbus_drv_groups,
991	.bus_groups =		vmbus_bus_groups,
992	.pm =			&vmbus_pm,
993};
994
995struct onmessage_work_context {
996	struct work_struct work;
997	struct {
998		struct hv_message_header header;
999		u8 payload[];
1000	} msg;
1001};
1002
1003static void vmbus_onmessage_work(struct work_struct *work)
1004{
1005	struct onmessage_work_context *ctx;
1006
1007	/* Do not process messages if we're in DISCONNECTED state */
1008	if (vmbus_connection.conn_state == DISCONNECTED)
1009		return;
1010
1011	ctx = container_of(work, struct onmessage_work_context,
1012			   work);
1013	vmbus_onmessage((struct vmbus_channel_message_header *)
1014			&ctx->msg.payload);
1015	kfree(ctx);
1016}
1017
1018void vmbus_on_msg_dpc(unsigned long data)
1019{
1020	struct hv_per_cpu_context *hv_cpu = (void *)data;
1021	void *page_addr = hv_cpu->synic_message_page;
1022	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1023				  VMBUS_MESSAGE_SINT;
1024	struct vmbus_channel_message_header *hdr;
1025	enum vmbus_channel_message_type msgtype;
1026	const struct vmbus_channel_message_table_entry *entry;
1027	struct onmessage_work_context *ctx;
1028	__u8 payload_size;
1029	u32 message_type;
1030
1031	/*
1032	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1033	 * it is being used in 'struct vmbus_channel_message_header' definition
1034	 * which is supposed to match hypervisor ABI.
1035	 */
1036	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1037
1038	/*
1039	 * Since the message is in memory shared with the host, an erroneous or
1040	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1041	 * or individual message handlers are executing; to prevent this, copy
1042	 * the message into private memory.
1043	 */
1044	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1045
1046	message_type = msg_copy.header.message_type;
1047	if (message_type == HVMSG_NONE)
1048		/* no msg */
1049		return;
1050
1051	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1052	msgtype = hdr->msgtype;
1053
1054	trace_vmbus_on_msg_dpc(hdr);
1055
1056	if (msgtype >= CHANNELMSG_COUNT) {
1057		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1058		goto msg_handled;
1059	}
1060
1061	payload_size = msg_copy.header.payload_size;
1062	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1063		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1064		goto msg_handled;
1065	}
1066
1067	entry = &channel_message_table[msgtype];
1068
1069	if (!entry->message_handler)
1070		goto msg_handled;
1071
1072	if (payload_size < entry->min_payload_len) {
1073		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1074		goto msg_handled;
1075	}
1076
1077	if (entry->handler_type	== VMHT_BLOCKING) {
1078		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1079		if (ctx == NULL)
1080			return;
1081
1082		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1083		ctx->msg.header = msg_copy.header;
1084		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1085
1086		/*
1087		 * The host can generate a rescind message while we
1088		 * may still be handling the original offer. We deal with
1089		 * this condition by relying on the synchronization provided
1090		 * by offer_in_progress and by channel_mutex.  See also the
1091		 * inline comments in vmbus_onoffer_rescind().
1092		 */
1093		switch (msgtype) {
1094		case CHANNELMSG_RESCIND_CHANNELOFFER:
1095			/*
1096			 * If we are handling the rescind message;
1097			 * schedule the work on the global work queue.
1098			 *
1099			 * The OFFER message and the RESCIND message should
1100			 * not be handled by the same serialized work queue,
1101			 * because the OFFER handler may call vmbus_open(),
1102			 * which tries to open the channel by sending an
1103			 * OPEN_CHANNEL message to the host and waits for
1104			 * the host's response; however, if the host has
1105			 * rescinded the channel before it receives the
1106			 * OPEN_CHANNEL message, the host just silently
1107			 * ignores the OPEN_CHANNEL message; as a result,
1108			 * the guest's OFFER handler hangs for ever, if we
1109			 * handle the RESCIND message in the same serialized
1110			 * work queue: the RESCIND handler can not start to
1111			 * run before the OFFER handler finishes.
1112			 */
1113			if (vmbus_connection.ignore_any_offer_msg)
1114				break;
1115			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1116			break;
1117
1118		case CHANNELMSG_OFFERCHANNEL:
1119			/*
1120			 * The host sends the offer message of a given channel
1121			 * before sending the rescind message of the same
1122			 * channel.  These messages are sent to the guest's
1123			 * connect CPU; the guest then starts processing them
1124			 * in the tasklet handler on this CPU:
1125			 *
1126			 * VMBUS_CONNECT_CPU
1127			 *
1128			 * [vmbus_on_msg_dpc()]
1129			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1130			 * queue_work()
1131			 * ...
1132			 * [vmbus_on_msg_dpc()]
1133			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1134			 *
1135			 * We rely on the memory-ordering properties of the
1136			 * queue_work() and schedule_work() primitives, which
1137			 * guarantee that the atomic increment will be visible
1138			 * to the CPUs which will execute the offer & rescind
1139			 * works by the time these works will start execution.
1140			 */
1141			if (vmbus_connection.ignore_any_offer_msg)
1142				break;
1143			atomic_inc(&vmbus_connection.offer_in_progress);
1144			fallthrough;
1145
1146		default:
1147			queue_work(vmbus_connection.work_queue, &ctx->work);
1148		}
1149	} else
1150		entry->message_handler(hdr);
1151
1152msg_handled:
1153	vmbus_signal_eom(msg, message_type);
1154}
1155
1156#ifdef CONFIG_PM_SLEEP
1157/*
1158 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1159 * hibernation, because hv_sock connections can not persist across hibernation.
1160 */
1161static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1162{
1163	struct onmessage_work_context *ctx;
1164	struct vmbus_channel_rescind_offer *rescind;
1165
1166	WARN_ON(!is_hvsock_channel(channel));
1167
1168	/*
1169	 * Allocation size is small and the allocation should really not fail,
1170	 * otherwise the state of the hv_sock connections ends up in limbo.
1171	 */
1172	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1173		      GFP_KERNEL | __GFP_NOFAIL);
1174
1175	/*
1176	 * So far, these are not really used by Linux. Just set them to the
1177	 * reasonable values conforming to the definitions of the fields.
1178	 */
1179	ctx->msg.header.message_type = 1;
1180	ctx->msg.header.payload_size = sizeof(*rescind);
1181
1182	/* These values are actually used by Linux. */
1183	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1184	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1185	rescind->child_relid = channel->offermsg.child_relid;
1186
1187	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1188
1189	queue_work(vmbus_connection.work_queue, &ctx->work);
1190}
1191#endif /* CONFIG_PM_SLEEP */
1192
1193/*
1194 * Schedule all channels with events pending
1195 */
1196static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1197{
1198	unsigned long *recv_int_page;
1199	u32 maxbits, relid;
1200
1201	/*
1202	 * The event page can be directly checked to get the id of
1203	 * the channel that has the interrupt pending.
