1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2020 Intel Corporation
4 */
5
6#include "xe_migrate.h"
7
8#include <linux/bitfield.h>
9#include <linux/sizes.h>
10
11#include <drm/drm_managed.h>
12#include <drm/ttm/ttm_tt.h>
13#include <drm/xe_drm.h>
14
15#include <generated/xe_wa_oob.h>
16
17#include "instructions/xe_mi_commands.h"
18#include "regs/xe_gpu_commands.h"
19#include "regs/xe_gtt_defs.h"
20#include "tests/xe_test.h"
21#include "xe_assert.h"
22#include "xe_bb.h"
23#include "xe_bo.h"
24#include "xe_exec_queue.h"
25#include "xe_ggtt.h"
26#include "xe_gt.h"
27#include "xe_hw_engine.h"
28#include "xe_lrc.h"
29#include "xe_map.h"
30#include "xe_mocs.h"
31#include "xe_pt.h"
32#include "xe_res_cursor.h"
33#include "xe_sched_job.h"
34#include "xe_sync.h"
35#include "xe_trace.h"
36#include "xe_vm.h"
37
38/**
39 * struct xe_migrate - migrate context.
40 */
41struct xe_migrate {
42	/** @q: Default exec queue used for migration */
43	struct xe_exec_queue *q;
44	/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
45	struct xe_tile *tile;
46	/** @job_mutex: Timeline mutex for @eng. */
47	struct mutex job_mutex;
48	/** @pt_bo: Page-table buffer object. */
49	struct xe_bo *pt_bo;
50	/** @batch_base_ofs: VM offset of the migration batch buffer */
51	u64 batch_base_ofs;
52	/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
53	u64 usm_batch_base_ofs;
54	/** @cleared_mem_ofs: VM offset of @cleared_bo. */
55	u64 cleared_mem_ofs;
56	/**
57	 * @fence: dma-fence representing the last migration job batch.
58	 * Protected by @job_mutex.
59	 */
60	struct dma_fence *fence;
61	/**
62	 * @vm_update_sa: For integrated, used to suballocate page-tables
63	 * out of the pt_bo.
64	 */
65	struct drm_suballoc_manager vm_update_sa;
66	/** @min_chunk_size: For dgfx, Minimum chunk size */
67	u64 min_chunk_size;
68};
69
70#define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
71#define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
72#define NUM_KERNEL_PDE 17
73#define NUM_PT_SLOTS 32
74#define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
75#define MAX_NUM_PTE 512
76
77/*
78 * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
79 * legal value accepted.  Since that instruction field is always stored in
80 * (val-2) format, this translates to 0x400 dwords for the true maximum length
81 * of the instruction.  Subtracting the instruction header (1 dword) and
82 * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
83 */
84#define MAX_PTE_PER_SDI 0x1FE
85
86/**
87 * xe_tile_migrate_engine() - Get this tile's migrate engine.
88 * @tile: The tile.
89 *
90 * Returns the default migrate engine of this tile.
91 * TODO: Perhaps this function is slightly misplaced, and even unneeded?
92 *
93 * Return: The default migrate engine
94 */
95struct xe_exec_queue *xe_tile_migrate_engine(struct xe_tile *tile)
96{
97	return tile->migrate->q;
98}
99
100static void xe_migrate_fini(struct drm_device *dev, void *arg)
101{
102	struct xe_migrate *m = arg;
103
104	xe_vm_lock(m->q->vm, false);
105	xe_bo_unpin(m->pt_bo);
106	xe_vm_unlock(m->q->vm);
107
108	dma_fence_put(m->fence);
109	xe_bo_put(m->pt_bo);
110	drm_suballoc_manager_fini(&m->vm_update_sa);
111	mutex_destroy(&m->job_mutex);
112	xe_vm_close_and_put(m->q->vm);
113	xe_exec_queue_put(m->q);
114}
115
116static u64 xe_migrate_vm_addr(u64 slot, u32 level)
117{
118	XE_WARN_ON(slot >= NUM_PT_SLOTS);
119
120	/* First slot is reserved for mapping of PT bo and bb, start from 1 */
121	return (slot + 1ULL) << xe_pt_shift(level + 1);
122}
123
124static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr)
125{
126	/*
127	 * Remove the DPA to get a correct offset into identity table for the
128	 * migrate offset
129	 */
130	addr -= xe->mem.vram.dpa_base;
131	return addr + (256ULL << xe_pt_shift(2));
132}
133
134static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
135				 struct xe_vm *vm)
136{
137	struct xe_device *xe = tile_to_xe(tile);
138	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
139	u8 id = tile->id;
140	u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
141	u32 map_ofs, level, i;
142	struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
143	u64 entry;
144
145	/* Can't bump NUM_PT_SLOTS too high */
146	BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
147	/* Must be a multiple of 64K to support all platforms */
148	BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
149	/* And one slot reserved for the 4KiB page table updates */
150	BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
151
152	/* Need to be sure everything fits in the first PT, or create more */
153	xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);
154
155	bo = xe_bo_create_pin_map(vm->xe, tile, vm,
156				  num_entries * XE_PAGE_SIZE,
157				  ttm_bo_type_kernel,
158				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
159				  XE_BO_FLAG_PINNED);
160	if (IS_ERR(bo))
161		return PTR_ERR(bo);
162
163	entry = vm->pt_ops->pde_encode_bo(bo, bo->size - XE_PAGE_SIZE, pat_index);
164	xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
165
166	map_ofs = (num_entries - num_level) * XE_PAGE_SIZE;
167
168	/* Map the entire BO in our level 0 pt */
169	for (i = 0, level = 0; i < num_entries; level++) {
170		entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
171						  pat_index, 0);
172
173		xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
174
175		if (vm->flags & XE_VM_FLAG_64K)
176			i += 16;
177		else
178			i += 1;
179	}
180
181	if (!IS_DGFX(xe)) {
182		/* Write out batch too */
183		m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
184		for (i = 0; i < batch->size;
185		     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
186		     XE_PAGE_SIZE) {
187			entry = vm->pt_ops->pte_encode_bo(batch, i,
188							  pat_index, 0);
