1/*
2 * Copyright 2018 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22#include "nouveau_svm.h"
23#include "nouveau_drv.h"
24#include "nouveau_chan.h"
25#include "nouveau_dmem.h"
26
27#include <nvif/event.h>
28#include <nvif/object.h>
29#include <nvif/vmm.h>
30
31#include <nvif/class.h>
32#include <nvif/clb069.h>
33#include <nvif/ifc00d.h>
34
35#include <linux/sched/mm.h>
36#include <linux/sort.h>
37#include <linux/hmm.h>
38#include <linux/memremap.h>
39#include <linux/rmap.h>
40
41struct nouveau_svm {
42	struct nouveau_drm *drm;
43	struct mutex mutex;
44	struct list_head inst;
45
46	struct nouveau_svm_fault_buffer {
47		int id;
48		struct nvif_object object;
49		u32 entries;
50		u32 getaddr;
51		u32 putaddr;
52		u32 get;
53		u32 put;
54		struct nvif_event notify;
55		struct work_struct work;
56
57		struct nouveau_svm_fault {
58			u64 inst;
59			u64 addr;
60			u64 time;
61			u32 engine;
62			u8  gpc;
63			u8  hub;
64			u8  access;
65			u8  client;
66			u8  fault;
67			struct nouveau_svmm *svmm;
68		} **fault;
69		int fault_nr;
70	} buffer[];
71};
72
73#define FAULT_ACCESS_READ 0
74#define FAULT_ACCESS_WRITE 1
75#define FAULT_ACCESS_ATOMIC 2
76#define FAULT_ACCESS_PREFETCH 3
77
78#define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
79#define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
80
81struct nouveau_pfnmap_args {
82	struct nvif_ioctl_v0 i;
83	struct nvif_ioctl_mthd_v0 m;
84	struct nvif_vmm_pfnmap_v0 p;
85};
86
87struct nouveau_ivmm {
88	struct nouveau_svmm *svmm;
89	u64 inst;
90	struct list_head head;
91};
92
93static struct nouveau_ivmm *
94nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
95{
96	struct nouveau_ivmm *ivmm;
97	list_for_each_entry(ivmm, &svm->inst, head) {
98		if (ivmm->inst == inst)
99			return ivmm;
100	}
101	return NULL;
102}
103
104#define SVMM_DBG(s,f,a...)                                                     \
105	NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
106#define SVMM_ERR(s,f,a...)                                                     \
107	NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
108
109int
110nouveau_svmm_bind(struct drm_device *dev, void *data,
111		  struct drm_file *file_priv)
112{
113	struct nouveau_cli *cli = nouveau_cli(file_priv);
114	struct drm_nouveau_svm_bind *args = data;
115	unsigned target, cmd;
116	unsigned long addr, end;
117	struct mm_struct *mm;
118
119	args->va_start &= PAGE_MASK;
120	args->va_end = ALIGN(args->va_end, PAGE_SIZE);
121
122	/* Sanity check arguments */
123	if (args->reserved0 || args->reserved1)
124		return -EINVAL;
125	if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
126		return -EINVAL;
127	if (args->va_start >= args->va_end)
128		return -EINVAL;
129
130	cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
131	cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
132	switch (cmd) {
133	case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
134		break;
135	default:
136		return -EINVAL;
137	}
138
139	/* FIXME support CPU target ie all target value < GPU_VRAM */
140	target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
141	target &= NOUVEAU_SVM_BIND_TARGET_MASK;
142	switch (target) {
143	case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
144		break;
145	default:
146		return -EINVAL;
147	}
148
149	/*
150	 * FIXME: For now refuse non 0 stride, we need to change the migrate
151	 * kernel function to handle stride to avoid to create a mess within
152	 * each device driver.
153	 */
154	if (args->stride)
155		return -EINVAL;
156
157	/*
158	 * Ok we are ask to do something sane, for now we only support migrate
159	 * commands but we will add things like memory policy (what to do on
160	 * page fault) and maybe some other commands.
