1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5 */
6
7#include <linux/clk.h>
8#include <linux/debugfs.h>
9#include <linux/delay.h>
10#include <linux/dma-mapping.h>
11#include <linux/iommu.h>
12#include <linux/interconnect.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/pm_domain.h>
17#include <linux/pm_opp.h>
18#include <linux/pm_runtime.h>
19#include <linux/reset.h>
20
21#include <soc/tegra/common.h>
22#include <soc/tegra/pmc.h>
23
24#include <drm/drm_atomic.h>
25#include <drm/drm_atomic_helper.h>
26#include <drm/drm_blend.h>
27#include <drm/drm_debugfs.h>
28#include <drm/drm_fourcc.h>
29#include <drm/drm_framebuffer.h>
30#include <drm/drm_vblank.h>
31
32#include "dc.h"
33#include "drm.h"
34#include "gem.h"
35#include "hub.h"
36#include "plane.h"
37
38static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
39					    struct drm_crtc_state *state);
40
41static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
42{
43	stats->frames = 0;
44	stats->vblank = 0;
45	stats->underflow = 0;
46	stats->overflow = 0;
47}
48
49/* Reads the active copy of a register. */
50static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
51{
52	u32 value;
53
54	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
55	value = tegra_dc_readl(dc, offset);
56	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
57
58	return value;
59}
60
61static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
62					      unsigned int offset)
63{
64	if (offset >= 0x500 && offset <= 0x638) {
65		offset = 0x000 + (offset - 0x500);
66		return plane->offset + offset;
67	}
68
69	if (offset >= 0x700 && offset <= 0x719) {
70		offset = 0x180 + (offset - 0x700);
71		return plane->offset + offset;
72	}
73
74	if (offset >= 0x800 && offset <= 0x839) {
75		offset = 0x1c0 + (offset - 0x800);
76		return plane->offset + offset;
77	}
78
79	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
80
81	return plane->offset + offset;
82}
83
84static inline u32 tegra_plane_readl(struct tegra_plane *plane,
85				    unsigned int offset)
86{
87	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
88}
89
90static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
91				      unsigned int offset)
92{
93	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
94}
95
96bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
97{
98	struct device_node *np = dc->dev->of_node;
99	struct of_phandle_iterator it;
100	int err;
101
102	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
103		if (it.node == dev->of_node)
104			return true;
105
106	return false;
107}
108
109/*
110 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
111 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
112 * Latching happens mmediately if the display controller is in STOP mode or
113 * on the next frame boundary otherwise.
114 *
115 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
116 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
117 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
118 * into the ACTIVE copy, either immediately if the display controller is in
119 * STOP mode, or at the next frame boundary otherwise.
120 */
121void tegra_dc_commit(struct tegra_dc *dc)
122{
123	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
124	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
125}
126
127static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
128				  unsigned int bpp)
129{
130	fixed20_12 outf = dfixed_init(out);
131	fixed20_12 inf = dfixed_init(in);
132	u32 dda_inc;
133	int max;
134
135	if (v)
136		max = 15;
137	else {
138		switch (bpp) {
139		case 2:
140			max = 8;
141			break;
142
143		default:
144			WARN_ON_ONCE(1);
145			fallthrough;
146		case 4:
147			max = 4;
148			break;
149		}
150	}
151
152	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
153	inf.full -= dfixed_const(1);
154
155	dda_inc = dfixed_div(inf, outf);
156	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
157
158	return dda_inc;
159}
160
161static inline u32 compute_initial_dda(unsigned int in)
162{
163	fixed20_12 inf = dfixed_init(in);
164	return dfixed_frac(inf);
165}
166
167static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
168{
169	u32 background[3] = {
170		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
173	};
174	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
175			 BLEND_COLOR_KEY_NONE;
176	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
177	struct tegra_plane_state *state;
178	u32 blending[2];
179	unsigned int i;
180
181	/* disable blending for non-overlapping case */
182	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
183	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
184
185	state = to_tegra_plane_state(plane->base.state);
186
187	if (state->opaque) {
188		/*
189		 * Since custom fix-weight blending isn't utilized and weight
190		 * of top window is set to max, we can enforce dependent
191		 * blending which in this case results in transparent bottom
192		 * window if top window is opaque and if top window enables
193		 * alpha blending, then bottom window is getting alpha value
194		 * of 1 minus the sum of alpha components of the overlapping
195		 * plane.
196		 */
197		background[0] |= BLEND_CONTROL_DEPENDENT;
198		background[1] |= BLEND_CONTROL_DEPENDENT;
199
200		/*
201		 * The region where three windows overlap is the intersection
202		 * of the two regions where two windows overlap. It contributes
203		 * to the area if all of the windows on top of it have an alpha
204		 * component.
205		 */
206		switch (state->base.normalized_zpos) {
207		case 0:
208			if (state->blending[0].alpha &&
209			    state->blending[1].alpha)
210				background[2] |= BLEND_CONTROL_DEPENDENT;
211			break;
212
213		case 1:
214			background[2] |= BLEND_CONTROL_DEPENDENT;
215			break;
216		}
217	} else {
218		/*
219		 * Enable alpha blending if pixel format has an alpha
220		 * component.
221		 */
222		foreground |= BLEND_CONTROL_ALPHA;
223
224		/*
225		 * If any of the windows on top of this window is opaque, it
226		 * will completely conceal this window within that area. If
227		 * top window has an alpha component, it is blended over the
228		 * bottom window.
229		 */
230		for (i = 0; i < 2; i++) {
231			if (state->blending[i].alpha &&
232			    state->blending[i].top)
233				background[i] |= BLEND_CONTROL_DEPENDENT;
234		}
235
236		switch (state->base.normalized_zpos) {
237		case 0:
238			if (state->blending[0].alpha &&
239			    state->blending[1].alpha)
240				background[2] |= BLEND_CONTROL_DEPENDENT;
241			break;
242
243		case 1:
244			/*
245			 * When both middle and topmost windows have an alpha,
246			 * these windows a mixed together and then the result
247			 * is blended over the bottom window.
248			 */
249			if (state->blending[0].alpha &&
250			    state->blending[0].top)
251				background[2] |= BLEND_CONTROL_ALPHA;
252
253			if (state->blending[1].alpha &&
254			    state->blending[1].top)
255				background[2] |= BLEND_CONTROL_ALPHA;
256			break;
257		}
258	}
259
260	switch (state->base.normalized_zpos) {
261	case 0:
262		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
263		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
264		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
265		break;
266
267	case 1:
268		/*
269		 * If window B / C is topmost, then X / Y registers are
270		 * matching the order of blending[...] state indices,
271		 * otherwise a swap is required.
272		 */
273		if (!state->blending[0].top && state->blending[1].top) {
274			blending[0] = foreground;
275			blending[1] = background[1];
276		} else {
277			blending[0] = background[0];
278			blending[1] = foreground;
279		}
280
281		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
282		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
283		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
284		break;
285
286	case 2:
287		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
288		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
289		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
290		break;
291	}
292}
293
294static void tegra_plane_setup_blending(struct tegra_plane *plane,
295				       const struct tegra_dc_window *window)
296{
297	u32 value;
298
299	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
300		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
301		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
302	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
303
304	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
305		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
306		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
307	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
308
309	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
310	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
311}
312
313static bool
314tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
315				     const struct tegra_dc_window *window)
316{
317	struct tegra_dc *dc = plane->dc;
318
319	if (window->src.w == window->dst.w)
320		return false;
321
322	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
323		return false;
324
325	return true;
326}
327
328static bool
329tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
330				   const struct tegra_dc_window *window)
331{
332	struct tegra_dc *dc = plane->dc;
333
334	if (window->src.h == window->dst.h)
335		return false;
336
337	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
338		return false;
339
340	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
341		return false;
342
343	return true;
344}
345
346static void tegra_dc_setup_window(struct tegra_plane *plane,
347				  const struct tegra_dc_window *window)
348{
349	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
350	struct tegra_dc *dc = plane->dc;
351	unsigned int planes;
352	u32 value;
353	bool yuv;
354
355	/*
356	 * For YUV planar modes, the number of bytes per pixel takes into
357	 * account only the luma component and therefore is 1.
358	 */
359	yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
360	if (!yuv)
361		bpp = window->bits_per_pixel / 8;
362	else
363		bpp = (planes > 1) ? 1 : 2;
364
365	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
366	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
367
368	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
369	tegra_plane_writel(plane, value, DC_WIN_POSITION);
370
371	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
372	tegra_plane_writel(plane, value, DC_WIN_SIZE);
373
374	h_offset = window->src.x * bpp;
375	v_offset = window->src.y;
376	h_size = window->src.w * bpp;
377	v_size = window->src.h;
378
379	if (window->reflect_x)
380		h_offset += (window->src.w - 1) * bpp;
381
382	if (window->reflect_y)
383		v_offset += window->src.h - 1;
384
385	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
386	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
387
388	/*
389	 * For DDA computations the number of bytes per pixel for YUV planar
390	 * modes needs to take into account all Y, U and V components.
391	 */
392	if (yuv && planes > 1)
393		bpp = 2;
394
395	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
396	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
397
398	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
399	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
400
401	h_dda = compute_initial_dda(window->src.x);
402	v_dda = compute_initial_dda(window->src.y);
403
404	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
405	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
406
407	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
408	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
409
410	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
411
412	if (yuv && planes > 1) {
413		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
414
415		if (planes > 2)
416			tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
417
418		value = window->stride[1] << 16 | window->stride[0];
419		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
420	} else {
421		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
422	}
423
424	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
425	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
426
427	if (dc->soc->supports_block_linear) {
428		unsigned long height = window->tiling.value;
429
430		switch (window->tiling.mode) {
431		case TEGRA_BO_TILING_MODE_PITCH:
432			value = DC_WINBUF_SURFACE_KIND_PITCH;
433			break;
434
435		case TEGRA_BO_TILING_MODE_TILED:
436			value = DC_WINBUF_SURFACE_KIND_TILED;
437			break;
438
439		case TEGRA_BO_TILING_MODE_BLOCK:
440			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
441				DC_WINBUF_SURFACE_KIND_BLOCK;
442			break;
443		}
444
445		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
446	} else {
447		switch (window->tiling.mode) {
448		case TEGRA_BO_TILING_MODE_PITCH:
449			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
450				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
451			break;
452
453		case TEGRA_BO_TILING_MODE_TILED:
454			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
455				DC_WIN_BUFFER_ADDR_MODE_TILE;
456			break;
457
458		case TEGRA_BO_TILING_MODE_BLOCK:
459			/*
460			 * No need to handle this here because ->atomic_check
461			 * will already have filtered it out.
462			 */
463			break;
464		}
465
466		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
467	}
468
469	value = WIN_ENABLE;
470
471	if (yuv) {
472		/* setup default colorspace conversion coefficients */
473		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
474		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
475		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
476		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
477		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
478		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
479		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
480		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
481
482		value |= CSC_ENABLE;
483	} else if (window->bits_per_pixel < 24) {
484		value |= COLOR_EXPAND;
485	}
486
487	if (window->reflect_x)
488		value |= H_DIRECTION;
489
490	if (window->reflect_y)
491		value |= V_DIRECTION;
492
493	if (tegra_plane_use_horizontal_filtering(plane, window)) {
494		/*
495		 * Enable horizontal 6-tap filter and set filtering
496		 * coefficients to the default values defined in TRM.