189
190			xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
191				  entry);
192			level++;
193		}
194		if (xe->info.has_usm) {
195			xe_tile_assert(tile, batch->size == SZ_1M);
196
197			batch = tile->primary_gt->usm.bb_pool->bo;
198			m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
199			xe_tile_assert(tile, batch->size == SZ_512K);
200
201			for (i = 0; i < batch->size;
202			     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
203			     XE_PAGE_SIZE) {
204				entry = vm->pt_ops->pte_encode_bo(batch, i,
205								  pat_index, 0);
206
207				xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
208					  entry);
209				level++;
210			}
211		}
212	} else {
213		u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
214
215		m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
216
217		if (xe->info.has_usm) {
218			batch = tile->primary_gt->usm.bb_pool->bo;
219			batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
220			m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr);
221		}
222	}
223
224	for (level = 1; level < num_level; level++) {
225		u32 flags = 0;
226
227		if (vm->flags & XE_VM_FLAG_64K && level == 1)
228			flags = XE_PDE_64K;
229
230		entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) *
231						  XE_PAGE_SIZE, pat_index);
232		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
233			  entry | flags);
234	}
235
236	/* Write PDE's that point to our BO. */
237	for (i = 0; i < num_entries - num_level; i++) {
238		entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE,
239						  pat_index);
240
241		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
242			  (i + 1) * 8, u64, entry);
243	}
244
245	/* Set up a 1GiB NULL mapping at 255GiB offset. */
246	level = 2;
247	xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
248		  vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
249		  | XE_PTE_NULL);
250	m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
251
252	/* Identity map the entire vram at 256GiB offset */
253	if (IS_DGFX(xe)) {
254		u64 pos, ofs, flags;
255
256		level = 2;
257		ofs = map_ofs + XE_PAGE_SIZE * level + 256 * 8;
258		flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
259						    true, 0);
260
261		/*
262		 * Use 1GB pages, it shouldn't matter the physical amount of
263		 * vram is less, when we don't access it.
264		 */
265		for (pos = xe->mem.vram.dpa_base;
266		     pos < xe->mem.vram.actual_physical_size + xe->mem.vram.dpa_base;
267		     pos += SZ_1G, ofs += 8)
268			xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
269	}
270
271	/*
272	 * Example layout created above, with root level = 3:
273	 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
274	 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
275	 * [PT9...PT28]: Userspace PT's for VM_BIND, 4 KiB PTE's
276	 * [PT29 = PDE 0] [PT30 = PDE 1] [PT31 = PDE 2]
277	 *
278	 * This makes the lowest part of the VM point to the pagetables.
279	 * Hence the lowest 2M in the vm should point to itself, with a few writes
280	 * and flushes, other parts of the VM can be used either for copying and
281	 * clearing.
282	 *
283	 * For performance, the kernel reserves PDE's, so about 20 are left
284	 * for async VM updates.
285	 *
286	 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
287	 * everywhere, this allows lockless updates to scratch pages by using
288	 * the different addresses in VM.
289	 */
290#define NUM_VMUSA_UNIT_PER_PAGE	32
291#define VM_SA_UPDATE_UNIT_SIZE		(XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
292#define NUM_VMUSA_WRITES_PER_UNIT	(VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
293	drm_suballoc_manager_init(&m->vm_update_sa,
294				  (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
295				  NUM_VMUSA_UNIT_PER_PAGE, 0);
296
297	m->pt_bo = bo;
298	return 0;
299}
300
301/*
302 * Including the reserved copy engine is required to avoid deadlocks due to
303 * migrate jobs servicing the faults gets stuck behind the job that faulted.
304 */
305static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
306{
307	u32 logical_mask = 0;
308	struct xe_hw_engine *hwe;
309	enum xe_hw_engine_id id;
310
311	for_each_hw_engine(hwe, gt, id) {
312		if (hwe->class != XE_ENGINE_CLASS_COPY)
313			continue;
314
315		if (xe_gt_is_usm_hwe(gt, hwe))
316			logical_mask |= BIT(hwe->logical_instance);
317	}
318
319	return logical_mask;
320}
321
322/**
323 * xe_migrate_init() - Initialize a migrate context
324 * @tile: Back-pointer to the tile we're initializing for.
325 *
326 * Return: Pointer to a migrate context on success. Error pointer on error.
327 */
328struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
329{
330	struct xe_device *xe = tile_to_xe(tile);
331	struct xe_gt *primary_gt = tile->primary_gt;
332	struct xe_migrate *m;
333	struct xe_vm *vm;
334	int err;
335
336	m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL);
337	if (!m)
338		return ERR_PTR(-ENOMEM);
339
340	m->tile = tile;
341
342	/* Special layout, prepared below.. */
343	vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
344			  XE_VM_FLAG_SET_TILE_ID(tile));
345	if (IS_ERR(vm))
346		return ERR_CAST(vm);
347
348	xe_vm_lock(vm, false);
349	err = xe_migrate_prepare_vm(tile, m, vm);
350	xe_vm_unlock(vm);
351	if (err) {
352		xe_vm_close_and_put(vm);
353		return ERR_PTR(err);
354	}
355
356	if (xe->info.has_usm) {
357		struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
358							   XE_ENGINE_CLASS_COPY,
359							   primary_gt->usm.reserved_bcs_instance,
360							   false);
361		u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
362
363		if (!hwe || !logical_mask)
364			return ERR_PTR(-EINVAL);
365
366		/*
367		 * XXX: Currently only reserving 1 (likely slow) BCS instance on
368		 * PVC, may want to revisit if performance is needed.
