1/*
2 * Copyright 2009 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25/* NVIDIA context programs handle a number of other conditions which are
26 * not implemented in our versions.  It's not clear why NVIDIA context
27 * programs have this code, nor whether it's strictly necessary for
28 * correct operation.  We'll implement additional handling if/when we
29 * discover it's necessary.
30 *
31 * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
32 *   flag is set, this gets saved into the context.
33 * - On context save, the context program for all cards load nsource
34 *   into a flag register and check for ILLEGAL_MTHD.  If it's set,
35 *   opcode 0x60000d is called before resuming normal operation.
36 * - Some context programs check more conditions than the above.  NV44
37 *   checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
38 *   and calls 0x60000d before resuming normal operation.
39 * - At the very beginning of NVIDIA's context programs, flag 9 is checked
40 *   and if true 0x800001 is called with count=0, pos=0, the flag is cleared
41 *   and then the ctxprog is aborted.  It looks like a complicated NOP,
42 *   its purpose is unknown.
43 * - In the section of code that loads the per-vs state, NVIDIA check
44 *   flag 10.  If it's set, they only transfer the small 0x300 byte block
45 *   of state + the state for a single vs as opposed to the state for
46 *   all vs units.  It doesn't seem likely that it'll occur in normal
47 *   operation, especially seeing as it appears NVIDIA may have screwed
48 *   up the ctxprogs for some cards and have an invalid instruction
49 *   rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
50 * - There's a number of places where context offset 0 (where we place
51 *   the PRAMIN offset of the context) is loaded into either 0x408000,
52 *   0x408004 or 0x408008.  Not sure what's up there either.
53 * - The ctxprogs for some cards save 0x400a00 again during the cleanup
54 *   path for auto-loadctx.
55 */
56
57#define CP_FLAG_CLEAR                 0
58#define CP_FLAG_SET                   1
59#define CP_FLAG_SWAP_DIRECTION        ((0 * 32) + 0)
60#define CP_FLAG_SWAP_DIRECTION_LOAD   0
61#define CP_FLAG_SWAP_DIRECTION_SAVE   1
62#define CP_FLAG_USER_SAVE             ((0 * 32) + 5)
63#define CP_FLAG_USER_SAVE_NOT_PENDING 0
64#define CP_FLAG_USER_SAVE_PENDING     1
65#define CP_FLAG_USER_LOAD             ((0 * 32) + 6)
66#define CP_FLAG_USER_LOAD_NOT_PENDING 0
67#define CP_FLAG_USER_LOAD_PENDING     1
68#define CP_FLAG_STATUS                ((3 * 32) + 0)
69#define CP_FLAG_STATUS_IDLE           0
70#define CP_FLAG_STATUS_BUSY           1
71#define CP_FLAG_AUTO_SAVE             ((3 * 32) + 4)
72#define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
73#define CP_FLAG_AUTO_SAVE_PENDING     1
74#define CP_FLAG_AUTO_LOAD             ((3 * 32) + 5)
75#define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