161	 */
162
163	mm = get_task_mm(current);
164	if (!mm) {
165		return -EINVAL;
166	}
167	mmap_read_lock(mm);
168
169	if (!cli->svm.svmm) {
170		mmap_read_unlock(mm);
171		mmput(mm);
172		return -EINVAL;
173	}
174
175	for (addr = args->va_start, end = args->va_end; addr < end;) {
176		struct vm_area_struct *vma;
177		unsigned long next;
178
179		vma = find_vma_intersection(mm, addr, end);
180		if (!vma)
181			break;
182
183		addr = max(addr, vma->vm_start);
184		next = min(vma->vm_end, end);
185		/* This is a best effort so we ignore errors */
186		nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
187					 next);
188		addr = next;
189	}
190
191	/*
192	 * FIXME Return the number of page we have migrated, again we need to
193	 * update the migrate API to return that information so that we can
194	 * report it to user space.
195	 */
196	args->result = 0;
197
198	mmap_read_unlock(mm);
199	mmput(mm);
200
201	return 0;
202}
203
204/* Unlink channel instance from SVMM. */
205void
206nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
207{
208	struct nouveau_ivmm *ivmm;
209	if (svmm) {
210		mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
211		ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
212		if (ivmm) {
213			list_del(&ivmm->head);
214			kfree(ivmm);
215		}
216		mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
217	}
218}
219
220/* Link channel instance to SVMM. */
221int
222nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
223{
224	struct nouveau_ivmm *ivmm;
225	if (svmm) {
226		if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
227			return -ENOMEM;
228		ivmm->svmm = svmm;
229		ivmm->inst = inst;
230
231		mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
232		list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
233		mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
234	}
235	return 0;
236}
237
238/* Invalidate SVMM address-range on GPU. */
239void
240nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
241{
242	if (limit > start) {
243		nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
244				 &(struct nvif_vmm_pfnclr_v0) {
245					.addr = start,
246					.size = limit - start,
247				 }, sizeof(struct nvif_vmm_pfnclr_v0));
248	}
249}
250
251static int
252nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
253				    const struct mmu_notifier_range *update)
254{
255	struct nouveau_svmm *svmm =
256		container_of(mn, struct nouveau_svmm, notifier);
257	unsigned long start = update->start;
258	unsigned long limit = update->end;
259
260	if (!mmu_notifier_range_blockable(update))
261		return -EAGAIN;
262
263	SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
264
265	mutex_lock(&svmm->mutex);
266	if (unlikely(!svmm->vmm))
267		goto out;
268
269	/*
270	 * Ignore invalidation callbacks for device private pages since
271	 * the invalidation is handled as part of the migration process.
272	 */
273	if (update->event == MMU_NOTIFY_MIGRATE &&
274	    update->owner == svmm->vmm->cli->drm->dev)
275		goto out;
276
277	if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
278		if (start < svmm->unmanaged.start) {
279			nouveau_svmm_invalidate(svmm, start,
280						svmm->unmanaged.limit);
281		}
282		start = svmm->unmanaged.limit;
283	}
284
285	nouveau_svmm_invalidate(svmm, start, limit);
286
287out:
288	mutex_unlock(&svmm->mutex);
289	return 0;
290}
291
292static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
293{
294	kfree(container_of(mn, struct nouveau_svmm, notifier));
295}
296
297static const struct mmu_notifier_ops nouveau_mn_ops = {
298	.invalidate_range_start = nouveau_svmm_invalidate_range_start,
299	.free_notifier = nouveau_svmm_free_notifier,
300};
301
302void
303nouveau_svmm_fini(struct nouveau_svmm **psvmm)
304{
305	struct nouveau_svmm *svmm = *psvmm;
306	if (svmm) {
307		mutex_lock(&svmm->mutex);
308		svmm->vmm = NULL;
309		mutex_unlock(&svmm->mutex);
310		mmu_notifier_put(&svmm->notifier);
311		*psvmm = NULL;
312	}
313}
314
315int
316nouveau_svmm_init(struct drm_device *dev, void *data,
317		  struct drm_file *file_priv)
318{
319	struct nouveau_cli *cli = nouveau_cli(file_priv);
320	struct nouveau_svmm *svmm;
321	struct drm_nouveau_svm_init *args = data;
322	int ret;
323
324	/* We need to fail if svm is disabled */
325	if (!cli->drm->svm)
326		return -ENOSYS;
327
328	/* Allocate tracking for SVM-enabled VMM. */
329	if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
330		return -ENOMEM;
331	svmm->vmm = &cli->svm;
332	svmm->unmanaged.start = args->unmanaged_addr;
333	svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
334	mutex_init(&svmm->mutex);
335
336	/* Check that SVM isn't already enabled for the client. */
337	mutex_lock(&cli->mutex);
338	if (cli->svm.cli) {
339		ret = -EBUSY;
340		goto out_free;
341	}
342
343	/* Allocate a new GPU VMM that can support SVM (managed by the
344	 * client, with replayable faults enabled).
