1/*
2 * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 *
22 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23 *
24 */
25#include "priv.h"
26#include "gk20a.h"
27
28#include <core/tegra.h>
29#include <subdev/timer.h>
30
31static const u8 _pl_to_div[] = {
32/* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
33/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
34};
35
36static u32 pl_to_div(u32 pl)
37{
38	if (pl >= ARRAY_SIZE(_pl_to_div))
39		return 1;
40
41	return _pl_to_div[pl];
42}
43
44static u32 div_to_pl(u32 div)
45{
46	u32 pl;
47
48	for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
49		if (_pl_to_div[pl] >= div)
50			return pl;
51	}
52
53	return ARRAY_SIZE(_pl_to_div) - 1;
54}
55
56static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
57	.min_vco = 1000000, .max_vco = 2064000,
58	.min_u = 12000, .max_u = 38000,
59	.min_m = 1, .max_m = 255,
60	.min_n = 8, .max_n = 255,
61	.min_pl = 1, .max_pl = 32,
62};
63
64void
65gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
66{
67	struct nvkm_device *device = clk->base.subdev.device;
68	u32 val;
69
70	val = nvkm_rd32(device, GPCPLL_COEFF);
71	pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
72	pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
73	pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
74}
75
76void
77gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
78{
79	struct nvkm_device *device = clk->base.subdev.device;
80	u32 val;
81
82	val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT;
83	val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
84	val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT;
85	nvkm_wr32(device, GPCPLL_COEFF, val);
86}
87
88u32
89gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll)
90{
91	u32 rate;
92	u32 divider;
93
94	rate = clk->parent_rate * pll->n;
95	divider = pll->m * clk->pl_to_div(pll->pl);
96
97	return rate / divider / 2;
98}
99
100int
101gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate,
102		    struct gk20a_pll *pll)
103{
104	struct nvkm_subdev *subdev = &clk->base.subdev;
105	u32 target_clk_f, ref_clk_f, target_freq;
106	u32 min_vco_f, max_vco_f;
107	u32 low_pl, high_pl, best_pl;
108	u32 target_vco_f;
109	u32 best_m, best_n;
110	u32 best_delta = ~0;
111	u32 pl;
112
113	target_clk_f = rate * 2 / KHZ;
114	ref_clk_f = clk->parent_rate / KHZ;
115
116	target_vco_f = target_clk_f + target_clk_f / 50;
117	max_vco_f = max(clk->params->max_vco, target_vco_f);
118	min_vco_f = clk->params->min_vco;
119	best_m = clk->params->max_m;
120	best_n = clk->params->min_n;
121	best_pl = clk->params->min_pl;
122
123	/* min_pl <= high_pl <= max_pl */
124	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
125	high_pl = min(high_pl, clk->params->max_pl);
126	high_pl = max(high_pl, clk->params->min_pl);
127	high_pl = clk->div_to_pl(high_pl);
128
129	/* min_pl <= low_pl <= max_pl */
130	low_pl = min_vco_f / target_vco_f;
131	low_pl = min(low_pl, clk->params->max_pl);
132	low_pl = max(low_pl, clk->params->min_pl);
133	low_pl = clk->div_to_pl(low_pl);
134
135	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
136		   clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
137
138	/* Select lowest possible VCO */
139	for (pl = low_pl; pl <= high_pl; pl++) {
140		u32 m, n, n2;
141
142		target_vco_f = target_clk_f * clk->pl_to_div(pl);
143
144		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
145			u32 u_f = ref_clk_f / m;
146
147			if (u_f < clk->params->min_u)
148				break;
149			if (u_f > clk->params->max_u)
150				continue;
151
152			n = (target_vco_f * m) / ref_clk_f;
153			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
154
155			if (n > clk->params->max_n)
156				break;
157
158			for (; n <= n2; n++) {
159				u32 vco_f;
160
161				if (n < clk->params->min_n)
162					continue;
163				if (n > clk->params->max_n)
164					break;
165
166				vco_f = ref_clk_f * n / m;
167
168				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
169					u32 delta, lwv;
170