369		 */
370		m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
371					    EXEC_QUEUE_FLAG_KERNEL |
372					    EXEC_QUEUE_FLAG_PERMANENT |
373					    EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
374	} else {
375		m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
376						  XE_ENGINE_CLASS_COPY,
377						  EXEC_QUEUE_FLAG_KERNEL |
378						  EXEC_QUEUE_FLAG_PERMANENT);
379	}
380	if (IS_ERR(m->q)) {
381		xe_vm_close_and_put(vm);
382		return ERR_CAST(m->q);
383	}
384
385	mutex_init(&m->job_mutex);
386
387	err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m);
388	if (err)
389		return ERR_PTR(err);
390
391	if (IS_DGFX(xe)) {
392		if (xe_device_has_flat_ccs(xe))
393			/* min chunk size corresponds to 4K of CCS Metadata */
394			m->min_chunk_size = SZ_4K * SZ_64K /
395				xe_device_ccs_bytes(xe, SZ_64K);
396		else
397			/* Somewhat arbitrary to avoid a huge amount of blits */
398			m->min_chunk_size = SZ_64K;
399		m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
400		drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
401			(unsigned long long)m->min_chunk_size);
402	}
403
404	return m;
405}
406
407static u64 max_mem_transfer_per_pass(struct xe_device *xe)
408{
409	if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
410		return MAX_CCS_LIMITED_TRANSFER;
411
412	return MAX_PREEMPTDISABLE_TRANSFER;
413}
414
415static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
416{
417	struct xe_device *xe = tile_to_xe(m->tile);
418	u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
419
420	if (mem_type_is_vram(cur->mem_type)) {
421		/*
422		 * VRAM we want to blit in chunks with sizes aligned to
423		 * min_chunk_size in order for the offset to CCS metadata to be
424		 * page-aligned. If it's the last chunk it may be smaller.
425		 *
426		 * Another constraint is that we need to limit the blit to
427		 * the VRAM block size, unless size is smaller than
428		 * min_chunk_size.
429		 */
430		u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
431
432		size = min_t(u64, size, chunk);
433		if (size > m->min_chunk_size)
434			size = round_down(size, m->min_chunk_size);
435	}
436
437	return size;
438}
439
440static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
441{
442	/* If the chunk is not fragmented, allow identity map. */
443	return cur->size >= size;
444}
445
446static u32 pte_update_size(struct xe_migrate *m,
447			   bool is_vram,
448			   struct ttm_resource *res,
449			   struct xe_res_cursor *cur,
450			   u64 *L0, u64 *L0_ofs, u32 *L0_pt,
451			   u32 cmd_size, u32 pt_ofs, u32 avail_pts)
452{
453	u32 cmds = 0;
454
455	*L0_pt = pt_ofs;
456	if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
457		/* Offset into identity map. */
458		*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
459					      cur->start + vram_region_gpu_offset(res));
460		cmds += cmd_size;
461	} else {
462		/* Clip L0 to available size */
463		u64 size = min(*L0, (u64)avail_pts * SZ_2M);
464		u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;
465
466		*L0 = size;
467		*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
468
469		/* MI_STORE_DATA_IMM */
470		cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
471
472		/* PDE qwords */
473		cmds += num_4k_pages * 2;
474
475		/* Each chunk has a single blit command */
476		cmds += cmd_size;
477	}
478
479	return cmds;
480}
481
482static void emit_pte(struct xe_migrate *m,
483		     struct xe_bb *bb, u32 at_pt,
484		     bool is_vram, bool is_comp_pte,
485		     struct xe_res_cursor *cur,
486		     u32 size, struct ttm_resource *res)
487{
488	struct xe_device *xe = tile_to_xe(m->tile);
489	struct xe_vm *vm = m->q->vm;
490	u16 pat_index;
491	u32 ptes;
492	u64 ofs = (u64)at_pt * XE_PAGE_SIZE;
493	u64 cur_ofs;
494
495	/* Indirect access needs compression enabled uncached PAT index */
496	if (GRAPHICS_VERx100(xe) >= 2000)
497		pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
498					  xe->pat.idx[XE_CACHE_WB];
499	else
500		pat_index = xe->pat.idx[XE_CACHE_WB];
501
502	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
503
504	while (ptes) {
505		u32 chunk = min(MAX_PTE_PER_SDI, ptes);
506
507		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
508		bb->cs[bb->len++] = ofs;
509		bb->cs[bb->len++] = 0;
510
511		cur_ofs = ofs;
512		ofs += chunk * 8;
513		ptes -= chunk;
514
515		while (chunk--) {
516			u64 addr, flags = 0;
517			bool devmem = false;
518
519			addr = xe_res_dma(cur) & PAGE_MASK;
520			if (is_vram) {
521				if (vm->flags & XE_VM_FLAG_64K) {
522					u64 va = cur_ofs * XE_PAGE_SIZE / 8;
523
524					xe_assert(xe, (va & (SZ_64K - 1)) ==
525						  (addr & (SZ_64K - 1)));
526
527					flags |= XE_PTE_PS64;
528				}
529
530				addr += vram_region_gpu_offset(res);
531				devmem = true;
532			}
533
534			addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
535							   addr, pat_index,
536							   0, devmem, flags);
537			bb->cs[bb->len++] = lower_32_bits(addr);
538			bb->cs[bb->len++] = upper_32_bits(addr);
539
540			xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
541			cur_ofs += 8;
542		}
543	}
544}
545
546#define EMIT_COPY_CCS_DW 5
547static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
548			  u64 dst_ofs, bool dst_is_indirect,
549			  u64 src_ofs, bool src_is_indirect,
550			  u32 size)
551{
552	struct xe_device *xe = gt_to_xe(gt);
553	u32 *cs = bb->cs + bb->len;
554	u32 num_ccs_blks;
555	u32 num_pages;
556	u32 ccs_copy_size;
557	u32 mocs;
558
559	if (GRAPHICS_VERx100(xe) >= 2000) {
560		num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
561		xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
562
563		ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
564		mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
565
566	} else {
567		num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
568					    NUM_CCS_BYTES_PER_BLOCK);
569		xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
570
571		ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
572		mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
573	}
574
575	*cs++ = XY_CTRL_SURF_COPY_BLT |
