1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2022 Intel Corporation
4 */
5
6#include "xe_guc_pc.h"
7
8#include <linux/delay.h>
9
10#include <drm/drm_managed.h>
11
12#include "abi/guc_actions_abi.h"
13#include "abi/guc_actions_slpc_abi.h"
14#include "regs/xe_gt_regs.h"
15#include "regs/xe_regs.h"
16#include "xe_bo.h"
17#include "xe_device.h"
18#include "xe_gt.h"
19#include "xe_gt_idle.h"
20#include "xe_gt_sysfs.h"
21#include "xe_gt_types.h"
22#include "xe_guc_ct.h"
23#include "xe_map.h"
24#include "xe_mmio.h"
25#include "xe_pcode.h"
26
27#define MCHBAR_MIRROR_BASE_SNB	0x140000
28
29#define RP_STATE_CAP		XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
30#define   RP0_MASK		REG_GENMASK(7, 0)
31#define   RP1_MASK		REG_GENMASK(15, 8)
32#define   RPN_MASK		REG_GENMASK(23, 16)
33
34#define FREQ_INFO_REC	XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
35#define   RPE_MASK		REG_GENMASK(15, 8)
36
37#define GT_PERF_STATUS		XE_REG(0x1381b4)
38#define   CAGF_MASK	REG_GENMASK(19, 11)
39
40#define GT_FREQUENCY_MULTIPLIER	50
41#define GT_FREQUENCY_SCALER	3
42
43/**
44 * DOC: GuC Power Conservation (PC)
45 *
46 * GuC Power Conservation (PC) supports multiple features for the most
47 * efficient and performing use of the GT when GuC submission is enabled,
48 * including frequency management, Render-C states management, and various
49 * algorithms for power balancing.
50 *
51 * Single Loop Power Conservation (SLPC) is the name given to the suite of
52 * connected power conservation features in the GuC firmware. The firmware
53 * exposes a programming interface to the host for the control of SLPC.
54 *
55 * Frequency management:
56 * =====================
57 *
58 * Xe driver enables SLPC with all of its defaults features and frequency
59 * selection, which varies per platform.
60 *
61 * Render-C States:
62 * ================
63 *
64 * Render-C states is also a GuC PC feature that is now enabled in Xe for
65 * all platforms.
66 *
67 */
68
69static struct xe_guc *
70pc_to_guc(struct xe_guc_pc *pc)
71{
72	return container_of(pc, struct xe_guc, pc);
73}
74
75static struct xe_device *
76pc_to_xe(struct xe_guc_pc *pc)
77{
78	struct xe_guc *guc = pc_to_guc(pc);
79	struct xe_gt *gt = container_of(guc, struct xe_gt, uc.guc);
80
81	return gt_to_xe(gt);
82}
83
84static struct xe_gt *
85pc_to_gt(struct xe_guc_pc *pc)
86{
87	return container_of(pc, struct xe_gt, uc.guc.pc);
88}
89
90static struct iosys_map *
91pc_to_maps(struct xe_guc_pc *pc)
92{
93	return &pc->bo->vmap;
94}
95
96#define slpc_shared_data_read(pc_, field_) \
97	xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
98			struct slpc_shared_data, field_)
99
100#define slpc_shared_data_write(pc_, field_, val_) \
101	xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
102			struct slpc_shared_data, field_, val_)
103
104#define SLPC_EVENT(id, count) \
105	(FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
106	 FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
107
108static int wait_for_pc_state(struct xe_guc_pc *pc,
109			     enum slpc_global_state state)
110{
111	int timeout_us = 5000; /* rought 5ms, but no need for precision */
112	int slept, wait = 10;
113
114	xe_device_assert_mem_access(pc_to_xe(pc));
115
116	for (slept = 0; slept < timeout_us;) {
117		if (slpc_shared_data_read(pc, header.global_state) == state)
118			return 0;
119
120		usleep_range(wait, wait << 1);
121		slept += wait;
122		wait <<= 1;
123		if (slept + wait > timeout_us)
124			wait = timeout_us - slept;
125	}
126
127	return -ETIMEDOUT;
128}
129
130static int pc_action_reset(struct xe_guc_pc *pc)
131{
132	struct  xe_guc_ct *ct = &pc_to_guc(pc)->ct;
133	int ret;
134	u32 action[] = {
135		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
136		SLPC_EVENT(SLPC_EVENT_RESET, 2),
137		xe_bo_ggtt_addr(pc->bo),
138		0,
139	};
140
141	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
142	if (ret)