1204	 */
1205	void *page_addr = hv_cpu->synic_event_page;
1206	union hv_synic_event_flags *event
1207		= (union hv_synic_event_flags *)page_addr +
1208					 VMBUS_MESSAGE_SINT;
1209
1210	maxbits = HV_EVENT_FLAGS_COUNT;
1211	recv_int_page = event->flags;
1212
1213	if (unlikely(!recv_int_page))
1214		return;
1215
1216	for_each_set_bit(relid, recv_int_page, maxbits) {
1217		void (*callback_fn)(void *context);
1218		struct vmbus_channel *channel;
1219
1220		if (!sync_test_and_clear_bit(relid, recv_int_page))
1221			continue;
1222
1223		/* Special case - vmbus channel protocol msg */
1224		if (relid == 0)
1225			continue;
1226
1227		/*
1228		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1229		 * Guarantees that the channel data structure doesn't
1230		 * get freed while the channel pointer below is being
1231		 * dereferenced.
1232		 */
1233		rcu_read_lock();
1234
1235		/* Find channel based on relid */
1236		channel = relid2channel(relid);
1237		if (channel == NULL)
1238			goto sched_unlock_rcu;
1239
1240		if (channel->rescind)
1241			goto sched_unlock_rcu;
1242
1243		/*
1244		 * Make sure that the ring buffer data structure doesn't get
1245		 * freed while we dereference the ring buffer pointer.  Test
1246		 * for the channel's onchannel_callback being NULL within a
1247		 * sched_lock critical section.  See also the inline comments
1248		 * in vmbus_reset_channel_cb().
1249		 */
1250		spin_lock(&channel->sched_lock);
1251
1252		callback_fn = channel->onchannel_callback;
1253		if (unlikely(callback_fn == NULL))
1254			goto sched_unlock;
1255
1256		trace_vmbus_chan_sched(channel);
1257
1258		++channel->interrupts;
1259
1260		switch (channel->callback_mode) {
1261		case HV_CALL_ISR:
1262			(*callback_fn)(channel->channel_callback_context);
1263			break;
1264
1265		case HV_CALL_BATCHED:
1266			hv_begin_read(&channel->inbound);
1267			fallthrough;
1268		case HV_CALL_DIRECT:
1269			tasklet_schedule(&channel->callback_event);
1270		}
1271
1272sched_unlock:
1273		spin_unlock(&channel->sched_lock);
1274sched_unlock_rcu:
1275		rcu_read_unlock();
1276	}
1277}
1278
1279static void vmbus_isr(void)
1280{
1281	struct hv_per_cpu_context *hv_cpu
1282		= this_cpu_ptr(hv_context.cpu_context);
1283	void *page_addr;
1284	struct hv_message *msg;
1285
1286	vmbus_chan_sched(hv_cpu);
1287
1288	page_addr = hv_cpu->synic_message_page;
1289	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1290
1291	/* Check if there are actual msgs to be processed */
1292	if (msg->header.message_type != HVMSG_NONE) {
1293		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1294			hv_stimer0_isr();
1295			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1296		} else
1297			tasklet_schedule(&hv_cpu->msg_dpc);
1298	}
1299
1300	add_interrupt_randomness(vmbus_interrupt);
1301}
1302
1303static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1304{
1305	vmbus_isr();
1306	return IRQ_HANDLED;
1307}
1308
1309/*
1310 * vmbus_bus_init -Main vmbus driver initialization routine.
1311 *
1312 * Here, we
1313 *	- initialize the vmbus driver context
1314 *	- invoke the vmbus hv main init routine
1315 *	- retrieve the channel offers
1316 */
1317static int vmbus_bus_init(void)
1318{
1319	int ret;
1320
1321	ret = hv_init();
1322	if (ret != 0) {
1323		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1324		return ret;
1325	}
1326
1327	ret = bus_register(&hv_bus);
1328	if (ret)
1329		return ret;
1330
1331	/*
1332	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1333	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1334	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1335	 * If not on such an architecture (e.g., x86/x64), then rely on
1336	 * code in the arch-specific portion of the code tree to connect
1337	 * the VMbus interrupt handler.
1338	 */
1339
1340	if (vmbus_irq == -1) {
1341		hv_setup_vmbus_handler(vmbus_isr);
1342	} else {
1343		vmbus_evt = alloc_percpu(long);
1344		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1345				"Hyper-V VMbus", vmbus_evt);
1346		if (ret) {
1347			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1348					vmbus_irq, ret);
1349			free_percpu(vmbus_evt);
1350			goto err_setup;
1351		}
1352	}
1353
1354	ret = hv_synic_alloc();
1355	if (ret)
1356		goto err_alloc;
1357
1358	/*
1359	 * Initialize the per-cpu interrupt state and stimer state.
1360	 * Then connect to the host.
1361	 */
1362	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1363				hv_synic_init, hv_synic_cleanup);
1364	if (ret < 0)
1365		goto err_alloc;
1366	hyperv_cpuhp_online = ret;
1367
1368	ret = vmbus_connect();
1369	if (ret)
1370		goto err_connect;
1371
1372	/*
1373	 * Always register the vmbus unload panic notifier because we
1374	 * need to shut the VMbus channel connection on panic.
1375	 */
1376	atomic_notifier_chain_register(&panic_notifier_list,
1377			       &hyperv_panic_vmbus_unload_block);
1378
1379	vmbus_request_offers();
1380
1381	return 0;
1382
1383err_connect:
1384	cpuhp_remove_state(hyperv_cpuhp_online);
1385err_alloc:
1386	hv_synic_free();
1387	if (vmbus_irq == -1) {
1388		hv_remove_vmbus_handler();
1389	} else {
1390		free_percpu_irq(vmbus_irq, vmbus_evt);
1391		free_percpu(vmbus_evt);
1392	}
1393err_setup:
1394	bus_unregister(&hv_bus);
1395	return ret;
1396}
1397
1398/**
1399 * __vmbus_driver_register() - Register a vmbus's driver
1400 * @hv_driver: Pointer to driver structure you want to register
1401 * @owner: owner module of the drv
1402 * @mod_name: module name string
1403 *
1404 * Registers the given driver with Linux through the 'driver_register()' call
1405 * and sets up the hyper-v vmbus handling for this driver.