576		(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
577		(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
578		ccs_copy_size;
579	*cs++ = lower_32_bits(src_ofs);
580	*cs++ = upper_32_bits(src_ofs) | mocs;
581	*cs++ = lower_32_bits(dst_ofs);
582	*cs++ = upper_32_bits(dst_ofs) | mocs;
583
584	bb->len = cs - bb->cs;
585}
586
587#define EMIT_COPY_DW 10
588static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
589		      u64 src_ofs, u64 dst_ofs, unsigned int size,
590		      unsigned int pitch)
591{
592	struct xe_device *xe = gt_to_xe(gt);
593	u32 mocs = 0;
594	u32 tile_y = 0;
595
596	xe_gt_assert(gt, size / pitch <= S16_MAX);
597	xe_gt_assert(gt, pitch / 4 <= S16_MAX);
598	xe_gt_assert(gt, pitch <= U16_MAX);
599
600	if (GRAPHICS_VER(xe) >= 20)
601		mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
602
603	if (GRAPHICS_VERx100(xe) >= 1250)
604		tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
605
606	bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
607	bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
608	bb->cs[bb->len++] = 0;
609	bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
610	bb->cs[bb->len++] = lower_32_bits(dst_ofs);
611	bb->cs[bb->len++] = upper_32_bits(dst_ofs);
612	bb->cs[bb->len++] = 0;
613	bb->cs[bb->len++] = pitch | mocs;
614	bb->cs[bb->len++] = lower_32_bits(src_ofs);
615	bb->cs[bb->len++] = upper_32_bits(src_ofs);
616}
617
618static int job_add_deps(struct xe_sched_job *job, struct dma_resv *resv,
619			enum dma_resv_usage usage)
620{
621	return drm_sched_job_add_resv_dependencies(&job->drm, resv, usage);
622}
623
624static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
625{
626	return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
627}
628
629static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
630			       struct xe_bb *bb,
631			       u64 src_ofs, bool src_is_indirect,
632			       u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
633			       u64 ccs_ofs, bool copy_ccs)
634{
635	struct xe_gt *gt = m->tile->primary_gt;
636	u32 flush_flags = 0;
637
638	if (xe_device_has_flat_ccs(gt_to_xe(gt)) && !copy_ccs && dst_is_indirect) {
639		/*
640		 * If the src is already in vram, then it should already
641		 * have been cleared by us, or has been populated by the
642		 * user. Make sure we copy the CCS aux state as-is.
643		 *
644		 * Otherwise if the bo doesn't have any CCS metadata attached,
645		 * we still need to clear it for security reasons.
646		 */
647		u64 ccs_src_ofs =  src_is_indirect ? src_ofs : m->cleared_mem_ofs;
648
649		emit_copy_ccs(gt, bb,
650			      dst_ofs, true,
651			      ccs_src_ofs, src_is_indirect, dst_size);
652
653		flush_flags = MI_FLUSH_DW_CCS;
654	} else if (copy_ccs) {
655		if (!src_is_indirect)
656			src_ofs = ccs_ofs;
657		else if (!dst_is_indirect)
658			dst_ofs = ccs_ofs;
659
660		xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
661
662		emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
663			      src_is_indirect, dst_size);
664		if (dst_is_indirect)
665			flush_flags = MI_FLUSH_DW_CCS;
666	}
667
668	return flush_flags;
669}
670
671/**
672 * xe_migrate_copy() - Copy content of TTM resources.
673 * @m: The migration context.
674 * @src_bo: The buffer object @src is currently bound to.
675 * @dst_bo: If copying between resources created for the same bo, set this to
676 * the same value as @src_bo. If copying between buffer objects, set it to
677 * the buffer object @dst is currently bound to.
678 * @src: The source TTM resource.
679 * @dst: The dst TTM resource.
680 * @copy_only_ccs: If true copy only CCS metadata
681 *
682 * Copies the contents of @src to @dst: On flat CCS devices,
683 * the CCS metadata is copied as well if needed, or if not present,
684 * the CCS metadata of @dst is cleared for security reasons.
685 *
686 * Return: Pointer to a dma_fence representing the last copy batch, or
687 * an error pointer on failure. If there is a failure, any copy operation
688 * started by the function call has been synced.
689 */
690struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
691				  struct xe_bo *src_bo,
692				  struct xe_bo *dst_bo,
693				  struct ttm_resource *src,
694				  struct ttm_resource *dst,
695				  bool copy_only_ccs)
696{
697	struct xe_gt *gt = m->tile->primary_gt;
698	struct xe_device *xe = gt_to_xe(gt);
699	struct dma_fence *fence = NULL;
700	u64 size = src_bo->size;
701	struct xe_res_cursor src_it, dst_it, ccs_it;
702	u64 src_L0_ofs, dst_L0_ofs;
703	u32 src_L0_pt, dst_L0_pt;
704	u64 src_L0, dst_L0;
705	int pass = 0;
706	int err;
707	bool src_is_pltt = src->mem_type == XE_PL_TT;
708	bool dst_is_pltt = dst->mem_type == XE_PL_TT;
709	bool src_is_vram = mem_type_is_vram(src->mem_type);
710	bool dst_is_vram = mem_type_is_vram(dst->mem_type);
711	bool copy_ccs = xe_device_has_flat_ccs(xe) &&
712		xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
713	bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
714
715	/* Copying CCS between two different BOs is not supported yet. */
716	if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
717		return ERR_PTR(-EINVAL);
718
719	if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
720		return ERR_PTR(-EINVAL);
721
722	if (!src_is_vram)
723		xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
724	else
725		xe_res_first(src, 0, size, &src_it);
726	if (!dst_is_vram)
727		xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
728	else
729		xe_res_first(dst, 0, size, &dst_it);
730
731	if (copy_system_ccs)
732		xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
733				PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
734				&ccs_it);
735
736	while (size) {
737		u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
738		struct xe_sched_job *job;
739		struct xe_bb *bb;
740		u32 flush_flags;
741		u32 update_idx;
742		u64 ccs_ofs, ccs_size;
743		u32 ccs_pt;
744
745		bool usm = xe->info.has_usm;
746		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
747
748		src_L0 = xe_migrate_res_sizes(m, &src_it);
749		dst_L0 = xe_migrate_res_sizes(m, &dst_it);
750
751		drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