345	 *
346	 * All future channel/memory allocations will make use of this
347	 * VMM instead of the standard one.
348	 */
349	ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
350			    cli->vmm.vmm.object.oclass, MANAGED,
351			    args->unmanaged_addr, args->unmanaged_size,
352			    &(struct gp100_vmm_v0) {
353				.fault_replay = true,
354			    }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
355	if (ret)
356		goto out_free;
357
358	mmap_write_lock(current->mm);
359	svmm->notifier.ops = &nouveau_mn_ops;
360	ret = __mmu_notifier_register(&svmm->notifier, current->mm);
361	if (ret)
362		goto out_mm_unlock;
363	/* Note, ownership of svmm transfers to mmu_notifier */
364
365	cli->svm.svmm = svmm;
366	cli->svm.cli = cli;
367	mmap_write_unlock(current->mm);
368	mutex_unlock(&cli->mutex);
369	return 0;
370
371out_mm_unlock:
372	mmap_write_unlock(current->mm);
373out_free:
374	mutex_unlock(&cli->mutex);
375	kfree(svmm);
376	return ret;
377}
378
379/* Issue fault replay for GPU to retry accesses that faulted previously. */
380static void
381nouveau_svm_fault_replay(struct nouveau_svm *svm)
382{
383	SVM_DBG(svm, "replay");
384	WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
385				 GP100_VMM_VN_FAULT_REPLAY,
386				 &(struct gp100_vmm_fault_replay_vn) {},
387				 sizeof(struct gp100_vmm_fault_replay_vn)));
388}
389
390/* Cancel a replayable fault that could not be handled.
391 *
392 * Cancelling the fault will trigger recovery to reset the engine
393 * and kill the offending channel (ie. GPU SIGSEGV).
394 */
395static void
396nouveau_svm_fault_cancel(struct nouveau_svm *svm,
397			 u64 inst, u8 hub, u8 gpc, u8 client)
398{
399	SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
400	WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
401				 GP100_VMM_VN_FAULT_CANCEL,
402				 &(struct gp100_vmm_fault_cancel_v0) {
403					.hub = hub,
404					.gpc = gpc,
405					.client = client,
406					.inst = inst,
407				 }, sizeof(struct gp100_vmm_fault_cancel_v0)));
408}
409
410static void
411nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
412			       struct nouveau_svm_fault *fault)
413{
414	nouveau_svm_fault_cancel(svm, fault->inst,
415				      fault->hub,
416				      fault->gpc,
417				      fault->client);
418}
419
420static int
421nouveau_svm_fault_priority(u8 fault)
422{
423	switch (fault) {
424	case FAULT_ACCESS_PREFETCH:
425		return 0;
426	case FAULT_ACCESS_READ:
427		return 1;
428	case FAULT_ACCESS_WRITE:
429		return 2;
430	case FAULT_ACCESS_ATOMIC:
431		return 3;
432	default:
433		WARN_ON_ONCE(1);
434		return -1;
435	}
436}
437
438static int
439nouveau_svm_fault_cmp(const void *a, const void *b)
440{
441	const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
442	const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
443	int ret;
444	if ((ret = (s64)fa->inst - fb->inst))
445		return ret;
446	if ((ret = (s64)fa->addr - fb->addr))
447		return ret;
448	return nouveau_svm_fault_priority(fa->access) -
449		nouveau_svm_fault_priority(fb->access);
450}
451
452static void
453nouveau_svm_fault_cache(struct nouveau_svm *svm,
454			struct nouveau_svm_fault_buffer *buffer, u32 offset)
455{
456	struct nvif_object *memory = &buffer->object;