1406 * It will return the state of the 'driver_register()' call.
1407 *
1408 */
1409int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1410{
1411	int ret;
1412
1413	pr_info("registering driver %s\n", hv_driver->name);
1414
1415	ret = vmbus_exists();
1416	if (ret < 0)
1417		return ret;
1418
1419	hv_driver->driver.name = hv_driver->name;
1420	hv_driver->driver.owner = owner;
1421	hv_driver->driver.mod_name = mod_name;
1422	hv_driver->driver.bus = &hv_bus;
1423
1424	spin_lock_init(&hv_driver->dynids.lock);
1425	INIT_LIST_HEAD(&hv_driver->dynids.list);
1426
1427	ret = driver_register(&hv_driver->driver);
1428
1429	return ret;
1430}
1431EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1432
1433/**
1434 * vmbus_driver_unregister() - Unregister a vmbus's driver
1435 * @hv_driver: Pointer to driver structure you want to
1436 *             un-register
1437 *
1438 * Un-register the given driver that was previous registered with a call to
1439 * vmbus_driver_register()
1440 */
1441void vmbus_driver_unregister(struct hv_driver *hv_driver)
1442{
1443	pr_info("unregistering driver %s\n", hv_driver->name);
1444
1445	if (!vmbus_exists()) {
1446		driver_unregister(&hv_driver->driver);
1447		vmbus_free_dynids(hv_driver);
1448	}
1449}
1450EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1451
1452
1453/*
1454 * Called when last reference to channel is gone.
1455 */
1456static void vmbus_chan_release(struct kobject *kobj)
1457{
1458	struct vmbus_channel *channel
1459		= container_of(kobj, struct vmbus_channel, kobj);
1460
1461	kfree_rcu(channel, rcu);
1462}
1463
1464struct vmbus_chan_attribute {
1465	struct attribute attr;
1466	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1467	ssize_t (*store)(struct vmbus_channel *chan,
1468			 const char *buf, size_t count);
1469};
1470#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1471	struct vmbus_chan_attribute chan_attr_##_name \
1472		= __ATTR(_name, _mode, _show, _store)
1473#define VMBUS_CHAN_ATTR_RW(_name) \
1474	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1475#define VMBUS_CHAN_ATTR_RO(_name) \
1476	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1477#define VMBUS_CHAN_ATTR_WO(_name) \
1478	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1479
1480static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1481				    struct attribute *attr, char *buf)
1482{
1483	const struct vmbus_chan_attribute *attribute
1484		= container_of(attr, struct vmbus_chan_attribute, attr);
1485	struct vmbus_channel *chan
1486		= container_of(kobj, struct vmbus_channel, kobj);
1487
1488	if (!attribute->show)
1489		return -EIO;
1490
1491	return attribute->show(chan, buf);
1492}
1493
1494static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1495				     struct attribute *attr, const char *buf,
1496				     size_t count)
1497{
1498	const struct vmbus_chan_attribute *attribute
1499		= container_of(attr, struct vmbus_chan_attribute, attr);
1500	struct vmbus_channel *chan
1501		= container_of(kobj, struct vmbus_channel, kobj);
1502
1503	if (!attribute->store)
1504		return -EIO;
1505
1506	return attribute->store(chan, buf, count);
1507}
1508
1509static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1510	.show = vmbus_chan_attr_show,
1511	.store = vmbus_chan_attr_store,
1512};
1513
1514static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1515{
1516	struct hv_ring_buffer_info *rbi = &channel->outbound;
1517	ssize_t ret;
1518
1519	mutex_lock(&rbi->ring_buffer_mutex);
1520	if (!rbi->ring_buffer) {
1521		mutex_unlock(&rbi->ring_buffer_mutex);
1522		return -EINVAL;
1523	}
1524
1525	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1526	mutex_unlock(&rbi->ring_buffer_mutex);
1527	return ret;
1528}
1529static VMBUS_CHAN_ATTR_RO(out_mask);
1530
1531static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1532{
1533	struct hv_ring_buffer_info *rbi = &channel->inbound;
1534	ssize_t ret;
1535
1536	mutex_lock(&rbi->ring_buffer_mutex);
1537	if (!rbi->ring_buffer) {
1538		mutex_unlock(&rbi->ring_buffer_mutex);
1539		return -EINVAL;
1540	}
1541
1542	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1543	mutex_unlock(&rbi->ring_buffer_mutex);
1544	return ret;
1545}
1546static VMBUS_CHAN_ATTR_RO(in_mask);
1547
1548static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1549{
1550	struct hv_ring_buffer_info *rbi = &channel->inbound;
1551	ssize_t ret;
1552
1553	mutex_lock(&rbi->ring_buffer_mutex);
1554	if (!rbi->ring_buffer) {
1555		mutex_unlock(&rbi->ring_buffer_mutex);
1556		return -EINVAL;
1557	}
1558
1559	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1560	mutex_unlock(&rbi->ring_buffer_mutex);
1561	return ret;
1562}
1563static VMBUS_CHAN_ATTR_RO(read_avail);
1564
1565static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1566{
1567	struct hv_ring_buffer_info *rbi = &channel->outbound;
1568	ssize_t ret;
1569
1570	mutex_lock(&rbi->ring_buffer_mutex);
1571	if (!rbi->ring_buffer) {
1572		mutex_unlock(&rbi->ring_buffer_mutex);
1573		return -EINVAL;
1574	}
1575
1576	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1577	mutex_unlock(&rbi->ring_buffer_mutex);
1578	return ret;
1579}
1580static VMBUS_CHAN_ATTR_RO(write_avail);
1581
1582static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1583{
1584	return sprintf(buf, "%u\n", channel->target_cpu);
1585}
1586static ssize_t target_cpu_store(struct vmbus_channel *channel,
1587				const char *buf, size_t count)
1588{
1589	u32 target_cpu, origin_cpu;
1590	ssize_t ret = count;
1591
1592	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1593		return -EIO;
1594
1595	if (sscanf(buf, "%uu", &target_cpu) != 1)
1596		return -EIO;
1597
1598	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1599	if (target_cpu >= nr_cpumask_bits)
1600		return -EINVAL;
1601
1602	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1603		return -EINVAL;
1604
1605	/* No CPUs should come up or down during this. */
1606	cpus_read_lock();
1607
1608	if (!cpu_online(target_cpu)) {
1609		cpus_read_unlock();
1610		return -EINVAL;
1611	}
1612
1613	/*
1614	 * Synchronizes target_cpu_store() and channel closure:
1615	 *
1616	 * { Initially: state = CHANNEL_OPENED }
1617	 *
1618	 * CPU1				CPU2
1619	 *
1620	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1621	 *
1622	 * LOCK channel_mutex		LOCK channel_mutex
1623	 * LOAD r1 = state		LOAD r2 = state
1624	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1625	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1626	 *   [...]			  SEND CLOSECHANNEL
1627	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1628	 *
1629	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1630	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1631	 *
1632	 * Note.  The host processes the channel messages "sequentially", in
1633	 * the order in which they are received on a per-partition basis.