752			pass++, src_L0, dst_L0);
753
754		src_L0 = min(src_L0, dst_L0);
755
756		batch_size += pte_update_size(m, src_is_vram, src, &src_it, &src_L0,
757					      &src_L0_ofs, &src_L0_pt, 0, 0,
758					      avail_pts);
759
760		batch_size += pte_update_size(m, dst_is_vram, dst, &dst_it, &src_L0,
761					      &dst_L0_ofs, &dst_L0_pt, 0,
762					      avail_pts, avail_pts);
763
764		if (copy_system_ccs) {
765			ccs_size = xe_device_ccs_bytes(xe, src_L0);
766			batch_size += pte_update_size(m, false, NULL, &ccs_it, &ccs_size,
767						      &ccs_ofs, &ccs_pt, 0,
768						      2 * avail_pts,
769						      avail_pts);
770			xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
771		}
772
773		/* Add copy commands size here */
774		batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
775			((xe_device_has_flat_ccs(xe) ? EMIT_COPY_CCS_DW : 0));
776
777		bb = xe_bb_new(gt, batch_size, usm);
778		if (IS_ERR(bb)) {
779			err = PTR_ERR(bb);
780			goto err_sync;
781		}
782
783		if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
784			xe_res_next(&src_it, src_L0);
785		else
786			emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs,
787				 &src_it, src_L0, src);
788
789		if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
790			xe_res_next(&dst_it, src_L0);
791		else
792			emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
793				 &dst_it, src_L0, dst);
794
795		if (copy_system_ccs)
796			emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
797
798		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
799		update_idx = bb->len;
800
801		if (!copy_only_ccs)
802			emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
803
804		flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
805						  IS_DGFX(xe) ? src_is_vram : src_is_pltt,
806						  dst_L0_ofs,
807						  IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
808						  src_L0, ccs_ofs, copy_ccs);
809
810		mutex_lock(&m->job_mutex);
811		job = xe_bb_create_migration_job(m->q, bb,
812						 xe_migrate_batch_base(m, usm),
813						 update_idx);
814		if (IS_ERR(job)) {
815			err = PTR_ERR(job);
816			goto err;
817		}
818
819		xe_sched_job_add_migrate_flush(job, flush_flags);
820		if (!fence) {
821			err = job_add_deps(job, src_bo->ttm.base.resv,
822					   DMA_RESV_USAGE_BOOKKEEP);
823			if (!err && src_bo != dst_bo)
824				err = job_add_deps(job, dst_bo->ttm.base.resv,
825						   DMA_RESV_USAGE_BOOKKEEP);
826			if (err)
827				goto err_job;
828		}
829
830		xe_sched_job_arm(job);
831		dma_fence_put(fence);
832		fence = dma_fence_get(&job->drm.s_fence->finished);
833		xe_sched_job_push(job);
834
835		dma_fence_put(m->fence);
836		m->fence = dma_fence_get(fence);
837
838		mutex_unlock(&m->job_mutex);
839
840		xe_bb_free(bb, fence);
841		size -= src_L0;
842		continue;
843
844err_job:
845		xe_sched_job_put(job);
846err:
847		mutex_unlock(&m->job_mutex);
848		xe_bb_free(bb, NULL);
849
850err_sync:
851		/* Sync partial copy if any. FIXME: under job_mutex? */
852		if (fence) {
853			dma_fence_wait(fence, false);
854			dma_fence_put(fence);
855		}
856
857		return ERR_PTR(err);
858	}
859
860	return fence;
861}
862
863static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
864				 u32 size, u32 pitch)
865{
866	struct xe_device *xe = gt_to_xe(gt);
867	u32 *cs = bb->cs + bb->len;
868	u32 len = PVC_MEM_SET_CMD_LEN_DW;
869
870	*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
871	*cs++ = pitch - 1;
872	*cs++ = (size / pitch) - 1;
873	*cs++ = pitch - 1;
874	*cs++ = lower_32_bits(src_ofs);
875	*cs++ = upper_32_bits(src_ofs);
876	if (GRAPHICS_VERx100(xe) >= 2000)
877		*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
878	else
879		*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
880
881	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
882
883	bb->len += len;
884}
885
886static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
887				 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
888{
889	struct xe_device *xe = gt_to_xe(gt);
890	u32 *cs = bb->cs + bb->len;
891	u32 len = XY_FAST_COLOR_BLT_DW;
892
893	if (GRAPHICS_VERx100(xe) < 1250)
894		len = 11;
895
896	*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
897		(len - 2);
898	if (GRAPHICS_VERx100(xe) >= 2000)
899		*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
900			(pitch - 1);
901	else
902		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
903			(pitch - 1);
904	*cs++ = 0;
905	*cs++ = (size / pitch) << 16 | pitch / 4;
906	*cs++ = lower_32_bits(src_ofs);
907	*cs++ = upper_32_bits(src_ofs);
908	*cs++ = (is_vram ? 0x0 : 0x1) <<  XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
909	*cs++ = 0;
910	*cs++ = 0;
911	*cs++ = 0;
912	*cs++ = 0;
913
914	if (len > 11) {
915		*cs++ = 0;
916		*cs++ = 0;
917		*cs++ = 0;
918		*cs++ = 0;
919		*cs++ = 0;
920	}
921
922	xe_gt_assert(gt, cs - bb->cs == len + bb->len);
923
924	bb->len += len;
925}
926
927static bool has_service_copy_support(struct xe_gt *gt)
928{
929	/*
930	 * What we care about is whether the architecture was designed with
931	 * service copy functionality (specifically the new MEM_SET / MEM_COPY
932	 * instructions) so check the architectural engine list rather than the
933	 * actual list since these instructions are usable on BCS0 even if
934	 * all of the actual service copy engines (BCS1-BCS8) have been fused
935	 * off.
936	 */
937	return gt->info.__engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
938						XE_HW_ENGINE_BCS1);
939}
940
941static u32 emit_clear_cmd_len(struct xe_gt *gt)
942{
943	if (has_service_copy_support(gt))
944		return PVC_MEM_SET_CMD_LEN_DW;
945	else
946		return XY_FAST_COLOR_BLT_DW;
947}
948
949static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
950		       u32 size, u32 pitch, bool is_vram)
951{
952	if (has_service_copy_support(gt))
953		emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
954	else
955		emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
956				     is_vram);
957}
958
959/**
960 * xe_migrate_clear() - Copy content of TTM resources.
961 * @m: The migration context.
962 * @bo: The buffer object @dst is currently bound to.