457	const u32 instlo = nvif_rd32(memory, offset + 0x00);
458	const u32 insthi = nvif_rd32(memory, offset + 0x04);
459	const u32 addrlo = nvif_rd32(memory, offset + 0x08);
460	const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
461	const u32 timelo = nvif_rd32(memory, offset + 0x10);
462	const u32 timehi = nvif_rd32(memory, offset + 0x14);
463	const u32 engine = nvif_rd32(memory, offset + 0x18);
464	const u32   info = nvif_rd32(memory, offset + 0x1c);
465	const u64   inst = (u64)insthi << 32 | instlo;
466	const u8     gpc = (info & 0x1f000000) >> 24;
467	const u8     hub = (info & 0x00100000) >> 20;
468	const u8  client = (info & 0x00007f00) >> 8;
469	struct nouveau_svm_fault *fault;
470
471	//XXX: i think we're supposed to spin waiting */
472	if (WARN_ON(!(info & 0x80000000)))
473		return;
474
475	nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
476
477	if (!buffer->fault[buffer->fault_nr]) {
478		fault = kmalloc(sizeof(*fault), GFP_KERNEL);
479		if (WARN_ON(!fault)) {
480			nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
481			return;
482		}
483		buffer->fault[buffer->fault_nr] = fault;
484	}
485
486	fault = buffer->fault[buffer->fault_nr++];
487	fault->inst   = inst;
488	fault->addr   = (u64)addrhi << 32 | addrlo;
489	fault->time   = (u64)timehi << 32 | timelo;
490	fault->engine = engine;
491	fault->gpc    = gpc;
492	fault->hub    = hub;
493	fault->access = (info & 0x000f0000) >> 16;
494	fault->client = client;
495	fault->fault  = (info & 0x0000001f);
496
497	SVM_DBG(svm, "fault %016llx %016llx %02x",
498		fault->inst, fault->addr, fault->access);
499}
500
501struct svm_notifier {
502	struct mmu_interval_notifier notifier;
503	struct nouveau_svmm *svmm;
504};
505
506static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
507					 const struct mmu_notifier_range *range,
508					 unsigned long cur_seq)
509{
510	struct svm_notifier *sn =
511		container_of(mni, struct svm_notifier, notifier);
512
513	if (range->event == MMU_NOTIFY_EXCLUSIVE &&
514	    range->owner == sn->svmm->vmm->cli->drm->dev)
515		return true;
516
517	/*
518	 * serializes the update to mni->invalidate_seq done by caller and
519	 * prevents invalidation of the PTE from progressing while HW is being
520	 * programmed. This is very hacky and only works because the normal
521	 * notifier that does invalidation is always called after the range
522	 * notifier.
523	 */
524	if (mmu_notifier_range_blockable(range))
525		mutex_lock(&sn->svmm->mutex);
526	else if (!mutex_trylock(&sn->svmm->mutex))
527		return false;
528	mmu_interval_set_seq(mni, cur_seq);
529	mutex_unlock(&sn->svmm->mutex);
530	return true;
531}
532
533static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
534	.invalidate = nouveau_svm_range_invalidate,
535};
536
537static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
538				    struct hmm_range *range,
539				    struct nouveau_pfnmap_args *args)
540{
541	struct page *page;
542
543	/*
544	 * The address prepared here is passed through nvif_object_ioctl()
545	 * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
546	 *
547	 * This is all just encoding the internal hmm representation into a
548	 * different nouveau internal representation.