497		 */
498		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
499		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
500		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
501		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
502		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
503		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
504		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
505		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
506		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
507		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
508		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
509		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
510		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
511		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
512		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
513		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
514
515		value |= H_FILTER;
516	}
517
518	if (tegra_plane_use_vertical_filtering(plane, window)) {
519		unsigned int i, k;
520
521		/*
522		 * Enable vertical 2-tap filter and set filtering
523		 * coefficients to the default values defined in TRM.
524		 */
525		for (i = 0, k = 128; i < 16; i++, k -= 8)
526			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
527
528		value |= V_FILTER;
529	}
530
531	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
532
533	if (dc->soc->has_legacy_blending)
534		tegra_plane_setup_blending_legacy(plane);
535	else
536		tegra_plane_setup_blending(plane, window);
537}
538
539static const u32 tegra20_primary_formats[] = {
540	DRM_FORMAT_ARGB4444,
541	DRM_FORMAT_ARGB1555,
542	DRM_FORMAT_RGB565,
543	DRM_FORMAT_RGBA5551,
544	DRM_FORMAT_ABGR8888,
545	DRM_FORMAT_ARGB8888,
546	/* non-native formats */
547	DRM_FORMAT_XRGB1555,
548	DRM_FORMAT_RGBX5551,
549	DRM_FORMAT_XBGR8888,
550	DRM_FORMAT_XRGB8888,
551};
552
553static const u64 tegra20_modifiers[] = {
554	DRM_FORMAT_MOD_LINEAR,
555	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
556	DRM_FORMAT_MOD_INVALID
557};
558
559static const u32 tegra114_primary_formats[] = {
560	DRM_FORMAT_ARGB4444,
561	DRM_FORMAT_ARGB1555,
562	DRM_FORMAT_RGB565,
563	DRM_FORMAT_RGBA5551,
564	DRM_FORMAT_ABGR8888,
565	DRM_FORMAT_ARGB8888,
566	/* new on Tegra114 */
567	DRM_FORMAT_ABGR4444,
568	DRM_FORMAT_ABGR1555,
569	DRM_FORMAT_BGRA5551,
570	DRM_FORMAT_XRGB1555,
571	DRM_FORMAT_RGBX5551,
572	DRM_FORMAT_XBGR1555,
573	DRM_FORMAT_BGRX5551,
574	DRM_FORMAT_BGR565,
575	DRM_FORMAT_BGRA8888,
576	DRM_FORMAT_RGBA8888,
577	DRM_FORMAT_XRGB8888,
578	DRM_FORMAT_XBGR8888,
579};
580
581static const u32 tegra124_primary_formats[] = {
582	DRM_FORMAT_ARGB4444,
583	DRM_FORMAT_ARGB1555,
584	DRM_FORMAT_RGB565,
585	DRM_FORMAT_RGBA5551,
586	DRM_FORMAT_ABGR8888,
587	DRM_FORMAT_ARGB8888,
588	/* new on Tegra114 */
589	DRM_FORMAT_ABGR4444,
590	DRM_FORMAT_ABGR1555,
591	DRM_FORMAT_BGRA5551,
592	DRM_FORMAT_XRGB1555,
593	DRM_FORMAT_RGBX5551,
594	DRM_FORMAT_XBGR1555,
595	DRM_FORMAT_BGRX5551,
596	DRM_FORMAT_BGR565,
597	DRM_FORMAT_BGRA8888,
598	DRM_FORMAT_RGBA8888,
599	DRM_FORMAT_XRGB8888,
600	DRM_FORMAT_XBGR8888,
601	/* new on Tegra124 */
602	DRM_FORMAT_RGBX8888,
603	DRM_FORMAT_BGRX8888,
604};
605
606static const u64 tegra124_modifiers[] = {
607	DRM_FORMAT_MOD_LINEAR,
608	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
609	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
610	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
611	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
612	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
613	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
614	DRM_FORMAT_MOD_INVALID
615};
616
617static int tegra_plane_atomic_check(struct drm_plane *plane,
618				    struct drm_atomic_state *state)
619{
620	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
621										 plane);
622	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
623	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
624					  DRM_MODE_REFLECT_X |
625					  DRM_MODE_REFLECT_Y;
626	unsigned int rotation = new_plane_state->rotation;
627	struct tegra_bo_tiling *tiling = &plane_state->tiling;
628	struct tegra_plane *tegra = to_tegra_plane(plane);
629	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
630	int err;
631
632	plane_state->peak_memory_bandwidth = 0;
633	plane_state->avg_memory_bandwidth = 0;
634
635	/* no need for further checks if the plane is being disabled */
636	if (!new_plane_state->crtc) {
637		plane_state->total_peak_memory_bandwidth = 0;
638		return 0;
639	}
640
641	err = tegra_plane_format(new_plane_state->fb->format->format,
642				 &plane_state->format,
643				 &plane_state->swap);
644	if (err < 0)
645		return err;
646
647	/*
648	 * Tegra20 and Tegra30 are special cases here because they support
649	 * only variants of specific formats with an alpha component, but not
650	 * the corresponding opaque formats. However, the opaque formats can
651	 * be emulated by disabling alpha blending for the plane.
652	 */
653	if (dc->soc->has_legacy_blending) {
654		err = tegra_plane_setup_legacy_state(tegra, plane_state);
655		if (err < 0)
656			return err;
657	}
658
659	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
660	if (err < 0)
661		return err;
662
663	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
664	    !dc->soc->supports_block_linear) {
665		DRM_ERROR("hardware doesn't support block linear mode\n");
666		return -EINVAL;
667	}
668
669	/*
670	 * Older userspace used custom BO flag in order to specify the Y
671	 * reflection, while modern userspace uses the generic DRM rotation
672	 * property in order to achieve the same result.  The legacy BO flag
673	 * duplicates the DRM rotation property when both are set.
674	 */
675	if (tegra_fb_is_bottom_up(new_plane_state->fb))
676		rotation |= DRM_MODE_REFLECT_Y;
677
678	rotation = drm_rotation_simplify(rotation, supported_rotation);
679
680	if (rotation & DRM_MODE_REFLECT_X)
681		plane_state->reflect_x = true;
682	else
683		plane_state->reflect_x = false;
684
685	if (rotation & DRM_MODE_REFLECT_Y)
686		plane_state->reflect_y = true;
687	else
688		plane_state->reflect_y = false;
689
690	/*
691	 * Tegra doesn't support different strides for U and V planes so we
692	 * error out if the user tries to display a framebuffer with such a
693	 * configuration.
694	 */
695	if (new_plane_state->fb->format->num_planes > 2) {
696		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
697			DRM_ERROR("unsupported UV-plane configuration\n");
698			return -EINVAL;
699		}
700	}
701
702	err = tegra_plane_state_add(tegra, new_plane_state);
703	if (err < 0)
704		return err;
705
706	return 0;
707}
708
709static void tegra_plane_atomic_disable(struct drm_plane *plane,
710				       struct drm_atomic_state *state)
711{
712	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
713									   plane);
714	struct tegra_plane *p = to_tegra_plane(plane);
715	u32 value;
716
717	/* rien ne va plus */
718	if (!old_state || !old_state->crtc)
719		return;
720
721	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
722	value &= ~WIN_ENABLE;
723	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
724}
725
726static void tegra_plane_atomic_update(struct drm_plane *plane,
727				      struct drm_atomic_state *state)
728{
729	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
730									   plane);
731	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
732	struct drm_framebuffer *fb = new_state->fb;
733	struct tegra_plane *p = to_tegra_plane(plane);
734	struct tegra_dc_window window;
735	unsigned int i;
736
737	/* rien ne va plus */
738	if (!new_state->crtc || !new_state->fb)
739		return;
740
741	if (!new_state->visible)
742		return tegra_plane_atomic_disable(plane, state);
743
744	memset(&window, 0, sizeof(window));
745	window.src.x = new_state->src.x1 >> 16;
746	window.src.y = new_state->src.y1 >> 16;
747	window.src.w = drm_rect_width(&new_state->src) >> 16;
748	window.src.h = drm_rect_height(&new_state->src) >> 16;
749	window.dst.x = new_state->dst.x1;
750	window.dst.y = new_state->dst.y1;
751	window.dst.w = drm_rect_width(&new_state->dst);
752	window.dst.h = drm_rect_height(&new_state->dst);
753	window.bits_per_pixel = fb->format->cpp[0] * 8;
754	window.reflect_x = tegra_plane_state->reflect_x;
755	window.reflect_y = tegra_plane_state->reflect_y;
756
757	/* copy from state */
758	window.zpos = new_state->normalized_zpos;
759	window.tiling = tegra_plane_state->tiling;
760	window.format = tegra_plane_state->format;
761	window.swap = tegra_plane_state->swap;
762
763	for (i = 0; i < fb->format->num_planes; i++) {
764		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
765
766		/*
767		 * Tegra uses a shared stride for UV planes. Framebuffers are
768		 * already checked for this in the tegra_plane_atomic_check()
769		 * function, so it's safe to ignore the V-plane pitch here.
770		 */
771		if (i < 2)
772			window.stride[i] = fb->pitches[i];
773	}
774
775	tegra_dc_setup_window(p, &window);
776}
777
778static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
779	.prepare_fb = tegra_plane_prepare_fb,
780	.cleanup_fb = tegra_plane_cleanup_fb,
781	.atomic_check = tegra_plane_atomic_check,
782	.atomic_disable = tegra_plane_atomic_disable,
783	.atomic_update = tegra_plane_atomic_update,
784};
785
786static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
787{
788	/*
789	 * Ideally this would use drm_crtc_mask(), but that would require the
790	 * CRTC to already be in the mode_config's list of CRTCs. However, it
791	 * will only be added to that list in the drm_crtc_init_with_planes()
792	 * (in tegra_dc_init()), which in turn requires registration of these
793	 * planes. So we have ourselves a nice little chicken and egg problem
794	 * here.
795	 *
796	 * We work around this by manually creating the mask from the number
797	 * of CRTCs that have been registered, and should therefore always be
798	 * the same as drm_crtc_index() after registration.