963 * @dst: The dst TTM resource to be cleared.
964 *
965 * Clear the contents of @dst to zero. On flat CCS devices,
966 * the CCS metadata is cleared to zero as well on VRAM destinations.
967 * TODO: Eliminate the @bo argument.
968 *
969 * Return: Pointer to a dma_fence representing the last clear batch, or
970 * an error pointer on failure. If there is a failure, any clear operation
971 * started by the function call has been synced.
972 */
973struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
974				   struct xe_bo *bo,
975				   struct ttm_resource *dst)
976{
977	bool clear_vram = mem_type_is_vram(dst->mem_type);
978	struct xe_gt *gt = m->tile->primary_gt;
979	struct xe_device *xe = gt_to_xe(gt);
980	bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false;
981	struct dma_fence *fence = NULL;
982	u64 size = bo->size;
983	struct xe_res_cursor src_it;
984	struct ttm_resource *src = dst;
985	int err;
986
987	if (!clear_vram)
988		xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
989	else
990		xe_res_first(src, 0, bo->size, &src_it);
991
992	while (size) {
993		u64 clear_L0_ofs;
994		u32 clear_L0_pt;
995		u32 flush_flags = 0;
996		u64 clear_L0;
997		struct xe_sched_job *job;
998		struct xe_bb *bb;
999		u32 batch_size, update_idx;
1000
1001		bool usm = xe->info.has_usm;
1002		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
1003
1004		clear_L0 = xe_migrate_res_sizes(m, &src_it);
1005
1006		/* Calculate final sizes and batch size.. */
1007		batch_size = 2 +
1008			pte_update_size(m, clear_vram, src, &src_it,
1009					&clear_L0, &clear_L0_ofs, &clear_L0_pt,
1010					clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0,
1011					avail_pts);
1012
1013		if (xe_device_has_flat_ccs(xe))
1014			batch_size += EMIT_COPY_CCS_DW;
1015
1016		/* Clear commands */
1017
1018		if (WARN_ON_ONCE(!clear_L0))
1019			break;
1020
1021		bb = xe_bb_new(gt, batch_size, usm);
1022		if (IS_ERR(bb)) {
1023			err = PTR_ERR(bb);
1024			goto err_sync;
1025		}
1026
1027		size -= clear_L0;
1028		/* Preemption is enabled again by the ring ops. */
1029		if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
1030			xe_res_next(&src_it, clear_L0);
1031		else
1032			emit_pte(m, bb, clear_L0_pt, clear_vram, clear_system_ccs,
1033				 &src_it, clear_L0, dst);
1034
1035		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1036		update_idx = bb->len;
1037
1038		if (!clear_system_ccs)
1039			emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
1040
1041		if (xe_device_has_flat_ccs(xe)) {
1042			emit_copy_ccs(gt, bb, clear_L0_ofs, true,
1043				      m->cleared_mem_ofs, false, clear_L0);
1044			flush_flags = MI_FLUSH_DW_CCS;
1045		}
1046
1047		mutex_lock(&m->job_mutex);
1048		job = xe_bb_create_migration_job(m->q, bb,
1049						 xe_migrate_batch_base(m, usm),
1050						 update_idx);
1051		if (IS_ERR(job)) {
1052			err = PTR_ERR(job);
1053			goto err;
1054		}
1055
1056		xe_sched_job_add_migrate_flush(job, flush_flags);
1057		if (!fence) {
1058			/*
1059			 * There can't be anything userspace related at this
1060			 * point, so we just need to respect any potential move
1061			 * fences, which are always tracked as
1062			 * DMA_RESV_USAGE_KERNEL.
1063			 */
1064			err = job_add_deps(job, bo->ttm.base.resv,
1065					   DMA_RESV_USAGE_KERNEL);
1066			if (err)
1067				goto err_job;
1068		}
1069
1070		xe_sched_job_arm(job);
1071		dma_fence_put(fence);
1072		fence = dma_fence_get(&job->drm.s_fence->finished);
1073		xe_sched_job_push(job);
1074
1075		dma_fence_put(m->fence);
1076		m->fence = dma_fence_get(fence);
1077
1078		mutex_unlock(&m->job_mutex);
1079
1080		xe_bb_free(bb, fence);
1081		continue;
1082
1083err_job:
1084		xe_sched_job_put(job);
1085err:
1086		mutex_unlock(&m->job_mutex);
1087		xe_bb_free(bb, NULL);
1088err_sync:
1089		/* Sync partial copies if any. FIXME: job_mutex? */
1090		if (fence) {
1091			dma_fence_wait(m->fence, false);
1092			dma_fence_put(fence);
1093		}
1094
1095		return ERR_PTR(err);
1096	}
1097
1098	if (clear_system_ccs)
1099		bo->ccs_cleared = true;
1100
1101	return fence;
1102}
1103
1104static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
1105			  const struct xe_vm_pgtable_update *update,
1106			  struct xe_migrate_pt_update *pt_update)
1107{
1108	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1109	u32 chunk;
1110	u32 ofs = update->ofs, size = update->qwords;
1111
1112	/*
1113	 * If we have 512 entries (max), we would populate it ourselves,
1114	 * and update the PDE above it to the new pointer.
1115	 * The only time this can only happen if we have to update the top
1116	 * PDE. This requires a BO that is almost vm->size big.
1117	 *
1118	 * This shouldn't be possible in practice.. might change when 16K
1119	 * pages are used. Hence the assert.