1634	 */
1635	mutex_lock(&vmbus_connection.channel_mutex);
1636
1637	/*
1638	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1639	 * avoid sending the message and fail here for such channels.
1640	 */
1641	if (channel->state != CHANNEL_OPENED_STATE) {
1642		ret = -EIO;
1643		goto cpu_store_unlock;
1644	}
1645
1646	origin_cpu = channel->target_cpu;
1647	if (target_cpu == origin_cpu)
1648		goto cpu_store_unlock;
1649
1650	if (vmbus_send_modifychannel(channel,
1651				     hv_cpu_number_to_vp_number(target_cpu))) {
1652		ret = -EIO;
1653		goto cpu_store_unlock;
1654	}
1655
1656	/*
1657	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1658	 *
1659	 * Warning.  At this point, there is *no* guarantee that the host will
1660	 * have successfully processed the vmbus_send_modifychannel() request.
1661	 * See the header comment of vmbus_send_modifychannel() for more info.
1662	 *
1663	 * Lags in the processing of the above vmbus_send_modifychannel() can
1664	 * result in missed interrupts if the "old" target CPU is taken offline
1665	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1666	 * But apart from this offlining scenario, the code tolerates such
1667	 * lags.  It will function correctly even if a channel interrupt comes
1668	 * in on a CPU that is different from the channel target_cpu value.
1669	 */
1670
1671	channel->target_cpu = target_cpu;
1672
1673	/* See init_vp_index(). */
1674	if (hv_is_perf_channel(channel))
1675		hv_update_allocated_cpus(origin_cpu, target_cpu);
1676
1677	/* Currently set only for storvsc channels. */
1678	if (channel->change_target_cpu_callback) {
1679		(*channel->change_target_cpu_callback)(channel,
1680				origin_cpu, target_cpu);
1681	}
1682
1683cpu_store_unlock:
1684	mutex_unlock(&vmbus_connection.channel_mutex);
1685	cpus_read_unlock();
1686	return ret;
1687}
1688static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1689
1690static ssize_t channel_pending_show(struct vmbus_channel *channel,
1691				    char *buf)
1692{
1693	return sprintf(buf, "%d\n",
1694		       channel_pending(channel,
1695				       vmbus_connection.monitor_pages[1]));
1696}
1697static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1698
1699static ssize_t channel_latency_show(struct vmbus_channel *channel,
1700				    char *buf)
1701{
1702	return sprintf(buf, "%d\n",
1703		       channel_latency(channel,
1704				       vmbus_connection.monitor_pages[1]));
1705}
1706static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1707
1708static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1709{
1710	return sprintf(buf, "%llu\n", channel->interrupts);
1711}
1712static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1713
1714static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1715{
1716	return sprintf(buf, "%llu\n", channel->sig_events);
1717}
1718static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1719
1720static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1721					 char *buf)
1722{
1723	return sprintf(buf, "%llu\n",
1724		       (unsigned long long)channel->intr_in_full);
1725}
1726static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1727
1728static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1729					   char *buf)
1730{
1731	return sprintf(buf, "%llu\n",
1732		       (unsigned long long)channel->intr_out_empty);
1733}
1734static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1735
1736static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1737					   char *buf)
1738{
1739	return sprintf(buf, "%llu\n",
1740		       (unsigned long long)channel->out_full_first);
1741}
1742static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1743
1744static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1745					   char *buf)
1746{
1747	return sprintf(buf, "%llu\n",
1748		       (unsigned long long)channel->out_full_total);
1749}
1750static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1751
1752static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1753					  char *buf)
1754{
1755	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1756}
1757static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1758
1759static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1760				  char *buf)
1761{
1762	return sprintf(buf, "%u\n",
1763		       channel->offermsg.offer.sub_channel_index);
1764}
1765static VMBUS_CHAN_ATTR_RO(subchannel_id);
1766
1767static struct attribute *vmbus_chan_attrs[] = {
1768	&chan_attr_out_mask.attr,
1769	&chan_attr_in_mask.attr,
1770	&chan_attr_read_avail.attr,
1771	&chan_attr_write_avail.attr,
1772	&chan_attr_cpu.attr,
1773	&chan_attr_pending.attr,
1774	&chan_attr_latency.attr,
1775	&chan_attr_interrupts.attr,
1776	&chan_attr_events.attr,
1777	&chan_attr_intr_in_full.attr,
1778	&chan_attr_intr_out_empty.attr,
1779	&chan_attr_out_full_first.attr,
1780	&chan_attr_out_full_total.attr,
1781	&chan_attr_monitor_id.attr,
1782	&chan_attr_subchannel_id.attr,
1783	NULL
1784};
1785
1786/*
1787 * Channel-level attribute_group callback function. Returns the permission for
1788 * each attribute, and returns 0 if an attribute is not visible.
1789 */
1790static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1791					  struct attribute *attr, int idx)
1792{
1793	const struct vmbus_channel *channel =
1794		container_of(kobj, struct vmbus_channel, kobj);
1795
1796	/* Hide the monitor attributes if the monitor mechanism is not used. */
1797	if (!channel->offermsg.monitor_allocated &&
1798	    (attr == &chan_attr_pending.attr ||
1799	     attr == &chan_attr_latency.attr ||
1800	     attr == &chan_attr_monitor_id.attr))
1801		return 0;
1802
1803	return attr->mode;
1804}
1805
1806static struct attribute_group vmbus_chan_group = {
1807	.attrs = vmbus_chan_attrs,
1808	.is_visible = vmbus_chan_attr_is_visible
1809};
1810
1811static struct kobj_type vmbus_chan_ktype = {
1812	.sysfs_ops = &vmbus_chan_sysfs_ops,
1813	.release = vmbus_chan_release,
1814};
1815
1816/*
1817 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1818 */
1819int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1820{
1821	const struct device *device = &dev->device;
1822	struct kobject *kobj = &channel->kobj;
1823	u32 relid = channel->offermsg.child_relid;
1824	int ret;
1825
1826	kobj->kset = dev->channels_kset;
1827	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1828				   "%u", relid);
1829	if (ret) {
1830		kobject_put(kobj);
1831		return ret;
1832	}
1833
1834	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1835
1836	if (ret) {
1837		/*
1838		 * The calling functions' error handling paths will cleanup the
1839		 * empty channel directory.
