1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  HID support for Linux
4 *
5 *  Copyright (c) 1999 Andreas Gal
6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 *  Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <asm/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44static int hid_ignore_special_drivers = 0;
45module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48/*
49 * Register a new report for a device.
50 */
51
52struct hid_report *hid_register_report(struct hid_device *device,
53				       enum hid_report_type type, unsigned int id,
54				       unsigned int application)
55{
56	struct hid_report_enum *report_enum = device->report_enum + type;
57	struct hid_report *report;
58
59	if (id >= HID_MAX_IDS)
60		return NULL;
61	if (report_enum->report_id_hash[id])
62		return report_enum->report_id_hash[id];
63
64	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65	if (!report)
66		return NULL;
67
68	if (id != 0)
69		report_enum->numbered = 1;
70
71	report->id = id;
72	report->type = type;
73	report->size = 0;
74	report->device = device;
75	report->application = application;
76	report_enum->report_id_hash[id] = report;
77
78	list_add_tail(&report->list, &report_enum->report_list);
79	INIT_LIST_HEAD(&report->field_entry_list);
80
81	return report;
82}
83EXPORT_SYMBOL_GPL(hid_register_report);
84
85/*
86 * Register a new field for this report.
87 */
88
89static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90{
91	struct hid_field *field;
92
93	if (report->maxfield == HID_MAX_FIELDS) {
94		hid_err(report->device, "too many fields in report\n");
95		return NULL;
96	}
97
98	field = kzalloc((sizeof(struct hid_field) +
99			 usages * sizeof(struct hid_usage) +
100			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101	if (!field)
102		return NULL;
103
104	field->index = report->maxfield++;
105	report->field[field->index] = field;
106	field->usage = (struct hid_usage *)(field + 1);
107	field->value = (s32 *)(field->usage + usages);
108	field->new_value = (s32 *)(field->value + usages);
109	field->usages_priorities = (s32 *)(field->new_value + usages);
110	field->report = report;
111
112	return field;
113}
114
115/*
116 * Open a collection. The type/usage is pushed on the stack.
117 */
118
119static int open_collection(struct hid_parser *parser, unsigned type)
120{
121	struct hid_collection *collection;
122	unsigned usage;
123	int collection_index;
124
125	usage = parser->local.usage[0];
126
127	if (parser->collection_stack_ptr == parser->collection_stack_size) {
128		unsigned int *collection_stack;
129		unsigned int new_size = parser->collection_stack_size +
130					HID_COLLECTION_STACK_SIZE;
131
132		collection_stack = krealloc(parser->collection_stack,
133					    new_size * sizeof(unsigned int),
134					    GFP_KERNEL);
135		if (!collection_stack)
136			return -ENOMEM;
137
138		parser->collection_stack = collection_stack;
139		parser->collection_stack_size = new_size;
140	}
141
142	if (parser->device->maxcollection == parser->device->collection_size) {
143		collection = kmalloc(
144				array3_size(sizeof(struct hid_collection),
145					    parser->device->collection_size,
146					    2),
147				GFP_KERNEL);
148		if (collection == NULL) {
149			hid_err(parser->device, "failed to reallocate collection array\n");
150			return -ENOMEM;
151		}
152		memcpy(collection, parser->device->collection,
153			sizeof(struct hid_collection) *
154			parser->device->collection_size);
155		memset(collection + parser->device->collection_size, 0,
156			sizeof(struct hid_collection) *
157			parser->device->collection_size);
158		kfree(parser->device->collection);
159		parser->device->collection = collection;
160		parser->device->collection_size *= 2;
161	}
162
163	parser->collection_stack[parser->collection_stack_ptr++] =
164		parser->device->maxcollection;
165
166	collection_index = parser->device->maxcollection++;
167	collection = parser->device->collection + collection_index;
168	collection->type = type;
169	collection->usage = usage;
170	collection->level = parser->collection_stack_ptr - 1;
171	collection->parent_idx = (collection->level == 0) ? -1 :
172		parser->collection_stack[collection->level - 1];
173
174	if (type == HID_COLLECTION_APPLICATION)
175		parser->device->maxapplication++;
176
177	return 0;
178}
179
180/*
181 * Close a collection.
182 */
183
184static int close_collection(struct hid_parser *parser)
185{
186	if (!parser->collection_stack_ptr) {
187		hid_err(parser->device, "collection stack underflow\n");
188		return -EINVAL;
189	}
190	parser->collection_stack_ptr--;
191	return 0;
192}
193
194/*
195 * Climb up the stack, search for the specified collection type
196 * and return the usage.
197 */
198
199static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200{
201	struct hid_collection *collection = parser->device->collection;
202	int n;
203
204	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205		unsigned index = parser->collection_stack[n];
206		if (collection[index].type == type)
207			return collection[index].usage;
208	}
209	return 0; /* we know nothing about this usage type */
210}
211
212/*
213 * Concatenate usage which defines 16 bits or less with the
214 * currently defined usage page to form a 32 bit usage
215 */
216
217static void complete_usage(struct hid_parser *parser, unsigned int index)
218{
219	parser->local.usage[index] &= 0xFFFF;
220	parser->local.usage[index] |=
221		(parser->global.usage_page & 0xFFFF) << 16;
222}
223
224/*
225 * Add a usage to the temporary parser table.
226 */
227
228static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229{
230	if (parser->local.usage_index >= HID_MAX_USAGES) {
231		hid_err(parser->device, "usage index exceeded\n");
232		return -1;
233	}
234	parser->local.usage[parser->local.usage_index] = usage;
235
236	/*
237	 * If Usage item only includes usage id, concatenate it with
238	 * currently defined usage page
239	 */
240	if (size <= 2)
241		complete_usage(parser, parser->local.usage_index);
242
243	parser->local.usage_size[parser->local.usage_index] = size;
244	parser->local.collection_index[parser->local.usage_index] =
245		parser->collection_stack_ptr ?
246		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247	parser->local.usage_index++;
248	return 0;
249}
250
251/*
252 * Register a new field for this report.
253 */
254
255static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256{
257	struct hid_report *report;
258	struct hid_field *field;
259	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
260	unsigned int usages;
261	unsigned int offset;
262	unsigned int i;
263	unsigned int application;
264
265	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
266
267	report = hid_register_report(parser->device, report_type,
268				     parser->global.report_id, application);
269	if (!report) {
270		hid_err(parser->device, "hid_register_report failed\n");
271		return -1;
272	}
273
274	/* Handle both signed and unsigned cases properly */
275	if ((parser->global.logical_minimum < 0 &&
276		parser->global.logical_maximum <
277		parser->global.logical_minimum) ||
278		(parser->global.logical_minimum >= 0 &&
279		(__u32)parser->global.logical_maximum <
280		(__u32)parser->global.logical_minimum)) {
281		dbg_hid("logical range invalid 0x%x 0x%x\n",
282			parser->global.logical_minimum,
283			parser->global.logical_maximum);
284		return -1;
285	}
286
287	offset = report->size;
288	report->size += parser->global.report_size * parser->global.report_count;
289
290	if (parser->device->ll_driver->max_buffer_size)
291		max_buffer_size = parser->device->ll_driver->max_buffer_size;
292
293	/* Total size check: Allow for possible report index byte */
294	if (report->size > (max_buffer_size - 1) << 3) {
295		hid_err(parser->device, "report is too long\n");
296		return -1;
297	}
298
299	if (!parser->local.usage_index) /* Ignore padding fields */
300		return 0;
301
302	usages = max_t(unsigned, parser->local.usage_index,
303				 parser->global.report_count);
304
305	field = hid_register_field(report, usages);
306	if (!field)
307		return 0;
308
309	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311	field->application = application;
312
313	for (i = 0; i < usages; i++) {
314		unsigned j = i;
315		/* Duplicate the last usage we parsed if we have excess values */
316		if (i >= parser->local.usage_index)
317			j = parser->local.usage_index - 1;
318		field->usage[i].hid = parser->local.usage[j];
319		field->usage[i].collection_index =
320			parser->local.collection_index[j];
321		field->usage[i].usage_index = i;
322		field->usage[i].resolution_multiplier = 1;
323	}
324
325	field->maxusage = usages;
326	field->flags = flags;
327	field->report_offset = offset;
328	field->report_type = report_type;
329	field->report_size = parser->global.report_size;
330	field->report_count = parser->global.report_count;
331	field->logical_minimum = parser->global.logical_minimum;
332	field->logical_maximum = parser->global.logical_maximum;
333	field->physical_minimum = parser->global.physical_minimum;
334	field->physical_maximum = parser->global.physical_maximum;
335	field->unit_exponent = parser->global.unit_exponent;
336	field->unit = parser->global.unit;
337
338	return 0;
339}
340
341/*
342 * Read data value from item.
343 */
344
345static u32 item_udata(struct hid_item *item)
346{
347	switch (item->size) {
348	case 1: return item->data.u8;
349	case 2: return item->data.u16;
350	case 4: return item->data.u32;
351	}
352	return 0;
353}
354
355static s32 item_sdata(struct hid_item *item)
356{
357	switch (item->size) {
358	case 1: return item->data.s8;
359	case 2: return item->data.s16;
360	case 4: return item->data.s32;
361	}
362	return 0;
363}
364
365/*
366 * Process a global item.
367 */
368
369static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
370{
371	__s32 raw_value;
372	switch (item->tag) {
373	case HID_GLOBAL_ITEM_TAG_PUSH:
374
375		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376			hid_err(parser->device, "global environment stack overflow\n");
377			return -1;
378		}
379
380		memcpy(parser->global_stack + parser->global_stack_ptr++,
381			&parser->global, sizeof(struct hid_global));
382		return 0;
383
384	case HID_GLOBAL_ITEM_TAG_POP:
385
386		if (!parser->global_stack_ptr) {
387			hid_err(parser->device, "global environment stack underflow\n");
388			return -1;
389		}
390
391		memcpy(&parser->global, parser->global_stack +
392			--parser->global_stack_ptr, sizeof(struct hid_global));
393		return 0;
394
395	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396		parser->global.usage_page = item_udata(item);
397		return 0;
398
399	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400		parser->global.logical_minimum = item_sdata(item);
401		return 0;
402
403	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404		if (parser->global.logical_minimum < 0)
405			parser->global.logical_maximum = item_sdata(item);
406		else
407			parser->global.logical_maximum = item_udata(item);
408		return 0;
409
410	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411		parser->global.physical_minimum = item_sdata(item);
412		return 0;
413
414	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415		if (parser->global.physical_minimum < 0)
416			parser->global.physical_maximum = item_sdata(item);
417		else
418			parser->global.physical_maximum = item_udata(item);
419		return 0;
420
421	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422		/* Many devices provide unit exponent as a two's complement
423		 * nibble due to the common misunderstanding of HID
424		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425		 * both this and the standard encoding. */
426		raw_value = item_sdata(item);
427		if (!(raw_value & 0xfffffff0))
428			parser->global.unit_exponent = hid_snto32(raw_value, 4);
429		else
430			parser->global.unit_exponent = raw_value;
431		return 0;
432
433	case HID_GLOBAL_ITEM_TAG_UNIT:
434		parser->global.unit = item_udata(item);
435		return 0;
436
437	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438		parser->global.report_size = item_udata(item);
439		if (parser->global.report_size > 256) {
440			hid_err(parser->device, "invalid report_size %d\n",
441					parser->global.report_size);
442			return -1;
443		}
444		return 0;
445
446	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447		parser->global.report_count = item_udata(item);
448		if (parser->global.report_count > HID_MAX_USAGES) {
449			hid_err(parser->device, "invalid report_count %d\n",
450					parser->global.report_count);
451			return -1;
452		}
453		return 0;
454
455	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456		parser->global.report_id = item_udata(item);
457		if (parser->global.report_id == 0 ||
458		    parser->global.report_id >= HID_MAX_IDS) {
459			hid_err(parser->device, "report_id %u is invalid\n",
460				parser->global.report_id);
461			return -1;
462		}
463		return 0;
464
465	default:
466		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
467		return -1;
468	}
469}
470
471/*
472 * Process a local item.