143		drm_err(&pc_to_xe(pc)->drm, "GuC PC reset: %pe", ERR_PTR(ret));
144
145	return ret;
146}
147
148static int pc_action_shutdown(struct xe_guc_pc *pc)
149{
150	struct  xe_guc_ct *ct = &pc_to_guc(pc)->ct;
151	int ret;
152	u32 action[] = {
153		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
154		SLPC_EVENT(SLPC_EVENT_SHUTDOWN, 2),
155		xe_bo_ggtt_addr(pc->bo),
156		0,
157	};
158
159	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
160	if (ret)
161		drm_err(&pc_to_xe(pc)->drm, "GuC PC shutdown %pe",
162			ERR_PTR(ret));
163
164	return ret;
165}
166
167static int pc_action_query_task_state(struct xe_guc_pc *pc)
168{
169	struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
170	int ret;
171	u32 action[] = {
172		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
173		SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
174		xe_bo_ggtt_addr(pc->bo),
175		0,
176	};
177
178	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
179		return -EAGAIN;
180
181	/* Blocking here to ensure the results are ready before reading them */
182	ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
183	if (ret)
184		drm_err(&pc_to_xe(pc)->drm,
185			"GuC PC query task state failed: %pe", ERR_PTR(ret));
186
187	return ret;
188}
189
190static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
191{
192	struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
193	int ret;
194	u32 action[] = {
195		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
196		SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
197		id,
198		value,
199	};
200
201	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
202		return -EAGAIN;
203
204	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
205	if (ret)
206		drm_err(&pc_to_xe(pc)->drm, "GuC PC set param failed: %pe",
207			ERR_PTR(ret));
208
209	return ret;
210}
211
212static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
213{
214	struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
215	u32 action[] = {
216		XE_GUC_ACTION_SETUP_PC_GUCRC,
217		mode,
218	};
219	int ret;
220
221	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
222	if (ret)
223		drm_err(&pc_to_xe(pc)->drm, "GuC RC enable failed: %pe",
224			ERR_PTR(ret));
225	return ret;
226}
227
228static u32 decode_freq(u32 raw)
229{
230	return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
231				 GT_FREQUENCY_SCALER);
232}
233
234static u32 encode_freq(u32 freq)
235{
236	return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
237				 GT_FREQUENCY_MULTIPLIER);
238}
239
240static u32 pc_get_min_freq(struct xe_guc_pc *pc)
241{
242	u32 freq;
243
244	freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
245			 slpc_shared_data_read(pc, task_state_data.freq));
246
247	return decode_freq(freq);
248}
249
250static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
251{
252	struct xe_gt *gt = pc_to_gt(pc);
253	u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
254
255	/* Allow/Disallow punit to process software freq requests */
256	xe_mmio_write32(gt, RP_CONTROL, state);
257}
258
259static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
260{
261	struct xe_gt *gt = pc_to_gt(pc);
262	u32 rpnswreq;
263
264	pc_set_manual_rp_ctrl(pc, true);
265
266	/* Req freq is in units of 16.66 Mhz */
267	rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
268	xe_mmio_write32(gt, RPNSWREQ, rpnswreq);
269
270	/* Sleep for a small time to allow pcode to respond */
271	usleep_range(100, 300);
272
273	pc_set_manual_rp_ctrl(pc, false);
274}
275
276static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
277{
278	/*
279	 * Let's only check for the rpn-rp0 range. If max < min,
280	 * min becomes a fixed request.
281	 */
282	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
283		return -EINVAL;
284
285	/*
286	 * GuC policy is to elevate minimum frequency to the efficient levels
287	 * Our goal is to have the admin choices respected.