76#define CP_FLAG_AUTO_LOAD_PENDING     1
77#define CP_FLAG_UNK54                 ((3 * 32) + 6)
78#define CP_FLAG_UNK54_CLEAR           0
79#define CP_FLAG_UNK54_SET             1
80#define CP_FLAG_ALWAYS                ((3 * 32) + 8)
81#define CP_FLAG_ALWAYS_FALSE          0
82#define CP_FLAG_ALWAYS_TRUE           1
83#define CP_FLAG_UNK57                 ((3 * 32) + 9)
84#define CP_FLAG_UNK57_CLEAR           0
85#define CP_FLAG_UNK57_SET             1
86
87#define CP_CTX                   0x00100000
88#define CP_CTX_COUNT             0x000fc000
89#define CP_CTX_COUNT_SHIFT               14
90#define CP_CTX_REG               0x00003fff
91#define CP_LOAD_SR               0x00200000
92#define CP_LOAD_SR_VALUE         0x000fffff
93#define CP_BRA                   0x00400000
94#define CP_BRA_IP                0x0000ff00
95#define CP_BRA_IP_SHIFT                   8
96#define CP_BRA_IF_CLEAR          0x00000080
97#define CP_BRA_FLAG              0x0000007f
98#define CP_WAIT                  0x00500000
99#define CP_WAIT_SET              0x00000080
100#define CP_WAIT_FLAG             0x0000007f
101#define CP_SET                   0x00700000
102#define CP_SET_1                 0x00000080
103#define CP_SET_FLAG              0x0000007f
104#define CP_NEXT_TO_SWAP          0x00600007
105#define CP_NEXT_TO_CURRENT       0x00600009
106#define CP_SET_CONTEXT_POINTER   0x0060000a
107#define CP_END                   0x0060000e
108#define CP_LOAD_MAGIC_UNK01      0x00800001 /* unknown */
109#define CP_LOAD_MAGIC_NV44TCL    0x00800029 /* per-vs state (0x4497) */
110#define CP_LOAD_MAGIC_NV40TCL    0x00800041 /* per-vs state (0x4097) */
111
112#include "ctxnv40.h"
113#include "nv40.h"
114
115/* TODO:
116 *  - get vs count from 0x1540
117 */
118
119static int
120nv40_gr_vs_count(struct nvkm_device *device)
121{
122
123	switch (device->chipset) {
124	case 0x47:
125	case 0x49:
126	case 0x4b:
127		return 8;
128	case 0x40:
129		return 6;
130	case 0x41:
131	case 0x42:
132		return 5;
133	case 0x43:
134	case 0x44:
135	case 0x46:
136	case 0x4a:
137		return 3;
138	case 0x4c:
139	case 0x4e:
140	case 0x67:
141	default:
142		return 1;
143	}
144}
145
146
147enum cp_label {
148	cp_check_load = 1,
149	cp_setup_auto_load,
150	cp_setup_load,
151	cp_setup_save,
152	cp_swap_state,
153	cp_swap_state3d_3_is_save,
154	cp_prepare_exit,
155	cp_exit,
156};
157
158static void
159nv40_gr_construct_general(struct nvkm_grctx *ctx)
160{
161	struct nvkm_device *device = ctx->device;
162	int i;
163
164	cp_ctx(ctx, 0x4000a4, 1);
165	gr_def(ctx, 0x4000a4, 0x00000008);
166	cp_ctx(ctx, 0x400144, 58);
167	gr_def(ctx, 0x400144, 0x00000001);
168	cp_ctx(ctx, 0x400314, 1);
169	gr_def(ctx, 0x400314, 0x00000000);
170	cp_ctx(ctx, 0x400400, 10);
171	cp_ctx(ctx, 0x400480, 10);
172	cp_ctx(ctx, 0x400500, 19);
173	gr_def(ctx, 0x400514, 0x00040000);
174	gr_def(ctx, 0x400524, 0x55555555);
175	gr_def(ctx, 0x400528, 0x55555555);
176	gr_def(ctx, 0x40052c, 0x55555555);