473 */
474
475static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
476{
477	__u32 data;
478	unsigned n;
479	__u32 count;
480
481	data = item_udata(item);
482
483	switch (item->tag) {
484	case HID_LOCAL_ITEM_TAG_DELIMITER:
485
486		if (data) {
487			/*
488			 * We treat items before the first delimiter
489			 * as global to all usage sets (branch 0).
490			 * In the moment we process only these global
491			 * items and the first delimiter set.
492			 */
493			if (parser->local.delimiter_depth != 0) {
494				hid_err(parser->device, "nested delimiters\n");
495				return -1;
496			}
497			parser->local.delimiter_depth++;
498			parser->local.delimiter_branch++;
499		} else {
500			if (parser->local.delimiter_depth < 1) {
501				hid_err(parser->device, "bogus close delimiter\n");
502				return -1;
503			}
504			parser->local.delimiter_depth--;
505		}
506		return 0;
507
508	case HID_LOCAL_ITEM_TAG_USAGE:
509
510		if (parser->local.delimiter_branch > 1) {
511			dbg_hid("alternative usage ignored\n");
512			return 0;
513		}
514
515		return hid_add_usage(parser, data, item->size);
516
517	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
518
519		if (parser->local.delimiter_branch > 1) {
520			dbg_hid("alternative usage ignored\n");
521			return 0;
522		}
523
524		parser->local.usage_minimum = data;
525		return 0;
526
527	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
528
529		if (parser->local.delimiter_branch > 1) {
530			dbg_hid("alternative usage ignored\n");
531			return 0;
532		}
533
534		count = data - parser->local.usage_minimum;
535		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
536			/*
537			 * We do not warn if the name is not set, we are
538			 * actually pre-scanning the device.
539			 */
540			if (dev_name(&parser->device->dev))
541				hid_warn(parser->device,
542					 "ignoring exceeding usage max\n");
543			data = HID_MAX_USAGES - parser->local.usage_index +
544				parser->local.usage_minimum - 1;
545			if (data <= 0) {
546				hid_err(parser->device,
547					"no more usage index available\n");
548				return -1;
549			}
550		}
551
552		for (n = parser->local.usage_minimum; n <= data; n++)
553			if (hid_add_usage(parser, n, item->size)) {
554				dbg_hid("hid_add_usage failed\n");
555				return -1;
556			}
557		return 0;
558
559	default:
560
561		dbg_hid("unknown local item tag 0x%x\n", item->tag);
562		return 0;
563	}
564	return 0;
565}
566
567/*
568 * Concatenate Usage Pages into Usages where relevant:
569 * As per specification, 6.2.2.8: "When the parser encounters a main item it
570 * concatenates the last declared Usage Page with a Usage to form a complete
571 * usage value."
572 */
573
574static void hid_concatenate_last_usage_page(struct hid_parser *parser)
575{
576	int i;
577	unsigned int usage_page;
578	unsigned int current_page;
579
580	if (!parser->local.usage_index)
581		return;
582
583	usage_page = parser->global.usage_page;
584
585	/*
586	 * Concatenate usage page again only if last declared Usage Page
587	 * has not been already used in previous usages concatenation
588	 */
589	for (i = parser->local.usage_index - 1; i >= 0; i--) {
590		if (parser->local.usage_size[i] > 2)
591			/* Ignore extended usages */
592			continue;
593
594		current_page = parser->local.usage[i] >> 16;
595		if (current_page == usage_page)
596			break;
597
598		complete_usage(parser, i);
599	}
600}
601
602/*
603 * Process a main item.
604 */
605
606static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
607{
608	__u32 data;
609	int ret;
610
611	hid_concatenate_last_usage_page(parser);
612
613	data = item_udata(item);
614
615	switch (item->tag) {
616	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617		ret = open_collection(parser, data & 0xff);
618		break;
619	case HID_MAIN_ITEM_TAG_END_COLLECTION:
620		ret = close_collection(parser);
621		break;
622	case HID_MAIN_ITEM_TAG_INPUT:
623		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
624		break;
625	case HID_MAIN_ITEM_TAG_OUTPUT:
626		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
627		break;
628	case HID_MAIN_ITEM_TAG_FEATURE:
629		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
630		break;
631	default:
632		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
633		ret = 0;
634	}
635
636	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
637
638	return ret;
639}
640
641/*
642 * Process a reserved item.
643 */
644
645static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
646{
647	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
648	return 0;
649}
650
651/*
652 * Free a report and all registered fields. The field->usage and
653 * field->value table's are allocated behind the field, so we need
654 * only to free(field) itself.
655 */
656
657static void hid_free_report(struct hid_report *report)
658{
659	unsigned n;
660
661	kfree(report->field_entries);
662
663	for (n = 0; n < report->maxfield; n++)
664		kfree(report->field[n]);
665	kfree(report);
666}
667
668/*
669 * Close report. This function returns the device
670 * state to the point prior to hid_open_report().
671 */
672static void hid_close_report(struct hid_device *device)
673{
674	unsigned i, j;
675
676	for (i = 0; i < HID_REPORT_TYPES; i++) {
677		struct hid_report_enum *report_enum = device->report_enum + i;
678
679		for (j = 0; j < HID_MAX_IDS; j++) {
680			struct hid_report *report = report_enum->report_id_hash[j];
681			if (report)
682				hid_free_report(report);
683		}
684		memset(report_enum, 0, sizeof(*report_enum));
685		INIT_LIST_HEAD(&report_enum->report_list);
686	}
687
688	kfree(device->rdesc);
689	device->rdesc = NULL;
690	device->rsize = 0;
691
692	kfree(device->collection);
693	device->collection = NULL;
694	device->collection_size = 0;
695	device->maxcollection = 0;
696	device->maxapplication = 0;
697
698	device->status &= ~HID_STAT_PARSED;
699}
700
701/*
702 * Free a device structure, all reports, and all fields.
703 */
704
705void hiddev_free(struct kref *ref)
706{
707	struct hid_device *hid = container_of(ref, struct hid_device, ref);
708
709	hid_close_report(hid);
710	kfree(hid->dev_rdesc);
711	kfree(hid);
712}
713
714static void hid_device_release(struct device *dev)
715{
716	struct hid_device *hid = to_hid_device(dev);
717
718	kref_put(&hid->ref, hiddev_free);
719}
720
721/*
722 * Fetch a report description item from the data stream. We support long
723 * items, though they are not used yet.
724 */
725
726static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
727{
728	u8 b;
729
730	if ((end - start) <= 0)
731		return NULL;
732
733	b = *start++;
734
735	item->type = (b >> 2) & 3;
736	item->tag  = (b >> 4) & 15;
737
738	if (item->tag == HID_ITEM_TAG_LONG) {
739
740		item->format = HID_ITEM_FORMAT_LONG;
741
742		if ((end - start) < 2)
743			return NULL;
744
745		item->size = *start++;
746		item->tag  = *start++;
747
748		if ((end - start) < item->size)
749			return NULL;
750
751		item->data.longdata = start;
752		start += item->size;
753		return start;
754	}
755
756	item->format = HID_ITEM_FORMAT_SHORT;
757	item->size = b & 3;
758
759	switch (item->size) {
760	case 0:
761		return start;
762
763	case 1:
764		if ((end - start) < 1)
765			return NULL;
766		item->data.u8 = *start++;
767		return start;
768
769	case 2:
770		if ((end - start) < 2)
771			return NULL;
772		item->data.u16 = get_unaligned_le16(start);
773		start = (__u8 *)((__le16 *)start + 1);
774		return start;
775
776	case 3:
777		item->size++;
778		if ((end - start) < 4)
779			return NULL;
780		item->data.u32 = get_unaligned_le32(start);
781		start = (__u8 *)((__le32 *)start + 1);
782		return start;
783	}
784
785	return NULL;
786}
787
788static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
789{
790	struct hid_device *hid = parser->device;
791
792	if (usage == HID_DG_CONTACTID)
793		hid->group = HID_GROUP_MULTITOUCH;
794}
795
796static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
797{
798	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
799	    parser->global.report_size == 8)
800		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
801
802	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
803	    parser->global.report_size == 8)
804		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
805}
806
807static void hid_scan_collection(struct hid_parser *parser, unsigned type)
808{
809	struct hid_device *hid = parser->device;
810	int i;
811
812	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
813	    (type == HID_COLLECTION_PHYSICAL ||
814	     type == HID_COLLECTION_APPLICATION))
815		hid->group = HID_GROUP_SENSOR_HUB;
816
817	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
818	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
819	    hid->group == HID_GROUP_MULTITOUCH)
820		hid->group = HID_GROUP_GENERIC;
821
822	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
823		for (i = 0; i < parser->local.usage_index; i++)
824			if (parser->local.usage[i] == HID_GD_POINTER)
825				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
826
827	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
828		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
829
830	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
831		for (i = 0; i < parser->local.usage_index; i++)
832			if (parser->local.usage[i] ==
833					(HID_UP_GOOGLEVENDOR | 0x0001))
834				parser->device->group =
835					HID_GROUP_VIVALDI;
836}
837
838static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
839{
840	__u32 data;
841	int i;
842
843	hid_concatenate_last_usage_page(parser);
844
845	data = item_udata(item);
846
847	switch (item->tag) {
848	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
849		hid_scan_collection(parser, data & 0xff);
850		break;
851	case HID_MAIN_ITEM_TAG_END_COLLECTION:
852		break;
853	case HID_MAIN_ITEM_TAG_INPUT:
854		/* ignore constant inputs, they will be ignored by hid-input */
855		if (data & HID_MAIN_ITEM_CONSTANT)
856			break;
857		for (i = 0; i < parser->local.usage_index; i++)
858			hid_scan_input_usage(parser, parser->local.usage[i]);
859		break;
860	case HID_MAIN_ITEM_TAG_OUTPUT:
861		break;
862	case HID_MAIN_ITEM_TAG_FEATURE:
863		for (i = 0; i < parser->local.usage_index; i++)
864			hid_scan_feature_usage(parser, parser->local.usage[i]);
865		break;
866	}
867
868	/* Reset the local parser environment */
869	memset(&parser->local, 0, sizeof(parser->local));
870
871	return 0;
872}
873
874/*
875 * Scan a report descriptor before the device is added to the bus.