549	 */
550	if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
551		args->p.phys[0] = 0;
552		return;
553	}
554
555	page = hmm_pfn_to_page(range->hmm_pfns[0]);
556	/*
557	 * Only map compound pages to the GPU if the CPU is also mapping the
558	 * page as a compound page. Otherwise, the PTE protections might not be
559	 * consistent (e.g., CPU only maps part of a compound page).
560	 * Note that the underlying page might still be larger than the
561	 * CPU mapping (e.g., a PUD sized compound page partially mapped with
562	 * a PMD sized page table entry).
563	 */
564	if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
565		unsigned long addr = args->p.addr;
566
567		args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
568				PAGE_SHIFT;
569		args->p.size = 1UL << args->p.page;
570		args->p.addr &= ~(args->p.size - 1);
571		page -= (addr - args->p.addr) >> PAGE_SHIFT;
572	}
573	if (is_device_private_page(page))
574		args->p.phys[0] = nouveau_dmem_page_addr(page) |
575				NVIF_VMM_PFNMAP_V0_V |
576				NVIF_VMM_PFNMAP_V0_VRAM;
577	else
578		args->p.phys[0] = page_to_phys(page) |
579				NVIF_VMM_PFNMAP_V0_V |
580				NVIF_VMM_PFNMAP_V0_HOST;
581	if (range->hmm_pfns[0] & HMM_PFN_WRITE)
582		args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
583}
584
585static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
586			       struct nouveau_drm *drm,
587			       struct nouveau_pfnmap_args *args, u32 size,
588			       struct svm_notifier *notifier)
589{
590	unsigned long timeout =
591		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
592	struct mm_struct *mm = svmm->notifier.mm;
593	struct page *page;
594	unsigned long start = args->p.addr;
595	unsigned long notifier_seq;
596	int ret = 0;
597
598	ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
599					args->p.addr, args->p.size,
600					&nouveau_svm_mni_ops);
601	if (ret)
602		return ret;
603
604	while (true) {
605		if (time_after(jiffies, timeout)) {
606			ret = -EBUSY;
607			goto out;
608		}
609
610		notifier_seq = mmu_interval_read_begin(&notifier->notifier);
611		mmap_read_lock(mm);
612		ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
613					    &page, drm->dev);
614		mmap_read_unlock(mm);
615		if (ret <= 0 || !page) {
616			ret = -EINVAL;
617			goto out;
618		}
619
620		mutex_lock(&svmm->mutex);
621		if (!mmu_interval_read_retry(&notifier->notifier,
622					     notifier_seq))
623			break;
624		mutex_unlock(&svmm->mutex);
625	}
626
627	/* Map the page on the GPU. */
628	args->p.page = 12;
629	args->p.size = PAGE_SIZE;
630	args->p.addr = start;
631	args->p.phys[0] = page_to_phys(page) |
632		NVIF_VMM_PFNMAP_V0_V |
633		NVIF_VMM_PFNMAP_V0_W |
634		NVIF_VMM_PFNMAP_V0_A |
635		NVIF_VMM_PFNMAP_V0_HOST;
636
637	ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
638	mutex_unlock(&svmm->mutex);
639
640	unlock_page(page);
641	put_page(page);
642
643out:
644	mmu_interval_notifier_remove(&notifier->notifier);
645	return ret;
646}
647
648static int nouveau_range_fault(struct nouveau_svmm *svmm,
649			       struct nouveau_drm *drm,
650			       struct nouveau_pfnmap_args *args, u32 size,
651			       unsigned long hmm_flags,
652			       struct svm_notifier *notifier)
653{
654	unsigned long timeout =
655		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
656	/* Have HMM fault pages within the fault window to the GPU. */
657	unsigned long hmm_pfns[1];
658	struct hmm_range range = {
659		.notifier = &notifier->notifier,
660		.default_flags = hmm_flags,
661		.hmm_pfns = hmm_pfns,
662		.dev_private_owner = drm->dev,
663	};
664	struct mm_struct *mm = svmm->notifier.mm;
665	int ret;
666
667	ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
668					args->p.addr, args->p.size,
669					&nouveau_svm_mni_ops);
670	if (ret)
671		return ret;
672
673	range.start = notifier->notifier.interval_tree.start;
674	range.end = notifier->notifier.interval_tree.last + 1;