1120	 */
1121	xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
1122	if (!ppgtt_ofs)
1123		ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
1124						xe_bo_addr(update->pt_bo, 0,
1125							   XE_PAGE_SIZE));
1126
1127	do {
1128		u64 addr = ppgtt_ofs + ofs * 8;
1129
1130		chunk = min(size, MAX_PTE_PER_SDI);
1131
1132		/* Ensure populatefn can do memset64 by aligning bb->cs */
1133		if (!(bb->len & 1))
1134			bb->cs[bb->len++] = MI_NOOP;
1135
1136		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
1137		bb->cs[bb->len++] = lower_32_bits(addr);
1138		bb->cs[bb->len++] = upper_32_bits(addr);
1139		ops->populate(pt_update, tile, NULL, bb->cs + bb->len, ofs, chunk,
1140			      update);
1141
1142		bb->len += chunk * 2;
1143		ofs += chunk;
1144		size -= chunk;
1145	} while (size);
1146}
1147
1148struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
1149{
1150	return xe_vm_get(m->q->vm);
1151}
1152
1153#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1154struct migrate_test_params {
1155	struct xe_test_priv base;
1156	bool force_gpu;
1157};
1158
1159#define to_migrate_test_params(_priv) \
1160	container_of(_priv, struct migrate_test_params, base)
1161#endif
1162
1163static struct dma_fence *
1164xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
1165			       struct xe_vm *vm, struct xe_bo *bo,
1166			       const struct  xe_vm_pgtable_update *updates,
1167			       u32 num_updates, bool wait_vm,
1168			       struct xe_migrate_pt_update *pt_update)
1169{
1170	XE_TEST_DECLARE(struct migrate_test_params *test =
1171			to_migrate_test_params
1172			(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
1173	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1174	struct dma_fence *fence;
1175	int err;
1176	u32 i;
1177
1178	if (XE_TEST_ONLY(test && test->force_gpu))
1179		return ERR_PTR(-ETIME);
1180
1181	if (bo && !dma_resv_test_signaled(bo->ttm.base.resv,
1182					  DMA_RESV_USAGE_KERNEL))
1183		return ERR_PTR(-ETIME);
1184
1185	if (wait_vm && !dma_resv_test_signaled(xe_vm_resv(vm),
1186					       DMA_RESV_USAGE_BOOKKEEP))
1187		return ERR_PTR(-ETIME);
1188
1189	if (ops->pre_commit) {
1190		pt_update->job = NULL;
1191		err = ops->pre_commit(pt_update);
1192		if (err)
1193			return ERR_PTR(err);
1194	}
1195	for (i = 0; i < num_updates; i++) {
1196		const struct xe_vm_pgtable_update *update = &updates[i];
1197
1198		ops->populate(pt_update, m->tile, &update->pt_bo->vmap, NULL,
1199			      update->ofs, update->qwords, update);
1200	}
1201
1202	if (vm) {
1203		trace_xe_vm_cpu_bind(vm);
1204		xe_device_wmb(vm->xe);
1205	}
1206
1207	fence = dma_fence_get_stub();
1208
1209	return fence;
1210}
1211
1212static bool no_in_syncs(struct xe_vm *vm, struct xe_exec_queue *q,
1213			struct xe_sync_entry *syncs, u32 num_syncs)
1214{
1215	struct dma_fence *fence;
1216	int i;
1217
1218	for (i = 0; i < num_syncs; i++) {
1219		fence = syncs[i].fence;
1220
1221		if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1222				       &fence->flags))
1223			return false;
1224	}
1225	if (q) {
1226		fence = xe_exec_queue_last_fence_get(q, vm);
1227		if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1228			dma_fence_put(fence);
1229			return false;
1230		}
1231		dma_fence_put(fence);
1232	}
1233
1234	return true;
1235}
1236
1237/**
1238 * xe_migrate_update_pgtables() - Pipelined page-table update
1239 * @m: The migrate context.
1240 * @vm: The vm we'll be updating.
1241 * @bo: The bo whose dma-resv we will await before updating, or NULL if userptr.
1242 * @q: The exec queue to be used for the update or NULL if the default
1243 * migration engine is to be used.
1244 * @updates: An array of update descriptors.
1245 * @num_updates: Number of descriptors in @updates.
1246 * @syncs: Array of xe_sync_entry to await before updating. Note that waits
1247 * will block the engine timeline.
1248 * @num_syncs: Number of entries in @syncs.
1249 * @pt_update: Pointer to a struct xe_migrate_pt_update, which contains
1250 * pointers to callback functions and, if subclassed, private arguments to
1251 * those.
1252 *
1253 * Perform a pipelined page-table update. The update descriptors are typically
1254 * built under the same lock critical section as a call to this function. If
1255 * using the default engine for the updates, they will be performed in the
1256 * order they grab the job_mutex. If different engines are used, external
1257 * synchronization is needed for overlapping updates to maintain page-table
1258 * consistency. Note that the meaing of "overlapping" is that the updates
1259 * touch the same page-table, which might be a higher-level page-directory.
1260 * If no pipelining is needed, then updates may be performed by the cpu.
1261 *
1262 * Return: A dma_fence that, when signaled, indicates the update completion.
1263 */
1264struct dma_fence *
1265xe_migrate_update_pgtables(struct xe_migrate *m,
1266			   struct xe_vm *vm,
1267			   struct xe_bo *bo,
1268			   struct xe_exec_queue *q,
1269			   const struct xe_vm_pgtable_update *updates,
1270			   u32 num_updates,
1271			   struct xe_sync_entry *syncs, u32 num_syncs,
1272			   struct xe_migrate_pt_update *pt_update)
1273{
1274	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
1275	struct xe_tile *tile = m->tile;
1276	struct xe_gt *gt = tile->primary_gt;
1277	struct xe_device *xe = tile_to_xe(tile);
1278	struct xe_sched_job *job;
1279	struct dma_fence *fence;
1280	struct drm_suballoc *sa_bo = NULL;
1281	struct xe_vma *vma = pt_update->vma;
1282	struct xe_bb *bb;
1283	u32 i, batch_size, ppgtt_ofs, update_idx, page_ofs = 0;
1284	u64 addr;
1285	int err = 0;
1286	bool usm = !q && xe->info.has_usm;
1287	bool first_munmap_rebind = vma &&
1288		vma->gpuva.flags & XE_VMA_FIRST_REBIND;
1289	struct xe_exec_queue *q_override = !q ? m->q : q;
1290	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
1291
1292	/* Use the CPU if no in syncs and engine is idle */
1293	if (no_in_syncs(vm, q, syncs, num_syncs) && xe_exec_queue_is_idle(q_override)) {
1294		fence =  xe_migrate_update_pgtables_cpu(m, vm, bo, updates,
1295							num_updates,
1296							first_munmap_rebind,
1297							pt_update);
1298		if (!IS_ERR(fence) || fence == ERR_PTR(-EAGAIN))
1299			return fence;
1300	}
1301
1302	/* fixed + PTE entries */
1303	if (IS_DGFX(xe))
1304		batch_size = 2;
1305	else
1306		batch_size = 6 + num_updates * 2;
1307
1308	for (i = 0; i < num_updates; i++) {
1309		u32 num_cmds = DIV_ROUND_UP(updates[i].qwords, MAX_PTE_PER_SDI);
1310
1311		/* align noop + MI_STORE_DATA_IMM cmd prefix */
1312		batch_size += 4 * num_cmds + updates[i].qwords * 2;
1313	}
1314
1315	/*
1316	 * XXX: Create temp bo to copy from, if batch_size becomes too big?