876 * Sets device groups and other properties that determine what driver
877 * to load.
878 */
879static int hid_scan_report(struct hid_device *hid)
880{
881	struct hid_parser *parser;
882	struct hid_item item;
883	__u8 *start = hid->dev_rdesc;
884	__u8 *end = start + hid->dev_rsize;
885	static int (*dispatch_type[])(struct hid_parser *parser,
886				      struct hid_item *item) = {
887		hid_scan_main,
888		hid_parser_global,
889		hid_parser_local,
890		hid_parser_reserved
891	};
892
893	parser = vzalloc(sizeof(struct hid_parser));
894	if (!parser)
895		return -ENOMEM;
896
897	parser->device = hid;
898	hid->group = HID_GROUP_GENERIC;
899
900	/*
901	 * The parsing is simpler than the one in hid_open_report() as we should
902	 * be robust against hid errors. Those errors will be raised by
903	 * hid_open_report() anyway.
904	 */
905	while ((start = fetch_item(start, end, &item)) != NULL)
906		dispatch_type[item.type](parser, &item);
907
908	/*
909	 * Handle special flags set during scanning.
910	 */
911	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
912	    (hid->group == HID_GROUP_MULTITOUCH))
913		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
914
915	/*
916	 * Vendor specific handlings
917	 */
918	switch (hid->vendor) {
919	case USB_VENDOR_ID_WACOM:
920		hid->group = HID_GROUP_WACOM;
921		break;
922	case USB_VENDOR_ID_SYNAPTICS:
923		if (hid->group == HID_GROUP_GENERIC)
924			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
925			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
926				/*
927				 * hid-rmi should take care of them,
928				 * not hid-generic
929				 */
930				hid->group = HID_GROUP_RMI;
931		break;
932	}
933
934	kfree(parser->collection_stack);
935	vfree(parser);
936	return 0;
937}
938
939/**
940 * hid_parse_report - parse device report
941 *
942 * @hid: hid device
943 * @start: report start
944 * @size: report size
945 *
946 * Allocate the device report as read by the bus driver. This function should
947 * only be called from parse() in ll drivers.
948 */
949int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
950{
951	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
952	if (!hid->dev_rdesc)
953		return -ENOMEM;
954	hid->dev_rsize = size;
955	return 0;
956}
957EXPORT_SYMBOL_GPL(hid_parse_report);
958
959static const char * const hid_report_names[] = {
960	"HID_INPUT_REPORT",
961	"HID_OUTPUT_REPORT",
962	"HID_FEATURE_REPORT",
963};
964/**
965 * hid_validate_values - validate existing device report's value indexes
966 *
967 * @hid: hid device
968 * @type: which report type to examine
969 * @id: which report ID to examine (0 for first)
970 * @field_index: which report field to examine
971 * @report_counts: expected number of values
972 *
973 * Validate the number of values in a given field of a given report, after
974 * parsing.
975 */
976struct hid_report *hid_validate_values(struct hid_device *hid,
977				       enum hid_report_type type, unsigned int id,
978				       unsigned int field_index,
979				       unsigned int report_counts)
980{
981	struct hid_report *report;
982
983	if (type > HID_FEATURE_REPORT) {
984		hid_err(hid, "invalid HID report type %u\n", type);
985		return NULL;
986	}
987
988	if (id >= HID_MAX_IDS) {
989		hid_err(hid, "invalid HID report id %u\n", id);
990		return NULL;
991	}
992
993	/*
994	 * Explicitly not using hid_get_report() here since it depends on
995	 * ->numbered being checked, which may not always be the case when
996	 * drivers go to access report values.
997	 */
998	if (id == 0) {
999		/*
1000		 * Validating on id 0 means we should examine the first
1001		 * report in the list.
1002		 */
1003		report = list_first_entry_or_null(
1004				&hid->report_enum[type].report_list,
1005				struct hid_report, list);
1006	} else {
1007		report = hid->report_enum[type].report_id_hash[id];
1008	}
1009	if (!report) {
1010		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1011		return NULL;
1012	}
1013	if (report->maxfield <= field_index) {
1014		hid_err(hid, "not enough fields in %s %u\n",
1015			hid_report_names[type], id);
1016		return NULL;
1017	}
1018	if (report->field[field_index]->report_count < report_counts) {
1019		hid_err(hid, "not enough values in %s %u field %u\n",
1020			hid_report_names[type], id, field_index);
1021		return NULL;
1022	}
1023	return report;
1024}
1025EXPORT_SYMBOL_GPL(hid_validate_values);
1026
1027static int hid_calculate_multiplier(struct hid_device *hid,
1028				     struct hid_field *multiplier)
1029{
1030	int m;
1031	__s32 v = *multiplier->value;
1032	__s32 lmin = multiplier->logical_minimum;
1033	__s32 lmax = multiplier->logical_maximum;
1034	__s32 pmin = multiplier->physical_minimum;
1035	__s32 pmax = multiplier->physical_maximum;
1036
1037	/*
1038	 * "Because OS implementations will generally divide the control's
1039	 * reported count by the Effective Resolution Multiplier, designers
1040	 * should take care not to establish a potential Effective
1041	 * Resolution Multiplier of zero."
1042	 * HID Usage Table, v1.12, Section 4.3.1, p31
1043	 */
1044	if (lmax - lmin == 0)
1045		return 1;
1046	/*
1047	 * Handling the unit exponent is left as an exercise to whoever
1048	 * finds a device where that exponent is not 0.
1049	 */
1050	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1051	if (unlikely(multiplier->unit_exponent != 0)) {
1052		hid_warn(hid,
1053			 "unsupported Resolution Multiplier unit exponent %d\n",
1054			 multiplier->unit_exponent);
1055	}
1056
1057	/* There are no devices with an effective multiplier > 255 */
1058	if (unlikely(m == 0 || m > 255 || m < -255)) {
1059		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1060		m = 1;
1061	}
1062
1063	return m;
1064}
1065
1066static void hid_apply_multiplier_to_field(struct hid_device *hid,
1067					  struct hid_field *field,
1068					  struct hid_collection *multiplier_collection,
1069					  int effective_multiplier)
1070{
1071	struct hid_collection *collection;
1072	struct hid_usage *usage;
1073	int i;
1074
1075	/*
1076	 * If multiplier_collection is NULL, the multiplier applies
1077	 * to all fields in the report.
1078	 * Otherwise, it is the Logical Collection the multiplier applies to
1079	 * but our field may be in a subcollection of that collection.
1080	 */
1081	for (i = 0; i < field->maxusage; i++) {
1082		usage = &field->usage[i];
1083
1084		collection = &hid->collection[usage->collection_index];
1085		while (collection->parent_idx != -1 &&
1086		       collection != multiplier_collection)
1087			collection = &hid->collection[collection->parent_idx];
1088
1089		if (collection->parent_idx != -1 ||
1090		    multiplier_collection == NULL)
1091			usage->resolution_multiplier = effective_multiplier;
1092
1093	}
1094}
1095
1096static void hid_apply_multiplier(struct hid_device *hid,
1097				 struct hid_field *multiplier)
1098{
1099	struct hid_report_enum *rep_enum;
1100	struct hid_report *rep;
1101	struct hid_field *field;
1102	struct hid_collection *multiplier_collection;
1103	int effective_multiplier;
1104	int i;
1105
1106	/*
1107	 * "The Resolution Multiplier control must be contained in the same
1108	 * Logical Collection as the control(s) to which it is to be applied.
1109	 * If no Resolution Multiplier is defined, then the Resolution
1110	 * Multiplier defaults to 1.  If more than one control exists in a
1111	 * Logical Collection, the Resolution Multiplier is associated with
1112	 * all controls in the collection. If no Logical Collection is
1113	 * defined, the Resolution Multiplier is associated with all
1114	 * controls in the report."
1115	 * HID Usage Table, v1.12, Section 4.3.1, p30
1116	 *
1117	 * Thus, search from the current collection upwards until we find a
1118	 * logical collection. Then search all fields for that same parent
1119	 * collection. Those are the fields the multiplier applies to.
1120	 *
1121	 * If we have more than one multiplier, it will overwrite the
1122	 * applicable fields later.
1123	 */
1124	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1125	while (multiplier_collection->parent_idx != -1 &&
1126	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1127		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1128
1129	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1130
1131	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1132	list_for_each_entry(rep, &rep_enum->report_list, list) {
1133		for (i = 0; i < rep->maxfield; i++) {
1134			field = rep->field[i];
1135			hid_apply_multiplier_to_field(hid, field,
1136						      multiplier_collection,
1137						      effective_multiplier);
1138		}
1139	}
1140}
1141
1142/*
1143 * hid_setup_resolution_multiplier - set up all resolution multipliers
1144 *
1145 * @device: hid device
1146 *
1147 * Search for all Resolution Multiplier Feature Reports and apply their
1148 * value to all matching Input items. This only updates the internal struct
1149 * fields.
1150 *
1151 * The Resolution Multiplier is applied by the hardware. If the multiplier
1152 * is anything other than 1, the hardware will send pre-multiplied events
1153 * so that the same physical interaction generates an accumulated
1154 *	accumulated_value = value * * multiplier
1155 * This may be achieved by sending
1156 * - "value * multiplier" for each event, or
1157 * - "value" but "multiplier" times as frequently, or
1158 * - a combination of the above
1159 * The only guarantee is that the same physical interaction always generates
1160 * an accumulated 'value * multiplier'.
1161 *
1162 * This function must be called before any event processing and after
1163 * any SetRequest to the Resolution Multiplier.
1164 */
1165void hid_setup_resolution_multiplier(struct hid_device *hid)
1166{
1167	struct hid_report_enum *rep_enum;
1168	struct hid_report *rep;
1169	struct hid_usage *usage;
1170	int i, j;
1171
1172	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1173	list_for_each_entry(rep, &rep_enum->report_list, list) {
1174		for (i = 0; i < rep->maxfield; i++) {
1175			/* Ignore if report count is out of bounds. */
1176			if (rep->field[i]->report_count < 1)
1177				continue;
1178
1179			for (j = 0; j < rep->field[i]->maxusage; j++) {
1180				usage = &rep->field[i]->usage[j];
1181				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1182					hid_apply_multiplier(hid,
1183							     rep->field[i]);
1184			}
1185		}
1186	}
1187}
1188EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1189
1190/**
1191 * hid_open_report - open a driver-specific device report
1192 *
1193 * @device: hid device
1194 *
1195 * Parse a report description into a hid_device structure. Reports are
1196 * enumerated, fields are attached to these reports.