177	gr_def(ctx, 0x400530, 0x55555555);
178	cp_ctx(ctx, 0x400560, 6);
179	gr_def(ctx, 0x400568, 0x0000ffff);
180	gr_def(ctx, 0x40056c, 0x0000ffff);
181	cp_ctx(ctx, 0x40057c, 5);
182	cp_ctx(ctx, 0x400710, 3);
183	gr_def(ctx, 0x400710, 0x20010001);
184	gr_def(ctx, 0x400714, 0x0f73ef00);
185	cp_ctx(ctx, 0x400724, 1);
186	gr_def(ctx, 0x400724, 0x02008821);
187	cp_ctx(ctx, 0x400770, 3);
188	if (device->chipset == 0x40) {
189		cp_ctx(ctx, 0x400814, 4);
190		cp_ctx(ctx, 0x400828, 5);
191		cp_ctx(ctx, 0x400840, 5);
192		gr_def(ctx, 0x400850, 0x00000040);
193		cp_ctx(ctx, 0x400858, 4);
194		gr_def(ctx, 0x400858, 0x00000040);
195		gr_def(ctx, 0x40085c, 0x00000040);
196		gr_def(ctx, 0x400864, 0x80000000);
197		cp_ctx(ctx, 0x40086c, 9);
198		gr_def(ctx, 0x40086c, 0x80000000);
199		gr_def(ctx, 0x400870, 0x80000000);
200		gr_def(ctx, 0x400874, 0x80000000);
201		gr_def(ctx, 0x400878, 0x80000000);
202		gr_def(ctx, 0x400888, 0x00000040);
203		gr_def(ctx, 0x40088c, 0x80000000);
204		cp_ctx(ctx, 0x4009c0, 8);
205		gr_def(ctx, 0x4009cc, 0x80000000);
206		gr_def(ctx, 0x4009dc, 0x80000000);
207	} else {
208		cp_ctx(ctx, 0x400840, 20);
209		if (nv44_gr_class(ctx->device)) {
210			for (i = 0; i < 8; i++)
211				gr_def(ctx, 0x400860 + (i * 4), 0x00000001);
212		}
213		gr_def(ctx, 0x400880, 0x00000040);
214		gr_def(ctx, 0x400884, 0x00000040);
215		gr_def(ctx, 0x400888, 0x00000040);
216		cp_ctx(ctx, 0x400894, 11);
217		gr_def(ctx, 0x400894, 0x00000040);
218		if (!nv44_gr_class(ctx->device)) {
219			for (i = 0; i < 8; i++)
220				gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000);
221		}
222		cp_ctx(ctx, 0x4008e0, 2);
223		cp_ctx(ctx, 0x4008f8, 2);
224		if (device->chipset == 0x4c ||
225		    (device->chipset & 0xf0) == 0x60)
226			cp_ctx(ctx, 0x4009f8, 1);
227	}
228	cp_ctx(ctx, 0x400a00, 73);
229	gr_def(ctx, 0x400b0c, 0x0b0b0b0c);
230	cp_ctx(ctx, 0x401000, 4);
231	cp_ctx(ctx, 0x405004, 1);
232	switch (device->chipset) {
233	case 0x47:
234	case 0x49:
235	case 0x4b:
236		cp_ctx(ctx, 0x403448, 1);
237		gr_def(ctx, 0x403448, 0x00001010);
238		break;
239	default:
240		cp_ctx(ctx, 0x403440, 1);
241		switch (device->chipset) {
242		case 0x40:
243			gr_def(ctx, 0x403440, 0x00000010);
244			break;
245		case 0x44:
246		case 0x46:
247		case 0x4a:
248			gr_def(ctx, 0x403440, 0x00003010);
249			break;
250		case 0x41:
251		case 0x42:
252		case 0x43:
253		case 0x4c:
254		case 0x4e:
255		case 0x67:
256		default:
257			gr_def(ctx, 0x403440, 0x00001010);
258			break;
259		}
260		break;
261	}
262}
263
264static void
265nv40_gr_construct_state3d(struct nvkm_grctx *ctx)
266{
267	struct nvkm_device *device = ctx->device;
268	int i;
269
270	if (device->chipset == 0x40) {
271		cp_ctx(ctx, 0x401880, 51);
272		gr_def(ctx, 0x401940, 0x00000100);
273	} else
274	if (device->chipset == 0x46 || device->chipset == 0x47 ||
275	    device->chipset == 0x49 || device->chipset == 0x4b) {
276		cp_ctx(ctx, 0x401880, 32);
277		for (i = 0; i < 16; i++)