675
676	while (true) {
677		if (time_after(jiffies, timeout)) {
678			ret = -EBUSY;
679			goto out;
680		}
681
682		range.notifier_seq = mmu_interval_read_begin(range.notifier);
683		mmap_read_lock(mm);
684		ret = hmm_range_fault(&range);
685		mmap_read_unlock(mm);
686		if (ret) {
687			if (ret == -EBUSY)
688				continue;
689			goto out;
690		}
691
692		mutex_lock(&svmm->mutex);
693		if (mmu_interval_read_retry(range.notifier,
694					    range.notifier_seq)) {
695			mutex_unlock(&svmm->mutex);
696			continue;
697		}
698		break;
699	}
700
701	nouveau_hmm_convert_pfn(drm, &range, args);
702
703	ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
704	mutex_unlock(&svmm->mutex);
705
706out:
707	mmu_interval_notifier_remove(&notifier->notifier);
708
709	return ret;
710}
711
712static void
713nouveau_svm_fault(struct work_struct *work)
714{
715	struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work);
716	struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]);
717	struct nvif_object *device = &svm->drm->client.device.object;
718	struct nouveau_svmm *svmm;
719	struct {
720		struct nouveau_pfnmap_args i;
721		u64 phys[1];
722	} args;
723	unsigned long hmm_flags;
724	u64 inst, start, limit;
725	int fi, fn;
726	int replay = 0, atomic = 0, ret;
727
728	/* Parse available fault buffer entries into a cache, and update
729	 * the GET pointer so HW can reuse the entries.
730	 */
731	SVM_DBG(svm, "fault handler");
732	if (buffer->get == buffer->put) {
733		buffer->put = nvif_rd32(device, buffer->putaddr);
734		buffer->get = nvif_rd32(device, buffer->getaddr);
735		if (buffer->get == buffer->put)
736			return;
737	}
738	buffer->fault_nr = 0;
739
740	SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
741	while (buffer->get != buffer->put) {
742		nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
743		if (++buffer->get == buffer->entries)
744			buffer->get = 0;
745	}
746	nvif_wr32(device, buffer->getaddr, buffer->get);
747	SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
748
749	/* Sort parsed faults by instance pointer to prevent unnecessary
750	 * instance to SVMM translations, followed by address and access
751	 * type to reduce the amount of work when handling the faults.
752	 */
753	sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
754	     nouveau_svm_fault_cmp, NULL);
755
756	/* Lookup SVMM structure for each unique instance pointer. */
757	mutex_lock(&svm->mutex);
758	for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
759		if (!svmm || buffer->fault[fi]->inst != inst) {
760			struct nouveau_ivmm *ivmm =
761				nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
762			svmm = ivmm ? ivmm->svmm : NULL;
763			inst = buffer->fault[fi]->inst;
764			SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
765		}
766		buffer->fault[fi]->svmm = svmm;
767	}
768	mutex_unlock(&svm->mutex);
769
770	/* Process list of faults. */
771	args.i.i.version = 0;
772	args.i.i.type = NVIF_IOCTL_V0_MTHD;
773	args.i.m.version = 0;
774	args.i.m.method = NVIF_VMM_V0_PFNMAP;
775	args.i.p.version = 0;
776
777	for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
778		struct svm_notifier notifier;
779		struct mm_struct *mm;
780
781		/* Cancel any faults from non-SVM channels. */
782		if (!(svmm = buffer->fault[fi]->svmm)) {
783			nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
784			continue;
785		}
786		SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
787
788		/* We try and group handling of faults within a small
789		 * window into a single update.
790		 */
791		start = buffer->fault[fi]->addr;
792		limit = start + PAGE_SIZE;
793		if (start < svmm->unmanaged.limit)
794			limit = min_t(u64, limit, svmm->unmanaged.start);
795
796		/*
797		 * Prepare the GPU-side update of all pages within the
798		 * fault window, determining required pages and access
799		 * permissions based on pending faults.