1197 * 0 returned on success, otherwise nonzero error value.
1198 *
1199 * This function (or the equivalent hid_parse() macro) should only be
1200 * called from probe() in drivers, before starting the device.
1201 */
1202int hid_open_report(struct hid_device *device)
1203{
1204	struct hid_parser *parser;
1205	struct hid_item item;
1206	unsigned int size;
1207	__u8 *start;
1208	__u8 *buf;
1209	__u8 *end;
1210	__u8 *next;
1211	int ret;
1212	int i;
1213	static int (*dispatch_type[])(struct hid_parser *parser,
1214				      struct hid_item *item) = {
1215		hid_parser_main,
1216		hid_parser_global,
1217		hid_parser_local,
1218		hid_parser_reserved
1219	};
1220
1221	if (WARN_ON(device->status & HID_STAT_PARSED))
1222		return -EBUSY;
1223
1224	start = device->dev_rdesc;
1225	if (WARN_ON(!start))
1226		return -ENODEV;
1227	size = device->dev_rsize;
1228
1229	/* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1230	buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1231	if (buf == NULL)
1232		return -ENOMEM;
1233
1234	if (device->driver->report_fixup)
1235		start = device->driver->report_fixup(device, buf, &size);
1236	else
1237		start = buf;
1238
1239	start = kmemdup(start, size, GFP_KERNEL);
1240	kfree(buf);
1241	if (start == NULL)
1242		return -ENOMEM;
1243
1244	device->rdesc = start;
1245	device->rsize = size;
1246
1247	parser = vzalloc(sizeof(struct hid_parser));
1248	if (!parser) {
1249		ret = -ENOMEM;
1250		goto alloc_err;
1251	}
1252
1253	parser->device = device;
1254
1255	end = start + size;
1256
1257	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1258				     sizeof(struct hid_collection), GFP_KERNEL);
1259	if (!device->collection) {
1260		ret = -ENOMEM;
1261		goto err;
1262	}
1263	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1264	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1265		device->collection[i].parent_idx = -1;
1266
1267	ret = -EINVAL;
1268	while ((next = fetch_item(start, end, &item)) != NULL) {
1269		start = next;
1270
1271		if (item.format != HID_ITEM_FORMAT_SHORT) {
1272			hid_err(device, "unexpected long global item\n");
1273			goto err;
1274		}
1275
1276		if (dispatch_type[item.type](parser, &item)) {
1277			hid_err(device, "item %u %u %u %u parsing failed\n",
1278				item.format, (unsigned)item.size,
1279				(unsigned)item.type, (unsigned)item.tag);
1280			goto err;
1281		}
1282
1283		if (start == end) {
1284			if (parser->collection_stack_ptr) {
1285				hid_err(device, "unbalanced collection at end of report description\n");
1286				goto err;
1287			}
1288			if (parser->local.delimiter_depth) {
1289				hid_err(device, "unbalanced delimiter at end of report description\n");
1290				goto err;
1291			}
1292
1293			/*
1294			 * fetch initial values in case the device's
1295			 * default multiplier isn't the recommended 1
1296			 */
1297			hid_setup_resolution_multiplier(device);
1298
1299			kfree(parser->collection_stack);
1300			vfree(parser);
1301			device->status |= HID_STAT_PARSED;
1302
1303			return 0;
1304		}
1305	}
1306
1307	hid_err(device, "item fetching failed at offset %u/%u\n",
1308		size - (unsigned int)(end - start), size);
1309err:
1310	kfree(parser->collection_stack);
1311alloc_err:
1312	vfree(parser);
1313	hid_close_report(device);
1314	return ret;
1315}
1316EXPORT_SYMBOL_GPL(hid_open_report);
1317
1318/*
1319 * Convert a signed n-bit integer to signed 32-bit integer. Common
1320 * cases are done through the compiler, the screwed things has to be
1321 * done by hand.
1322 */
1323
1324static s32 snto32(__u32 value, unsigned n)
1325{
1326	if (!value || !n)
1327		return 0;
1328
1329	if (n > 32)
1330		n = 32;
1331
1332	switch (n) {
1333	case 8:  return ((__s8)value);
1334	case 16: return ((__s16)value);
1335	case 32: return ((__s32)value);
1336	}
1337	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1338}
1339
1340s32 hid_snto32(__u32 value, unsigned n)
1341{
1342	return snto32(value, n);
1343}
1344EXPORT_SYMBOL_GPL(hid_snto32);
1345
1346/*
1347 * Convert a signed 32-bit integer to a signed n-bit integer.
1348 */
1349
1350static u32 s32ton(__s32 value, unsigned n)
1351{
1352	s32 a = value >> (n - 1);
1353	if (a && a != -1)
1354		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1355	return value & ((1 << n) - 1);
1356}
1357
1358/*
1359 * Extract/implement a data field from/to a little endian report (bit array).
1360 *
1361 * Code sort-of follows HID spec:
1362 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1363 *
1364 * While the USB HID spec allows unlimited length bit fields in "report
1365 * descriptors", most devices never use more than 16 bits.
1366 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1367 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1368 */
1369
1370static u32 __extract(u8 *report, unsigned offset, int n)
1371{
1372	unsigned int idx = offset / 8;
1373	unsigned int bit_nr = 0;
1374	unsigned int bit_shift = offset % 8;
1375	int bits_to_copy = 8 - bit_shift;
1376	u32 value = 0;
1377	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1378
1379	while (n > 0) {
1380		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1381		n -= bits_to_copy;
1382		bit_nr += bits_to_copy;
1383		bits_to_copy = 8;
1384		bit_shift = 0;
1385		idx++;
1386	}
1387
1388	return value & mask;
1389}
1390
1391u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1392			unsigned offset, unsigned n)
1393{
1394	if (n > 32) {
1395		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1396			      __func__, n, current->comm);
1397		n = 32;
1398	}
1399
1400	return __extract(report, offset, n);
1401}
1402EXPORT_SYMBOL_GPL(hid_field_extract);
1403
1404/*
1405 * "implement" : set bits in a little endian bit stream.
1406 * Same concepts as "extract" (see comments above).
1407 * The data mangled in the bit stream remains in little endian
1408 * order the whole time. It make more sense to talk about
1409 * endianness of register values by considering a register
1410 * a "cached" copy of the little endian bit stream.
1411 */
1412
1413static void __implement(u8 *report, unsigned offset, int n, u32 value)
1414{
1415	unsigned int idx = offset / 8;
1416	unsigned int bit_shift = offset % 8;
1417	int bits_to_set = 8 - bit_shift;
1418
1419	while (n - bits_to_set >= 0) {
1420		report[idx] &= ~(0xff << bit_shift);
1421		report[idx] |= value << bit_shift;
1422		value >>= bits_to_set;
1423		n -= bits_to_set;
1424		bits_to_set = 8;
1425		bit_shift = 0;
1426		idx++;
1427	}
1428
1429	/* last nibble */
1430	if (n) {
1431		u8 bit_mask = ((1U << n) - 1);
1432		report[idx] &= ~(bit_mask << bit_shift);
1433		report[idx] |= value << bit_shift;
1434	}
1435}
1436
1437static void implement(const struct hid_device *hid, u8 *report,
1438		      unsigned offset, unsigned n, u32 value)
1439{
1440	if (unlikely(n > 32)) {
1441		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1442			 __func__, n, current->comm);
1443		n = 32;
1444	} else if (n < 32) {
1445		u32 m = (1U << n) - 1;
1446
1447		if (unlikely(value > m)) {
1448			hid_warn(hid,
1449				 "%s() called with too large value %d (n: %d)! (%s)\n",
1450				 __func__, value, n, current->comm);
1451			WARN_ON(1);
1452			value &= m;
1453		}
1454	}
1455
1456	__implement(report, offset, n, value);
1457}
1458
1459/*
1460 * Search an array for a value.
1461 */
1462
1463static int search(__s32 *array, __s32 value, unsigned n)
1464{
1465	while (n--) {
1466		if (*array++ == value)
1467			return 0;
1468	}
1469	return -1;
1470}
1471
1472/**
1473 * hid_match_report - check if driver's raw_event should be called
1474 *
1475 * @hid: hid device
1476 * @report: hid report to match against
1477 *
1478 * compare hid->driver->report_table->report_type to report->type
1479 */
1480static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1481{
1482	const struct hid_report_id *id = hid->driver->report_table;
1483
1484	if (!id) /* NULL means all */
1485		return 1;
1486
1487	for (; id->report_type != HID_TERMINATOR; id++)
1488		if (id->report_type == HID_ANY_ID ||
1489				id->report_type == report->type)
1490			return 1;
1491	return 0;
1492}
1493
1494/**
1495 * hid_match_usage - check if driver's event should be called
1496 *
1497 * @hid: hid device
1498 * @usage: usage to match against
1499 *
1500 * compare hid->driver->usage_table->usage_{type,code} to
1501 * usage->usage_{type,code}
1502 */
1503static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1504{
1505	const struct hid_usage_id *id = hid->driver->usage_table;
1506
1507	if (!id) /* NULL means all */
1508		return 1;
1509
1510	for (; id->usage_type != HID_ANY_ID - 1; id++)
1511		if ((id->usage_hid == HID_ANY_ID ||
1512				id->usage_hid == usage->hid) &&
1513				(id->usage_type == HID_ANY_ID ||
1514				id->usage_type == usage->type) &&
1515				(id->usage_code == HID_ANY_ID ||
1516				 id->usage_code == usage->code))
1517			return 1;
1518	return 0;
1519}
1520
1521static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1522		struct hid_usage *usage, __s32 value, int interrupt)
1523{
1524	struct hid_driver *hdrv = hid->driver;
1525	int ret;
1526
1527	if (!list_empty(&hid->debug_list))
1528		hid_dump_input(hid, usage, value);
1529
1530	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1531		ret = hdrv->event(hid, field, usage, value);
1532		if (ret != 0) {
1533			if (ret < 0)
1534				hid_err(hid, "%s's event failed with %d\n",
1535						hdrv->name, ret);
1536			return;
1537		}
1538	}
1539
1540	if (hid->claimed & HID_CLAIMED_INPUT)
1541		hidinput_hid_event(hid, field, usage, value);
1542	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1543		hid->hiddev_hid_event(hid, field, usage, value);
1544}
1545
1546/*
1547 * Checks if the given value is valid within this field
1548 */
1549static inline int hid_array_value_is_valid(struct hid_field *field,
1550					   __s32 value)
1551{
1552	__s32 min = field->logical_minimum;
1553
1554	/*
1555	 * Value needs to be between logical min and max, and
1556	 * (value - min) is used as an index in the usage array.