288	 */
289	pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
290			    freq < pc->rpe_freq);
291
292	return pc_action_set_param(pc,
293				   SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
294				   freq);
295}
296
297static int pc_get_max_freq(struct xe_guc_pc *pc)
298{
299	u32 freq;
300
301	freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
302			 slpc_shared_data_read(pc, task_state_data.freq));
303
304	return decode_freq(freq);
305}
306
307static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
308{
309	/*
310	 * Let's only check for the rpn-rp0 range. If max < min,
311	 * min becomes a fixed request.
312	 * Also, overclocking is not supported.
313	 */
314	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
315		return -EINVAL;
316
317	return pc_action_set_param(pc,
318				   SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
319				   freq);
320}
321
322static void mtl_update_rpe_value(struct xe_guc_pc *pc)
323{
324	struct xe_gt *gt = pc_to_gt(pc);
325	u32 reg;
326
327	if (xe_gt_is_media_type(gt))
328		reg = xe_mmio_read32(gt, MTL_MPE_FREQUENCY);
329	else
330		reg = xe_mmio_read32(gt, MTL_GT_RPE_FREQUENCY);
331
332	pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
333}
334
335static void tgl_update_rpe_value(struct xe_guc_pc *pc)
336{
337	struct xe_gt *gt = pc_to_gt(pc);
338	struct xe_device *xe = gt_to_xe(gt);
339	u32 reg;
340
341	/*
342	 * For PVC we still need to use fused RP1 as the approximation for RPe
343	 * For other platforms than PVC we get the resolved RPe directly from
344	 * PCODE at a different register
345	 */
346	if (xe->info.platform == XE_PVC)
347		reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
348	else
349		reg = xe_mmio_read32(gt, FREQ_INFO_REC);
350
351	pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
352}
353
354static void pc_update_rp_values(struct xe_guc_pc *pc)
355{
356	struct xe_gt *gt = pc_to_gt(pc);
357	struct xe_device *xe = gt_to_xe(gt);
358
359	if (GRAPHICS_VERx100(xe) >= 1270)
360		mtl_update_rpe_value(pc);
361	else
362		tgl_update_rpe_value(pc);
363
364	/*
365	 * RPe is decided at runtime by PCODE. In the rare case where that's
366	 * smaller than the fused min, we will trust the PCODE and use that
367	 * as our minimum one.
368	 */
369	pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
370}
371
372/**
373 * xe_guc_pc_get_act_freq - Get Actual running frequency
374 * @pc: The GuC PC
375 *
376 * Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
377 */
378u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
379{
380	struct xe_gt *gt = pc_to_gt(pc);
381	struct xe_device *xe = gt_to_xe(gt);
382	u32 freq;
383
384	xe_device_mem_access_get(gt_to_xe(gt));
385
386	/* When in RC6, actual frequency reported will be 0. */
387	if (GRAPHICS_VERx100(xe) >= 1270) {
388		freq = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
389		freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
390	} else {
391		freq = xe_mmio_read32(gt, GT_PERF_STATUS);
392		freq = REG_FIELD_GET(CAGF_MASK, freq);
393	}
394
395	freq = decode_freq(freq);
396
397	xe_device_mem_access_put(gt_to_xe(gt));
398
399	return freq;
400}
401
402/**
403 * xe_guc_pc_get_cur_freq - Get Current requested frequency
404 * @pc: The GuC PC
405 * @freq: A pointer to a u32 where the freq value will be returned
406 *
407 * Returns: 0 on success,
408 *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
409 */
410int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
411{
412	struct xe_gt *gt = pc_to_gt(pc);
413	int ret;
414
415	xe_device_mem_access_get(gt_to_xe(gt));
416	/*
417	 * GuC SLPC plays with cur freq request when GuCRC is enabled
418	 * Block RC6 for a more reliable read.
419	 */
420	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
421	if (ret)
422		goto out;
423
424	*freq = xe_mmio_read32(gt, RPNSWREQ);
425
426	*freq = REG_FIELD_GET(REQ_RATIO_MASK, *freq);
427	*freq = decode_freq(*freq);
428
429	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
430out:
431	xe_device_mem_access_put(gt_to_xe(gt));
432	return ret;
433}
434
435/**
436 * xe_guc_pc_get_rp0_freq - Get the RP0 freq
437 * @pc: The GuC PC
438 *
439 * Returns: RP0 freq.