171					lwv = (vco_f + (clk->pl_to_div(pl) / 2))
172						/ clk->pl_to_div(pl);
173					delta = abs(lwv - target_clk_f);
174
175					if (delta < best_delta) {
176						best_delta = delta;
177						best_m = m;
178						best_n = n;
179						best_pl = pl;
180
181						if (best_delta == 0)
182							goto found_match;
183					}
184				}
185			}
186		}
187	}
188
189found_match:
190	WARN_ON(best_delta == ~0);
191
192	if (best_delta != 0)
193		nvkm_debug(subdev,
194			   "no best match for target @ %dMHz on gpc_pll",
195			   target_clk_f / KHZ);
196
197	pll->m = best_m;
198	pll->n = best_n;
199	pll->pl = best_pl;
200
201	target_freq = gk20a_pllg_calc_rate(clk, pll);
202
203	nvkm_debug(subdev,
204		   "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
205		   target_freq / KHZ, pll->m, pll->n, pll->pl,
206		   clk->pl_to_div(pll->pl));
207	return 0;
208}
209
210static int
211gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
212{
213	struct nvkm_subdev *subdev = &clk->base.subdev;
214	struct nvkm_device *device = subdev->device;
215	struct gk20a_pll pll;
216	int ret = 0;
217
218	/* get old coefficients */
219	gk20a_pllg_read_mnp(clk, &pll);
220	/* do nothing if NDIV is the same */
221	if (n == pll.n)
222		return 0;
223
224	/* pll slowdown mode */
225	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
226		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
227		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
228
229	/* new ndiv ready for ramp */
230	pll.n = n;
231	udelay(1);
232	gk20a_pllg_write_mnp(clk, &pll);
233
234	/* dynamic ramp to new ndiv */
235	udelay(1);
236	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
237		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
238		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
239
240	/* wait for ramping to complete */
241	if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
242		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
243		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
244		ret = -ETIMEDOUT;
245
246	/* exit slowdown mode */
247	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
248		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
249		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
250	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
251
252	return ret;
253}
254
255static int
256gk20a_pllg_enable(struct gk20a_clk *clk)
257{
258	struct nvkm_device *device = clk->base.subdev.device;
259	u32 val;
260
261	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
262	nvkm_rd32(device, GPCPLL_CFG);
263
264	/* enable lock detection */
265	val = nvkm_rd32(device, GPCPLL_CFG);
266	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
267		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
268		nvkm_wr32(device, GPCPLL_CFG, val);
269	}
270
271	/* wait for lock */
272	if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
273			   GPCPLL_CFG_LOCK) < 0)
274		return -ETIMEDOUT;
275
276	/* switch to VCO mode */
277	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
278		BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
279
280	return 0;
281}
282
283static void
284gk20a_pllg_disable(struct gk20a_clk *clk)
285{
286	struct nvkm_device *device = clk->base.subdev.device;
287
288	/* put PLL in bypass before disabling it */
289	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
290
291	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
292	nvkm_rd32(device, GPCPLL_CFG);
293}
294
295static int
296gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
297{
298	struct nvkm_subdev *subdev = &clk->base.subdev;
299	struct nvkm_device *device = subdev->device;
300	struct gk20a_pll cur_pll;
301	int ret;
302
303	gk20a_pllg_read_mnp(clk, &cur_pll);
304
305	/* split VCO-to-bypass jump in half by setting out divider 1:2 */
306	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
307		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
308	/* Intentional 2nd write to assure linear divider operation */
309	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