1557	 * This array is of size field->maxusage
1558	 */
1559	return value >= min &&
1560	       value <= field->logical_maximum &&
1561	       value - min < field->maxusage;
1562}
1563
1564/*
1565 * Fetch the field from the data. The field content is stored for next
1566 * report processing (we do differential reporting to the layer).
1567 */
1568static void hid_input_fetch_field(struct hid_device *hid,
1569				  struct hid_field *field,
1570				  __u8 *data)
1571{
1572	unsigned n;
1573	unsigned count = field->report_count;
1574	unsigned offset = field->report_offset;
1575	unsigned size = field->report_size;
1576	__s32 min = field->logical_minimum;
1577	__s32 *value;
1578
1579	value = field->new_value;
1580	memset(value, 0, count * sizeof(__s32));
1581	field->ignored = false;
1582
1583	for (n = 0; n < count; n++) {
1584
1585		value[n] = min < 0 ?
1586			snto32(hid_field_extract(hid, data, offset + n * size,
1587			       size), size) :
1588			hid_field_extract(hid, data, offset + n * size, size);
1589
1590		/* Ignore report if ErrorRollOver */
1591		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1592		    hid_array_value_is_valid(field, value[n]) &&
1593		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1594			field->ignored = true;
1595			return;
1596		}
1597	}
1598}
1599
1600/*
1601 * Process a received variable field.
1602 */
1603
1604static void hid_input_var_field(struct hid_device *hid,
1605				struct hid_field *field,
1606				int interrupt)
1607{
1608	unsigned int count = field->report_count;
1609	__s32 *value = field->new_value;
1610	unsigned int n;
1611
1612	for (n = 0; n < count; n++)
1613		hid_process_event(hid,
1614				  field,
1615				  &field->usage[n],
1616				  value[n],
1617				  interrupt);
1618
1619	memcpy(field->value, value, count * sizeof(__s32));
1620}
1621
1622/*
1623 * Process a received array field. The field content is stored for
1624 * next report processing (we do differential reporting to the layer).
1625 */
1626
1627static void hid_input_array_field(struct hid_device *hid,
1628				  struct hid_field *field,
1629				  int interrupt)
1630{
1631	unsigned int n;
1632	unsigned int count = field->report_count;
1633	__s32 min = field->logical_minimum;
1634	__s32 *value;
1635
1636	value = field->new_value;
1637
1638	/* ErrorRollOver */
1639	if (field->ignored)
1640		return;
1641
1642	for (n = 0; n < count; n++) {
1643		if (hid_array_value_is_valid(field, field->value[n]) &&
1644		    search(value, field->value[n], count))
1645			hid_process_event(hid,
1646					  field,
1647					  &field->usage[field->value[n] - min],
1648					  0,
1649					  interrupt);
1650
1651		if (hid_array_value_is_valid(field, value[n]) &&
1652		    search(field->value, value[n], count))
1653			hid_process_event(hid,
1654					  field,
1655					  &field->usage[value[n] - min],
1656					  1,
1657					  interrupt);
1658	}
1659
1660	memcpy(field->value, value, count * sizeof(__s32));
1661}
1662
1663/*
1664 * Analyse a received report, and fetch the data from it. The field
1665 * content is stored for next report processing (we do differential
1666 * reporting to the layer).
1667 */
1668static void hid_process_report(struct hid_device *hid,
1669			       struct hid_report *report,
1670			       __u8 *data,
1671			       int interrupt)
1672{
1673	unsigned int a;
1674	struct hid_field_entry *entry;
1675	struct hid_field *field;
1676
1677	/* first retrieve all incoming values in data */
1678	for (a = 0; a < report->maxfield; a++)
1679		hid_input_fetch_field(hid, report->field[a], data);
1680
1681	if (!list_empty(&report->field_entry_list)) {
1682		/* INPUT_REPORT, we have a priority list of fields */
1683		list_for_each_entry(entry,
1684				    &report->field_entry_list,
1685				    list) {
1686			field = entry->field;
1687
1688			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1689				hid_process_event(hid,
1690						  field,
1691						  &field->usage[entry->index],
1692						  field->new_value[entry->index],
1693						  interrupt);
1694			else
1695				hid_input_array_field(hid, field, interrupt);
1696		}
1697
1698		/* we need to do the memcpy at the end for var items */
1699		for (a = 0; a < report->maxfield; a++) {
1700			field = report->field[a];
1701
1702			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1703				memcpy(field->value, field->new_value,
1704				       field->report_count * sizeof(__s32));
1705		}
1706	} else {
1707		/* FEATURE_REPORT, regular processing */
1708		for (a = 0; a < report->maxfield; a++) {
1709			field = report->field[a];
1710
1711			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1712				hid_input_var_field(hid, field, interrupt);
1713			else
1714				hid_input_array_field(hid, field, interrupt);
1715		}
1716	}
1717}
1718
1719/*
1720 * Insert a given usage_index in a field in the list
1721 * of processed usages in the report.
1722 *
1723 * The elements of lower priority score are processed
1724 * first.
1725 */
1726static void __hid_insert_field_entry(struct hid_device *hid,
1727				     struct hid_report *report,
1728				     struct hid_field_entry *entry,
1729				     struct hid_field *field,
1730				     unsigned int usage_index)
1731{
1732	struct hid_field_entry *next;
1733
1734	entry->field = field;
1735	entry->index = usage_index;
1736	entry->priority = field->usages_priorities[usage_index];
1737
1738	/* insert the element at the correct position */
1739	list_for_each_entry(next,
1740			    &report->field_entry_list,
1741			    list) {
1742		/*
1743		 * the priority of our element is strictly higher
1744		 * than the next one, insert it before
1745		 */
1746		if (entry->priority > next->priority) {
1747			list_add_tail(&entry->list, &next->list);
1748			return;
1749		}
1750	}
1751
1752	/* lowest priority score: insert at the end */
1753	list_add_tail(&entry->list, &report->field_entry_list);
1754}
1755
1756static void hid_report_process_ordering(struct hid_device *hid,
1757					struct hid_report *report)
1758{
1759	struct hid_field *field;
1760	struct hid_field_entry *entries;
1761	unsigned int a, u, usages;
1762	unsigned int count = 0;
1763
1764	/* count the number of individual fields in the report */
1765	for (a = 0; a < report->maxfield; a++) {
1766		field = report->field[a];
1767
1768		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1769			count += field->report_count;
1770		else
1771			count++;
1772	}
1773
1774	/* allocate the memory to process the fields */
1775	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1776	if (!entries)
1777		return;
1778
1779	report->field_entries = entries;
1780
1781	/*
1782	 * walk through all fields in the report and
1783	 * store them by priority order in report->field_entry_list
1784	 *
1785	 * - Var elements are individualized (field + usage_index)
1786	 * - Arrays are taken as one, we can not chose an order for them
1787	 */
1788	usages = 0;
1789	for (a = 0; a < report->maxfield; a++) {
1790		field = report->field[a];
1791
1792		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1793			for (u = 0; u < field->report_count; u++) {
1794				__hid_insert_field_entry(hid, report,
1795							 &entries[usages],
1796							 field, u);
1797				usages++;
1798			}
1799		} else {
1800			__hid_insert_field_entry(hid, report, &entries[usages],
1801						 field, 0);
1802			usages++;
1803		}
1804	}
1805}
1806
1807static void hid_process_ordering(struct hid_device *hid)
1808{
1809	struct hid_report *report;
1810	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1811
1812	list_for_each_entry(report, &report_enum->report_list, list)
1813		hid_report_process_ordering(hid, report);
1814}
1815
1816/*
1817 * Output the field into the report.
1818 */
1819
1820static void hid_output_field(const struct hid_device *hid,
1821			     struct hid_field *field, __u8 *data)
1822{
1823	unsigned count = field->report_count;
1824	unsigned offset = field->report_offset;
1825	unsigned size = field->report_size;
1826	unsigned n;
1827
1828	for (n = 0; n < count; n++) {
1829		if (field->logical_minimum < 0)	/* signed values */
1830			implement(hid, data, offset + n * size, size,
1831				  s32ton(field->value[n], size));
1832		else				/* unsigned values */
1833			implement(hid, data, offset + n * size, size,
1834				  field->value[n]);
1835	}
1836}
1837
1838/*
1839 * Compute the size of a report.
1840 */
1841static size_t hid_compute_report_size(struct hid_report *report)
1842{
1843	if (report->size)
1844		return ((report->size - 1) >> 3) + 1;
1845
1846	return 0;
1847}
1848
1849/*
1850 * Create a report. 'data' has to be allocated using
1851 * hid_alloc_report_buf() so that it has proper size.
1852 */
1853
1854void hid_output_report(struct hid_report *report, __u8 *data)
1855{
1856	unsigned n;
1857
1858	if (report->id > 0)
1859		*data++ = report->id;
1860
1861	memset(data, 0, hid_compute_report_size(report));
1862	for (n = 0; n < report->maxfield; n++)
1863		hid_output_field(report->device, report->field[n], data);
1864}
1865EXPORT_SYMBOL_GPL(hid_output_report);
1866
1867/*
1868 * Allocator for buffer that is going to be passed to hid_output_report()
1869 */
1870u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1871{
1872	/*
1873	 * 7 extra bytes are necessary to achieve proper functionality
1874	 * of implement() working on 8 byte chunks
1875	 */
1876
1877	u32 len = hid_report_len(report) + 7;
1878
1879	return kmalloc(len, flags);
1880}
1881EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1882
1883/*
1884 * Set a field value. The report this field belongs to has to be
1885 * created and transferred to the device, to set this value in the
1886 * device.
