1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2022 Intel Corporation
4 */
5
6#include "xe_gt_pagefault.h"
7
8#include <linux/bitfield.h>
9#include <linux/circ_buf.h>
10
11#include <drm/drm_exec.h>
12#include <drm/drm_managed.h>
13#include <drm/ttm/ttm_execbuf_util.h>
14
15#include "abi/guc_actions_abi.h"
16#include "xe_bo.h"
17#include "xe_gt.h"
18#include "xe_gt_tlb_invalidation.h"
19#include "xe_guc.h"
20#include "xe_guc_ct.h"
21#include "xe_migrate.h"
22#include "xe_pt.h"
23#include "xe_trace.h"
24#include "xe_vm.h"
25
26struct pagefault {
27	u64 page_addr;
28	u32 asid;
29	u16 pdata;
30	u8 vfid;
31	u8 access_type;
32	u8 fault_type;
33	u8 fault_level;
34	u8 engine_class;
35	u8 engine_instance;
36	u8 fault_unsuccessful;
37	bool trva_fault;
38};
39
40enum access_type {
41	ACCESS_TYPE_READ = 0,
42	ACCESS_TYPE_WRITE = 1,
43	ACCESS_TYPE_ATOMIC = 2,
44	ACCESS_TYPE_RESERVED = 3,
45};
46
47enum fault_type {
48	NOT_PRESENT = 0,
49	WRITE_ACCESS_VIOLATION = 1,
50	ATOMIC_ACCESS_VIOLATION = 2,
51};
52
53struct acc {
54	u64 va_range_base;
55	u32 asid;
56	u32 sub_granularity;
57	u8 granularity;
58	u8 vfid;
59	u8 access_type;
60	u8 engine_class;
61	u8 engine_instance;
62};
63
64static bool access_is_atomic(enum access_type access_type)
65{
66	return access_type == ACCESS_TYPE_ATOMIC;
67}
68
69static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
70{
71	return BIT(tile->id) & vma->tile_present &&
72		!(BIT(tile->id) & vma->tile_invalidated);
73}
74
75static bool vma_matches(struct xe_vma *vma, u64 page_addr)
76{
77	if (page_addr > xe_vma_end(vma) - 1 ||
78	    page_addr + SZ_4K - 1 < xe_vma_start(vma))
79		return false;
80
81	return true;
82}
83
84static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr)
85{
86	struct xe_vma *vma = NULL;
87
88	if (vm->usm.last_fault_vma) {   /* Fast lookup */
89		if (vma_matches(vm->usm.last_fault_vma, page_addr))
90			vma = vm->usm.last_fault_vma;
91	}
92	if (!vma)
93		vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K);
94
95	return vma;
96}
97
98static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
99		       bool atomic, unsigned int id)
100{
101	struct xe_bo *bo = xe_vma_bo(vma);
102	struct xe_vm *vm = xe_vma_vm(vma);
103	int err;
104
105	err = xe_vm_lock_vma(exec, vma);
106	if (err)
107		return err;
108
109	if (atomic && IS_DGFX(vm->xe)) {
110		if (xe_vma_is_userptr(vma)) {
111			err = -EACCES;
112			return err;
113		}
114
115		/* Migrate to VRAM, move should invalidate the VMA first */
116		err = xe_bo_migrate(bo, XE_PL_VRAM0 + id);
117		if (err)
118			return err;
119	} else if (bo) {
120		/* Create backing store if needed */
121		err = xe_bo_validate(bo, vm, true);
122		if (err)
123			return err;
124	}
125
126	return 0;
127}
128
129static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
130{
131	struct xe_device *xe = gt_to_xe(gt);
132	struct xe_tile *tile = gt_to_tile(gt);
133	struct drm_exec exec;
134	struct xe_vm *vm;
135	struct xe_vma *vma = NULL;
136	struct dma_fence *fence;
137	bool write_locked;
138	int ret = 0;
139	bool atomic;
140
141	/* SW isn't expected to handle TRTT faults */
142	if (pf->trva_fault)
143		return -EFAULT;
144
145	/* ASID to VM */
146	mutex_lock(&xe->usm.lock);
147	vm = xa_load(&xe->usm.asid_to_vm, pf->asid);
148	if (vm && xe_vm_in_fault_mode(vm))
149		xe_vm_get(vm);
150	else
151		vm = NULL;
152	mutex_unlock(&xe->usm.lock);
153	if (!vm)
154		return -EINVAL;
155
156retry_userptr:
157	/*
158	 * TODO: Avoid exclusive lock if VM doesn't have userptrs, or
159	 * start out read-locked?