440 */
441u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
442{
443	return pc->rp0_freq;
444}
445
446/**
447 * xe_guc_pc_get_rpe_freq - Get the RPe freq
448 * @pc: The GuC PC
449 *
450 * Returns: RPe freq.
451 */
452u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
453{
454	struct xe_gt *gt = pc_to_gt(pc);
455	struct xe_device *xe = gt_to_xe(gt);
456
457	xe_device_mem_access_get(xe);
458	pc_update_rp_values(pc);
459	xe_device_mem_access_put(xe);
460
461	return pc->rpe_freq;
462}
463
464/**
465 * xe_guc_pc_get_rpn_freq - Get the RPn freq
466 * @pc: The GuC PC
467 *
468 * Returns: RPn freq.
469 */
470u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
471{
472	return pc->rpn_freq;
473}
474
475/**
476 * xe_guc_pc_get_min_freq - Get the min operational frequency
477 * @pc: The GuC PC
478 * @freq: A pointer to a u32 where the freq value will be returned
479 *
480 * Returns: 0 on success,
481 *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
482 */
483int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
484{
485	struct xe_gt *gt = pc_to_gt(pc);
486	int ret;
487
488	xe_device_mem_access_get(pc_to_xe(pc));
489	mutex_lock(&pc->freq_lock);
490	if (!pc->freq_ready) {
491		/* Might be in the middle of a gt reset */
492		ret = -EAGAIN;
493		goto out;
494	}
495
496	/*
497	 * GuC SLPC plays with min freq request when GuCRC is enabled
498	 * Block RC6 for a more reliable read.
499	 */
500	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
501	if (ret)
502		goto out;
503
504	ret = pc_action_query_task_state(pc);
505	if (ret)
506		goto fw;
507
508	*freq = pc_get_min_freq(pc);
509
510fw:
511	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
512out:
513	mutex_unlock(&pc->freq_lock);
514	xe_device_mem_access_put(pc_to_xe(pc));
515	return ret;
516}
517
518/**
519 * xe_guc_pc_set_min_freq - Set the minimal operational frequency
520 * @pc: The GuC PC
521 * @freq: The selected minimal frequency
522 *
523 * Returns: 0 on success,
524 *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
525 *         -EINVAL if value out of bounds.
526 */
527int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
528{
529	int ret;
530
531	xe_device_mem_access_get(pc_to_xe(pc));
532	mutex_lock(&pc->freq_lock);
533	if (!pc->freq_ready) {
534		/* Might be in the middle of a gt reset */
535		ret = -EAGAIN;
536		goto out;
537	}
538
539	ret = pc_set_min_freq(pc, freq);
540	if (ret)
541		goto out;
542
543	pc->user_requested_min = freq;
544
545out:
546	mutex_unlock(&pc->freq_lock);
547	xe_device_mem_access_put(pc_to_xe(pc));
548
549	return ret;
550}
551
552/**
553 * xe_guc_pc_get_max_freq - Get Maximum operational frequency
554 * @pc: The GuC PC
555 * @freq: A pointer to a u32 where the freq value will be returned
556 *
557 * Returns: 0 on success,
558 *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
559 */
560int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
561{
562	int ret;
563
564	xe_device_mem_access_get(pc_to_xe(pc));
565	mutex_lock(&pc->freq_lock);
566	if (!pc->freq_ready) {
567		/* Might be in the middle of a gt reset */
568		ret = -EAGAIN;
569		goto out;
570	}
571
572	ret = pc_action_query_task_state(pc);
573	if (ret)
574		goto out;
575
576	*freq = pc_get_max_freq(pc);
577
578out:
579	mutex_unlock(&pc->freq_lock);
580	xe_device_mem_access_put(pc_to_xe(pc));
581	return ret;
582}
583
584/**
585 * xe_guc_pc_set_max_freq - Set the maximum operational frequency
586 * @pc: The GuC PC
587 * @freq: The selected maximum frequency value
588 *
589 * Returns: 0 on success,
590 *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
591 *         -EINVAL if value out of bounds.