800		 */
801		args.i.p.addr = start;
802		args.i.p.page = PAGE_SHIFT;
803		args.i.p.size = PAGE_SIZE;
804		/*
805		 * Determine required permissions based on GPU fault
806		 * access flags.
807		 */
808		switch (buffer->fault[fi]->access) {
809		case 0: /* READ. */
810			hmm_flags = HMM_PFN_REQ_FAULT;
811			break;
812		case 2: /* ATOMIC. */
813			atomic = true;
814			break;
815		case 3: /* PREFETCH. */
816			hmm_flags = 0;
817			break;
818		default:
819			hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
820			break;
821		}
822
823		mm = svmm->notifier.mm;
824		if (!mmget_not_zero(mm)) {
825			nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
826			continue;
827		}
828
829		notifier.svmm = svmm;
830		if (atomic)
831			ret = nouveau_atomic_range_fault(svmm, svm->drm,
832							 &args.i, sizeof(args),
833							 &notifier);
834		else
835			ret = nouveau_range_fault(svmm, svm->drm, &args.i,
836						  sizeof(args), hmm_flags,
837						  &notifier);
838		mmput(mm);
839
840		limit = args.i.p.addr + args.i.p.size;
841		for (fn = fi; ++fn < buffer->fault_nr; ) {
842			/* It's okay to skip over duplicate addresses from the
843			 * same SVMM as faults are ordered by access type such
844			 * that only the first one needs to be handled.
845			 *
846			 * ie. WRITE faults appear first, thus any handling of
847			 * pending READ faults will already be satisfied.
848			 * But if a large page is mapped, make sure subsequent
849			 * fault addresses have sufficient access permission.
850			 */
851			if (buffer->fault[fn]->svmm != svmm ||
852			    buffer->fault[fn]->addr >= limit ||
853			    (buffer->fault[fi]->access == FAULT_ACCESS_READ &&
854			     !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
855			    (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
856			     buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
857			     !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
858			    (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
859			     buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
860			     buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
861			     !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
862				break;
863		}
864
865		/* If handling failed completely, cancel all faults. */
866		if (ret) {
867			while (fi < fn) {
868				struct nouveau_svm_fault *fault =
869					buffer->fault[fi++];
870
871				nouveau_svm_fault_cancel_fault(svm, fault);
872			}
873		} else
874			replay++;
875	}
876
877	/* Issue fault replay to the GPU. */
878	if (replay)
879		nouveau_svm_fault_replay(svm);
880}
881
882static int
883nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc)
884{
885	struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify);
886
887	schedule_work(&buffer->work);
888	return NVIF_EVENT_KEEP;
889}
890
891static struct nouveau_pfnmap_args *
892nouveau_pfns_to_args(void *pfns)
893{
894	return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
895}
896
897u64 *
898nouveau_pfns_alloc(unsigned long npages)
899{
900	struct nouveau_pfnmap_args *args;
901
902	args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
903	if (!args)
904		return NULL;
905
906	args->i.type = NVIF_IOCTL_V0_MTHD;
907	args->m.method = NVIF_VMM_V0_PFNMAP;
908	args->p.page = PAGE_SHIFT;
909
910	return args->p.phys;
911}
912
913void
914nouveau_pfns_free(u64 *pfns)
915{
916	struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
917
918	kfree(args);
919}
920
921void
922nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
923		 unsigned long addr, u64 *pfns, unsigned long npages)
924{
925	struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
926
927	args->p.addr = addr;
928	args->p.size = npages << PAGE_SHIFT;
929
930	mutex_lock(&svmm->mutex);
931
932	nvif_object_ioctl(&svmm->vmm->vmm.object, args,
933			  struct_size(args, p.phys, npages), NULL);
934
935	mutex_unlock(&svmm->mutex);