160	 */
161	down_write(&vm->lock);
162	write_locked = true;
163	vma = lookup_vma(vm, pf->page_addr);
164	if (!vma) {
165		ret = -EINVAL;
166		goto unlock_vm;
167	}
168
169	if (!xe_vma_is_userptr(vma) ||
170	    !xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
171		downgrade_write(&vm->lock);
172		write_locked = false;
173	}
174
175	trace_xe_vma_pagefault(vma);
176
177	atomic = access_is_atomic(pf->access_type);
178
179	/* Check if VMA is valid */
180	if (vma_is_valid(tile, vma) && !atomic)
181		goto unlock_vm;
182
183	/* TODO: Validate fault */
184
185	if (xe_vma_is_userptr(vma) && write_locked) {
186		struct xe_userptr_vma *uvma = to_userptr_vma(vma);
187
188		spin_lock(&vm->userptr.invalidated_lock);
189		list_del_init(&uvma->userptr.invalidate_link);
190		spin_unlock(&vm->userptr.invalidated_lock);
191
192		ret = xe_vma_userptr_pin_pages(uvma);
193		if (ret)
194			goto unlock_vm;
195
196		downgrade_write(&vm->lock);
197		write_locked = false;
198	}
199
200	/* Lock VM and BOs dma-resv */
201	drm_exec_init(&exec, 0, 0);
202	drm_exec_until_all_locked(&exec) {
203		ret = xe_pf_begin(&exec, vma, atomic, tile->id);
204		drm_exec_retry_on_contention(&exec);
205		if (ret)
206			goto unlock_dma_resv;
207	}
208
209	/* Bind VMA only to the GT that has faulted */
210	trace_xe_vma_pf_bind(vma);
211	fence = __xe_pt_bind_vma(tile, vma, xe_tile_migrate_engine(tile), NULL, 0,
212				 vma->tile_present & BIT(tile->id));
213	if (IS_ERR(fence)) {
214		ret = PTR_ERR(fence);
215		goto unlock_dma_resv;
216	}
217
218	/*
219	 * XXX: Should we drop the lock before waiting? This only helps if doing
220	 * GPU binds which is currently only done if we have to wait for more
221	 * than 10ms on a move.
222	 */
223	dma_fence_wait(fence, false);
224	dma_fence_put(fence);
225
226	if (xe_vma_is_userptr(vma))
227		ret = xe_vma_userptr_check_repin(to_userptr_vma(vma));
228	vma->tile_invalidated &= ~BIT(tile->id);
229
230unlock_dma_resv:
231	drm_exec_fini(&exec);
232unlock_vm:
233	if (!ret)
234		vm->usm.last_fault_vma = vma;
235	if (write_locked)
236		up_write(&vm->lock);
237	else
238		up_read(&vm->lock);
239	if (ret == -EAGAIN)
240		goto retry_userptr;
241
242	if (!ret) {
243		ret = xe_gt_tlb_invalidation_vma(gt, NULL, vma);
244		if (ret >= 0)
245			ret = 0;
246	}
247	xe_vm_put(vm);
248
249	return ret;
250}
251
252static int send_pagefault_reply(struct xe_guc *guc,
253				struct xe_guc_pagefault_reply *reply)
254{
255	u32 action[] = {
256		XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
257		reply->dw0,
258		reply->dw1,
259	};
260
261	return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
262}
263
264static void print_pagefault(struct xe_device *xe, struct pagefault *pf)
265{
266	drm_dbg(&xe->drm, "\n\tASID: %d\n"
267		 "\tVFID: %d\n"
268		 "\tPDATA: 0x%04x\n"
269		 "\tFaulted Address: 0x%08x%08x\n"
270		 "\tFaultType: %d\n"
271		 "\tAccessType: %d\n"
272		 "\tFaultLevel: %d\n"
273		 "\tEngineClass: %d\n"
274		 "\tEngineInstance: %d\n",
275		 pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
276		 lower_32_bits(pf->page_addr),
277		 pf->fault_type, pf->access_type, pf->fault_level,
278		 pf->engine_class, pf->engine_instance);
279}
280
281#define PF_MSG_LEN_DW	4
282
283static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
284{
285	const struct xe_guc_pagefault_desc *desc;
286	bool ret = false;
287
288	spin_lock_irq(&pf_queue->lock);
289	if (pf_queue->tail != pf_queue->head) {
290		desc = (const struct xe_guc_pagefault_desc *)
291			(pf_queue->data + pf_queue->tail);
292
293		pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