592 */
593int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
594{
595	int ret;
596
597	xe_device_mem_access_get(pc_to_xe(pc));
598	mutex_lock(&pc->freq_lock);
599	if (!pc->freq_ready) {
600		/* Might be in the middle of a gt reset */
601		ret = -EAGAIN;
602		goto out;
603	}
604
605	ret = pc_set_max_freq(pc, freq);
606	if (ret)
607		goto out;
608
609	pc->user_requested_max = freq;
610
611out:
612	mutex_unlock(&pc->freq_lock);
613	xe_device_mem_access_put(pc_to_xe(pc));
614	return ret;
615}
616
617/**
618 * xe_guc_pc_c_status - get the current GT C state
619 * @pc: XE_GuC_PC instance
620 */
621enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
622{
623	struct xe_gt *gt = pc_to_gt(pc);
624	u32 reg, gt_c_state;
625
626	xe_device_mem_access_get(gt_to_xe(gt));
627
628	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
629		reg = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
630		gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
631	} else {
632		reg = xe_mmio_read32(gt, GT_CORE_STATUS);
633		gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
634	}
635
636	xe_device_mem_access_put(gt_to_xe(gt));
637
638	switch (gt_c_state) {
639	case GT_C6:
640		return GT_IDLE_C6;
641	case GT_C0:
642		return GT_IDLE_C0;
643	default:
644		return GT_IDLE_UNKNOWN;
645	}
646}
647
648/**
649 * xe_guc_pc_rc6_residency - rc6 residency counter
650 * @pc: Xe_GuC_PC instance
651 */
652u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
653{
654	struct xe_gt *gt = pc_to_gt(pc);
655	u32 reg;
656
657	xe_device_mem_access_get(gt_to_xe(gt));
658	reg = xe_mmio_read32(gt, GT_GFX_RC6);
659	xe_device_mem_access_put(gt_to_xe(gt));
660
661	return reg;
662}
663
664/**
665 * xe_guc_pc_mc6_residency - mc6 residency counter
666 * @pc: Xe_GuC_PC instance
667 */
668u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
669{
670	struct xe_gt *gt = pc_to_gt(pc);
671	u64 reg;
672
673	xe_device_mem_access_get(gt_to_xe(gt));
674	reg = xe_mmio_read32(gt, MTL_MEDIA_MC6);
675	xe_device_mem_access_put(gt_to_xe(gt));
676
677	return reg;
678}
679
680static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
681{
682	struct xe_gt *gt = pc_to_gt(pc);
683	u32 reg;
684
685	xe_device_assert_mem_access(pc_to_xe(pc));
686
687	if (xe_gt_is_media_type(gt))
688		reg = xe_mmio_read32(gt, MTL_MEDIAP_STATE_CAP);
689	else
690		reg = xe_mmio_read32(gt, MTL_RP_STATE_CAP);
691
692	pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
693
694	pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
695}
696
697static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
698{
699	struct xe_gt *gt = pc_to_gt(pc);
700	struct xe_device *xe = gt_to_xe(gt);
701	u32 reg;
702
703	xe_device_assert_mem_access(pc_to_xe(pc));
704
705	if (xe->info.platform == XE_PVC)
706		reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
707	else
708		reg = xe_mmio_read32(gt, RP_STATE_CAP);
709	pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
710	pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
711}
712
713static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
714{
715	struct xe_gt *gt = pc_to_gt(pc);
716	struct xe_device *xe = gt_to_xe(gt);
717