1840		 */
1841		kobject_put(kobj);
1842		dev_err(device, "Unable to set up channel sysfs files\n");
1843		return ret;
1844	}
1845
1846	kobject_uevent(kobj, KOBJ_ADD);
1847
1848	return 0;
1849}
1850
1851/*
1852 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1853 */
1854void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1855{
1856	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1857}
1858
1859/*
1860 * vmbus_device_create - Creates and registers a new child device
1861 * on the vmbus.
1862 */
1863struct hv_device *vmbus_device_create(const guid_t *type,
1864				      const guid_t *instance,
1865				      struct vmbus_channel *channel)
1866{
1867	struct hv_device *child_device_obj;
1868
1869	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1870	if (!child_device_obj) {
1871		pr_err("Unable to allocate device object for child device\n");
1872		return NULL;
1873	}
1874
1875	child_device_obj->channel = channel;
1876	guid_copy(&child_device_obj->dev_type, type);
1877	guid_copy(&child_device_obj->dev_instance, instance);
1878	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
1879
1880	return child_device_obj;
1881}
1882
1883/*
1884 * vmbus_device_register - Register the child device
1885 */
1886int vmbus_device_register(struct hv_device *child_device_obj)
1887{
1888	struct kobject *kobj = &child_device_obj->device.kobj;
1889	int ret;
1890
1891	dev_set_name(&child_device_obj->device, "%pUl",
1892		     &child_device_obj->channel->offermsg.offer.if_instance);
1893
1894	child_device_obj->device.bus = &hv_bus;
1895	child_device_obj->device.parent = hv_dev;
1896	child_device_obj->device.release = vmbus_device_release;
1897
1898	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1899	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1900	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
1901
1902	/*
1903	 * Register with the LDM. This will kick off the driver/device
1904	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1905	 */
1906	ret = device_register(&child_device_obj->device);
1907	if (ret) {
1908		pr_err("Unable to register child device\n");
1909		put_device(&child_device_obj->device);
1910		return ret;
1911	}
1912
1913	child_device_obj->channels_kset = kset_create_and_add("channels",
1914							      NULL, kobj);
1915	if (!child_device_obj->channels_kset) {
1916		ret = -ENOMEM;
1917		goto err_dev_unregister;
1918	}
1919
1920	ret = vmbus_add_channel_kobj(child_device_obj,
1921				     child_device_obj->channel);
1922	if (ret) {
1923		pr_err("Unable to register primary channeln");
1924		goto err_kset_unregister;
1925	}
1926	hv_debug_add_dev_dir(child_device_obj);
1927
1928	return 0;
1929
1930err_kset_unregister:
1931	kset_unregister(child_device_obj->channels_kset);
1932
1933err_dev_unregister:
1934	device_unregister(&child_device_obj->device);
1935	return ret;
1936}
1937
1938/*
1939 * vmbus_device_unregister - Remove the specified child device
1940 * from the vmbus.
1941 */
1942void vmbus_device_unregister(struct hv_device *device_obj)
1943{
1944	pr_debug("child device %s unregistered\n",
1945		dev_name(&device_obj->device));
1946
1947	kset_unregister(device_obj->channels_kset);
1948
1949	/*
1950	 * Kick off the process of unregistering the device.
1951	 * This will call vmbus_remove() and eventually vmbus_device_release()
1952	 */
1953	device_unregister(&device_obj->device);
1954}
1955
1956#ifdef CONFIG_ACPI
1957/*
1958 * VMBUS is an acpi enumerated device. Get the information we
1959 * need from DSDT.
1960 */
1961static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1962{
1963	resource_size_t start = 0;
1964	resource_size_t end = 0;
1965	struct resource *new_res;
1966	struct resource **old_res = &hyperv_mmio;
1967	struct resource **prev_res = NULL;
1968	struct resource r;
1969
1970	switch (res->type) {
1971
1972	/*
1973	 * "Address" descriptors are for bus windows. Ignore
1974	 * "memory" descriptors, which are for registers on
1975	 * devices.
1976	 */
1977	case ACPI_RESOURCE_TYPE_ADDRESS32:
1978		start = res->data.address32.address.minimum;
1979		end = res->data.address32.address.maximum;
1980		break;
1981
1982	case ACPI_RESOURCE_TYPE_ADDRESS64:
1983		start = res->data.address64.address.minimum;
1984		end = res->data.address64.address.maximum;
1985		break;
1986
1987	/*
1988	 * The IRQ information is needed only on ARM64, which Hyper-V
1989	 * sets up in the extended format. IRQ information is present
1990	 * on x86/x64 in the non-extended format but it is not used by
1991	 * Linux. So don't bother checking for the non-extended format.
1992	 */
1993	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
1994		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
1995			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
1996			return AE_ERROR;
1997		}
1998		/* ARM64 INTID for VMbus */
1999		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2000		/* Linux IRQ number */
2001		vmbus_irq = r.start;
2002		return AE_OK;
2003
2004	default:
2005		/* Unused resource type */
2006		return AE_OK;
2007
2008	}
2009	/*
2010	 * Ignore ranges that are below 1MB, as they're not
2011	 * necessary or useful here.
2012	 */
2013	if (end < 0x100000)
2014		return AE_OK;
2015
2016	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2017	if (!new_res)
2018		return AE_NO_MEMORY;
2019
2020	/* If this range overlaps the virtual TPM, truncate it. */
2021	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2022		end = VTPM_BASE_ADDRESS;
2023
2024	new_res->name = "hyperv mmio";
2025	new_res->flags = IORESOURCE_MEM;
2026	new_res->start = start;
2027	new_res->end = end;
2028
2029	/*
2030	 * If two ranges are adjacent, merge them.