799	 */
800	return 1 << drm->mode_config.num_crtc;
801}
802
803static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
804						    struct tegra_dc *dc)
805{
806	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
807	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
808	struct tegra_plane *plane;
809	unsigned int num_formats;
810	const u64 *modifiers;
811	const u32 *formats;
812	int err;
813
814	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815	if (!plane)
816		return ERR_PTR(-ENOMEM);
817
818	/* Always use window A as primary window */
819	plane->offset = 0xa00;
820	plane->index = 0;
821	plane->dc = dc;
822
823	num_formats = dc->soc->num_primary_formats;
824	formats = dc->soc->primary_formats;
825	modifiers = dc->soc->modifiers;
826
827	err = tegra_plane_interconnect_init(plane);
828	if (err) {
829		kfree(plane);
830		return ERR_PTR(err);
831	}
832
833	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
834				       &tegra_plane_funcs, formats,
835				       num_formats, modifiers, type, NULL);
836	if (err < 0) {
837		kfree(plane);
838		return ERR_PTR(err);
839	}
840
841	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
842	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
843
844	err = drm_plane_create_rotation_property(&plane->base,
845						 DRM_MODE_ROTATE_0,
846						 DRM_MODE_ROTATE_0 |
847						 DRM_MODE_ROTATE_180 |
848						 DRM_MODE_REFLECT_X |
849						 DRM_MODE_REFLECT_Y);
850	if (err < 0)
851		dev_err(dc->dev, "failed to create rotation property: %d\n",
852			err);
853
854	return &plane->base;
855}
856
857static const u32 tegra_legacy_cursor_plane_formats[] = {
858	DRM_FORMAT_RGBA8888,
859};
860
861static const u32 tegra_cursor_plane_formats[] = {
862	DRM_FORMAT_ARGB8888,
863};
864
865static int tegra_cursor_atomic_check(struct drm_plane *plane,
866				     struct drm_atomic_state *state)
867{
868	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
869										 plane);
870	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
871	struct tegra_plane *tegra = to_tegra_plane(plane);
872	int err;
873
874	plane_state->peak_memory_bandwidth = 0;
875	plane_state->avg_memory_bandwidth = 0;
876
877	/* no need for further checks if the plane is being disabled */
878	if (!new_plane_state->crtc) {
879		plane_state->total_peak_memory_bandwidth = 0;
880		return 0;
881	}
882
883	/* scaling not supported for cursor */
884	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
885	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
886		return -EINVAL;
887
888	/* only square cursors supported */
889	if (new_plane_state->src_w != new_plane_state->src_h)
890		return -EINVAL;
891
892	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
893	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
894		return -EINVAL;
895
896	err = tegra_plane_state_add(tegra, new_plane_state);
897	if (err < 0)
898		return err;
899
900	return 0;
901}
902
903static void __tegra_cursor_atomic_update(struct drm_plane *plane,
904					 struct drm_plane_state *new_state)
905{
906	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
907	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
908	struct tegra_drm *tegra = plane->dev->dev_private;
909#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
910	u64 dma_mask = *dc->dev->dma_mask;
911#endif
912	unsigned int x, y;
913	u32 value = 0;
914
915	/* rien ne va plus */
916	if (!new_state->crtc || !new_state->fb)
917		return;
918
919	/*
920	 * Legacy display supports hardware clipping of the cursor, but
921	 * nvdisplay relies on software to clip the cursor to the screen.
922	 */
923	if (!dc->soc->has_nvdisplay)
924		value |= CURSOR_CLIP_DISPLAY;
925
926	switch (new_state->crtc_w) {
927	case 32:
928		value |= CURSOR_SIZE_32x32;
929		break;
930
931	case 64:
932		value |= CURSOR_SIZE_64x64;
933		break;
934
935	case 128:
936		value |= CURSOR_SIZE_128x128;
937		break;
938
939	case 256:
940		value |= CURSOR_SIZE_256x256;
941		break;
942
943	default:
944		WARN(1, "cursor size %ux%u not supported\n",
945		     new_state->crtc_w, new_state->crtc_h);
946		return;
947	}
948
949	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
950	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
951
952#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
953	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
954	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
955#endif
956
957	/* enable cursor and set blend mode */
958	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
959	value |= CURSOR_ENABLE;
960	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
961
962	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
963	value &= ~CURSOR_DST_BLEND_MASK;
964	value &= ~CURSOR_SRC_BLEND_MASK;
965
966	if (dc->soc->has_nvdisplay)
967		value &= ~CURSOR_COMPOSITION_MODE_XOR;
968	else
969		value |= CURSOR_MODE_NORMAL;
970
971	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
972	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
973	value |= CURSOR_ALPHA;
974	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
975
976	/* nvdisplay relies on software for clipping */
977	if (dc->soc->has_nvdisplay) {
978		struct drm_rect src;
979
980		x = new_state->dst.x1;
981		y = new_state->dst.y1;
982
983		drm_rect_fp_to_int(&src, &new_state->src);
984
985		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
986		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
987
988		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
989			(drm_rect_width(&src) & tegra->hmask);
990		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
991	} else {
992		x = new_state->crtc_x;
993		y = new_state->crtc_y;
994	}
995
996	/* position the cursor */
997	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
998	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
999}
1000
1001static void tegra_cursor_atomic_update(struct drm_plane *plane,
1002				       struct drm_atomic_state *state)
1003{
1004	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1005
1006	__tegra_cursor_atomic_update(plane, new_state);
1007}
1008
1009static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1010					struct drm_atomic_state *state)
1011{
1012	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1013									   plane);
1014	struct tegra_dc *dc;
1015	u32 value;
1016
1017	/* rien ne va plus */
1018	if (!old_state || !old_state->crtc)
1019		return;
1020
1021	dc = to_tegra_dc(old_state->crtc);
1022
1023	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1024	value &= ~CURSOR_ENABLE;
1025	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1026}
1027
1028static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1029{
1030	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1031	struct drm_crtc_state *crtc_state;
1032	int min_scale, max_scale;
1033	int err;
1034
1035	crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1036	if (WARN_ON(!crtc_state))
1037		return -EINVAL;
1038
1039	if (!crtc_state->active)
1040		return -EINVAL;
1041
1042	if (plane->state->crtc != new_state->crtc ||
1043	    plane->state->src_w != new_state->src_w ||
1044	    plane->state->src_h != new_state->src_h ||
1045	    plane->state->crtc_w != new_state->crtc_w ||
1046	    plane->state->crtc_h != new_state->crtc_h ||
1047	    plane->state->fb != new_state->fb ||
1048	    plane->state->fb == NULL)
1049		return -EINVAL;
1050
1051	min_scale = (1 << 16) / 8;
1052	max_scale = (8 << 16) / 1;
1053
1054	err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1055						  true, true);
1056	if (err < 0)
1057		return err;
1058
1059	if (new_state->visible != plane->state->visible)
1060		return -EINVAL;
1061
1062	return 0;
1063}
1064
1065static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1066					     struct drm_atomic_state *state)
1067{
1068	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1069	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1070
1071	plane->state->src_x = new_state->src_x;
1072	plane->state->src_y = new_state->src_y;
1073	plane->state->crtc_x = new_state->crtc_x;
1074	plane->state->crtc_y = new_state->crtc_y;
1075
1076	if (new_state->visible) {
1077		struct tegra_plane *p = to_tegra_plane(plane);
1078		u32 value;
1079
1080		__tegra_cursor_atomic_update(plane, new_state);
1081
1082		value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1083		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1084		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1085
1086		value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1087		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1088		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1089	}
1090}
1091
1092static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1093	.prepare_fb = tegra_plane_prepare_fb,
1094	.cleanup_fb = tegra_plane_cleanup_fb,
1095	.atomic_check = tegra_cursor_atomic_check,
1096	.atomic_update = tegra_cursor_atomic_update,
1097	.atomic_disable = tegra_cursor_atomic_disable,
1098	.atomic_async_check = tegra_cursor_atomic_async_check,
1099	.atomic_async_update = tegra_cursor_atomic_async_update,
1100};
1101
1102static const uint64_t linear_modifiers[] = {
1103	DRM_FORMAT_MOD_LINEAR,
1104	DRM_FORMAT_MOD_INVALID
1105};
1106
1107static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1108						      struct tegra_dc *dc)
1109{
1110	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1111	struct tegra_plane *plane;
1112	unsigned int num_formats;
1113	const u32 *formats;
1114	int err;
1115
1116	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1117	if (!plane)
1118		return ERR_PTR(-ENOMEM);
1119
1120	/*
1121	 * This index is kind of fake. The cursor isn't a regular plane, but
1122	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1123	 * use the same programming. Setting this fake index here allows the
1124	 * code in tegra_add_plane_state() to do the right thing without the
1125	 * need to special-casing the cursor plane.
1126	 */
1127	plane->index = 6;
1128	plane->dc = dc;
1129
1130	if (!dc->soc->has_nvdisplay) {
1131		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1132		formats = tegra_legacy_cursor_plane_formats;
1133
1134		err = tegra_plane_interconnect_init(plane);
1135		if (err) {
1136			kfree(plane);
1137			return ERR_PTR(err);
1138		}
1139	} else {
1140		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1141		formats = tegra_cursor_plane_formats;
1142	}
1143
1144	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1145				       &tegra_plane_funcs, formats,
1146				       num_formats, linear_modifiers,
1147				       DRM_PLANE_TYPE_CURSOR, NULL);
1148	if (err < 0) {
1149		kfree(plane);
1150		return ERR_PTR(err);
1151	}
1152
1153	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1154	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1155
1156	return &plane->base;
1157}
1158
1159static const u32 tegra20_overlay_formats[] = {
1160	DRM_FORMAT_ARGB4444,
1161	DRM_FORMAT_ARGB1555,
1162	DRM_FORMAT_RGB565,
1163	DRM_FORMAT_RGBA5551,
1164	DRM_FORMAT_ABGR8888,
1165	DRM_FORMAT_ARGB8888,
1166	/* non-native formats */
1167	DRM_FORMAT_XRGB1555,
1168	DRM_FORMAT_RGBX5551,
1169	DRM_FORMAT_XBGR8888,
1170	DRM_FORMAT_XRGB8888,
1171	/* planar formats */
1172	DRM_FORMAT_UYVY,
1173	DRM_FORMAT_YUYV,
1174	DRM_FORMAT_YUV420,
1175	DRM_FORMAT_YUV422,
1176};
1177
1178static const u32 tegra114_overlay_formats[] = {
1179	DRM_FORMAT_ARGB4444,
1180	DRM_FORMAT_ARGB1555,
1181	DRM_FORMAT_RGB565,
1182	DRM_FORMAT_RGBA5551,
1183	DRM_FORMAT_ABGR8888,
1184	DRM_FORMAT_ARGB8888,
1185	/* new on Tegra114 */
1186	DRM_FORMAT_ABGR4444,
1187	DRM_FORMAT_ABGR1555,
1188	DRM_FORMAT_BGRA5551,
1189	DRM_FORMAT_XRGB1555,
1190	DRM_FORMAT_RGBX5551,
1191	DRM_FORMAT_XBGR1555,
1192	DRM_FORMAT_BGRX5551,
1193	DRM_FORMAT_BGR565,
1194	DRM_FORMAT_BGRA8888,
1195	DRM_FORMAT_RGBA8888,
1196	DRM_FORMAT_XRGB8888,
1197	DRM_FORMAT_XBGR8888,
1198	/* planar formats */
1199	DRM_FORMAT_UYVY,
1200	DRM_FORMAT_YUYV,
1201	DRM_FORMAT_YUV420,
1202	DRM_FORMAT_YUV422,
1203	/* semi-planar formats */
1204	DRM_FORMAT_NV12,
1205	DRM_FORMAT_NV21,
1206	DRM_FORMAT_NV16,
1207	DRM_FORMAT_NV61,
1208	DRM_FORMAT_NV24,
1209	DRM_FORMAT_NV42,
1210};
1211
1212static const u32 tegra124_overlay_formats[] = {
1213	DRM_FORMAT_ARGB4444,
1214	DRM_FORMAT_ARGB1555,
1215	DRM_FORMAT_RGB565,
1216	DRM_FORMAT_RGBA5551,
1217	DRM_FORMAT_ABGR8888,
1218	DRM_FORMAT_ARGB8888,
1219	/* new on Tegra114 */
1220	DRM_FORMAT_ABGR4444,
1221	DRM_FORMAT_ABGR1555,
1222	DRM_FORMAT_BGRA5551,
1223	DRM_FORMAT_XRGB1555,
1224	DRM_FORMAT_RGBX5551,
1225	DRM_FORMAT_XBGR1555,
1226	DRM_FORMAT_BGRX5551,
1227	DRM_FORMAT_BGR565,
1228	DRM_FORMAT_BGRA8888,
1229	DRM_FORMAT_RGBA8888,
1230	DRM_FORMAT_XRGB8888,
1231	DRM_FORMAT_XBGR8888,
1232	/* new on Tegra124 */
1233	DRM_FORMAT_RGBX8888,
1234	DRM_FORMAT_BGRX8888,
1235	/* planar formats */
1236	DRM_FORMAT_UYVY,
1237	DRM_FORMAT_YUYV,
1238	DRM_FORMAT_YVYU,
1239	DRM_FORMAT_VYUY,
1240	DRM_FORMAT_YUV420, /* YU12 */
1241	DRM_FORMAT_YUV422, /* YU16 */
1242	DRM_FORMAT_YUV444, /* YU24 */
1243	/* semi-planar formats */
1244	DRM_FORMAT_NV12,
1245	DRM_FORMAT_NV21,
1246	DRM_FORMAT_NV16,
1247	DRM_FORMAT_NV61,
1248	DRM_FORMAT_NV24,
1249	DRM_FORMAT_NV42,
1250};
1251
1252static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1253						       struct tegra_dc *dc,
1254						       unsigned int index,
1255						       bool cursor)
1256{
1257	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1258	struct tegra_plane *plane;
1259	unsigned int num_formats;
1260	enum drm_plane_type type;
1261	const u32 *formats;
1262	int err;
1263
1264	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1265	if (!plane)
1266		return ERR_PTR(-ENOMEM);
1267
1268	plane->offset = 0xa00 + 0x200 * index;
1269	plane->index = index;
1270	plane->dc = dc;
1271
1272	num_formats = dc->soc->num_overlay_formats;
1273	formats = dc->soc->overlay_formats;
1274
1275	err = tegra_plane_interconnect_init(plane);
1276	if (err) {
1277		kfree(plane);
1278		return ERR_PTR(err);
1279	}
1280
1281	if (!cursor)
1282		type = DRM_PLANE_TYPE_OVERLAY;
1283	else
1284		type = DRM_PLANE_TYPE_CURSOR;
1285
1286	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1287				       &tegra_plane_funcs, formats,
1288				       num_formats, linear_modifiers,
1289				       type, NULL);
1290	if (err < 0) {
1291		kfree(plane);
1292		return ERR_PTR(err);
1293	}
1294
1295	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1296	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1297
1298	err = drm_plane_create_rotation_property(&plane->base,
1299						 DRM_MODE_ROTATE_0,
1300						 DRM_MODE_ROTATE_0 |
1301						 DRM_MODE_ROTATE_180 |
1302						 DRM_MODE_REFLECT_X |
1303						 DRM_MODE_REFLECT_Y);
1304	if (err < 0)
1305		dev_err(dc->dev, "failed to create rotation property: %d\n",
1306			err);
1307
1308	return &plane->base;
1309}
1310
1311static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1312						    struct tegra_dc *dc)
1313{
1314	struct drm_plane *plane, *primary = NULL;
1315	unsigned int i, j;
1316
1317	for (i = 0; i < dc->soc->num_wgrps; i++) {
1318		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1319