294		pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
295		pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
296		pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
297		pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
298			PFD_PDATA_HI_SHIFT;
299		pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
300		pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
301		pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
302		pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
303		pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
304		pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
305			PFD_VIRTUAL_ADDR_HI_SHIFT;
306		pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
307			PFD_VIRTUAL_ADDR_LO_SHIFT;
308
309		pf_queue->tail = (pf_queue->tail + PF_MSG_LEN_DW) %
310			PF_QUEUE_NUM_DW;
311		ret = true;
312	}
313	spin_unlock_irq(&pf_queue->lock);
314
315	return ret;
316}
317
318static bool pf_queue_full(struct pf_queue *pf_queue)
319{
320	lockdep_assert_held(&pf_queue->lock);
321
322	return CIRC_SPACE(pf_queue->head, pf_queue->tail, PF_QUEUE_NUM_DW) <=
323		PF_MSG_LEN_DW;
324}
325
326int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
327{
328	struct xe_gt *gt = guc_to_gt(guc);
329	struct xe_device *xe = gt_to_xe(gt);
330	struct pf_queue *pf_queue;
331	unsigned long flags;
332	u32 asid;
333	bool full;
334
335	/*
336	 * The below logic doesn't work unless PF_QUEUE_NUM_DW % PF_MSG_LEN_DW == 0
337	 */
338	BUILD_BUG_ON(PF_QUEUE_NUM_DW % PF_MSG_LEN_DW);
339
340	if (unlikely(len != PF_MSG_LEN_DW))
341		return -EPROTO;
342
343	asid = FIELD_GET(PFD_ASID, msg[1]);
344	pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE);
345
346	spin_lock_irqsave(&pf_queue->lock, flags);
347	full = pf_queue_full(pf_queue);
348	if (!full) {
349		memcpy(pf_queue->data + pf_queue->head, msg, len * sizeof(u32));
350		pf_queue->head = (pf_queue->head + len) % PF_QUEUE_NUM_DW;
351		queue_work(gt->usm.pf_wq, &pf_queue->worker);
352	} else {
353		drm_warn(&xe->drm, "PF Queue full, shouldn't be possible");
354	}
355	spin_unlock_irqrestore(&pf_queue->lock, flags);
356
357	return full ? -ENOSPC : 0;
358}
359
360#define USM_QUEUE_MAX_RUNTIME_MS	20
361
362static void pf_queue_work_func(struct work_struct *w)
363{
364	struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
365	struct xe_gt *gt = pf_queue->gt;
366	struct xe_device *xe = gt_to_xe(gt);
367	struct xe_guc_pagefault_reply reply = {};
368	struct pagefault pf = {};
369	unsigned long threshold;
370	int ret;
371
372	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
373
374	while (get_pagefault(pf_queue, &pf)) {
375		ret = handle_pagefault(gt, &pf);
376		if (unlikely(ret)) {
377			print_pagefault(xe, &pf);
378			pf.fault_unsuccessful = 1;
379			drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret);
380		}
381
382		reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
383			FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
384			FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
385			FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
386			FIELD_PREP(PFR_ASID, pf.asid);
387
388		reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
389			FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
390			FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
391			FIELD_PREP(PFR_PDATA, pf.pdata);
392
393		send_pagefault_reply(&gt->uc.guc, &reply);
394
395		if (time_after(jiffies, threshold) &&
396		    pf_queue->tail != pf_queue->head) {
397			queue_work(gt->usm.pf_wq, w);
398			break;
399		}
400	}
401}
402