2031	 */
2032	do {
2033		if (!*old_res) {
2034			*old_res = new_res;
2035			break;
2036		}
2037
2038		if (((*old_res)->end + 1) == new_res->start) {
2039			(*old_res)->end = new_res->end;
2040			kfree(new_res);
2041			break;
2042		}
2043
2044		if ((*old_res)->start == new_res->end + 1) {
2045			(*old_res)->start = new_res->start;
2046			kfree(new_res);
2047			break;
2048		}
2049
2050		if ((*old_res)->start > new_res->end) {
2051			new_res->sibling = *old_res;
2052			if (prev_res)
2053				(*prev_res)->sibling = new_res;
2054			*old_res = new_res;
2055			break;
2056		}
2057
2058		prev_res = old_res;
2059		old_res = &(*old_res)->sibling;
2060
2061	} while (1);
2062
2063	return AE_OK;
2064}
2065#endif
2066
2067static void vmbus_mmio_remove(void)
2068{
2069	struct resource *cur_res;
2070	struct resource *next_res;
2071
2072	if (hyperv_mmio) {
2073		if (fb_mmio) {
2074			__release_region(hyperv_mmio, fb_mmio->start,
2075					 resource_size(fb_mmio));
2076			fb_mmio = NULL;
2077		}
2078
2079		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2080			next_res = cur_res->sibling;
2081			kfree(cur_res);
2082		}
2083	}
2084}
2085
2086static void __maybe_unused vmbus_reserve_fb(void)
2087{
2088	resource_size_t start = 0, size;
2089	struct pci_dev *pdev;
2090
2091	if (efi_enabled(EFI_BOOT)) {
2092		/* Gen2 VM: get FB base from EFI framebuffer */
2093		if (IS_ENABLED(CONFIG_SYSFB)) {
2094			start = screen_info.lfb_base;
2095			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2096		}
2097	} else {
2098		/* Gen1 VM: get FB base from PCI */
2099		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2100				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2101		if (!pdev)
2102			return;
2103
2104		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2105			start = pci_resource_start(pdev, 0);
2106			size = pci_resource_len(pdev, 0);
2107		}
2108
2109		/*
2110		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2111		 * grab it later.
2112		 */
2113		pci_dev_put(pdev);
2114	}
2115
2116	if (!start)
2117		return;
2118
2119	/*
2120	 * Make a claim for the frame buffer in the resource tree under the
2121	 * first node, which will be the one below 4GB.  The length seems to
2122	 * be underreported, particularly in a Generation 1 VM.  So start out
2123	 * reserving a larger area and make it smaller until it succeeds.
2124	 */
2125	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2126		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2127}
2128
2129/**
2130 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2131 * @new:		If successful, supplied a pointer to the
2132 *			allocated MMIO space.
2133 * @device_obj:		Identifies the caller
2134 * @min:		Minimum guest physical address of the
2135 *			allocation
2136 * @max:		Maximum guest physical address
2137 * @size:		Size of the range to be allocated
2138 * @align:		Alignment of the range to be allocated
2139 * @fb_overlap_ok:	Whether this allocation can be allowed
2140 *			to overlap the video frame buffer.
2141 *
2142 * This function walks the resources granted to VMBus by the
2143 * _CRS object in the ACPI namespace underneath the parent
2144 * "bridge" whether that's a root PCI bus in the Generation 1
2145 * case or a Module Device in the Generation 2 case.  It then
2146 * attempts to allocate from the global MMIO pool in a way that
2147 * matches the constraints supplied in these parameters and by
2148 * that _CRS.
2149 *
2150 * Return: 0 on success, -errno on failure
2151 */
2152int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2153			resource_size_t min, resource_size_t max,
2154			resource_size_t size, resource_size_t align,
2155			bool fb_overlap_ok)
2156{
2157	struct resource *iter, *shadow;
2158	resource_size_t range_min, range_max, start, end;
2159	const char *dev_n = dev_name(&device_obj->device);
2160	int retval;
2161
2162	retval = -ENXIO;
2163	mutex_lock(&hyperv_mmio_lock);
2164
2165	/*
2166	 * If overlaps with frame buffers are allowed, then first attempt to
2167	 * make the allocation from within the reserved region.  Because it
2168	 * is already reserved, no shadow allocation is necessary.
2169	 */
2170	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2171	    !(max < fb_mmio->start)) {
2172
2173		range_min = fb_mmio->start;
2174		range_max = fb_mmio->end;
2175		start = (range_min + align - 1) & ~(align - 1);
2176		for (; start + size - 1 <= range_max; start += align) {
2177			*new = request_mem_region_exclusive(start, size, dev_n);
2178			if (*new) {
2179				retval = 0;
2180				goto exit;
2181			}
2182		}
2183	}
2184
2185	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2186		if ((iter->start >= max) || (iter->end <= min))
2187			continue;
2188
2189		range_min = iter->start;
2190		range_max = iter->end;
2191		start = (range_min + align - 1) & ~(align - 1);
2192		for (; start + size - 1 <= range_max; start += align) {
2193			end = start + size - 1;
2194
2195			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2196			if (!fb_overlap_ok && fb_mmio &&
2197			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2198			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2199				continue;
2200
2201			shadow = __request_region(iter, start, size, NULL,
2202						  IORESOURCE_BUSY);
2203			if (!shadow)
2204				continue;
2205
2206			*new = request_mem_region_exclusive(start, size, dev_n);
2207			if (*new) {
2208				shadow->name = (char *)*new;
2209				retval = 0;
2210				goto exit;
2211			}
2212
2213			__release_region(iter, start, size);
2214		}
2215	}
2216
2217exit:
2218	mutex_unlock(&hyperv_mmio_lock);
2219	return retval;
2220}
2221EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2222
2223/**
2224 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2225 * @start:		Base address of region to release.
2226 * @size:		Size of the range to be allocated
2227 *
2228 * This function releases anything requested by
2229 * vmbus_mmio_allocate().
2230 */
2231void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2232{
2233	struct resource *iter;
2234
2235	mutex_lock(&hyperv_mmio_lock);
2236	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2237		if ((iter->start >= start + size) || (iter->end <= start))
2238			continue;
2239
2240		__release_region(iter, start, size);
2241	}
2242	release_mem_region(start, size);
2243	mutex_unlock(&hyperv_mmio_lock);
2244
2245}
2246EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2247
2248#ifdef CONFIG_ACPI
2249static int vmbus_acpi_add(struct platform_device *pdev)
2250{
2251	acpi_status result;
2252	int ret_val = -ENODEV;
2253	struct acpi_device *ancestor;
2254	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2255
2256	hv_dev = &device->dev;
2257
2258	/*
2259	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2260	 * method on the top level VMbus device in the DSDT. But devices
2261	 * are hardware coherent in all current Hyper-V use cases, so fix
2262	 * up the ACPI device to behave as if _CCA is present and indicates
2263	 * hardware coherence.
2264	 */
2265	ACPI_COMPANION_SET(&device->dev, device);
2266	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2267	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2268		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2269		device->flags.cca_seen = true;
2270		device->flags.coherent_dma = true;
2271	}
2272
2273	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2274					vmbus_walk_resources, NULL);
2275
2276	if (ACPI_FAILURE(result))
2277		goto acpi_walk_err;
2278	/*
2279	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2280	 * firmware) is the VMOD that has the mmio ranges. Get that.