278			gr_def(ctx, 0x401880 + (i * 4), 0x00000111);
279		if (device->chipset == 0x46)
280			cp_ctx(ctx, 0x401900, 16);
281		cp_ctx(ctx, 0x401940, 3);
282	}
283	cp_ctx(ctx, 0x40194c, 18);
284	gr_def(ctx, 0x401954, 0x00000111);
285	gr_def(ctx, 0x401958, 0x00080060);
286	gr_def(ctx, 0x401974, 0x00000080);
287	gr_def(ctx, 0x401978, 0xffff0000);
288	gr_def(ctx, 0x40197c, 0x00000001);
289	gr_def(ctx, 0x401990, 0x46400000);
290	if (device->chipset == 0x40) {
291		cp_ctx(ctx, 0x4019a0, 2);
292		cp_ctx(ctx, 0x4019ac, 5);
293	} else {
294		cp_ctx(ctx, 0x4019a0, 1);
295		cp_ctx(ctx, 0x4019b4, 3);
296	}
297	gr_def(ctx, 0x4019bc, 0xffff0000);
298	switch (device->chipset) {
299	case 0x46:
300	case 0x47:
301	case 0x49:
302	case 0x4b:
303		cp_ctx(ctx, 0x4019c0, 18);
304		for (i = 0; i < 16; i++)
305			gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888);
306		break;
307	}
308	cp_ctx(ctx, 0x401a08, 8);
309	gr_def(ctx, 0x401a10, 0x0fff0000);
310	gr_def(ctx, 0x401a14, 0x0fff0000);
311	gr_def(ctx, 0x401a1c, 0x00011100);
312	cp_ctx(ctx, 0x401a2c, 4);
313	cp_ctx(ctx, 0x401a44, 26);
314	for (i = 0; i < 16; i++)
315		gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000);
316	gr_def(ctx, 0x401a8c, 0x4b7fffff);
317	if (device->chipset == 0x40) {
318		cp_ctx(ctx, 0x401ab8, 3);
319	} else {
320		cp_ctx(ctx, 0x401ab8, 1);
321		cp_ctx(ctx, 0x401ac0, 1);
322	}
323	cp_ctx(ctx, 0x401ad0, 8);
324	gr_def(ctx, 0x401ad0, 0x30201000);
325	gr_def(ctx, 0x401ad4, 0x70605040);
326	gr_def(ctx, 0x401ad8, 0xb8a89888);
327	gr_def(ctx, 0x401adc, 0xf8e8d8c8);
328	cp_ctx(ctx, 0x401b10, device->chipset == 0x40 ? 2 : 1);
329	gr_def(ctx, 0x401b10, 0x40100000);
330	cp_ctx(ctx, 0x401b18, device->chipset == 0x40 ? 6 : 5);
331	gr_def(ctx, 0x401b28, device->chipset == 0x40 ?
332			      0x00000004 : 0x00000000);
333	cp_ctx(ctx, 0x401b30, 25);
334	gr_def(ctx, 0x401b34, 0x0000ffff);
335	gr_def(ctx, 0x401b68, 0x435185d6);
336	gr_def(ctx, 0x401b6c, 0x2155b699);
337	gr_def(ctx, 0x401b70, 0xfedcba98);
338	gr_def(ctx, 0x401b74, 0x00000098);
339	gr_def(ctx, 0x401b84, 0xffffffff);
340	gr_def(ctx, 0x401b88, 0x00ff7000);
341	gr_def(ctx, 0x401b8c, 0x0000ffff);
342	if (device->chipset != 0x44 && device->chipset != 0x4a &&
343	    device->chipset != 0x4e)
344		cp_ctx(ctx, 0x401b94, 1);
345	cp_ctx(ctx, 0x401b98, 8);
346	gr_def(ctx, 0x401b9c, 0x00ff0000);
347	cp_ctx(ctx, 0x401bc0, 9);
348	gr_def(ctx, 0x401be0, 0x00ffff00);
349	cp_ctx(ctx, 0x401c00, 192);
350	for (i = 0; i < 16; i++) { /* fragment texture units */
351		gr_def(ctx, 0x401c40 + (i * 4), 0x00018488);
352		gr_def(ctx, 0x401c80 + (i * 4), 0x00028202);
353		gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4);
354		gr_def(ctx, 0x401d40 + (i * 4), 0x01012000);
355		gr_def(ctx, 0x401d80 + (i * 4), 0x00080008);
356		gr_def(ctx, 0x401e00 + (i * 4), 0x00100008);
357	}
358	for (i = 0; i < 4; i++) { /* vertex texture units */
359		gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80);