1320		if (wgrp->dc == dc->pipe) {
1321			for (j = 0; j < wgrp->num_windows; j++) {
1322				unsigned int index = wgrp->windows[j];
1323
1324				plane = tegra_shared_plane_create(drm, dc,
1325								  wgrp->index,
1326								  index);
1327				if (IS_ERR(plane))
1328					return plane;
1329
1330				/*
1331				 * Choose the first shared plane owned by this
1332				 * head as the primary plane.
1333				 */
1334				if (!primary) {
1335					plane->type = DRM_PLANE_TYPE_PRIMARY;
1336					primary = plane;
1337				}
1338			}
1339		}
1340	}
1341
1342	return primary;
1343}
1344
1345static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1346					     struct tegra_dc *dc)
1347{
1348	struct drm_plane *planes[2], *primary;
1349	unsigned int planes_num;
1350	unsigned int i;
1351	int err;
1352
1353	primary = tegra_primary_plane_create(drm, dc);
1354	if (IS_ERR(primary))
1355		return primary;
1356
1357	if (dc->soc->supports_cursor)
1358		planes_num = 2;
1359	else
1360		planes_num = 1;
1361
1362	for (i = 0; i < planes_num; i++) {
1363		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1364							  false);
1365		if (IS_ERR(planes[i])) {
1366			err = PTR_ERR(planes[i]);
1367
1368			while (i--)
1369				planes[i]->funcs->destroy(planes[i]);
1370
1371			primary->funcs->destroy(primary);
1372			return ERR_PTR(err);
1373		}
1374	}
1375
1376	return primary;
1377}
1378
1379static void tegra_dc_destroy(struct drm_crtc *crtc)
1380{
1381	drm_crtc_cleanup(crtc);
1382}
1383
1384static void tegra_crtc_reset(struct drm_crtc *crtc)
1385{
1386	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1387
1388	if (crtc->state)
1389		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1390
1391	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1392}
1393
1394static struct drm_crtc_state *
1395tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1396{
1397	struct tegra_dc_state *state = to_dc_state(crtc->state);
1398	struct tegra_dc_state *copy;
1399
1400	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1401	if (!copy)
1402		return NULL;
1403
1404	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1405	copy->clk = state->clk;
1406	copy->pclk = state->pclk;
1407	copy->div = state->div;
1408	copy->planes = state->planes;
1409
1410	return &copy->base;
1411}
1412
1413static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1414					    struct drm_crtc_state *state)
1415{
1416	__drm_atomic_helper_crtc_destroy_state(state);
1417	kfree(state);
1418}
1419
1420#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1421
1422static const struct debugfs_reg32 tegra_dc_regs[] = {
1423	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1424	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1425	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1426	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1427	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1428	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1429	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1430	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1431	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1432	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1433	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1434	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1435	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1436	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1437	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1438	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1439	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1440	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1441	DEBUGFS_REG32(DC_CMD_INT_MASK),
1442	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1443	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1444	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1445	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1446	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1447	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1448	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1449	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1450	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1451	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1452	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1453	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1454	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1455	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1456	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1457	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1458	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1459	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1460	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1461	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1462	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1463	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1464	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1465	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1466	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1467	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1468	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1469	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1470	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1471	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1472	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1473	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1474	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1475	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1476	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1477	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1478	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1479	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1480	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1481	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1482	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1483	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1484	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1485	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1486	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1487	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1488	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1489	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1490	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1491	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1492	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1493	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1494	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1495	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1496	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1497	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1498	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1499	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1500	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1501	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1502	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1503	DEBUGFS_REG32(DC_DISP_ACTIVE),
1504	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1505	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1506	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1507	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1508	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1509	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1510	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1511	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1512	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1513	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1514	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1515	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1516	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1517	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1518	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1519	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1520	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1521	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1522	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1523	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1524	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1525	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1526	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1527	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1528	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1529	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1530	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1531	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1532	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1533	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1534	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1535	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1536	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1537	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1538	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1539	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1540	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1541	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1542	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1543	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1544	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1545	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1546	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1547	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1548	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1549	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1550	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1551	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1552	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1553	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1554	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1555	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1556	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1557	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1558	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1559	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1560	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1561	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1562	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1563	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1564	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1565	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1566	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1567	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1568	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1569	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1570	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1571	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1572	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1573	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1574	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1575	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1576	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1577	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1578	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1579	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1580	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1581	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1582	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1583	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1584	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1585	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1586	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1587	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1588	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1589	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1590	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1591	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1592	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1593	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1594	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1595	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1596	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1597	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1598	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1599	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1600	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1601	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1602	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1603	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1604	DEBUGFS_REG32(DC_WIN_POSITION),
1605	DEBUGFS_REG32(DC_WIN_SIZE),
1606	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1607	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1608	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1609	DEBUGFS_REG32(DC_WIN_DDA_INC),
1610	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1611	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1612	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1613	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1614	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1615	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1616	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1617	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1618	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1619	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1620	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1621	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1622	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1623	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1624	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1625	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1626	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1627	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1628	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1629	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1630	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1631	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1632	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1633	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1634	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1635};
1636
1637static int tegra_dc_show_regs(struct seq_file *s, void *data)
1638{
1639	struct drm_info_node *node = s->private;
1640	struct tegra_dc *dc = node->info_ent->data;
1641	unsigned int i;