403static void acc_queue_work_func(struct work_struct *w);
404
405int xe_gt_pagefault_init(struct xe_gt *gt)
406{
407	struct xe_device *xe = gt_to_xe(gt);
408	int i;
409
410	if (!xe->info.has_usm)
411		return 0;
412
413	for (i = 0; i < NUM_PF_QUEUE; ++i) {
414		gt->usm.pf_queue[i].gt = gt;
415		spin_lock_init(&gt->usm.pf_queue[i].lock);
416		INIT_WORK(&gt->usm.pf_queue[i].worker, pf_queue_work_func);
417	}
418	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
419		gt->usm.acc_queue[i].gt = gt;
420		spin_lock_init(&gt->usm.acc_queue[i].lock);
421		INIT_WORK(&gt->usm.acc_queue[i].worker, acc_queue_work_func);
422	}
423
424	gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
425					WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
426	if (!gt->usm.pf_wq)
427		return -ENOMEM;
428
429	gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
430					 WQ_UNBOUND | WQ_HIGHPRI,
431					 NUM_ACC_QUEUE);
432	if (!gt->usm.acc_wq)
433		return -ENOMEM;
434
435	return 0;
436}
437
438void xe_gt_pagefault_reset(struct xe_gt *gt)
439{
440	struct xe_device *xe = gt_to_xe(gt);
441	int i;
442
443	if (!xe->info.has_usm)
444		return;
445
446	for (i = 0; i < NUM_PF_QUEUE; ++i) {
447		spin_lock_irq(&gt->usm.pf_queue[i].lock);
448		gt->usm.pf_queue[i].head = 0;
449		gt->usm.pf_queue[i].tail = 0;
450		spin_unlock_irq(&gt->usm.pf_queue[i].lock);
451	}
452
453	for (i = 0; i < NUM_ACC_QUEUE; ++i) {
454		spin_lock(&gt->usm.acc_queue[i].lock);
455		gt->usm.acc_queue[i].head = 0;
456		gt->usm.acc_queue[i].tail = 0;
457		spin_unlock(&gt->usm.acc_queue[i].lock);
458	}
459}
460
461static int granularity_in_byte(int val)
462{
463	switch (val) {
464	case 0:
465		return SZ_128K;
466	case 1:
467		return SZ_2M;
468	case 2:
469		return SZ_16M;
470	case 3:
471		return SZ_64M;
472	default:
473		return 0;
474	}
475}
476
477static int sub_granularity_in_byte(int val)
478{
479	return (granularity_in_byte(val) / 32);
480}
481
482static void print_acc(struct xe_device *xe, struct acc *acc)
483{
484	drm_warn(&xe->drm, "Access counter request:\n"
485		 "\tType: %s\n"
486		 "\tASID: %d\n"
487		 "\tVFID: %d\n"
488		 "\tEngine: %d:%d\n"
489		 "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
490		 "\tSub_Granularity Vector: 0x%08x\n"
491		 "\tVA Range base: 0x%016llx\n",
492		 acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
493		 acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
494		 granularity_in_byte(acc->granularity) / SZ_1K,
495		 sub_granularity_in_byte(acc->granularity) / SZ_1K,
496		 acc->sub_granularity, acc->va_range_base);
497}
498
499static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
500{
501	u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
502		sub_granularity_in_byte(acc->granularity);
503
504	return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
505}
506
507static int handle_acc(struct xe_gt *gt, struct acc *acc)
508{
509	struct xe_device *xe = gt_to_xe(gt);
510	struct xe_tile *tile = gt_to_tile(gt);
511	struct drm_exec exec;
512	struct xe_vm *vm;
513	struct xe_vma *vma;
514	int ret = 0;
515
516	/* We only support ACC_TRIGGER at the moment */
517	if (acc->access_type != ACC_TRIGGER)
518		return -EINVAL;
519
520	/* ASID to VM */
521	mutex_lock(&xe->usm.lock);
522	vm = xa_load(&xe->usm.asid_to_vm, acc->asid);
523	if (vm)
524		xe_vm_get(vm);
525	mutex_unlock(&xe->usm.lock);
526	if (!vm || !xe_vm_in_fault_mode(vm))
527		return -EINVAL;
528
529	down_read(&vm->lock);
530
531	/* Lookup VMA */
532	vma = get_acc_vma(vm, acc);
533	if (!vma) {
534		ret = -EINVAL;
535		goto unlock_vm;
536	}
537