718	if (GRAPHICS_VERx100(xe) >= 1270)
719		mtl_init_fused_rp_values(pc);
720	else
721		tgl_init_fused_rp_values(pc);
722}
723
724/**
725 * xe_guc_pc_init_early - Initialize RPx values and request a higher GT
726 * frequency to allow faster GuC load times
727 * @pc: Xe_GuC_PC instance
728 */
729void xe_guc_pc_init_early(struct xe_guc_pc *pc)
730{
731	struct xe_gt *gt = pc_to_gt(pc);
732
733	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
734	pc_init_fused_rp_values(pc);
735	pc_set_cur_freq(pc, pc->rp0_freq);
736}
737
738static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
739{
740	int ret;
741
742	lockdep_assert_held(&pc->freq_lock);
743
744	ret = pc_action_query_task_state(pc);
745	if (ret)
746		return ret;
747
748	/*
749	 * GuC defaults to some RPmax that is not actually achievable without
750	 * overclocking. Let's adjust it to the Hardware RP0, which is the
751	 * regular maximum
752	 */
753	if (pc_get_max_freq(pc) > pc->rp0_freq)
754		pc_set_max_freq(pc, pc->rp0_freq);
755
756	/*
757	 * Same thing happens for Server platforms where min is listed as
758	 * RPMax
759	 */
760	if (pc_get_min_freq(pc) > pc->rp0_freq)
761		pc_set_min_freq(pc, pc->rp0_freq);
762
763	return 0;
764}
765
766static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
767{
768	int ret = 0;
769
770	lockdep_assert_held(&pc->freq_lock);
771
772	if (pc->user_requested_min != 0) {
773		ret = pc_set_min_freq(pc, pc->user_requested_min);
774		if (ret)
775			return ret;
776	}
777
778	if (pc->user_requested_max != 0) {
779		ret = pc_set_max_freq(pc, pc->user_requested_max);
780		if (ret)
781			return ret;
782	}
783
784	return ret;
785}
786
787/**
788 * xe_guc_pc_gucrc_disable - Disable GuC RC
789 * @pc: Xe_GuC_PC instance
790 *
791 * Disables GuC RC by taking control of RC6 back from GuC.
792 *
793 * Return: 0 on success, negative error code on error.
794 */
795int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
796{
797	struct xe_device *xe = pc_to_xe(pc);
798	struct xe_gt *gt = pc_to_gt(pc);
799	int ret = 0;
800
801	if (xe->info.skip_guc_pc)
802		return 0;
803
804	xe_device_mem_access_get(pc_to_xe(pc));
805
806	ret = pc_action_setup_gucrc(pc, XE_GUCRC_HOST_CONTROL);
807	if (ret)
808		goto out;
809
810	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
811	if (ret)
812		goto out;
813
814	xe_gt_idle_disable_c6(gt);
815
816	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
817
818out:
819	xe_device_mem_access_put(pc_to_xe(pc));
820	return ret;
821}
822
823static void pc_init_pcode_freq(struct xe_guc_pc *pc)
824{
825	u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
826	u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
827
828	XE_WARN_ON(xe_pcode_init_min_freq_table(pc_to_gt(pc), min, max));
829}
830
831static int pc_init_freqs(struct xe_guc_pc *pc)
832{
833	int ret;
834
835	mutex_lock(&pc->freq_lock);
836
837	ret = pc_adjust_freq_bounds(pc);
838	if (ret)
839		goto out;
840
841	ret = pc_adjust_requested_freq(pc);
842	if (ret)
843		goto out;
844
845	pc_update_rp_values(pc);
846
847	pc_init_pcode_freq(pc);
848
849	/*
850	 * The frequencies are really ready for use only after the user
851	 * requested ones got restored.