936}
937
938static void
939nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
940{
941	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
942
943	nvif_event_block(&buffer->notify);
944	flush_work(&buffer->work);
945}
946
947static int
948nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
949{
950	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
951	struct nvif_object *device = &svm->drm->client.device.object;
952
953	buffer->get = nvif_rd32(device, buffer->getaddr);
954	buffer->put = nvif_rd32(device, buffer->putaddr);
955	SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
956
957	return nvif_event_allow(&buffer->notify);
958}
959
960static void
961nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
962{
963	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
964	int i;
965
966	if (!nvif_object_constructed(&buffer->object))
967		return;
968
969	nouveau_svm_fault_buffer_fini(svm, id);
970
971	if (buffer->fault) {
972		for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
973			kfree(buffer->fault[i]);
974		kvfree(buffer->fault);
975	}
976
977	nvif_event_dtor(&buffer->notify);
978	nvif_object_dtor(&buffer->object);
979}
980
981static int
982nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
983{
984	struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
985	struct nouveau_drm *drm = svm->drm;
986	struct nvif_object *device = &drm->client.device.object;
987	struct nvif_clb069_v0 args = {};
988	int ret;
989
990	buffer->id = id;
991
992	ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
993			       sizeof(args), &buffer->object);
994	if (ret < 0) {
995		SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
996		return ret;
997	}
998
999	nvif_object_map(&buffer->object, NULL, 0);
1000	buffer->entries = args.entries;
1001	buffer->getaddr = args.get;
1002	buffer->putaddr = args.put;
1003	INIT_WORK(&buffer->work, nouveau_svm_fault);
1004
1005	ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0,
1006			      &buffer->notify);
1007	if (ret)
1008		return ret;
1009
1010	buffer->fault = kvcalloc(buffer->entries, sizeof(*buffer->fault), GFP_KERNEL);
1011	if (!buffer->fault)
1012		return -ENOMEM;
1013
1014	return nouveau_svm_fault_buffer_init(svm, id);
1015}
1016
1017void
1018nouveau_svm_resume(struct nouveau_drm *drm)
1019{
1020	struct nouveau_svm *svm = drm->svm;
1021	if (svm)
1022		nouveau_svm_fault_buffer_init(svm, 0);
1023}
1024
1025void
1026nouveau_svm_suspend(struct nouveau_drm *drm)
1027{
1028	struct nouveau_svm *svm = drm->svm;
1029	if (svm)
1030		nouveau_svm_fault_buffer_fini(svm, 0);
1031}
1032
1033void
1034nouveau_svm_fini(struct nouveau_drm *drm)
1035{
1036	struct nouveau_svm *svm = drm->svm;
1037	if (svm) {
1038		nouveau_svm_fault_buffer_dtor(svm, 0);
1039		kfree(drm->svm);
1040		drm->svm = NULL;
1041	}
1042}
1043
1044void
1045nouveau_svm_init(struct nouveau_drm *drm)
1046{
1047	static const struct nvif_mclass buffers[] = {
1048		{   VOLTA_FAULT_BUFFER_A, 0 },
1049		{ MAXWELL_FAULT_BUFFER_A, 0 },
1050		{}
1051	};
1052	struct nouveau_svm *svm;
1053	int ret;
1054
1055	/* Disable on Volta and newer until channel recovery is fixed,
1056	 * otherwise clients will have a trivial way to trash the GPU
1057	 * for everyone.
1058	 */
1059	if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
1060		return;
1061
1062	drm->svm = svm = kzalloc(struct_size(drm->svm, buffer, 1), GFP_KERNEL);
1063	if (!drm->svm)
1064		return;
1065
1066	drm->svm->drm = drm;
1067	mutex_init(&drm->svm->mutex);
1068	INIT_LIST_HEAD(&drm->svm->inst);
1069
1070	ret = nvif_mclass(&drm->client.device.object, buffers);
1071	if (ret < 0) {
1072		SVM_DBG(svm, "No supported fault buffer class");
1073		nouveau_svm_fini(drm);
1074		return;
1075	}
1076
1077	ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
1078	if (ret) {
1079		nouveau_svm_fini(drm);
1080		return;
1081	}
1082
1083	SVM_DBG(svm, "Initialised");
1084}
1085