538	trace_xe_vma_acc(vma);
539
540	/* Userptr or null can't be migrated, nothing to do */
541	if (xe_vma_has_no_bo(vma))
542		goto unlock_vm;
543
544	/* Lock VM and BOs dma-resv */
545	drm_exec_init(&exec, 0, 0);
546	drm_exec_until_all_locked(&exec) {
547		ret = xe_pf_begin(&exec, vma, true, tile->id);
548		drm_exec_retry_on_contention(&exec);
549		if (ret)
550			break;
551	}
552
553	drm_exec_fini(&exec);
554unlock_vm:
555	up_read(&vm->lock);
556	xe_vm_put(vm);
557
558	return ret;
559}
560
561#define make_u64(hi__, low__)  ((u64)(hi__) << 32 | (u64)(low__))
562
563#define ACC_MSG_LEN_DW        4
564
565static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
566{
567	const struct xe_guc_acc_desc *desc;
568	bool ret = false;
569
570	spin_lock(&acc_queue->lock);
571	if (acc_queue->tail != acc_queue->head) {
572		desc = (const struct xe_guc_acc_desc *)
573			(acc_queue->data + acc_queue->tail);
574
575		acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
576		acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
577			FIELD_GET(ACC_SUBG_LO, desc->dw0);
578		acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
579		acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
580		acc->asid =  FIELD_GET(ACC_ASID, desc->dw1);
581		acc->vfid =  FIELD_GET(ACC_VFID, desc->dw2);
582		acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
583		acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
584					      desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);
585
586		acc_queue->tail = (acc_queue->tail + ACC_MSG_LEN_DW) %
587				  ACC_QUEUE_NUM_DW;
588		ret = true;
589	}
590	spin_unlock(&acc_queue->lock);
591
592	return ret;
593}
594
595static void acc_queue_work_func(struct work_struct *w)
596{
597	struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
598	struct xe_gt *gt = acc_queue->gt;
599	struct xe_device *xe = gt_to_xe(gt);
600	struct acc acc = {};
601	unsigned long threshold;
602	int ret;
603
604	threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
605
606	while (get_acc(acc_queue, &acc)) {
607		ret = handle_acc(gt, &acc);
608		if (unlikely(ret)) {
609			print_acc(xe, &acc);
610			drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret);
611		}
612
613		if (time_after(jiffies, threshold) &&
614		    acc_queue->tail != acc_queue->head) {
615			queue_work(gt->usm.acc_wq, w);
616			break;
617		}
618	}
619}
620
621static bool acc_queue_full(struct acc_queue *acc_queue)
622{
623	lockdep_assert_held(&acc_queue->lock);
624
625	return CIRC_SPACE(acc_queue->head, acc_queue->tail, ACC_QUEUE_NUM_DW) <=
626		ACC_MSG_LEN_DW;
627}
628
629int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
630{
631	struct xe_gt *gt = guc_to_gt(guc);
632	struct acc_queue *acc_queue;
633	u32 asid;
634	bool full;
635
636	/*
637	 * The below logic doesn't work unless ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW == 0
638	 */
639	BUILD_BUG_ON(ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW);
640
641	if (unlikely(len != ACC_MSG_LEN_DW))
642		return -EPROTO;
643
644	asid = FIELD_GET(ACC_ASID, msg[1]);
645	acc_queue = &gt->usm.acc_queue[asid % NUM_ACC_QUEUE];
646
647	spin_lock(&acc_queue->lock);
648	full = acc_queue_full(acc_queue);
649	if (!full) {
650		memcpy(acc_queue->data + acc_queue->head, msg,
651		       len * sizeof(u32));
652		acc_queue->head = (acc_queue->head + len) % ACC_QUEUE_NUM_DW;
653		queue_work(gt->usm.acc_wq, &acc_queue->worker);
654	} else {
655		drm_warn(&gt_to_xe(gt)->drm, "ACC Queue full, dropping ACC");
656	}
657	spin_unlock(&acc_queue->lock);
658
659	return full ? -ENOSPC : 0;
660}
661