1642	int err = 0;
1643
1644	drm_modeset_lock(&dc->base.mutex, NULL);
1645
1646	if (!dc->base.state->active) {
1647		err = -EBUSY;
1648		goto unlock;
1649	}
1650
1651	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1652		unsigned int offset = tegra_dc_regs[i].offset;
1653
1654		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1655			   offset, tegra_dc_readl(dc, offset));
1656	}
1657
1658unlock:
1659	drm_modeset_unlock(&dc->base.mutex);
1660	return err;
1661}
1662
1663static int tegra_dc_show_crc(struct seq_file *s, void *data)
1664{
1665	struct drm_info_node *node = s->private;
1666	struct tegra_dc *dc = node->info_ent->data;
1667	int err = 0;
1668	u32 value;
1669
1670	drm_modeset_lock(&dc->base.mutex, NULL);
1671
1672	if (!dc->base.state->active) {
1673		err = -EBUSY;
1674		goto unlock;
1675	}
1676
1677	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1678	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1679	tegra_dc_commit(dc);
1680
1681	drm_crtc_wait_one_vblank(&dc->base);
1682	drm_crtc_wait_one_vblank(&dc->base);
1683
1684	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1685	seq_printf(s, "%08x\n", value);
1686
1687	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1688
1689unlock:
1690	drm_modeset_unlock(&dc->base.mutex);
1691	return err;
1692}
1693
1694static int tegra_dc_show_stats(struct seq_file *s, void *data)
1695{
1696	struct drm_info_node *node = s->private;
1697	struct tegra_dc *dc = node->info_ent->data;
1698
1699	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1700	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1701	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1702	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1703
1704	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1705	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1706	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1707	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1708
1709	return 0;
1710}
1711
1712static struct drm_info_list debugfs_files[] = {
1713	{ "regs", tegra_dc_show_regs, 0, NULL },
1714	{ "crc", tegra_dc_show_crc, 0, NULL },
1715	{ "stats", tegra_dc_show_stats, 0, NULL },
1716};
1717
1718static int tegra_dc_late_register(struct drm_crtc *crtc)
1719{
1720	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1721	struct drm_minor *minor = crtc->dev->primary;
1722	struct dentry *root;
1723	struct tegra_dc *dc = to_tegra_dc(crtc);
1724
1725#ifdef CONFIG_DEBUG_FS
1726	root = crtc->debugfs_entry;
1727#else
1728	root = NULL;
1729#endif
1730
1731	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1732				    GFP_KERNEL);
1733	if (!dc->debugfs_files)
1734		return -ENOMEM;
1735
1736	for (i = 0; i < count; i++)
1737		dc->debugfs_files[i].data = dc;
1738
1739	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1740
1741	return 0;
1742}
1743
1744static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1745{
1746	unsigned int count = ARRAY_SIZE(debugfs_files);
1747	struct drm_minor *minor = crtc->dev->primary;
1748	struct tegra_dc *dc = to_tegra_dc(crtc);
1749	struct dentry *root;
1750
1751#ifdef CONFIG_DEBUG_FS
1752	root = crtc->debugfs_entry;
1753#else
1754	root = NULL;
1755#endif
1756
1757	drm_debugfs_remove_files(dc->debugfs_files, count, root, minor);
1758	kfree(dc->debugfs_files);
1759	dc->debugfs_files = NULL;
1760}
1761
1762static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1763{
1764	struct tegra_dc *dc = to_tegra_dc(crtc);
1765
1766	/* XXX vblank syncpoints don't work with nvdisplay yet */
1767	if (dc->syncpt && !dc->soc->has_nvdisplay)
1768		return host1x_syncpt_read(dc->syncpt);
1769
1770	/* fallback to software emulated VBLANK counter */
1771	return (u32)drm_crtc_vblank_count(&dc->base);
1772}
1773
1774static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1775{
1776	struct tegra_dc *dc = to_tegra_dc(crtc);
1777	u32 value;
1778
1779	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1780	value |= VBLANK_INT;
1781	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1782
1783	return 0;
1784}
1785
1786static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1787{
1788	struct tegra_dc *dc = to_tegra_dc(crtc);
1789	u32 value;
1790
1791	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1792	value &= ~VBLANK_INT;
1793	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1794}
1795
1796static const struct drm_crtc_funcs tegra_crtc_funcs = {
1797	.page_flip = drm_atomic_helper_page_flip,
1798	.set_config = drm_atomic_helper_set_config,
1799	.destroy = tegra_dc_destroy,
1800	.reset = tegra_crtc_reset,
1801	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1802	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1803	.late_register = tegra_dc_late_register,
1804	.early_unregister = tegra_dc_early_unregister,
1805	.get_vblank_counter = tegra_dc_get_vblank_counter,
1806	.enable_vblank = tegra_dc_enable_vblank,
1807	.disable_vblank = tegra_dc_disable_vblank,
1808};
1809
1810static int tegra_dc_set_timings(struct tegra_dc *dc,
1811				struct drm_display_mode *mode)
1812{
1813	unsigned int h_ref_to_sync = 1;
1814	unsigned int v_ref_to_sync = 1;
1815	unsigned long value;
1816
1817	if (!dc->soc->has_nvdisplay) {
1818		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1819
1820		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1821		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1822	}
1823
1824	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1825		((mode->hsync_end - mode->hsync_start) <<  0);
1826	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1827
1828	value = ((mode->vtotal - mode->vsync_end) << 16) |
1829		((mode->htotal - mode->hsync_end) <<  0);
1830	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1831
1832	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1833		((mode->hsync_start - mode->hdisplay) <<  0);
1834	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1835
1836	value = (mode->vdisplay << 16) | mode->hdisplay;
1837	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1838
1839	return 0;
1840}
1841
1842/**
1843 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1844 *     state
1845 * @dc: display controller
1846 * @crtc_state: CRTC atomic state
1847 * @clk: parent clock for display controller
1848 * @pclk: pixel clock
1849 * @div: shift clock divider
1850 *
1851 * Returns:
1852 * 0 on success or a negative error-code on failure.
1853 */
1854int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1855			       struct drm_crtc_state *crtc_state,
1856			       struct clk *clk, unsigned long pclk,
1857			       unsigned int div)
1858{
1859	struct tegra_dc_state *state = to_dc_state(crtc_state);
1860
1861	if (!clk_has_parent(dc->clk, clk))
1862		return -EINVAL;
1863
1864	state->clk = clk;
1865	state->pclk = pclk;
1866	state->div = div;
1867
1868	return 0;
1869}
1870
1871static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1872					  struct tegra_dc_state *state)
1873{
1874	unsigned long rate, pstate;
1875	struct dev_pm_opp *opp;
1876	int err;
1877
1878	if (!dc->has_opp_table)
1879		return;
1880
1881	/* calculate actual pixel clock rate which depends on internal divider */
1882	rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1883
1884	/* find suitable OPP for the rate */
1885	opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1886
1887	/*
1888	 * Very high resolution modes may results in a clock rate that is
1889	 * above the characterized maximum. In this case it's okay to fall
1890	 * back to the characterized maximum.
1891	 */
1892	if (opp == ERR_PTR(-ERANGE))
1893		opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1894
1895	if (IS_ERR(opp)) {
1896		dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1897			rate, opp);
1898		return;
1899	}
1900
1901	pstate = dev_pm_opp_get_required_pstate(opp, 0);
1902	dev_pm_opp_put(opp);
1903
1904	/*
1905	 * The minimum core voltage depends on the pixel clock rate (which
1906	 * depends on internal clock divider of the CRTC) and not on the
1907	 * rate of the display controller clock. This is why we're not using
1908	 * dev_pm_opp_set_rate() API and instead controlling the power domain
1909	 * directly.
1910	 */
1911	err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1912	if (err)
1913		dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1914			pstate, err);
1915}
1916
1917static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1918				    struct tegra_dc_state *state)
1919{
1920	int err;
1921
1922	err = clk_set_parent(dc->clk, state->clk);
1923	if (err < 0)
1924		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1925
1926	/*
1927	 * Outputs may not want to change the parent clock rate. This is only
1928	 * relevant to Tegra20 where only a single display PLL is available.
1929	 * Since that PLL would typically be used for HDMI, an internal LVDS
1930	 * panel would need to be driven by some other clock such as PLL_P
1931	 * which is shared with other peripherals. Changing the clock rate
1932	 * should therefore be avoided.
1933	 */
1934	if (state->pclk > 0) {
1935		err = clk_set_rate(state->clk, state->pclk);
1936		if (err < 0)
1937			dev_err(dc->dev,
1938				"failed to set clock rate to %lu Hz\n",
1939				state->pclk);
1940
1941		err = clk_set_rate(dc->clk, state->pclk);
1942		if (err < 0)
1943			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1944				dc->clk, state->pclk, err);
1945	}
1946
1947	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1948		      state->div);
1949	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1950
1951	tegra_dc_update_voltage_state(dc, state);
1952}
1953
1954static void tegra_dc_stop(struct tegra_dc *dc)
1955{
1956	u32 value;
1957
1958	/* stop the display controller */
1959	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1960	value &= ~DISP_CTRL_MODE_MASK;
1961	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1962
1963	tegra_dc_commit(dc);
1964}
1965
1966static bool tegra_dc_idle(struct tegra_dc *dc)
1967{
1968	u32 value;
1969
1970	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1971
1972	return (value & DISP_CTRL_MODE_MASK) == 0;
1973}
1974
1975static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1976{
1977	timeout = jiffies + msecs_to_jiffies(timeout);
1978
1979	while (time_before(jiffies, timeout)) {
1980		if (tegra_dc_idle(dc))
1981			return 0;
1982
1983		usleep_range(1000, 2000);
1984	}
1985
1986	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1987	return -ETIMEDOUT;
1988}
1989
1990static void
1991tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1992				   struct drm_atomic_state *state,
1993				   bool prepare_bandwidth_transition)
1994{
1995	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1996	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1997	const struct drm_plane_state *old_plane_state;
1998	const struct drm_crtc_state *old_crtc_state;
1999	struct tegra_dc_window window, old_window;
2000	struct tegra_dc *dc = to_tegra_dc(crtc);
2001	struct tegra_plane *tegra;
2002	struct drm_plane *plane;
2003
2004	if (dc->soc->has_nvdisplay)
2005		return;
2006
2007	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2008
2009	if (!crtc->state->active) {
2010		if (!old_crtc_state->active)
2011			return;
2012
2013		/*
2014		 * When CRTC is disabled on DPMS, the state of attached planes
2015		 * is kept unchanged. Hence we need to enforce removal of the
2016		 * bandwidths from the ICC paths.
2017		 */
2018		drm_atomic_crtc_for_each_plane(plane, crtc) {
2019			tegra = to_tegra_plane(plane);
2020
2021			icc_set_bw(tegra->icc_mem, 0, 0);
2022			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2023		}
2024
2025		return;
2026	}
2027
2028	for_each_old_plane_in_state(old_crtc_state->state, plane,
2029				    old_plane_state, i) {
2030		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2031		new_tegra_state = to_const_tegra_plane_state(plane->state);
2032		tegra = to_tegra_plane(plane);
2033
2034		/*
2035		 * We're iterating over the global atomic state and it contains
2036		 * planes from another CRTC, hence we need to filter out the
2037		 * planes unrelated to this CRTC.
2038		 */
2039		if (tegra->dc != dc)
2040			continue;
2041
2042		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2043		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2044
2045		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2046		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2047
2048		/*
2049		 * See the comment related to !crtc->state->active above,
2050		 * which explains why bandwidths need to be updated when
2051		 * CRTC is turning ON.
2052		 */
2053		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2054		    old_crtc_state->active)
2055			continue;
2056
2057		window.src.h = drm_rect_height(&plane->state->src) >> 16;
2058		window.dst.h = drm_rect_height(&plane->state->dst);
2059
2060		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2061		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2062
2063		/*
2064		 * During the preparation phase (atomic_begin), the memory
2065		 * freq should go high before the DC changes are committed
2066		 * if bandwidth requirement goes up, otherwise memory freq
2067		 * should to stay high if BW requirement goes down.  The
2068		 * opposite applies to the completion phase (post_commit).
2069		 */
2070		if (prepare_bandwidth_transition) {
2071			new_avg_bw = max(old_avg_bw, new_avg_bw);
2072			new_peak_bw = max(old_peak_bw, new_peak_bw);
2073
2074			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2075				window = old_window;
2076		}
2077
2078		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2079
2080		if (tegra_plane_use_vertical_filtering(tegra, &window))
2081			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2082		else
2083			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2084	}
2085}
2086
2087static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2088				      struct drm_atomic_state *state)
2089{
2090	struct tegra_dc *dc = to_tegra_dc(crtc);
2091	u32 value;
2092	int err;
2093
2094	if (!tegra_dc_idle(dc)) {
2095		tegra_dc_stop(dc);
2096
2097		/*
2098		 * Ignore the return value, there isn't anything useful to do
2099		 * in case this fails.
2100		 */
2101		tegra_dc_wait_idle(dc, 100);
2102	}
2103
2104	/*
2105	 * This should really be part of the RGB encoder driver, but clearing
2106	 * these bits has the side-effect of stopping the display controller.
2107	 * When that happens no VBLANK interrupts will be raised. At the same
2108	 * time the encoder is disabled before the display controller, so the
2109	 * above code is always going to timeout waiting for the controller
2110	 * to go idle.
2111	 *
2112	 * Given the close coupling between the RGB encoder and the display
2113	 * controller doing it here is still kind of okay. None of the other
2114	 * encoder drivers require these bits to be cleared.
2115	 *
2116	 * XXX: Perhaps given that the display controller is switched off at
2117	 * this point anyway maybe clearing these bits isn't even useful for
2118	 * the RGB encoder?