1887 */
1888
1889int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1890{
1891	unsigned size;
1892
1893	if (!field)
1894		return -1;
1895
1896	size = field->report_size;
1897
1898	hid_dump_input(field->report->device, field->usage + offset, value);
1899
1900	if (offset >= field->report_count) {
1901		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1902				offset, field->report_count);
1903		return -1;
1904	}
1905	if (field->logical_minimum < 0) {
1906		if (value != snto32(s32ton(value, size), size)) {
1907			hid_err(field->report->device, "value %d is out of range\n", value);
1908			return -1;
1909		}
1910	}
1911	field->value[offset] = value;
1912	return 0;
1913}
1914EXPORT_SYMBOL_GPL(hid_set_field);
1915
1916static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1917		const u8 *data)
1918{
1919	struct hid_report *report;
1920	unsigned int n = 0;	/* Normally report number is 0 */
1921
1922	/* Device uses numbered reports, data[0] is report number */
1923	if (report_enum->numbered)
1924		n = *data;
1925
1926	report = report_enum->report_id_hash[n];
1927	if (report == NULL)
1928		dbg_hid("undefined report_id %u received\n", n);
1929
1930	return report;
1931}
1932
1933/*
1934 * Implement a generic .request() callback, using .raw_request()
1935 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1936 */
1937int __hid_request(struct hid_device *hid, struct hid_report *report,
1938		enum hid_class_request reqtype)
1939{
1940	char *buf;
1941	int ret;
1942	u32 len;
1943
1944	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1945	if (!buf)
1946		return -ENOMEM;
1947
1948	len = hid_report_len(report);
1949
1950	if (reqtype == HID_REQ_SET_REPORT)
1951		hid_output_report(report, buf);
1952
1953	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1954					  report->type, reqtype);
1955	if (ret < 0) {
1956		dbg_hid("unable to complete request: %d\n", ret);
1957		goto out;
1958	}
1959
1960	if (reqtype == HID_REQ_GET_REPORT)
1961		hid_input_report(hid, report->type, buf, ret, 0);
1962
1963	ret = 0;
1964
1965out:
1966	kfree(buf);
1967	return ret;
1968}
1969EXPORT_SYMBOL_GPL(__hid_request);
1970
1971int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1972			 int interrupt)
1973{
1974	struct hid_report_enum *report_enum = hid->report_enum + type;
1975	struct hid_report *report;
1976	struct hid_driver *hdrv;
1977	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1978	u32 rsize, csize = size;
1979	u8 *cdata = data;
1980	int ret = 0;
1981
1982	report = hid_get_report(report_enum, data);
1983	if (!report)
1984		goto out;
1985
1986	if (report_enum->numbered) {
1987		cdata++;
1988		csize--;
1989	}
1990
1991	rsize = hid_compute_report_size(report);
1992
1993	if (hid->ll_driver->max_buffer_size)
1994		max_buffer_size = hid->ll_driver->max_buffer_size;
1995
1996	if (report_enum->numbered && rsize >= max_buffer_size)
1997		rsize = max_buffer_size - 1;
1998	else if (rsize > max_buffer_size)
1999		rsize = max_buffer_size;
2000
2001	if (csize < rsize) {
2002		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2003				csize, rsize);
2004		memset(cdata + csize, 0, rsize - csize);
2005	}
2006
2007	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2008		hid->hiddev_report_event(hid, report);
2009	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2010		ret = hidraw_report_event(hid, data, size);
2011		if (ret)
2012			goto out;
2013	}
2014
2015	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2016		hid_process_report(hid, report, cdata, interrupt);
2017		hdrv = hid->driver;
2018		if (hdrv && hdrv->report)
2019			hdrv->report(hid, report);
2020	}
2021
2022	if (hid->claimed & HID_CLAIMED_INPUT)
2023		hidinput_report_event(hid, report);
2024out:
2025	return ret;
2026}
2027EXPORT_SYMBOL_GPL(hid_report_raw_event);
2028
2029/**
2030 * hid_input_report - report data from lower layer (usb, bt...)
2031 *
2032 * @hid: hid device
2033 * @type: HID report type (HID_*_REPORT)
2034 * @data: report contents
2035 * @size: size of data parameter
2036 * @interrupt: distinguish between interrupt and control transfers
2037 *
2038 * This is data entry for lower layers.
2039 */
2040int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2041		     int interrupt)
2042{
2043	struct hid_report_enum *report_enum;
2044	struct hid_driver *hdrv;
2045	struct hid_report *report;
2046	int ret = 0;
2047
2048	if (!hid)
2049		return -ENODEV;
2050
2051	if (down_trylock(&hid->driver_input_lock))
2052		return -EBUSY;
2053
2054	if (!hid->driver) {
2055		ret = -ENODEV;
2056		goto unlock;
2057	}
2058	report_enum = hid->report_enum + type;
2059	hdrv = hid->driver;
2060
2061	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2062	if (IS_ERR(data)) {
2063		ret = PTR_ERR(data);
2064		goto unlock;
2065	}
2066
2067	if (!size) {
2068		dbg_hid("empty report\n");
2069		ret = -1;
2070		goto unlock;
2071	}
2072
2073	/* Avoid unnecessary overhead if debugfs is disabled */
2074	if (!list_empty(&hid->debug_list))
2075		hid_dump_report(hid, type, data, size);
2076
2077	report = hid_get_report(report_enum, data);
2078
2079	if (!report) {
2080		ret = -1;
2081		goto unlock;
2082	}
2083
2084	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2085		ret = hdrv->raw_event(hid, report, data, size);
2086		if (ret < 0)
2087			goto unlock;
2088	}
2089
2090	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2091
2092unlock:
2093	up(&hid->driver_input_lock);
2094	return ret;
2095}
2096EXPORT_SYMBOL_GPL(hid_input_report);
2097
2098bool hid_match_one_id(const struct hid_device *hdev,
2099		      const struct hid_device_id *id)
2100{
2101	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2102		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2103		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2104		(id->product == HID_ANY_ID || id->product == hdev->product);
2105}
2106
2107const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2108		const struct hid_device_id *id)
2109{
2110	for (; id->bus; id++)
2111		if (hid_match_one_id(hdev, id))
2112			return id;
2113
2114	return NULL;
2115}
2116EXPORT_SYMBOL_GPL(hid_match_id);
2117
2118static const struct hid_device_id hid_hiddev_list[] = {
2119	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2120	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2121	{ }
2122};
2123
2124static bool hid_hiddev(struct hid_device *hdev)
2125{
2126	return !!hid_match_id(hdev, hid_hiddev_list);
2127}
2128
2129
2130static ssize_t
2131read_report_descriptor(struct file *filp, struct kobject *kobj,
2132		struct bin_attribute *attr,
2133		char *buf, loff_t off, size_t count)
2134{
2135	struct device *dev = kobj_to_dev(kobj);
2136	struct hid_device *hdev = to_hid_device(dev);
2137
2138	if (off >= hdev->rsize)
2139		return 0;
2140
2141	if (off + count > hdev->rsize)
2142		count = hdev->rsize - off;
2143
2144	memcpy(buf, hdev->rdesc + off, count);
2145
2146	return count;
2147}
2148
2149static ssize_t
2150show_country(struct device *dev, struct device_attribute *attr,
2151		char *buf)
2152{
2153	struct hid_device *hdev = to_hid_device(dev);
2154
2155	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2156}
2157
2158static struct bin_attribute dev_bin_attr_report_desc = {
2159	.attr = { .name = "report_descriptor", .mode = 0444 },
2160	.read = read_report_descriptor,
2161	.size = HID_MAX_DESCRIPTOR_SIZE,
2162};
2163
2164static const struct device_attribute dev_attr_country = {
2165	.attr = { .name = "country", .mode = 0444 },
2166	.show = show_country,
2167};
2168
2169int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2170{
2171	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2172		"Joystick", "Gamepad", "Keyboard", "Keypad",
2173		"Multi-Axis Controller"
2174	};
2175	const char *type, *bus;
2176	char buf[64] = "";
2177	unsigned int i;
2178	int len;
2179	int ret;
2180
2181	ret = hid_bpf_connect_device(hdev);
2182	if (ret)
2183		return ret;
2184
2185	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2186		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2187	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2188		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2189	if (hdev->bus != BUS_USB)
2190		connect_mask &= ~HID_CONNECT_HIDDEV;
2191	if (hid_hiddev(hdev))
2192		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2193
2194	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2195				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2196		hdev->claimed |= HID_CLAIMED_INPUT;
2197
2198	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2199			!hdev->hiddev_connect(hdev,
2200				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2201		hdev->claimed |= HID_CLAIMED_HIDDEV;
2202	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2203		hdev->claimed |= HID_CLAIMED_HIDRAW;
2204
2205	if (connect_mask & HID_CONNECT_DRIVER)
2206		hdev->claimed |= HID_CLAIMED_DRIVER;
2207
2208	/* Drivers with the ->raw_event callback set are not required to connect
2209	 * to any other listener. */
2210	if (!hdev->claimed && !hdev->driver->raw_event) {
2211		hid_err(hdev, "device has no listeners, quitting\n");
2212		return -ENODEV;
2213	}
2214
2215	hid_process_ordering(hdev);
2216
2217	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2218			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2219		hdev->ff_init(hdev);
2220
2221	len = 0;
2222	if (hdev->claimed & HID_CLAIMED_INPUT)
2223		len += sprintf(buf + len, "input");
2224	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2225		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2226				((struct hiddev *)hdev->hiddev)->minor);
2227	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2228		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2229				((struct hidraw *)hdev->hidraw)->minor);
2230
2231	type = "Device";
2232	for (i = 0; i < hdev->maxcollection; i++) {
2233		struct hid_collection *col = &hdev->collection[i];
2234		if (col->type == HID_COLLECTION_APPLICATION &&
2235		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2236		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2237			type = types[col->usage & 0xffff];
2238			break;
2239		}
2240	}
2241
2242	switch (hdev->bus) {
2243	case BUS_USB:
2244		bus = "USB";
2245		break;
2246	case BUS_BLUETOOTH:
2247		bus = "BLUETOOTH";
2248		break;
2249	case BUS_I2C:
2250		bus = "I2C";
2251		break;
2252	case BUS_VIRTUAL:
2253		bus = "VIRTUAL";
2254		break;
2255	case BUS_INTEL_ISHTP:
2256	case BUS_AMD_SFH:
2257		bus = "SENSOR HUB";
2258		break;
2259	default:
2260		bus = "<UNKNOWN>";
2261	}
2262
2263	ret = device_create_file(&hdev->dev, &dev_attr_country);
2264	if (ret)
2265		hid_warn(hdev,
2266			 "can't create sysfs country code attribute err: %d\n", ret);
2267
2268	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2269		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2270		 type, hdev->name, hdev->phys);
2271
2272	return 0;
2273}
2274EXPORT_SYMBOL_GPL(hid_connect);
2275
2276void hid_disconnect(struct hid_device *hdev)
2277{
2278	device_remove_file(&hdev->dev, &dev_attr_country);
2279	if (hdev->claimed & HID_CLAIMED_INPUT)
2280		hidinput_disconnect(hdev);
2281	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2282		hdev->hiddev_disconnect(hdev);
2283	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2284		hidraw_disconnect(hdev);
2285	hdev->claimed = 0;
2286
2287	hid_bpf_disconnect_device(hdev);
2288}
2289EXPORT_SYMBOL_GPL(hid_disconnect);
2290
2291/**
2292 * hid_hw_start - start underlying HW
2293 * @hdev: hid device
2294 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2295 *
2296 * Call this in probe function *after* hid_parse. This will setup HW
2297 * buffers and start the device (if not defeirred to device open).
2298 * hid_hw_stop must be called if this was successful.