310		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
311	nvkm_rd32(device, GPC2CLK_OUT);
312	udelay(2);
313
314	gk20a_pllg_disable(clk);
315
316	gk20a_pllg_write_mnp(clk, pll);
317
318	ret = gk20a_pllg_enable(clk);
319	if (ret)
320		return ret;
321
322	/* restore out divider 1:1 */
323	udelay(2);
324	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
325		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
326	/* Intentional 2nd write to assure linear divider operation */
327	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
328		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
329	nvkm_rd32(device, GPC2CLK_OUT);
330
331	return 0;
332}
333
334static int
335gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
336{
337	struct gk20a_pll cur_pll;
338	int ret;
339
340	if (gk20a_pllg_is_enabled(clk)) {
341		gk20a_pllg_read_mnp(clk, &cur_pll);
342
343		/* just do NDIV slide if there is no change to M and PL */
344		if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
345			return gk20a_pllg_slide(clk, pll->n);
346
347		/* slide down to current NDIV_LO */
348		cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
349		ret = gk20a_pllg_slide(clk, cur_pll.n);
350		if (ret)
351			return ret;
352	}
353
354	/* program MNP with the new clock parameters and new NDIV_LO */
355	cur_pll = *pll;
356	cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
357	ret = gk20a_pllg_program_mnp(clk, &cur_pll);
358	if (ret)
359		return ret;
360
361	/* slide up to new NDIV */
362	return gk20a_pllg_slide(clk, pll->n);
363}
364
365static struct nvkm_pstate
366gk20a_pstates[] = {
367	{
368		.base = {
369			.domain[nv_clk_src_gpc] = 72000,
370			.voltage = 0,
371		},
372	},
373	{
374		.base = {
375			.domain[nv_clk_src_gpc] = 108000,
376			.voltage = 1,
377		},
378	},
379	{
380		.base = {
381			.domain[nv_clk_src_gpc] = 180000,
382			.voltage = 2,
383		},
384	},
385	{
386		.base = {
387			.domain[nv_clk_src_gpc] = 252000,
388			.voltage = 3,
389		},
390	},
391	{
392		.base = {
393			.domain[nv_clk_src_gpc] = 324000,
394			.voltage = 4,
395		},
396	},
397	{
398		.base = {
399			.domain[nv_clk_src_gpc] = 396000,
400			.voltage = 5,
401		},
402	},
403	{
404		.base = {
405			.domain[nv_clk_src_gpc] = 468000,
406			.voltage = 6,
407		},
408	},
409	{
410		.base = {
411			.domain[nv_clk_src_gpc] = 540000,
412			.voltage = 7,
413		},
414	},
415	{
416		.base = {
417			.domain[nv_clk_src_gpc] = 612000,
418			.voltage = 8,
419		},
420	},
421	{
422		.base = {
423			.domain[nv_clk_src_gpc] = 648000,
424			.voltage = 9,
425		},
426	},
427	{
428		.base = {
429			.domain[nv_clk_src_gpc] = 684000,
430			.voltage = 10,
431		},
432	},
433	{
434		.base = {
435			.domain[nv_clk_src_gpc] = 708000,
436			.voltage = 11,
437		},
438	},
439	{
440		.base = {
441			.domain[nv_clk_src_gpc] = 756000,
442			.voltage = 12,
443		},
444	},
445	{
446		.base = {
447			.domain[nv_clk_src_gpc] = 804000,
448			.voltage = 13,
449		},
450	},
451	{
452		.base = {
453			.domain[nv_clk_src_gpc] = 852000,
454			.voltage = 14,
455		},
456	},
457};
458
459int
460gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
461{
462	struct gk20a_clk *clk = gk20a_clk(base);
463	struct nvkm_subdev *subdev = &clk->base.subdev;
464	struct nvkm_device *device = subdev->device;
465	struct gk20a_pll pll;
466
467	switch (src) {
468	case nv_clk_src_crystal:
469		return device->crystal;
470	case nv_clk_src_gpc:
471		gk20a_pllg_read_mnp(clk, &pll);
472		return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV;
473	default:
474		nvkm_error(subdev, "invalid clock source %d\n", src);
475		return -EINVAL;
476	}
477}
478
479int
480gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
481{
482	struct gk20a_clk *clk = gk20a_clk(base);
483
484	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
485					 GK20A_CLK_GPC_MDIV, &clk->pll);
486}
487
488int
489gk20a_clk_prog(struct nvkm_clk *base)
490{
491	struct gk20a_clk *clk = gk20a_clk(base);
492	int ret;
493
494	ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