2119	 */
2120	if (dc->rgb) {
2121		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2122		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2123			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2124		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2125	}
2126
2127	tegra_dc_stats_reset(&dc->stats);
2128	drm_crtc_vblank_off(crtc);
2129
2130	spin_lock_irq(&crtc->dev->event_lock);
2131
2132	if (crtc->state->event) {
2133		drm_crtc_send_vblank_event(crtc, crtc->state->event);
2134		crtc->state->event = NULL;
2135	}
2136
2137	spin_unlock_irq(&crtc->dev->event_lock);
2138
2139	err = host1x_client_suspend(&dc->client);
2140	if (err < 0)
2141		dev_err(dc->dev, "failed to suspend: %d\n", err);
2142
2143	if (dc->has_opp_table) {
2144		err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2145		if (err)
2146			dev_err(dc->dev,
2147				"failed to clear power domain state: %d\n", err);
2148	}
2149}
2150
2151static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2152				     struct drm_atomic_state *state)
2153{
2154	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2155	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2156	struct tegra_dc *dc = to_tegra_dc(crtc);
2157	u32 value;
2158	int err;
2159
2160	/* apply PLL changes */
2161	tegra_dc_set_clock_rate(dc, crtc_state);
2162
2163	err = host1x_client_resume(&dc->client);
2164	if (err < 0) {
2165		dev_err(dc->dev, "failed to resume: %d\n", err);
2166		return;
2167	}
2168
2169	/* initialize display controller */
2170	if (dc->syncpt) {
2171		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2172
2173		if (dc->soc->has_nvdisplay)
2174			enable = 1 << 31;
2175		else
2176			enable = 1 << 8;
2177
2178		value = SYNCPT_CNTRL_NO_STALL;
2179		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2180
2181		value = enable | syncpt;
2182		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2183	}
2184
2185	if (dc->soc->has_nvdisplay) {
2186		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2187			DSC_OBUF_UF_INT;
2188		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2189
2190		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2191			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2192			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2193			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2194			VBLANK_INT | FRAME_END_INT;
2195		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2196
2197		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2198			FRAME_END_INT;
2199		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2200
2201		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2202		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2203
2204		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2205	} else {
2206		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2207			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2208		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2209
2210		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2211			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2212		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2213
2214		/* initialize timer */
2215		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2216			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2217		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2218
2219		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2220			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2221		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2222
2223		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2224			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2225		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2226
2227		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2228			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2229		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2230	}
2231
2232	if (dc->soc->supports_background_color)
2233		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2234	else
2235		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2236
2237	/* apply pixel clock changes */
2238	if (!dc->soc->has_nvdisplay) {
2239		value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2240		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2241	}
2242
2243	/* program display mode */
2244	tegra_dc_set_timings(dc, mode);
2245
2246	/* interlacing isn't supported yet, so disable it */
2247	if (dc->soc->supports_interlacing) {
2248		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2249		value &= ~INTERLACE_ENABLE;
2250		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2251	}
2252
2253	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2254	value &= ~DISP_CTRL_MODE_MASK;
2255	value |= DISP_CTRL_MODE_C_DISPLAY;
2256	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2257
2258	if (!dc->soc->has_nvdisplay) {
2259		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2260		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2261			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2262		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2263	}
2264
2265	/* enable underflow reporting and display red for missing pixels */
2266	if (dc->soc->has_nvdisplay) {
2267		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2268		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2269	}
2270
2271	if (dc->rgb) {
2272		/* XXX: parameterize? */
2273		value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2274		tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2275	}
2276
2277	tegra_dc_commit(dc);
2278
2279	drm_crtc_vblank_on(crtc);
2280}
2281
2282static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2283				    struct drm_atomic_state *state)
2284{
2285	unsigned long flags;
2286
2287	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2288
2289	if (crtc->state->event) {
2290		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2291
2292		if (drm_crtc_vblank_get(crtc) != 0)
2293			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2294		else
2295			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2296
2297		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2298
2299		crtc->state->event = NULL;
2300	}
2301}
2302
2303static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2304				    struct drm_atomic_state *state)
2305{
2306	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2307									  crtc);
2308	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2309	struct tegra_dc *dc = to_tegra_dc(crtc);
2310	u32 value;
2311
2312	value = dc_state->planes << 8 | GENERAL_UPDATE;
2313	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2314	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2315
2316	value = dc_state->planes | GENERAL_ACT_REQ;
2317	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2318	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2319}
2320
2321static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2322{
2323	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2324	const struct drm_format_info *fmt = state->fb->format;
2325	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2326	unsigned int dst_w = drm_rect_width(&state->dst);
2327
2328	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2329		return false;
2330
2331	if (soc->supports_cursor)
2332		return true;
2333
2334	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2335		return false;
2336
2337	return true;
2338}
2339
2340static unsigned long
2341tegra_plane_overlap_mask(struct drm_crtc_state *state,
2342			 const struct drm_plane_state *plane_state)
2343{
2344	const struct drm_plane_state *other_state;
2345	const struct tegra_plane *tegra;
2346	unsigned long overlap_mask = 0;
2347	struct drm_plane *plane;
2348	struct drm_rect rect;
2349
2350	if (!plane_state->visible || !plane_state->fb)
2351		return 0;
2352
2353	/*
2354	 * Data-prefetch FIFO will easily help to overcome temporal memory
2355	 * pressure if other plane overlaps with the cursor plane.
2356	 */
2357	if (tegra_plane_is_cursor(plane_state))
2358		return 0;
2359
2360	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2361		rect = plane_state->dst;
2362
2363		tegra = to_tegra_plane(other_state->plane);
2364
2365		if (!other_state->visible || !other_state->fb)
2366			continue;
2367
2368		/*
2369		 * Ignore cursor plane overlaps because it's not practical to
2370		 * assume that it contributes to the bandwidth in overlapping
2371		 * area if window width is small.
2372		 */
2373		if (tegra_plane_is_cursor(other_state))
2374			continue;
2375
2376		if (drm_rect_intersect(&rect, &other_state->dst))
2377			overlap_mask |= BIT(tegra->index);
2378	}
2379
2380	return overlap_mask;
2381}
2382
2383static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2384						 struct drm_atomic_state *state)
2385{
2386	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2387	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2388	bool all_planes_overlap_simultaneously = true;
2389	const struct tegra_plane_state *tegra_state;
2390	const struct drm_plane_state *plane_state;
2391	struct tegra_dc *dc = to_tegra_dc(crtc);
2392	struct drm_crtc_state *new_state;
2393	struct tegra_plane *tegra;
2394	struct drm_plane *plane;
2395
2396	/*
2397	 * The nv-display uses shared planes.  The algorithm below assumes
2398	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2399	 * the nv-display.  Note that T124 support has additional windows,
2400	 * but currently they aren't supported by the driver.
2401	 */
2402	if (dc->soc->has_nvdisplay)
2403		return 0;
2404
2405	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2406
2407	/*
2408	 * For overlapping planes pixel's data is fetched for each plane at
2409	 * the same time, hence bandwidths are accumulated in this case.
2410	 * This needs to be taken into account for calculating total bandwidth
2411	 * consumed by all planes.
2412	 *
2413	 * Here we get the overlapping state of each plane, which is a
2414	 * bitmask of plane indices telling with what planes there is an
2415	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2416	 * to make further code nicer and simpler.
2417	 */
2418	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2419		tegra_state = to_const_tegra_plane_state(plane_state);
2420		tegra = to_tegra_plane(plane);
2421
2422		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2423			return -EINVAL;
2424
2425		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2426		mask = tegra_plane_overlap_mask(new_state, plane_state);
2427		overlap_mask[tegra->index] = mask;
2428
2429		if (hweight_long(mask) != 3)
2430			all_planes_overlap_simultaneously = false;
2431	}
2432
2433	/*
2434	 * Then we calculate maximum bandwidth of each plane state.
2435	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2436	 * overlapping planes, where "simultaneously" means areas where DC
2437	 * fetches from the planes simultaneously during of scan-out process.
2438	 *
2439	 * For example, if plane A overlaps with planes B and C, but B and C
2440	 * don't overlap, then the peak bandwidth will be either in area where
2441	 * A-and-B or A-and-C planes overlap.
2442	 *
2443	 * The plane_peak_bw[] contains peak memory bandwidth values of
2444	 * each plane, this information is needed by interconnect provider
2445	 * in order to set up latency allowance based on the peak BW, see
2446	 * tegra_crtc_update_memory_bandwidth().
2447	 */
2448	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2449		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2450
2451		/*
2452		 * Note that plane's atomic check doesn't touch the
2453		 * total_peak_memory_bandwidth of enabled plane, hence the
2454		 * current state contains the old bandwidth state from the
2455		 * previous CRTC commit.
2456		 */
2457		tegra_state = to_const_tegra_plane_state(plane_state);
2458		tegra = to_tegra_plane(plane);
2459
2460		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2461			if (i == tegra->index)
2462				continue;
2463
2464			if (all_planes_overlap_simultaneously)
2465				overlap_bw += plane_peak_bw[i];
2466			else
2467				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2468		}
2469
2470		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2471		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2472
2473		/*
2474		 * If plane's peak bandwidth changed (for example plane isn't
2475		 * overlapped anymore) and plane isn't in the atomic state,
2476		 * then add plane to the state in order to have the bandwidth
2477		 * updated.
2478		 */
2479		if (old_peak_bw != new_peak_bw) {
2480			struct tegra_plane_state *new_tegra_state;
2481			struct drm_plane_state *new_plane_state;
2482
2483			new_plane_state = drm_atomic_get_plane_state(state, plane);
2484			if (IS_ERR(new_plane_state))
2485				return PTR_ERR(new_plane_state);
2486
2487			new_tegra_state = to_tegra_plane_state(new_plane_state);
2488			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2489		}
2490	}
2491
2492	return 0;
2493}
2494
2495static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2496				   struct drm_atomic_state *state)
2497{
2498	int err;
2499
2500	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2501	if (err)
2502		return err;
2503
2504	return 0;
2505}
2506
2507void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2508				   struct drm_atomic_state *state)
2509{
2510	/*
2511	 * Display bandwidth is allowed to go down only once hardware state
2512	 * is known to be armed, i.e. state was committed and VBLANK event
2513	 * received.