1317	 *
1318	 * Worst case: Sum(2 * (each lower level page size) + (top level page size))
1319	 * Should be reasonably bound..
1320	 */
1321	xe_tile_assert(tile, batch_size < SZ_128K);
1322
1323	bb = xe_bb_new(gt, batch_size, !q && xe->info.has_usm);
1324	if (IS_ERR(bb))
1325		return ERR_CAST(bb);
1326
1327	/* For sysmem PTE's, need to map them in our hole.. */
1328	if (!IS_DGFX(xe)) {
1329		ppgtt_ofs = NUM_KERNEL_PDE - 1;
1330		if (q) {
1331			xe_tile_assert(tile, num_updates <= NUM_VMUSA_WRITES_PER_UNIT);
1332
1333			sa_bo = drm_suballoc_new(&m->vm_update_sa, 1,
1334						 GFP_KERNEL, true, 0);
1335			if (IS_ERR(sa_bo)) {
1336				err = PTR_ERR(sa_bo);
1337				goto err;
1338			}
1339
1340			ppgtt_ofs = NUM_KERNEL_PDE +
1341				(drm_suballoc_soffset(sa_bo) /
1342				 NUM_VMUSA_UNIT_PER_PAGE);
1343			page_ofs = (drm_suballoc_soffset(sa_bo) %
1344				    NUM_VMUSA_UNIT_PER_PAGE) *
1345				VM_SA_UPDATE_UNIT_SIZE;
1346		}
1347
1348		/* Map our PT's to gtt */
1349		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(num_updates);
1350		bb->cs[bb->len++] = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
1351		bb->cs[bb->len++] = 0; /* upper_32_bits */
1352
1353		for (i = 0; i < num_updates; i++) {
1354			struct xe_bo *pt_bo = updates[i].pt_bo;
1355
1356			xe_tile_assert(tile, pt_bo->size == SZ_4K);
1357
1358			addr = vm->pt_ops->pte_encode_bo(pt_bo, 0, pat_index, 0);
1359			bb->cs[bb->len++] = lower_32_bits(addr);
1360			bb->cs[bb->len++] = upper_32_bits(addr);
1361		}
1362
1363		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1364		update_idx = bb->len;
1365
1366		addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
1367			(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
1368		for (i = 0; i < num_updates; i++)
1369			write_pgtable(tile, bb, addr + i * XE_PAGE_SIZE,
1370				      &updates[i], pt_update);
1371	} else {
1372		/* phys pages, no preamble required */
1373		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
1374		update_idx = bb->len;
1375
1376		for (i = 0; i < num_updates; i++)
1377			write_pgtable(tile, bb, 0, &updates[i], pt_update);
1378	}
1379
1380	if (!q)
1381		mutex_lock(&m->job_mutex);
1382
1383	job = xe_bb_create_migration_job(q ?: m->q, bb,
1384					 xe_migrate_batch_base(m, usm),
1385					 update_idx);
1386	if (IS_ERR(job)) {
1387		err = PTR_ERR(job);
1388		goto err_bb;
1389	}
1390
1391	/* Wait on BO move */
1392	if (bo) {
1393		err = job_add_deps(job, bo->ttm.base.resv,
1394				   DMA_RESV_USAGE_KERNEL);
1395		if (err)
1396			goto err_job;
1397	}
1398
1399	/*
1400	 * Munmap style VM unbind, need to wait for all jobs to be complete /
1401	 * trigger preempts before moving forward
1402	 */
1403	if (first_munmap_rebind) {
1404		err = job_add_deps(job, xe_vm_resv(vm),
1405				   DMA_RESV_USAGE_BOOKKEEP);
1406		if (err)
1407			goto err_job;
1408	}
1409
1410	err = xe_sched_job_last_fence_add_dep(job, vm);
1411	for (i = 0; !err && i < num_syncs; i++)
1412		err = xe_sync_entry_add_deps(&syncs[i], job);
1413
1414	if (err)
1415		goto err_job;
1416
1417	if (ops->pre_commit) {
1418		pt_update->job = job;
1419		err = ops->pre_commit(pt_update);
1420		if (err)
1421			goto err_job;
1422	}
1423	xe_sched_job_arm(job);
1424	fence = dma_fence_get(&job->drm.s_fence->finished);
1425	xe_sched_job_push(job);
1426
1427	if (!q)
1428		mutex_unlock(&m->job_mutex);
1429
1430	xe_bb_free(bb, fence);
1431	drm_suballoc_free(sa_bo, fence);
1432
1433	return fence;
1434
1435err_job:
1436	xe_sched_job_put(job);
1437err_bb:
1438	if (!q)
1439		mutex_unlock(&m->job_mutex);
1440	xe_bb_free(bb, NULL);
1441err:
1442	drm_suballoc_free(sa_bo, NULL);
1443	return ERR_PTR(err);
1444}
1445
1446/**
1447 * xe_migrate_wait() - Complete all operations using the xe_migrate context
1448 * @m: Migrate context to wait for.
1449 *
1450 * Waits until the GPU no longer uses the migrate context's default engine
1451 * or its page-table objects. FIXME: What about separate page-table update
1452 * engines?
1453 */
1454void xe_migrate_wait(struct xe_migrate *m)
1455{
1456	if (m->fence)
1457		dma_fence_wait(m->fence, false);
1458}
1459
1460#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1461#include "tests/xe_migrate.c"
1462#endif
1463