495	if (ret)
496		ret = gk20a_pllg_program_mnp(clk, &clk->pll);
497
498	return ret;
499}
500
501void
502gk20a_clk_tidy(struct nvkm_clk *base)
503{
504}
505
506int
507gk20a_clk_setup_slide(struct gk20a_clk *clk)
508{
509	struct nvkm_subdev *subdev = &clk->base.subdev;
510	struct nvkm_device *device = subdev->device;
511	u32 step_a, step_b;
512
513	switch (clk->parent_rate) {
514	case 12000000:
515	case 12800000:
516	case 13000000:
517		step_a = 0x2b;
518		step_b = 0x0b;
519		break;
520	case 19200000:
521		step_a = 0x12;
522		step_b = 0x08;
523		break;
524	case 38400000:
525		step_a = 0x04;
526		step_b = 0x05;
527		break;
528	default:
529		nvkm_error(subdev, "invalid parent clock rate %u KHz",
530			   clk->parent_rate / KHZ);
531		return -EINVAL;
532	}
533
534	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
535		step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
536	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
537		step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);
538
539	return 0;
540}
541
542void
543gk20a_clk_fini(struct nvkm_clk *base)
544{
545	struct nvkm_device *device = base->subdev.device;
546	struct gk20a_clk *clk = gk20a_clk(base);
547
548	/* slide to VCO min */
549	if (gk20a_pllg_is_enabled(clk)) {
550		struct gk20a_pll pll;
551		u32 n_lo;
552
553		gk20a_pllg_read_mnp(clk, &pll);
554		n_lo = gk20a_pllg_n_lo(clk, &pll);
555		gk20a_pllg_slide(clk, n_lo);
556	}
557
558	gk20a_pllg_disable(clk);
559
560	/* set IDDQ */
561	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
562}
563
564static int
565gk20a_clk_init(struct nvkm_clk *base)
566{
567	struct gk20a_clk *clk = gk20a_clk(base);
568	struct nvkm_subdev *subdev = &clk->base.subdev;
569	struct nvkm_device *device = subdev->device;
570	int ret;
571
572	/* get out from IDDQ */
573	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
574	nvkm_rd32(device, GPCPLL_CFG);
575	udelay(5);
576
577	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
578		  GPC2CLK_OUT_INIT_VAL);
579
580	ret = gk20a_clk_setup_slide(clk);
581	if (ret)
582		return ret;
583
584	/* Start with lowest frequency */
585	base->func->calc(base, &base->func->pstates[0].base);
586	ret = base->func->prog(&clk->base);
587	if (ret) {
588		nvkm_error(subdev, "cannot initialize clock\n");
589		return ret;
590	}
591
592	return 0;
593}
594
595static const struct nvkm_clk_func
596gk20a_clk = {
597	.init = gk20a_clk_init,
598	.fini = gk20a_clk_fini,
599	.read = gk20a_clk_read,
600	.calc = gk20a_clk_calc,
601	.prog = gk20a_clk_prog,
602	.tidy = gk20a_clk_tidy,
603	.pstates = gk20a_pstates,
604	.nr_pstates = ARRAY_SIZE(gk20a_pstates),
605	.domains = {
606		{ nv_clk_src_crystal, 0xff },
607		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
608		{ nv_clk_src_max }
609	}
610};
611
612int
613gk20a_clk_ctor(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
614	       const struct nvkm_clk_func *func, const struct gk20a_clk_pllg_params *params,
615	       struct gk20a_clk *clk)
616{
617	struct nvkm_device_tegra *tdev = device->func->tegra(device);
618	int ret;
619	int i;
620
621	/* Finish initializing the pstates */
622	for (i = 0; i < func->nr_pstates; i++) {
623		INIT_LIST_HEAD(&func->pstates[i].list);
624		func->pstates[i].pstate = i + 1;
625	}
626
627	clk->params = params;
628	clk->parent_rate = clk_get_rate(tdev->clk);
629
630	ret = nvkm_clk_ctor(func, device, type, inst, true, &clk->base);
631	if (ret)
632		return ret;
633
634	nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
635		   clk->parent_rate / KHZ);
636
637	return 0;
638}
639
640int
641gk20a_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
642	      struct nvkm_clk **pclk)
643{
644	struct gk20a_clk *clk;
645	int ret;
646
647	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
648	if (!clk)
649		return -ENOMEM;
650	*pclk = &clk->base;
651
652	ret = gk20a_clk_ctor(device, type, inst, &gk20a_clk, &gk20a_pllg_params, clk);
653
654	clk->pl_to_div = pl_to_div;
655	clk->div_to_pl = div_to_pl;
656	return ret;
657}
658