2514	 */
2515	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2516}
2517
2518static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2519	.atomic_check = tegra_crtc_atomic_check,
2520	.atomic_begin = tegra_crtc_atomic_begin,
2521	.atomic_flush = tegra_crtc_atomic_flush,
2522	.atomic_enable = tegra_crtc_atomic_enable,
2523	.atomic_disable = tegra_crtc_atomic_disable,
2524};
2525
2526static irqreturn_t tegra_dc_irq(int irq, void *data)
2527{
2528	struct tegra_dc *dc = data;
2529	unsigned long status;
2530
2531	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2532	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2533
2534	if (status & FRAME_END_INT) {
2535		/*
2536		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2537		*/
2538		dc->stats.frames_total++;
2539		dc->stats.frames++;
2540	}
2541
2542	if (status & VBLANK_INT) {
2543		/*
2544		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2545		*/
2546		drm_crtc_handle_vblank(&dc->base);
2547		dc->stats.vblank_total++;
2548		dc->stats.vblank++;
2549	}
2550
2551	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2552		/*
2553		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2554		*/
2555		dc->stats.underflow_total++;
2556		dc->stats.underflow++;
2557	}
2558
2559	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2560		/*
2561		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2562		*/
2563		dc->stats.overflow_total++;
2564		dc->stats.overflow++;
2565	}
2566
2567	if (status & HEAD_UF_INT) {
2568		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2569		dc->stats.underflow_total++;
2570		dc->stats.underflow++;
2571	}
2572
2573	return IRQ_HANDLED;
2574}
2575
2576static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2577{
2578	unsigned int i;
2579
2580	if (!dc->soc->wgrps)
2581		return true;
2582
2583	for (i = 0; i < dc->soc->num_wgrps; i++) {
2584		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2585
2586		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2587			return true;
2588	}
2589
2590	return false;
2591}
2592
2593static int tegra_dc_early_init(struct host1x_client *client)
2594{
2595	struct drm_device *drm = dev_get_drvdata(client->host);
2596	struct tegra_drm *tegra = drm->dev_private;
2597
2598	tegra->num_crtcs++;
2599
2600	return 0;
2601}
2602
2603static int tegra_dc_init(struct host1x_client *client)
2604{
2605	struct drm_device *drm = dev_get_drvdata(client->host);
2606	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2607	struct tegra_dc *dc = host1x_client_to_dc(client);
2608	struct tegra_drm *tegra = drm->dev_private;
2609	struct drm_plane *primary = NULL;
2610	struct drm_plane *cursor = NULL;
2611	int err;
2612
2613	/*
2614	 * DC has been reset by now, so VBLANK syncpoint can be released
2615	 * for general use.
2616	 */
2617	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2618
2619	/*
2620	 * XXX do not register DCs with no window groups because we cannot
2621	 * assign a primary plane to them, which in turn will cause KMS to
2622	 * crash.
2623	 */
2624	if (!tegra_dc_has_window_groups(dc))
2625		return 0;
2626
2627	/*
2628	 * Set the display hub as the host1x client parent for the display
2629	 * controller. This is needed for the runtime reference counting that
2630	 * ensures the display hub is always powered when any of the display
2631	 * controllers are.
2632	 */
2633	if (dc->soc->has_nvdisplay)
2634		client->parent = &tegra->hub->client;
2635
2636	dc->syncpt = host1x_syncpt_request(client, flags);
2637	if (!dc->syncpt)
2638		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2639
2640	err = host1x_client_iommu_attach(client);
2641	if (err < 0 && err != -ENODEV) {
2642		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2643		return err;
2644	}
2645
2646	if (dc->soc->wgrps)
2647		primary = tegra_dc_add_shared_planes(drm, dc);
2648	else
2649		primary = tegra_dc_add_planes(drm, dc);
2650
2651	if (IS_ERR(primary)) {
2652		err = PTR_ERR(primary);
2653		goto cleanup;
2654	}
2655
2656	if (dc->soc->supports_cursor) {
2657		cursor = tegra_dc_cursor_plane_create(drm, dc);
2658		if (IS_ERR(cursor)) {
2659			err = PTR_ERR(cursor);
2660			goto cleanup;
2661		}
2662	} else {
2663		/* dedicate one overlay to mouse cursor */
2664		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2665		if (IS_ERR(cursor)) {
2666			err = PTR_ERR(cursor);
2667			goto cleanup;
2668		}
2669	}
2670
2671	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2672					&tegra_crtc_funcs, NULL);
2673	if (err < 0)
2674		goto cleanup;
2675
2676	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2677
2678	/*
2679	 * Keep track of the minimum pitch alignment across all display
2680	 * controllers.
2681	 */
2682	if (dc->soc->pitch_align > tegra->pitch_align)
2683		tegra->pitch_align = dc->soc->pitch_align;
2684
2685	/* track maximum resolution */
2686	if (dc->soc->has_nvdisplay)
2687		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2688	else
2689		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2690
2691	err = tegra_dc_rgb_init(drm, dc);
2692	if (err < 0 && err != -ENODEV) {
2693		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2694		goto cleanup;
2695	}
2696
2697	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2698			       dev_name(dc->dev), dc);
2699	if (err < 0) {
2700		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2701			err);
2702		goto cleanup;
2703	}
2704
2705	/*
2706	 * Inherit the DMA parameters (such as maximum segment size) from the
2707	 * parent host1x device.
2708	 */
2709	client->dev->dma_parms = client->host->dma_parms;
2710
2711	return 0;
2712
2713cleanup:
2714	if (!IS_ERR_OR_NULL(cursor))
2715		drm_plane_cleanup(cursor);
2716
2717	if (!IS_ERR(primary))
2718		drm_plane_cleanup(primary);
2719
2720	host1x_client_iommu_detach(client);
2721	host1x_syncpt_put(dc->syncpt);
2722
2723	return err;
2724}
2725
2726static int tegra_dc_exit(struct host1x_client *client)
2727{
2728	struct tegra_dc *dc = host1x_client_to_dc(client);
2729	int err;
2730
2731	if (!tegra_dc_has_window_groups(dc))
2732		return 0;
2733
2734	/* avoid a dangling pointer just in case this disappears */
2735	client->dev->dma_parms = NULL;
2736
2737	devm_free_irq(dc->dev, dc->irq, dc);
2738
2739	err = tegra_dc_rgb_exit(dc);
2740	if (err) {
2741		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2742		return err;
2743	}
2744
2745	host1x_client_iommu_detach(client);
2746	host1x_syncpt_put(dc->syncpt);
2747
2748	return 0;
2749}
2750
2751static int tegra_dc_late_exit(struct host1x_client *client)
2752{
2753	struct drm_device *drm = dev_get_drvdata(client->host);
2754	struct tegra_drm *tegra = drm->dev_private;
2755
2756	tegra->num_crtcs--;
2757
2758	return 0;
2759}
2760
2761static int tegra_dc_runtime_suspend(struct host1x_client *client)
2762{
2763	struct tegra_dc *dc = host1x_client_to_dc(client);
2764	struct device *dev = client->dev;
2765	int err;
2766
2767	err = reset_control_assert(dc->rst);
2768	if (err < 0) {
2769		dev_err(dev, "failed to assert reset: %d\n", err);
2770		return err;
2771	}
2772
2773	if (dc->soc->has_powergate)
2774		tegra_powergate_power_off(dc->powergate);
2775
2776	clk_disable_unprepare(dc->clk);
2777	pm_runtime_put_sync(dev);
2778
2779	return 0;
2780}
2781
2782static int tegra_dc_runtime_resume(struct host1x_client *client)
2783{
2784	struct tegra_dc *dc = host1x_client_to_dc(client);
2785	struct device *dev = client->dev;
2786	int err;
2787
2788	err = pm_runtime_resume_and_get(dev);
2789	if (err < 0) {
2790		dev_err(dev, "failed to get runtime PM: %d\n", err);
2791		return err;
2792	}
2793
2794	if (dc->soc->has_powergate) {
2795		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2796							dc->rst);
2797		if (err < 0) {
2798			dev_err(dev, "failed to power partition: %d\n", err);
2799			goto put_rpm;
2800		}
2801	} else {
2802		err = clk_prepare_enable(dc->clk);
2803		if (err < 0) {
2804			dev_err(dev, "failed to enable clock: %d\n", err);
2805			goto put_rpm;
2806		}
2807
2808		err = reset_control_deassert(dc->rst);
2809		if (err < 0) {
2810			dev_err(dev, "failed to deassert reset: %d\n", err);
2811			goto disable_clk;
2812		}
2813	}
2814
2815	return 0;
2816
2817disable_clk:
2818	clk_disable_unprepare(dc->clk);
2819put_rpm:
2820	pm_runtime_put_sync(dev);
2821	return err;
2822}
2823
2824static const struct host1x_client_ops dc_client_ops = {
2825	.early_init = tegra_dc_early_init,
2826	.init = tegra_dc_init,
2827	.exit = tegra_dc_exit,
2828	.late_exit = tegra_dc_late_exit,
2829	.suspend = tegra_dc_runtime_suspend,
2830	.resume = tegra_dc_runtime_resume,
2831};
2832
2833static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2834	.supports_background_color = false,
2835	.supports_interlacing = false,
2836	.supports_cursor = false,
2837	.supports_block_linear = false,
2838	.supports_sector_layout = false,
2839	.has_legacy_blending = true,
2840	.pitch_align = 8,
2841	.has_powergate = false,
2842	.coupled_pm = true,
2843	.has_nvdisplay = false,
2844	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2845	.primary_formats = tegra20_primary_formats,
2846	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2847	.overlay_formats = tegra20_overlay_formats,
2848	.modifiers = tegra20_modifiers,
2849	.has_win_a_without_filters = true,
2850	.has_win_b_vfilter_mem_client = true,
2851	.has_win_c_without_vert_filter = true,
2852	.plane_tiled_memory_bandwidth_x2 = false,
2853	.has_pll_d2_out0 = false,
2854};
2855
2856static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2857	.supports_background_color = false,
2858	.supports_interlacing = false,
2859	.supports_cursor = false,
2860	.supports_block_linear = false,
2861	.supports_sector_layout = false,
2862	.has_legacy_blending = true,
2863	.pitch_align = 8,
2864	.has_powergate = false,
2865	.coupled_pm = false,
2866	.has_nvdisplay = false,
2867	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2868	.primary_formats = tegra20_primary_formats,
2869	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2870	.overlay_formats = tegra20_overlay_formats,
2871	.modifiers = tegra20_modifiers,
2872	.has_win_a_without_filters = false,
2873	.has_win_b_vfilter_mem_client = true,
2874	.has_win_c_without_vert_filter = false,
2875	.plane_tiled_memory_bandwidth_x2 = true,
2876	.has_pll_d2_out0 = true,
2877};
2878
2879static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2880	.supports_background_color = false,
2881	.supports_interlacing = false,
2882	.supports_cursor = false,
2883	.supports_block_linear = false,
2884	.supports_sector_layout = false,
2885	.has_legacy_blending = true,
2886	.pitch_align = 64,
2887	.has_powergate = true,
2888	.coupled_pm = false,
2889	.has_nvdisplay = false,
2890	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2891	.primary_formats = tegra114_primary_formats,
2892	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2893	.overlay_formats = tegra114_overlay_formats,