2281	 */
2282	for (ancestor = acpi_dev_parent(device);
2283	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2284	     ancestor = acpi_dev_parent(ancestor)) {
2285		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2286					     vmbus_walk_resources, NULL);
2287
2288		if (ACPI_FAILURE(result))
2289			continue;
2290		if (hyperv_mmio) {
2291			vmbus_reserve_fb();
2292			break;
2293		}
2294	}
2295	ret_val = 0;
2296
2297acpi_walk_err:
2298	if (ret_val)
2299		vmbus_mmio_remove();
2300	return ret_val;
2301}
2302#else
2303static int vmbus_acpi_add(struct platform_device *pdev)
2304{
2305	return 0;
2306}
2307#endif
2308
2309static int vmbus_device_add(struct platform_device *pdev)
2310{
2311	struct resource **cur_res = &hyperv_mmio;
2312	struct of_range range;
2313	struct of_range_parser parser;
2314	struct device_node *np = pdev->dev.of_node;
2315	int ret;
2316
2317	hv_dev = &pdev->dev;
2318
2319	ret = of_range_parser_init(&parser, np);
2320	if (ret)
2321		return ret;
2322
2323	for_each_of_range(&parser, &range) {
2324		struct resource *res;
2325
2326		res = kzalloc(sizeof(*res), GFP_KERNEL);
2327		if (!res) {
2328			vmbus_mmio_remove();
2329			return -ENOMEM;
2330		}
2331
2332		res->name = "hyperv mmio";
2333		res->flags = range.flags;
2334		res->start = range.cpu_addr;
2335		res->end = range.cpu_addr + range.size;
2336
2337		*cur_res = res;
2338		cur_res = &res->sibling;
2339	}
2340
2341	return ret;
2342}
2343
2344static int vmbus_platform_driver_probe(struct platform_device *pdev)
2345{
2346	if (acpi_disabled)
2347		return vmbus_device_add(pdev);
2348	else
2349		return vmbus_acpi_add(pdev);
2350}
2351
2352static void vmbus_platform_driver_remove(struct platform_device *pdev)
2353{
2354	vmbus_mmio_remove();
2355}
2356
2357#ifdef CONFIG_PM_SLEEP
2358static int vmbus_bus_suspend(struct device *dev)
2359{
2360	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2361			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2362	struct vmbus_channel *channel, *sc;
2363
2364	tasklet_disable(&hv_cpu->msg_dpc);
2365	vmbus_connection.ignore_any_offer_msg = true;
2366	/* The tasklet_enable() takes care of providing a memory barrier */
2367	tasklet_enable(&hv_cpu->msg_dpc);
2368
2369	/* Drain all the workqueues as we are in suspend */
2370	drain_workqueue(vmbus_connection.rescind_work_queue);
2371	drain_workqueue(vmbus_connection.work_queue);
2372	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2373	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2374
2375	mutex_lock(&vmbus_connection.channel_mutex);
2376	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2377		if (!is_hvsock_channel(channel))
2378			continue;
2379
2380		vmbus_force_channel_rescinded(channel);
2381	}
2382	mutex_unlock(&vmbus_connection.channel_mutex);
2383
2384	/*
2385	 * Wait until all the sub-channels and hv_sock channels have been
2386	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2387	 * they would conflict with the new sub-channels that will be created
2388	 * in the resume path. hv_sock channels should also be destroyed, but
2389	 * a hv_sock channel of an established hv_sock connection can not be
2390	 * really destroyed since it may still be referenced by the userspace
2391	 * application, so we just force the hv_sock channel to be rescinded
2392	 * by vmbus_force_channel_rescinded(), and the userspace application
2393	 * will thoroughly destroy the channel after hibernation.
2394	 *
2395	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2396	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2397	 */
2398	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2399		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2400
2401	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2402		pr_err("Can not suspend due to a previous failed resuming\n");
2403		return -EBUSY;
2404	}
2405
2406	mutex_lock(&vmbus_connection.channel_mutex);
2407
2408	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2409		/*
2410		 * Remove the channel from the array of channels and invalidate
2411		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2412		 * up the relid (and other fields, if necessary) and add the
2413		 * channel back to the array.
2414		 */
2415		vmbus_channel_unmap_relid(channel);
2416		channel->offermsg.child_relid = INVALID_RELID;
2417
2418		if (is_hvsock_channel(channel)) {
2419			if (!channel->rescind) {
2420				pr_err("hv_sock channel not rescinded!\n");
2421				WARN_ON_ONCE(1);
2422			}
2423			continue;
2424		}
2425
2426		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2427			pr_err("Sub-channel not deleted!\n");
2428			WARN_ON_ONCE(1);
2429		}
2430
2431		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2432	}
2433
2434	mutex_unlock(&vmbus_connection.channel_mutex);
2435
2436	vmbus_initiate_unload(false);
2437
2438	/* Reset the event for the next resume. */
2439	reinit_completion(&vmbus_connection.ready_for_resume_event);
2440
2441	return 0;
2442}
2443
2444static int vmbus_bus_resume(struct device *dev)
2445{
2446	struct vmbus_channel_msginfo *msginfo;
2447	size_t msgsize;
2448	int ret;
2449
2450	vmbus_connection.ignore_any_offer_msg = false;
2451
2452	/*
2453	 * We only use the 'vmbus_proto_version', which was in use before
2454	 * hibernation, to re-negotiate with the host.
2455	 */
2456	if (!vmbus_proto_version) {
2457		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2458		return -EINVAL;
2459	}
2460
2461	msgsize = sizeof(*msginfo) +
2462		  sizeof(struct vmbus_channel_initiate_contact);
2463
2464	msginfo = kzalloc(msgsize, GFP_KERNEL);
2465
2466	if (msginfo == NULL)
2467		return -ENOMEM;
2468
2469	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2470
2471	kfree(msginfo);
2472
2473	if (ret != 0)
2474		return ret;
2475
2476	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2477
2478	vmbus_request_offers();
2479
2480	if (wait_for_completion_timeout(
2481		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2482		pr_err("Some vmbus device is missing after suspending?\n");
2483
2484	/* Reset the event for the next suspend. */
2485	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2486
2487	return 0;
2488}
2489#else
2490#define vmbus_bus_suspend NULL
2491#define vmbus_bus_resume NULL
2492#endif /* CONFIG_PM_SLEEP */
2493
2494static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2495	{
2496		.compatible = "microsoft,vmbus",
2497	},
2498	{
2499		/* sentinel */
2500	},
2501};
2502MODULE_DEVICE_TABLE(of, vmbus_of_match);
2503
2504static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2505	{"VMBUS", 0},
2506	{"VMBus", 0},
2507	{"", 0},
2508};
2509MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2510
2511/*
2512 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2513 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2514 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2515 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2516 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2517 * resume callback must also run via the "noirq" ops.