360		gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202);
361		gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008);
362		gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008);
363	}
364	cp_ctx(ctx, 0x400f5c, 3);
365	gr_def(ctx, 0x400f5c, 0x00000002);
366	cp_ctx(ctx, 0x400f84, 1);
367}
368
369static void
370nv40_gr_construct_state3d_2(struct nvkm_grctx *ctx)
371{
372	struct nvkm_device *device = ctx->device;
373	int i;
374
375	cp_ctx(ctx, 0x402000, 1);
376	cp_ctx(ctx, 0x402404, device->chipset == 0x40 ? 1 : 2);
377	switch (device->chipset) {
378	case 0x40:
379		gr_def(ctx, 0x402404, 0x00000001);
380		break;
381	case 0x4c:
382	case 0x4e:
383	case 0x67:
384		gr_def(ctx, 0x402404, 0x00000020);
385		break;
386	case 0x46:
387	case 0x49:
388	case 0x4b:
389		gr_def(ctx, 0x402404, 0x00000421);
390		break;
391	default:
392		gr_def(ctx, 0x402404, 0x00000021);
393	}
394	if (device->chipset != 0x40)
395		gr_def(ctx, 0x402408, 0x030c30c3);
396	switch (device->chipset) {
397	case 0x44:
398	case 0x46:
399	case 0x4a:
400	case 0x4c:
401	case 0x4e:
402	case 0x67:
403		cp_ctx(ctx, 0x402440, 1);
404		gr_def(ctx, 0x402440, 0x00011001);
405		break;
406	default:
407		break;
408	}
409	cp_ctx(ctx, 0x402480, device->chipset == 0x40 ? 8 : 9);
410	gr_def(ctx, 0x402488, 0x3e020200);
411	gr_def(ctx, 0x40248c, 0x00ffffff);
412	switch (device->chipset) {
413	case 0x40:
414		gr_def(ctx, 0x402490, 0x60103f00);
415		break;
416	case 0x47:
417		gr_def(ctx, 0x402490, 0x40103f00);
418		break;
419	case 0x41:
420	case 0x42:
421	case 0x49:
422	case 0x4b:
423		gr_def(ctx, 0x402490, 0x20103f00);
424		break;
425	default:
426		gr_def(ctx, 0x402490, 0x0c103f00);
427		break;
428	}
429	gr_def(ctx, 0x40249c, device->chipset <= 0x43 ?
430			      0x00020000 : 0x00040000);
431	cp_ctx(ctx, 0x402500, 31);
432	gr_def(ctx, 0x402530, 0x00008100);
433	if (device->chipset == 0x40)
434		cp_ctx(ctx, 0x40257c, 6);
435	cp_ctx(ctx, 0x402594, 16);
436	cp_ctx(ctx, 0x402800, 17);
437	gr_def(ctx, 0x402800, 0x00000001);
438	switch (device->chipset) {
439	case 0x47:
440	case 0x49:
441	case 0x4b:
442		cp_ctx(ctx, 0x402864, 1);
443		gr_def(ctx, 0x402864, 0x00001001);
444		cp_ctx(ctx, 0x402870, 3);
445		gr_def(ctx, 0x402878, 0x00000003);
446		if (device->chipset != 0x47) { /* belong at end!! */
447			cp_ctx(ctx, 0x402900, 1);
448			cp_ctx(ctx, 0x402940, 1);
449			cp_ctx(ctx, 0x402980, 1);
450			cp_ctx(ctx, 0x4029c0, 1);
451			cp_ctx(ctx, 0x402a00, 1);
452			cp_ctx(ctx, 0x402a40, 1);
453			cp_ctx(ctx, 0x402a80, 1);
454			cp_ctx(ctx, 0x402ac0, 1);
455		}
456		break;
457	case 0x40:
458		cp_ctx(ctx, 0x402844, 1);
459		gr_def(ctx, 0x402844, 0x00000001);
460		cp_ctx(ctx, 0x402850, 1);
461		break;
462	default:
463		cp_ctx(ctx, 0x402844, 1);
464		gr_def(ctx, 0x402844, 0x00001001);
465		cp_ctx(ctx, 0x402850, 2);
466		gr_def(ctx, 0x402854, 0x00000003);
467		break;
468	}
469
470	cp_ctx(ctx, 0x402c00, 4);
471	gr_def(ctx, 0x402c00, device->chipset == 0x40 ?