852	 */
853	pc->freq_ready = true;
854
855out:
856	mutex_unlock(&pc->freq_lock);
857	return ret;
858}
859
860/**
861 * xe_guc_pc_start - Start GuC's Power Conservation component
862 * @pc: Xe_GuC_PC instance
863 */
864int xe_guc_pc_start(struct xe_guc_pc *pc)
865{
866	struct xe_device *xe = pc_to_xe(pc);
867	struct xe_gt *gt = pc_to_gt(pc);
868	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
869	int ret;
870
871	xe_gt_assert(gt, xe_device_uc_enabled(xe));
872
873	xe_device_mem_access_get(pc_to_xe(pc));
874
875	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
876	if (ret)
877		goto out_fail_force_wake;
878
879	if (xe->info.skip_guc_pc) {
880		if (xe->info.platform != XE_PVC)
881			xe_gt_idle_enable_c6(gt);
882
883		/* Request max possible since dynamic freq mgmt is not enabled */
884		pc_set_cur_freq(pc, UINT_MAX);
885
886		ret = 0;
887		goto out;
888	}
889
890	memset(pc->bo->vmap.vaddr, 0, size);
891	slpc_shared_data_write(pc, header.size, size);
892
893	ret = pc_action_reset(pc);
894	if (ret)
895		goto out;
896
897	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) {
898		drm_err(&pc_to_xe(pc)->drm, "GuC PC Start failed\n");
899		ret = -EIO;
900		goto out;
901	}
902
903	ret = pc_init_freqs(pc);
904	if (ret)
905		goto out;
906
907	if (xe->info.platform == XE_PVC) {
908		xe_guc_pc_gucrc_disable(pc);
909		ret = 0;
910		goto out;
911	}
912
913	ret = pc_action_setup_gucrc(pc, XE_GUCRC_FIRMWARE_CONTROL);
914
915out:
916	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
917out_fail_force_wake:
918	xe_device_mem_access_put(pc_to_xe(pc));
919	return ret;
920}
921
922/**
923 * xe_guc_pc_stop - Stop GuC's Power Conservation component
924 * @pc: Xe_GuC_PC instance
925 */
926int xe_guc_pc_stop(struct xe_guc_pc *pc)
927{
928	struct xe_device *xe = pc_to_xe(pc);
929	int ret;
930
931	xe_device_mem_access_get(pc_to_xe(pc));
932
933	if (xe->info.skip_guc_pc) {
934		xe_gt_idle_disable_c6(pc_to_gt(pc));
935		ret = 0;
936		goto out;
937	}
938
939	mutex_lock(&pc->freq_lock);
940	pc->freq_ready = false;
941	mutex_unlock(&pc->freq_lock);
942
943	ret = pc_action_shutdown(pc);
944	if (ret)
945		goto out;
946
947	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_NOT_RUNNING)) {
948		drm_err(&pc_to_xe(pc)->drm, "GuC PC Shutdown failed\n");
949		ret = -EIO;
950	}
951
952out:
953	xe_device_mem_access_put(pc_to_xe(pc));
954	return ret;
955}
956
957/**
958 * xe_guc_pc_fini - Finalize GuC's Power Conservation component
959 * @drm: DRM device
960 * @arg: opaque pointer that should point to Xe_GuC_PC instance
961 */
962static void xe_guc_pc_fini(struct drm_device *drm, void *arg)
963{
964	struct xe_guc_pc *pc = arg;
965	struct xe_device *xe = pc_to_xe(pc);
966
967	if (xe->info.skip_guc_pc) {
968		xe_device_mem_access_get(xe);
969		xe_gt_idle_disable_c6(pc_to_gt(pc));
970		xe_device_mem_access_put(xe);
971		return;
972	}
973
974	xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
975	XE_WARN_ON(xe_guc_pc_gucrc_disable(pc));
976	XE_WARN_ON(xe_guc_pc_stop(pc));
977	xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
978}
979
980/**
981 * xe_guc_pc_init - Initialize GuC's Power Conservation component
982 * @pc: Xe_GuC_PC instance
983 */
984int xe_guc_pc_init(struct xe_guc_pc *pc)
985{
986	struct xe_gt *gt = pc_to_gt(pc);
987	struct xe_tile *tile = gt_to_tile(gt);
988	struct xe_device *xe = gt_to_xe(gt);
989	struct xe_bo *bo;
990	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
991	int err;
992
993	if (xe->info.skip_guc_pc)
994		return 0;
995
996	err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
997	if (err)
998		return err;
999
1000	bo = xe_managed_bo_create_pin_map(xe, tile, size,
1001					  XE_BO_CREATE_VRAM_IF_DGFX(tile) |
1002					  XE_BO_CREATE_GGTT_BIT);
1003	if (IS_ERR(bo))
1004		return PTR_ERR(bo);
1005
1006	pc->bo = bo;
1007
1008	err = drmm_add_action_or_reset(&xe->drm, xe_guc_pc_fini, pc);
1009	if (err)
1010		return err;
1011
1012	return 0;
1013}
1014