2518 *
2519 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2520 * earlier in this file before vmbus_pm.
2521 */
2522
2523static const struct dev_pm_ops vmbus_bus_pm = {
2524	.suspend_noirq	= NULL,
2525	.resume_noirq	= NULL,
2526	.freeze_noirq	= vmbus_bus_suspend,
2527	.thaw_noirq	= vmbus_bus_resume,
2528	.poweroff_noirq	= vmbus_bus_suspend,
2529	.restore_noirq	= vmbus_bus_resume
2530};
2531
2532static struct platform_driver vmbus_platform_driver = {
2533	.probe = vmbus_platform_driver_probe,
2534	.remove_new = vmbus_platform_driver_remove,
2535	.driver = {
2536		.name = "vmbus",
2537		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2538		.of_match_table = of_match_ptr(vmbus_of_match),
2539		.pm = &vmbus_bus_pm,
2540		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2541	}
2542};
2543
2544static void hv_kexec_handler(void)
2545{
2546	hv_stimer_global_cleanup();
2547	vmbus_initiate_unload(false);
2548	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2549	mb();
2550	cpuhp_remove_state(hyperv_cpuhp_online);
2551};
2552
2553static void hv_crash_handler(struct pt_regs *regs)
2554{
2555	int cpu;
2556
2557	vmbus_initiate_unload(true);
2558	/*
2559	 * In crash handler we can't schedule synic cleanup for all CPUs,
2560	 * doing the cleanup for current CPU only. This should be sufficient
2561	 * for kdump.
2562	 */
2563	cpu = smp_processor_id();
2564	hv_stimer_cleanup(cpu);
2565	hv_synic_disable_regs(cpu);
2566};
2567
2568static int hv_synic_suspend(void)
2569{
2570	/*
2571	 * When we reach here, all the non-boot CPUs have been offlined.
2572	 * If we're in a legacy configuration where stimer Direct Mode is
2573	 * not enabled, the stimers on the non-boot CPUs have been unbound
2574	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2575	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2576	 *
2577	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2578	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2579	 * 1) it's unnecessary as interrupts remain disabled between
2580	 * syscore_suspend() and syscore_resume(): see create_image() and
2581	 * resume_target_kernel()
2582	 * 2) the stimer on CPU0 is automatically disabled later by
2583	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2584	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2585	 * 3) a warning would be triggered if we call
2586	 * clockevents_unbind_device(), which may sleep, in an
2587	 * interrupts-disabled context.
2588	 */
2589
2590	hv_synic_disable_regs(0);
2591
2592	return 0;
2593}
2594
2595static void hv_synic_resume(void)
2596{
2597	hv_synic_enable_regs(0);
2598
2599	/*
2600	 * Note: we don't need to call hv_stimer_init(0), because the timer
2601	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2602	 * automatically re-enabled in timekeeping_resume().
2603	 */
2604}
2605
2606/* The callbacks run only on CPU0, with irqs_disabled. */
2607static struct syscore_ops hv_synic_syscore_ops = {
2608	.suspend = hv_synic_suspend,
2609	.resume = hv_synic_resume,
2610};
2611
2612static int __init hv_acpi_init(void)
2613{
2614	int ret;
2615
2616	if (!hv_is_hyperv_initialized())
2617		return -ENODEV;
2618
2619	if (hv_root_partition && !hv_nested)
2620		return 0;
2621
2622	/*
2623	 * Get ACPI resources first.
2624	 */
2625	ret = platform_driver_register(&vmbus_platform_driver);
2626	if (ret)
2627		return ret;
2628
2629	if (!hv_dev) {
2630		ret = -ENODEV;
2631		goto cleanup;
2632	}
2633
2634	/*
2635	 * If we're on an architecture with a hardcoded hypervisor
2636	 * vector (i.e. x86/x64), override the VMbus interrupt found
2637	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2638	 * normal Linux IRQ mechanism is not used in this case.
2639	 */
2640#ifdef HYPERVISOR_CALLBACK_VECTOR
2641	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2642	vmbus_irq = -1;
2643#endif
2644
2645	hv_debug_init();
2646
2647	ret = vmbus_bus_init();
2648	if (ret)
2649		goto cleanup;
2650
2651	hv_setup_kexec_handler(hv_kexec_handler);
2652	hv_setup_crash_handler(hv_crash_handler);
2653
2654	register_syscore_ops(&hv_synic_syscore_ops);
2655
2656	return 0;
2657
2658cleanup:
2659	platform_driver_unregister(&vmbus_platform_driver);
2660	hv_dev = NULL;
2661	return ret;
2662}
2663
2664static void __exit vmbus_exit(void)
2665{
2666	int cpu;
2667
2668	unregister_syscore_ops(&hv_synic_syscore_ops);
2669
2670	hv_remove_kexec_handler();
2671	hv_remove_crash_handler();
2672	vmbus_connection.conn_state = DISCONNECTED;
2673	hv_stimer_global_cleanup();
2674	vmbus_disconnect();
2675	if (vmbus_irq == -1) {
2676		hv_remove_vmbus_handler();
2677	} else {
2678		free_percpu_irq(vmbus_irq, vmbus_evt);
2679		free_percpu(vmbus_evt);
2680	}
2681	for_each_online_cpu(cpu) {
2682		struct hv_per_cpu_context *hv_cpu
2683			= per_cpu_ptr(hv_context.cpu_context, cpu);
2684
2685		tasklet_kill(&hv_cpu->msg_dpc);
2686	}
2687	hv_debug_rm_all_dir();
2688
2689	vmbus_free_channels();
2690	kfree(vmbus_connection.channels);
2691
2692	/*
2693	 * The vmbus panic notifier is always registered, hence we should
2694	 * also unconditionally unregister it here as well.
2695	 */
2696	atomic_notifier_chain_unregister(&panic_notifier_list,
2697					&hyperv_panic_vmbus_unload_block);
2698
2699	bus_unregister(&hv_bus);
2700
2701	cpuhp_remove_state(hyperv_cpuhp_online);
2702	hv_synic_free();
2703	platform_driver_unregister(&vmbus_platform_driver);
2704}
2705
2706
2707MODULE_LICENSE("GPL");
2708MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2709
2710subsys_initcall(hv_acpi_init);
2711module_exit(vmbus_exit);
2712