2299 */
2300int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2301{
2302	int error;
2303
2304	error = hdev->ll_driver->start(hdev);
2305	if (error)
2306		return error;
2307
2308	if (connect_mask) {
2309		error = hid_connect(hdev, connect_mask);
2310		if (error) {
2311			hdev->ll_driver->stop(hdev);
2312			return error;
2313		}
2314	}
2315
2316	return 0;
2317}
2318EXPORT_SYMBOL_GPL(hid_hw_start);
2319
2320/**
2321 * hid_hw_stop - stop underlying HW
2322 * @hdev: hid device
2323 *
2324 * This is usually called from remove function or from probe when something
2325 * failed and hid_hw_start was called already.
2326 */
2327void hid_hw_stop(struct hid_device *hdev)
2328{
2329	hid_disconnect(hdev);
2330	hdev->ll_driver->stop(hdev);
2331}
2332EXPORT_SYMBOL_GPL(hid_hw_stop);
2333
2334/**
2335 * hid_hw_open - signal underlying HW to start delivering events
2336 * @hdev: hid device
2337 *
2338 * Tell underlying HW to start delivering events from the device.
2339 * This function should be called sometime after successful call
2340 * to hid_hw_start().
2341 */
2342int hid_hw_open(struct hid_device *hdev)
2343{
2344	int ret;
2345
2346	ret = mutex_lock_killable(&hdev->ll_open_lock);
2347	if (ret)
2348		return ret;
2349
2350	if (!hdev->ll_open_count++) {
2351		ret = hdev->ll_driver->open(hdev);
2352		if (ret)
2353			hdev->ll_open_count--;
2354	}
2355
2356	mutex_unlock(&hdev->ll_open_lock);
2357	return ret;
2358}
2359EXPORT_SYMBOL_GPL(hid_hw_open);
2360
2361/**
2362 * hid_hw_close - signal underlaying HW to stop delivering events
2363 *
2364 * @hdev: hid device
2365 *
2366 * This function indicates that we are not interested in the events
2367 * from this device anymore. Delivery of events may or may not stop,
2368 * depending on the number of users still outstanding.
2369 */
2370void hid_hw_close(struct hid_device *hdev)
2371{
2372	mutex_lock(&hdev->ll_open_lock);
2373	if (!--hdev->ll_open_count)
2374		hdev->ll_driver->close(hdev);
2375	mutex_unlock(&hdev->ll_open_lock);
2376}
2377EXPORT_SYMBOL_GPL(hid_hw_close);
2378
2379/**
2380 * hid_hw_request - send report request to device
2381 *
2382 * @hdev: hid device
2383 * @report: report to send
2384 * @reqtype: hid request type
2385 */
2386void hid_hw_request(struct hid_device *hdev,
2387		    struct hid_report *report, enum hid_class_request reqtype)
2388{
2389	if (hdev->ll_driver->request)
2390		return hdev->ll_driver->request(hdev, report, reqtype);
2391
2392	__hid_request(hdev, report, reqtype);
2393}
2394EXPORT_SYMBOL_GPL(hid_hw_request);
2395
2396/**
2397 * hid_hw_raw_request - send report request to device
2398 *
2399 * @hdev: hid device
2400 * @reportnum: report ID
2401 * @buf: in/out data to transfer
2402 * @len: length of buf
2403 * @rtype: HID report type
2404 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2405 *
2406 * Return: count of data transferred, negative if error
2407 *
2408 * Same behavior as hid_hw_request, but with raw buffers instead.
2409 */
2410int hid_hw_raw_request(struct hid_device *hdev,
2411		       unsigned char reportnum, __u8 *buf,
2412		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2413{
2414	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2415
2416	if (hdev->ll_driver->max_buffer_size)
2417		max_buffer_size = hdev->ll_driver->max_buffer_size;
2418
2419	if (len < 1 || len > max_buffer_size || !buf)
2420		return -EINVAL;
2421
2422	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2423					    rtype, reqtype);
2424}
2425EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2426
2427/**
2428 * hid_hw_output_report - send output report to device
2429 *
2430 * @hdev: hid device
2431 * @buf: raw data to transfer
2432 * @len: length of buf
2433 *
2434 * Return: count of data transferred, negative if error
2435 */
2436int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2437{
2438	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2439
2440	if (hdev->ll_driver->max_buffer_size)
2441		max_buffer_size = hdev->ll_driver->max_buffer_size;
2442
2443	if (len < 1 || len > max_buffer_size || !buf)
2444		return -EINVAL;
2445
2446	if (hdev->ll_driver->output_report)
2447		return hdev->ll_driver->output_report(hdev, buf, len);
2448
2449	return -ENOSYS;
2450}
2451EXPORT_SYMBOL_GPL(hid_hw_output_report);
2452
2453#ifdef CONFIG_PM
2454int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2455{
2456	if (hdev->driver && hdev->driver->suspend)
2457		return hdev->driver->suspend(hdev, state);
2458
2459	return 0;
2460}
2461EXPORT_SYMBOL_GPL(hid_driver_suspend);
2462
2463int hid_driver_reset_resume(struct hid_device *hdev)
2464{
2465	if (hdev->driver && hdev->driver->reset_resume)
2466		return hdev->driver->reset_resume(hdev);
2467
2468	return 0;
2469}
2470EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2471
2472int hid_driver_resume(struct hid_device *hdev)
2473{
2474	if (hdev->driver && hdev->driver->resume)
2475		return hdev->driver->resume(hdev);
2476
2477	return 0;
2478}
2479EXPORT_SYMBOL_GPL(hid_driver_resume);
2480#endif /* CONFIG_PM */
2481
2482struct hid_dynid {
2483	struct list_head list;
2484	struct hid_device_id id;
2485};
2486
2487/**
2488 * new_id_store - add a new HID device ID to this driver and re-probe devices
2489 * @drv: target device driver
2490 * @buf: buffer for scanning device ID data
2491 * @count: input size
2492 *
2493 * Adds a new dynamic hid device ID to this driver,
2494 * and causes the driver to probe for all devices again.
2495 */
2496static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2497		size_t count)
2498{
2499	struct hid_driver *hdrv = to_hid_driver(drv);
2500	struct hid_dynid *dynid;
2501	__u32 bus, vendor, product;
2502	unsigned long driver_data = 0;
2503	int ret;
2504
2505	ret = sscanf(buf, "%x %x %x %lx",
2506			&bus, &vendor, &product, &driver_data);
2507	if (ret < 3)
2508		return -EINVAL;
2509
2510	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2511	if (!dynid)
2512		return -ENOMEM;
2513
2514	dynid->id.bus = bus;
2515	dynid->id.group = HID_GROUP_ANY;
2516	dynid->id.vendor = vendor;
2517	dynid->id.product = product;
2518	dynid->id.driver_data = driver_data;
2519
2520	spin_lock(&hdrv->dyn_lock);
2521	list_add_tail(&dynid->list, &hdrv->dyn_list);
2522	spin_unlock(&hdrv->dyn_lock);
2523
2524	ret = driver_attach(&hdrv->driver);
2525
2526	return ret ? : count;
2527}
2528static DRIVER_ATTR_WO(new_id);
2529
2530static struct attribute *hid_drv_attrs[] = {
2531	&driver_attr_new_id.attr,
2532	NULL,
2533};
2534ATTRIBUTE_GROUPS(hid_drv);
2535
2536static void hid_free_dynids(struct hid_driver *hdrv)
2537{
2538	struct hid_dynid *dynid, *n;
2539
2540	spin_lock(&hdrv->dyn_lock);
2541	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2542		list_del(&dynid->list);
2543		kfree(dynid);
2544	}
2545	spin_unlock(&hdrv->dyn_lock);
2546}
2547
2548const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2549					     struct hid_driver *hdrv)
2550{
2551	struct hid_dynid *dynid;
2552
2553	spin_lock(&hdrv->dyn_lock);
2554	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2555		if (hid_match_one_id(hdev, &dynid->id)) {
2556			spin_unlock(&hdrv->dyn_lock);
2557			return &dynid->id;
2558		}
2559	}
2560	spin_unlock(&hdrv->dyn_lock);
2561
2562	return hid_match_id(hdev, hdrv->id_table);
2563}
2564EXPORT_SYMBOL_GPL(hid_match_device);
2565
2566static int hid_bus_match(struct device *dev, struct device_driver *drv)
2567{
2568	struct hid_driver *hdrv = to_hid_driver(drv);
2569	struct hid_device *hdev = to_hid_device(dev);
2570
2571	return hid_match_device(hdev, hdrv) != NULL;
2572}
2573
2574/**
2575 * hid_compare_device_paths - check if both devices share the same path
2576 * @hdev_a: hid device
2577 * @hdev_b: hid device
2578 * @separator: char to use as separator
2579 *
2580 * Check if two devices share the same path up to the last occurrence of
2581 * the separator char. Both paths must exist (i.e., zero-length paths
2582 * don't match).
2583 */
2584bool hid_compare_device_paths(struct hid_device *hdev_a,
2585			      struct hid_device *hdev_b, char separator)
2586{
2587	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2588	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2589
2590	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2591		return false;
2592
2593	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2594}
2595EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2596
2597static bool hid_check_device_match(struct hid_device *hdev,
2598				   struct hid_driver *hdrv,
2599				   const struct hid_device_id **id)
2600{
2601	*id = hid_match_device(hdev, hdrv);
2602	if (!*id)
2603		return false;
2604
2605	if (hdrv->match)
2606		return hdrv->match(hdev, hid_ignore_special_drivers);
2607
2608	/*
2609	 * hid-generic implements .match(), so we must be dealing with a
2610	 * different HID driver here, and can simply check if
2611	 * hid_ignore_special_drivers is set or not.
2612	 */
2613	return !hid_ignore_special_drivers;
2614}
2615
2616static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2617{
2618	const struct hid_device_id *id;
2619	int ret;
2620
2621	if (!hid_check_device_match(hdev, hdrv, &id))
2622		return -ENODEV;
2623
2624	hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2625	if (!hdev->devres_group_id)
2626		return -ENOMEM;
2627
2628	/* reset the quirks that has been previously set */
2629	hdev->quirks = hid_lookup_quirk(hdev);
2630	hdev->driver = hdrv;
2631
2632	if (hdrv->probe) {
2633		ret = hdrv->probe(hdev, id);
2634	} else { /* default probe */
2635		ret = hid_open_report(hdev);
2636		if (!ret)
2637			ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2638	}
2639
2640	/*
2641	 * Note that we are not closing the devres group opened above so
2642	 * even resources that were attached to the device after probe is
2643	 * run are released when hid_device_remove() is executed. This is
2644	 * needed as some drivers would allocate additional resources,
2645	 * for example when updating firmware.