472			      0x80800001 : 0x00888001);
473	switch (device->chipset) {
474	case 0x47:
475	case 0x49:
476	case 0x4b:
477		cp_ctx(ctx, 0x402c20, 40);
478		for (i = 0; i < 32; i++)
479			gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff);
480		cp_ctx(ctx, 0x4030b8, 13);
481		gr_def(ctx, 0x4030dc, 0x00000005);
482		gr_def(ctx, 0x4030e8, 0x0000ffff);
483		break;
484	default:
485		cp_ctx(ctx, 0x402c10, 4);
486		if (device->chipset == 0x40)
487			cp_ctx(ctx, 0x402c20, 36);
488		else
489		if (device->chipset <= 0x42)
490			cp_ctx(ctx, 0x402c20, 24);
491		else
492		if (device->chipset <= 0x4a)
493			cp_ctx(ctx, 0x402c20, 16);
494		else
495			cp_ctx(ctx, 0x402c20, 8);
496		cp_ctx(ctx, 0x402cb0, device->chipset == 0x40 ? 12 : 13);
497		gr_def(ctx, 0x402cd4, 0x00000005);
498		if (device->chipset != 0x40)
499			gr_def(ctx, 0x402ce0, 0x0000ffff);
500		break;
501	}
502
503	cp_ctx(ctx, 0x403400, device->chipset == 0x40 ? 4 : 3);
504	cp_ctx(ctx, 0x403410, device->chipset == 0x40 ? 4 : 3);
505	cp_ctx(ctx, 0x403420, nv40_gr_vs_count(ctx->device));
506	for (i = 0; i < nv40_gr_vs_count(ctx->device); i++)
507		gr_def(ctx, 0x403420 + (i * 4), 0x00005555);
508
509	if (device->chipset != 0x40) {
510		cp_ctx(ctx, 0x403600, 1);
511		gr_def(ctx, 0x403600, 0x00000001);
512	}
513	cp_ctx(ctx, 0x403800, 1);
514
515	cp_ctx(ctx, 0x403c18, 1);
516	gr_def(ctx, 0x403c18, 0x00000001);
517	switch (device->chipset) {
518	case 0x46:
519	case 0x47:
520	case 0x49:
521	case 0x4b:
522		cp_ctx(ctx, 0x405018, 1);
523		gr_def(ctx, 0x405018, 0x08e00001);
524		cp_ctx(ctx, 0x405c24, 1);
525		gr_def(ctx, 0x405c24, 0x000e3000);
526		break;
527	}
528	if (device->chipset != 0x4e)
529		cp_ctx(ctx, 0x405800, 11);
530	cp_ctx(ctx, 0x407000, 1);
531}
532
533static void
534nv40_gr_construct_state3d_3(struct nvkm_grctx *ctx)
535{
536	int len = nv44_gr_class(ctx->device) ? 0x0084 : 0x0684;
537
538	cp_out (ctx, 0x300000);
539	cp_lsr (ctx, len - 4);
540	cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save);
541	cp_lsr (ctx, len);
542	cp_name(ctx, cp_swap_state3d_3_is_save);
543	cp_out (ctx, 0x800001);
544
545	ctx->ctxvals_pos += len;
546}
547
548static void
549nv40_gr_construct_shader(struct nvkm_grctx *ctx)
550{
551	struct nvkm_device *device = ctx->device;
552	struct nvkm_gpuobj *obj = ctx->data;
553	int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset;
554	int offset, i;
555
556	vs_nr    = nv40_gr_vs_count(ctx->device);
557	vs_nr_b0 = 363;
558	vs_nr_b1 = device->chipset == 0x40 ? 128 : 64;
559	if (device->chipset == 0x40) {
560		b0_offset = 0x2200/4; /* 33a0 */
561		b1_offset = 0x55a0/4; /* 1500 */
562		vs_len = 0x6aa0/4;
563	} else
564	if (device->chipset == 0x41 || device->chipset == 0x42) {
565		b0_offset = 0x2200/4; /* 2200 */
566		b1_offset = 0x4400/4; /* 0b00 */
567		vs_len = 0x4f00/4;
568	} else {
569		b0_offset = 0x1d40/4; /* 2200 */
570		b1_offset = 0x3f40/4; /* 0b00 : 0a40 */
571		vs_len = nv44_gr_class(device) ? 0x4980/4 : 0x4a40/4;
572	}
573
574	cp_lsr(ctx, vs_len * vs_nr + 0x300/4);
575	cp_out(ctx, nv44_gr_class(device) ? 0x800029 : 0x800041);
576
577	offset = ctx->ctxvals_pos;
578	ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len));
579
580	if (ctx->mode != NVKM_GRCTX_VALS)
581		return;
582
583	offset += 0x0280/4;