2894	.modifiers = tegra20_modifiers,
2895	.has_win_a_without_filters = false,
2896	.has_win_b_vfilter_mem_client = false,
2897	.has_win_c_without_vert_filter = false,
2898	.plane_tiled_memory_bandwidth_x2 = true,
2899	.has_pll_d2_out0 = true,
2900};
2901
2902static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2903	.supports_background_color = true,
2904	.supports_interlacing = true,
2905	.supports_cursor = true,
2906	.supports_block_linear = true,
2907	.supports_sector_layout = false,
2908	.has_legacy_blending = false,
2909	.pitch_align = 64,
2910	.has_powergate = true,
2911	.coupled_pm = false,
2912	.has_nvdisplay = false,
2913	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2914	.primary_formats = tegra124_primary_formats,
2915	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2916	.overlay_formats = tegra124_overlay_formats,
2917	.modifiers = tegra124_modifiers,
2918	.has_win_a_without_filters = false,
2919	.has_win_b_vfilter_mem_client = false,
2920	.has_win_c_without_vert_filter = false,
2921	.plane_tiled_memory_bandwidth_x2 = false,
2922	.has_pll_d2_out0 = true,
2923};
2924
2925static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2926	.supports_background_color = true,
2927	.supports_interlacing = true,
2928	.supports_cursor = true,
2929	.supports_block_linear = true,
2930	.supports_sector_layout = false,
2931	.has_legacy_blending = false,
2932	.pitch_align = 64,
2933	.has_powergate = true,
2934	.coupled_pm = false,
2935	.has_nvdisplay = false,
2936	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2937	.primary_formats = tegra114_primary_formats,
2938	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2939	.overlay_formats = tegra114_overlay_formats,
2940	.modifiers = tegra124_modifiers,
2941	.has_win_a_without_filters = false,
2942	.has_win_b_vfilter_mem_client = false,
2943	.has_win_c_without_vert_filter = false,
2944	.plane_tiled_memory_bandwidth_x2 = false,
2945	.has_pll_d2_out0 = true,
2946};
2947
2948static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2949	{
2950		.index = 0,
2951		.dc = 0,
2952		.windows = (const unsigned int[]) { 0 },
2953		.num_windows = 1,
2954	}, {
2955		.index = 1,
2956		.dc = 1,
2957		.windows = (const unsigned int[]) { 1 },
2958		.num_windows = 1,
2959	}, {
2960		.index = 2,
2961		.dc = 1,
2962		.windows = (const unsigned int[]) { 2 },
2963		.num_windows = 1,
2964	}, {
2965		.index = 3,
2966		.dc = 2,
2967		.windows = (const unsigned int[]) { 3 },
2968		.num_windows = 1,
2969	}, {
2970		.index = 4,
2971		.dc = 2,
2972		.windows = (const unsigned int[]) { 4 },
2973		.num_windows = 1,
2974	}, {
2975		.index = 5,
2976		.dc = 2,
2977		.windows = (const unsigned int[]) { 5 },
2978		.num_windows = 1,
2979	},
2980};
2981
2982static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2983	.supports_background_color = true,
2984	.supports_interlacing = true,
2985	.supports_cursor = true,
2986	.supports_block_linear = true,
2987	.supports_sector_layout = false,
2988	.has_legacy_blending = false,
2989	.pitch_align = 64,
2990	.has_powergate = false,
2991	.coupled_pm = false,
2992	.has_nvdisplay = true,
2993	.wgrps = tegra186_dc_wgrps,
2994	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2995	.plane_tiled_memory_bandwidth_x2 = false,
2996	.has_pll_d2_out0 = false,
2997};
2998
2999static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
3000	{
3001		.index = 0,
3002		.dc = 0,
3003		.windows = (const unsigned int[]) { 0 },
3004		.num_windows = 1,
3005	}, {
3006		.index = 1,
3007		.dc = 1,
3008		.windows = (const unsigned int[]) { 1 },
3009		.num_windows = 1,
3010	}, {
3011		.index = 2,
3012		.dc = 1,
3013		.windows = (const unsigned int[]) { 2 },
3014		.num_windows = 1,
3015	}, {
3016		.index = 3,
3017		.dc = 2,
3018		.windows = (const unsigned int[]) { 3 },
3019		.num_windows = 1,
3020	}, {
3021		.index = 4,
3022		.dc = 2,
3023		.windows = (const unsigned int[]) { 4 },
3024		.num_windows = 1,
3025	}, {
3026		.index = 5,
3027		.dc = 2,
3028		.windows = (const unsigned int[]) { 5 },
3029		.num_windows = 1,
3030	},
3031};
3032
3033static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3034	.supports_background_color = true,
3035	.supports_interlacing = true,
3036	.supports_cursor = true,
3037	.supports_block_linear = true,
3038	.supports_sector_layout = true,
3039	.has_legacy_blending = false,
3040	.pitch_align = 64,
3041	.has_powergate = false,
3042	.coupled_pm = false,
3043	.has_nvdisplay = true,
3044	.wgrps = tegra194_dc_wgrps,
3045	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3046	.plane_tiled_memory_bandwidth_x2 = false,
3047	.has_pll_d2_out0 = false,
3048};
3049
3050static const struct of_device_id tegra_dc_of_match[] = {
3051	{
3052		.compatible = "nvidia,tegra194-dc",
3053		.data = &tegra194_dc_soc_info,
3054	}, {
3055		.compatible = "nvidia,tegra186-dc",
3056		.data = &tegra186_dc_soc_info,
3057	}, {
3058		.compatible = "nvidia,tegra210-dc",
3059		.data = &tegra210_dc_soc_info,
3060	}, {
3061		.compatible = "nvidia,tegra124-dc",
3062		.data = &tegra124_dc_soc_info,
3063	}, {
3064		.compatible = "nvidia,tegra114-dc",
3065		.data = &tegra114_dc_soc_info,
3066	}, {
3067		.compatible = "nvidia,tegra30-dc",
3068		.data = &tegra30_dc_soc_info,
3069	}, {
3070		.compatible = "nvidia,tegra20-dc",
3071		.data = &tegra20_dc_soc_info,
3072	}, {
3073		/* sentinel */
3074	}
3075};
3076MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3077
3078static int tegra_dc_parse_dt(struct tegra_dc *dc)
3079{
3080	struct device_node *np;
3081	u32 value = 0;
3082	int err;
3083
3084	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3085	if (err < 0) {
3086		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3087
3088		/*
3089		 * If the nvidia,head property isn't present, try to find the
3090		 * correct head number by looking up the position of this
3091		 * display controller's node within the device tree. Assuming
3092		 * that the nodes are ordered properly in the DTS file and
3093		 * that the translation into a flattened device tree blob
3094		 * preserves that ordering this will actually yield the right
3095		 * head number.
3096		 *
3097		 * If those assumptions don't hold, this will still work for
3098		 * cases where only a single display controller is used.
3099		 */
3100		for_each_matching_node(np, tegra_dc_of_match) {
3101			if (np == dc->dev->of_node) {
3102				of_node_put(np);
3103				break;
3104			}
3105
3106			value++;
3107		}
3108	}
3109
3110	dc->pipe = value;
3111
3112	return 0;
3113}
3114
3115static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3116{
3117	struct tegra_dc *dc = dev_get_drvdata(dev);
3118	unsigned int pipe = (unsigned long)(void *)data;
3119
3120	return dc->pipe == pipe;
3121}
3122
3123static int tegra_dc_couple(struct tegra_dc *dc)
3124{
3125	/*
3126	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3127	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3128	 * POWER_CONTROL registers during CRTC enabling.
3129	 */
3130	if (dc->soc->coupled_pm && dc->pipe == 1) {
3131		struct device *companion;
3132		struct tegra_dc *parent;
3133
3134		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3135					       tegra_dc_match_by_pipe);
3136		if (!companion)
3137			return -EPROBE_DEFER;
3138
3139		parent = dev_get_drvdata(companion);
3140		dc->client.parent = &parent->client;
3141
3142		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3143	}
3144
3145	return 0;
3146}
3147
3148static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3149{
3150	struct tegra_core_opp_params opp_params = {};
3151	int err;
3152
3153	err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3154	if (err && err != -ENODEV)
3155		return err;
3156
3157	if (err)
3158		dc->has_opp_table = false;
3159	else
3160		dc->has_opp_table = true;
3161
3162	return 0;
3163}
3164
3165static int tegra_dc_probe(struct platform_device *pdev)
3166{
3167	u64 dma_mask = dma_get_mask(pdev->dev.parent);
3168	struct tegra_dc *dc;
3169	int err;
3170
3171	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3172	if (err < 0) {
3173		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3174		return err;
3175	}
3176
3177	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3178	if (!dc)
3179		return -ENOMEM;
3180
3181	dc->soc = of_device_get_match_data(&pdev->dev);
3182
3183	INIT_LIST_HEAD(&dc->list);
3184	dc->dev = &pdev->dev;
3185
3186	err = tegra_dc_parse_dt(dc);
3187	if (err < 0)
3188		return err;
3189
3190	err = tegra_dc_couple(dc);
3191	if (err < 0)
3192		return err;
3193
3194	dc->clk = devm_clk_get(&pdev->dev, NULL);
3195	if (IS_ERR(dc->clk)) {
3196		dev_err(&pdev->dev, "failed to get clock\n");
3197		return PTR_ERR(dc->clk);
3198	}
3199
3200	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3201	if (IS_ERR(dc->rst)) {
3202		dev_err(&pdev->dev, "failed to get reset\n");
3203		return PTR_ERR(dc->rst);
3204	}
3205
3206	/* assert reset and disable clock */
3207	err = clk_prepare_enable(dc->clk);
3208	if (err < 0)
3209		return err;
3210
3211	usleep_range(2000, 4000);
3212
3213	err = reset_control_assert(dc->rst);
3214	if (err < 0) {
3215		clk_disable_unprepare(dc->clk);
3216		return err;
3217	}
3218
3219	usleep_range(2000, 4000);
3220
3221	clk_disable_unprepare(dc->clk);
3222
3223	if (dc->soc->has_powergate) {
3224		if (dc->pipe == 0)
3225			dc->powergate = TEGRA_POWERGATE_DIS;
3226		else
3227			dc->powergate = TEGRA_POWERGATE_DISB;
3228
3229		tegra_powergate_power_off(dc->powergate);
3230	}
3231
3232	err = tegra_dc_init_opp_table(dc);
3233	if (err < 0)
3234		return err;
3235
3236	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3237	if (IS_ERR(dc->regs))
3238		return PTR_ERR(dc->regs);
3239
3240	dc->irq = platform_get_irq(pdev, 0);
3241	if (dc->irq < 0)
3242		return -ENXIO;
3243
3244	err = tegra_dc_rgb_probe(dc);
3245	if (err < 0 && err != -ENODEV)
3246		return dev_err_probe(&pdev->dev, err,
3247				     "failed to probe RGB output\n");
3248
3249	platform_set_drvdata(pdev, dc);
3250	pm_runtime_enable(&pdev->dev);
3251
3252	INIT_LIST_HEAD(&dc->client.list);
3253	dc->client.ops = &dc_client_ops;
3254	dc->client.dev = &pdev->dev;
3255
3256	err = host1x_client_register(&dc->client);
3257	if (err < 0) {
3258		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3259			err);
3260		goto disable_pm;
3261	}
3262
3263	return 0;
3264
3265disable_pm:
3266	pm_runtime_disable(&pdev->dev);
3267	tegra_dc_rgb_remove(dc);
3268
3269	return err;
3270}
3271
3272static void tegra_dc_remove(struct platform_device *pdev)
3273{
3274	struct tegra_dc *dc = platform_get_drvdata(pdev);
3275
3276	host1x_client_unregister(&dc->client);
3277
3278	tegra_dc_rgb_remove(dc);
3279
3280	pm_runtime_disable(&pdev->dev);
3281}
3282
3283struct platform_driver tegra_dc_driver = {
3284	.driver = {
3285		.name = "tegra-dc",
3286		.of_match_table = tegra_dc_of_match,
3287	},
3288	.probe = tegra_dc_probe,
3289	.remove_new = tegra_dc_remove,
3290};
3291