2646	 */
2647
2648	if (ret) {
2649		devres_release_group(&hdev->dev, hdev->devres_group_id);
2650		hid_close_report(hdev);
2651		hdev->driver = NULL;
2652	}
2653
2654	return ret;
2655}
2656
2657static int hid_device_probe(struct device *dev)
2658{
2659	struct hid_device *hdev = to_hid_device(dev);
2660	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2661	int ret = 0;
2662
2663	if (down_interruptible(&hdev->driver_input_lock))
2664		return -EINTR;
2665
2666	hdev->io_started = false;
2667	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2668
2669	if (!hdev->driver)
2670		ret = __hid_device_probe(hdev, hdrv);
2671
2672	if (!hdev->io_started)
2673		up(&hdev->driver_input_lock);
2674
2675	return ret;
2676}
2677
2678static void hid_device_remove(struct device *dev)
2679{
2680	struct hid_device *hdev = to_hid_device(dev);
2681	struct hid_driver *hdrv;
2682
2683	down(&hdev->driver_input_lock);
2684	hdev->io_started = false;
2685
2686	hdrv = hdev->driver;
2687	if (hdrv) {
2688		if (hdrv->remove)
2689			hdrv->remove(hdev);
2690		else /* default remove */
2691			hid_hw_stop(hdev);
2692
2693		/* Release all devres resources allocated by the driver */
2694		devres_release_group(&hdev->dev, hdev->devres_group_id);
2695
2696		hid_close_report(hdev);
2697		hdev->driver = NULL;
2698	}
2699
2700	if (!hdev->io_started)
2701		up(&hdev->driver_input_lock);
2702}
2703
2704static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2705			     char *buf)
2706{
2707	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2708
2709	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2710			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2711}
2712static DEVICE_ATTR_RO(modalias);
2713
2714static struct attribute *hid_dev_attrs[] = {
2715	&dev_attr_modalias.attr,
2716	NULL,
2717};
2718static struct bin_attribute *hid_dev_bin_attrs[] = {
2719	&dev_bin_attr_report_desc,
2720	NULL
2721};
2722static const struct attribute_group hid_dev_group = {
2723	.attrs = hid_dev_attrs,
2724	.bin_attrs = hid_dev_bin_attrs,
2725};
2726__ATTRIBUTE_GROUPS(hid_dev);
2727
2728static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2729{
2730	const struct hid_device *hdev = to_hid_device(dev);
2731
2732	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2733			hdev->bus, hdev->vendor, hdev->product))
2734		return -ENOMEM;
2735
2736	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2737		return -ENOMEM;
2738
2739	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2740		return -ENOMEM;
2741
2742	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2743		return -ENOMEM;
2744
2745	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2746			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2747		return -ENOMEM;
2748
2749	return 0;
2750}
2751
2752const struct bus_type hid_bus_type = {
2753	.name		= "hid",
2754	.dev_groups	= hid_dev_groups,
2755	.drv_groups	= hid_drv_groups,
2756	.match		= hid_bus_match,
2757	.probe		= hid_device_probe,
2758	.remove		= hid_device_remove,
2759	.uevent		= hid_uevent,
2760};
2761EXPORT_SYMBOL(hid_bus_type);
2762
2763int hid_add_device(struct hid_device *hdev)
2764{
2765	static atomic_t id = ATOMIC_INIT(0);
2766	int ret;
2767
2768	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2769		return -EBUSY;
2770
2771	hdev->quirks = hid_lookup_quirk(hdev);
2772
2773	/* we need to kill them here, otherwise they will stay allocated to
2774	 * wait for coming driver */
2775	if (hid_ignore(hdev))
2776		return -ENODEV;
2777
2778	/*
2779	 * Check for the mandatory transport channel.
2780	 */
2781	 if (!hdev->ll_driver->raw_request) {
2782		hid_err(hdev, "transport driver missing .raw_request()\n");
2783		return -EINVAL;
2784	 }
2785
2786	/*
2787	 * Read the device report descriptor once and use as template
2788	 * for the driver-specific modifications.
2789	 */
2790	ret = hdev->ll_driver->parse(hdev);
2791	if (ret)
2792		return ret;
2793	if (!hdev->dev_rdesc)
2794		return -ENODEV;
2795
2796	/*
2797	 * Scan generic devices for group information
2798	 */
2799	if (hid_ignore_special_drivers) {
2800		hdev->group = HID_GROUP_GENERIC;
2801	} else if (!hdev->group &&
2802		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2803		ret = hid_scan_report(hdev);
2804		if (ret)
2805			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2806	}
2807
2808	hdev->id = atomic_inc_return(&id);
2809
2810	/* XXX hack, any other cleaner solution after the driver core
2811	 * is converted to allow more than 20 bytes as the device name? */
2812	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2813		     hdev->vendor, hdev->product, hdev->id);
2814
2815	hid_debug_register(hdev, dev_name(&hdev->dev));
2816	ret = device_add(&hdev->dev);
2817	if (!ret)
2818		hdev->status |= HID_STAT_ADDED;
2819	else
2820		hid_debug_unregister(hdev);
2821
2822	return ret;
2823}
2824EXPORT_SYMBOL_GPL(hid_add_device);
2825
2826/**
2827 * hid_allocate_device - allocate new hid device descriptor
2828 *
2829 * Allocate and initialize hid device, so that hid_destroy_device might be
2830 * used to free it.
2831 *
2832 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2833 * error value.
2834 */
2835struct hid_device *hid_allocate_device(void)
2836{
2837	struct hid_device *hdev;
2838	int ret = -ENOMEM;
2839
2840	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2841	if (hdev == NULL)
2842		return ERR_PTR(ret);
2843
2844	device_initialize(&hdev->dev);
2845	hdev->dev.release = hid_device_release;
2846	hdev->dev.bus = &hid_bus_type;
2847	device_enable_async_suspend(&hdev->dev);
2848
2849	hid_close_report(hdev);
2850
2851	init_waitqueue_head(&hdev->debug_wait);
2852	INIT_LIST_HEAD(&hdev->debug_list);
2853	spin_lock_init(&hdev->debug_list_lock);
2854	sema_init(&hdev->driver_input_lock, 1);
2855	mutex_init(&hdev->ll_open_lock);
2856	kref_init(&hdev->ref);
2857
2858	hid_bpf_device_init(hdev);
2859
2860	return hdev;
2861}
2862EXPORT_SYMBOL_GPL(hid_allocate_device);
2863
2864static void hid_remove_device(struct hid_device *hdev)
2865{
2866	if (hdev->status & HID_STAT_ADDED) {
2867		device_del(&hdev->dev);
2868		hid_debug_unregister(hdev);
2869		hdev->status &= ~HID_STAT_ADDED;
2870	}
2871	kfree(hdev->dev_rdesc);
2872	hdev->dev_rdesc = NULL;
2873	hdev->dev_rsize = 0;
2874}
2875
2876/**
2877 * hid_destroy_device - free previously allocated device
2878 *
2879 * @hdev: hid device
2880 *
2881 * If you allocate hid_device through hid_allocate_device, you should ever
2882 * free by this function.
2883 */
2884void hid_destroy_device(struct hid_device *hdev)
2885{
2886	hid_bpf_destroy_device(hdev);
2887	hid_remove_device(hdev);
2888	put_device(&hdev->dev);
2889}
2890EXPORT_SYMBOL_GPL(hid_destroy_device);
2891
2892
2893static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2894{
2895	struct hid_driver *hdrv = data;
2896	struct hid_device *hdev = to_hid_device(dev);
2897
2898	if (hdev->driver == hdrv &&
2899	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2900	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2901		return device_reprobe(dev);
2902
2903	return 0;
2904}
2905
2906static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2907{
2908	struct hid_driver *hdrv = to_hid_driver(drv);
2909
2910	if (hdrv->match) {
2911		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2912				 __hid_bus_reprobe_drivers);
2913	}
2914
2915	return 0;
2916}
2917
2918static int __bus_removed_driver(struct device_driver *drv, void *data)
2919{
2920	return bus_rescan_devices(&hid_bus_type);
2921}
2922
2923int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2924		const char *mod_name)
2925{
2926	int ret;
2927
2928	hdrv->driver.name = hdrv->name;
2929	hdrv->driver.bus = &hid_bus_type;
2930	hdrv->driver.owner = owner;
2931	hdrv->driver.mod_name = mod_name;
2932
2933	INIT_LIST_HEAD(&hdrv->dyn_list);
2934	spin_lock_init(&hdrv->dyn_lock);
2935
2936	ret = driver_register(&hdrv->driver);
2937
2938	if (ret == 0)
2939		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2940				 __hid_bus_driver_added);
2941
2942	return ret;
2943}
2944EXPORT_SYMBOL_GPL(__hid_register_driver);
2945
2946void hid_unregister_driver(struct hid_driver *hdrv)
2947{
2948	driver_unregister(&hdrv->driver);
2949	hid_free_dynids(hdrv);
2950
2951	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2952}
2953EXPORT_SYMBOL_GPL(hid_unregister_driver);
2954
2955int hid_check_keys_pressed(struct hid_device *hid)
2956{
2957	struct hid_input *hidinput;
2958	int i;
2959
2960	if (!(hid->claimed & HID_CLAIMED_INPUT))
2961		return 0;
2962
2963	list_for_each_entry(hidinput, &hid->inputs, list) {
2964		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2965			if (hidinput->input->key[i])
2966				return 1;
2967	}
2968
2969	return 0;
2970}
2971EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2972
2973#ifdef CONFIG_HID_BPF
2974static struct hid_bpf_ops hid_ops = {
2975	.hid_get_report = hid_get_report,
2976	.hid_hw_raw_request = hid_hw_raw_request,
2977	.owner = THIS_MODULE,
2978	.bus_type = &hid_bus_type,
2979};
2980#endif
2981
2982static int __init hid_init(void)
2983{
2984	int ret;
2985
2986	ret = bus_register(&hid_bus_type);
2987	if (ret) {
2988		pr_err("can't register hid bus\n");
2989		goto err;
2990	}
2991
2992#ifdef CONFIG_HID_BPF
2993	hid_bpf_ops = &hid_ops;
2994#endif
2995
2996	ret = hidraw_init();
2997	if (ret)
2998		goto err_bus;
2999
3000	hid_debug_init();
3001
3002	return 0;
3003err_bus:
3004	bus_unregister(&hid_bus_type);
3005err:
3006	return ret;
3007}
3008
3009static void __exit hid_exit(void)
3010{
3011#ifdef CONFIG_HID_BPF
3012	hid_bpf_ops = NULL;
3013#endif
3014	hid_debug_exit();
3015	hidraw_exit();
3016	bus_unregister(&hid_bus_type);
3017	hid_quirks_exit(HID_BUS_ANY);
3018}
3019
3020module_init(hid_init);
3021module_exit(hid_exit);
3022
3023MODULE_AUTHOR("Andreas Gal");
3024MODULE_AUTHOR("Vojtech Pavlik");
3025MODULE_AUTHOR("Jiri Kosina");
3026MODULE_LICENSE("GPL");
3027