584	for (i = 0; i < 16; i++, offset += 2)
585		nvkm_wo32(obj, offset * 4, 0x3f800000);
586
587	for (vs = 0; vs < vs_nr; vs++, offset += vs_len) {
588		for (i = 0; i < vs_nr_b0 * 6; i += 6)
589			nvkm_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001);
590		for (i = 0; i < vs_nr_b1 * 4; i += 4)
591			nvkm_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000);
592	}
593}
594
595static void
596nv40_grctx_generate(struct nvkm_grctx *ctx)
597{
598	/* decide whether we're loading/unloading the context */
599	cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save);
600	cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save);
601
602	cp_name(ctx, cp_check_load);
603	cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load);
604	cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load);
605	cp_bra (ctx, ALWAYS, TRUE, cp_exit);
606
607	/* setup for context load */
608	cp_name(ctx, cp_setup_auto_load);
609	cp_wait(ctx, STATUS, IDLE);
610	cp_out (ctx, CP_NEXT_TO_SWAP);
611	cp_name(ctx, cp_setup_load);
612	cp_wait(ctx, STATUS, IDLE);
613	cp_set (ctx, SWAP_DIRECTION, LOAD);
614	cp_out (ctx, 0x00910880); /* ?? */
615	cp_out (ctx, 0x00901ffe); /* ?? */
616	cp_out (ctx, 0x01940000); /* ?? */
617	cp_lsr (ctx, 0x20);
618	cp_out (ctx, 0x0060000b); /* ?? */
619	cp_wait(ctx, UNK57, CLEAR);
620	cp_out (ctx, 0x0060000c); /* ?? */
621	cp_bra (ctx, ALWAYS, TRUE, cp_swap_state);
622
623	/* setup for context save */
624	cp_name(ctx, cp_setup_save);
625	cp_set (ctx, SWAP_DIRECTION, SAVE);
626
627	/* general PGRAPH state */
628	cp_name(ctx, cp_swap_state);
629	cp_pos (ctx, 0x00020/4);
630	nv40_gr_construct_general(ctx);
631	cp_wait(ctx, STATUS, IDLE);
632
633	/* 3D state, block 1 */
634	cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit);
635	nv40_gr_construct_state3d(ctx);
636	cp_wait(ctx, STATUS, IDLE);
637
638	/* 3D state, block 2 */
639	nv40_gr_construct_state3d_2(ctx);
640
641	/* Some other block of "random" state */
642	nv40_gr_construct_state3d_3(ctx);
643
644	/* Per-vertex shader state */
645	cp_pos (ctx, ctx->ctxvals_pos);
646	nv40_gr_construct_shader(ctx);
647
648	/* pre-exit state updates */
649	cp_name(ctx, cp_prepare_exit);
650	cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load);
651	cp_bra (ctx, USER_SAVE, PENDING, cp_exit);
652	cp_out (ctx, CP_NEXT_TO_CURRENT);
653
654	cp_name(ctx, cp_exit);
655	cp_set (ctx, USER_SAVE, NOT_PENDING);
656	cp_set (ctx, USER_LOAD, NOT_PENDING);
657	cp_out (ctx, CP_END);
658}
659
660void
661nv40_grctx_fill(struct nvkm_device *device, struct nvkm_gpuobj *mem)
662{
663	nv40_grctx_generate(&(struct nvkm_grctx) {
664			     .device = device,
665			     .mode = NVKM_GRCTX_VALS,
666			     .data = mem,
667			   });
668}
669
670int
671nv40_grctx_init(struct nvkm_device *device, u32 *size)
672{
673	u32 *ctxprog = kmalloc(256 * 4, GFP_KERNEL), i;
674	struct nvkm_grctx ctx = {
675		.device = device,
676		.mode = NVKM_GRCTX_PROG,
677		.ucode = ctxprog,
678		.ctxprog_max = 256,
679	};
680
681	if (!ctxprog)
682		return -ENOMEM;
683
684	nv40_grctx_generate(&ctx);
685
686	nvkm_wr32(device, 0x400324, 0);
687	for (i = 0; i < ctx.ctxprog_len; i++)
688		nvkm_wr32(device, 0x400328, ctxprog[i]);
689	*size = ctx.ctxvals_pos * 4;
690
691	kfree(ctxprog);
692	return 0;
693}
694