1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
4 */
5
6#include <linux/clk-provider.h>
7#include <linux/delay.h>
8
9#include "dsi_phy.h"
10#include "dsi.xml.h"
11#include "dsi_phy_28nm_8960.xml.h"
12
13/*
14 * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1):
15 *
16 *
17 *                        +------+
18 *  dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock)
19 *  F * byte_clk    |     +------+
20 *                  | bit clock divider (F / 8)
21 *                  |
22 *                  |     +------+
23 *                  o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG
24 *                  |     +------+                 | (sets parent rate)
25 *                  | byte clock divider (F)       |
26 *                  |                              |
27 *                  |                              o---> To esc RCG
28 *                  |                                (doesn't set parent rate)
29 *                  |
30 *                  |     +------+
31 *                  o-----| DIV3 |----dsi0pll------o---> To dsi RCG
32 *                        +------+                 | (sets parent rate)
33 *                  dsi clock divider (F * magic)  |
34 *                                                 |
35 *                                                 o---> To pixel rcg
36 *                                                  (doesn't set parent rate)
37 */
38
39#define POLL_MAX_READS		8000
40#define POLL_TIMEOUT_US		1
41
42#define VCO_REF_CLK_RATE	27000000
43#define VCO_MIN_RATE		600000000
44#define VCO_MAX_RATE		1200000000
45
46#define VCO_PREF_DIV_RATIO	27
47
48struct pll_28nm_cached_state {
49	unsigned long vco_rate;
50	u8 postdiv3;
51	u8 postdiv2;
52	u8 postdiv1;
53};
54
55struct clk_bytediv {
56	struct clk_hw hw;
57	void __iomem *reg;
58};
59
60struct dsi_pll_28nm {
61	struct clk_hw clk_hw;
62
63	struct msm_dsi_phy *phy;
64
65	struct pll_28nm_cached_state cached_state;
66};
67
68#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, clk_hw)
69
70static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
71				    int nb_tries, int timeout_us)
72{
73	bool pll_locked = false;
74	u32 val;
75
76	while (nb_tries--) {
77		val = dsi_phy_read(pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_RDY);
78		pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY);
79
80		if (pll_locked)
81			break;
82
83		udelay(timeout_us);
84	}
85	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
86
87	return pll_locked;
88}
89
90/*
91 * Clock Callbacks
92 */
93static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
94				     unsigned long parent_rate)
95{
96	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
97	void __iomem *base = pll_28nm->phy->pll_base;
98	u32 val, temp, fb_divider;
99
100	DBG("rate=%lu, parent's=%lu", rate, parent_rate);
101
102	temp = rate / 10;
103	val = VCO_REF_CLK_RATE / 10;
104	fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
105	fb_divider = fb_divider / 2 - 1;
106	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1,
107		      fb_divider & 0xff);
108
109	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2);
110
111	val |= (fb_divider >> 8) & 0x07;
112
113	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2,
114		      val);
115
116	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
117
118	val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f;
119
120	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3,
121		      val);
122
123	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6,
124		      0xf);
125
126	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
127	val |= 0x7 << 4;
128	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
129		      val);
130
131	return 0;
132}
133
134static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
135{
136	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
137
138	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
139					POLL_TIMEOUT_US);
140}
141
142static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
143						  unsigned long parent_rate)
144{
145	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
146	void __iomem *base = pll_28nm->phy->pll_base;
147	unsigned long vco_rate;
148	u32 status, fb_divider, temp, ref_divider;
149
150	VERB("parent_rate=%lu", parent_rate);
151
152	status = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0);
153
154	if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) {
155		fb_divider = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1);
156		fb_divider &= 0xff;
157		temp = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07;
158		fb_divider = (temp << 8) | fb_divider;
159		fb_divider += 1;
160
161		ref_divider = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
162		ref_divider &= 0x3f;
163		ref_divider += 1;
164
165		/* multiply by 2 */
166		vco_rate = (parent_rate / ref_divider) * fb_divider * 2;
167	} else {
168		vco_rate = 0;
169	}
170
171	DBG("returning vco rate = %lu", vco_rate);
172
173	return vco_rate;
174}
175
176static int dsi_pll_28nm_vco_prepare(struct clk_hw *hw)
177{
178	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
179	struct device *dev = &pll_28nm->phy->pdev->dev;
180	void __iomem *base = pll_28nm->phy->pll_base;
181	bool locked;
182	unsigned int bit_div, byte_div;
183	int max_reads = 1000, timeout_us = 100;
184	u32 val;
185
186	DBG("id=%d", pll_28nm->phy->id);
187
188	if (unlikely(pll_28nm->phy->pll_on))
189		return 0;
190
191	/*
192	 * before enabling the PLL, configure the bit clock divider since we
193	 * don't expose it as a clock to the outside world
194	 * 1: read back the byte clock divider that should already be set
195	 * 2: divide by 8 to get bit clock divider
196	 * 3: write it to POSTDIV1
197	 */
198	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
199	byte_div = val + 1;
200	bit_div = byte_div / 8;
201
202	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
203	val &= ~0xf;
204	val |= (bit_div - 1);
205	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val);
206
207	/* enable the PLL */
208	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0,
209		      DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE);
210
211	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
212
213	if (unlikely(!locked)) {
214		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
215		return -EINVAL;
216	}
217
218	DBG("DSI PLL lock success");
219	pll_28nm->phy->pll_on = true;
220
221	return 0;
222}
223
224static void dsi_pll_28nm_vco_unprepare(struct clk_hw *hw)
225{
226	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
227
228	DBG("id=%d", pll_28nm->phy->id);
229
230	if (unlikely(!pll_28nm->phy->pll_on))
231		return;
232
233	dsi_phy_write(pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00);
234
235	pll_28nm->phy->pll_on = false;
236}
237
238static long dsi_pll_28nm_clk_round_rate(struct clk_hw *hw,
239		unsigned long rate, unsigned long *parent_rate)
240{
241	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
242
243	if      (rate < pll_28nm->phy->cfg->min_pll_rate)
244		return  pll_28nm->phy->cfg->min_pll_rate;
245	else if (rate > pll_28nm->phy->cfg->max_pll_rate)
246		return  pll_28nm->phy->cfg->max_pll_rate;
247	else
248		return rate;
249}
250
251static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
252	.round_rate = dsi_pll_28nm_clk_round_rate,
253	.set_rate = dsi_pll_28nm_clk_set_rate,
254	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
255	.prepare = dsi_pll_28nm_vco_prepare,
256	.unprepare = dsi_pll_28nm_vco_unprepare,
257	.is_enabled = dsi_pll_28nm_clk_is_enabled,
258};
259
260/*
261 * Custom byte clock divier clk_ops
262 *
263 * This clock is the entry point to configuring the PLL. The user (dsi host)
264 * will set this clock's rate to the desired byte clock rate. The VCO lock
265 * frequency is a multiple of the byte clock rate. The multiplication factor
266 * (shown as F in the diagram above) is a function of the byte clock rate.
267 *
268 * This custom divider clock ensures that its parent (VCO) is set to the
269 * desired rate, and that the byte clock postdivider (POSTDIV2) is configured
270 * accordingly
271 */
272#define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw)
273
274static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw,
275		unsigned long parent_rate)
276{
277	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
278	unsigned int div;
279
280	div = dsi_phy_read(bytediv->reg) & 0xff;
281
282	return parent_rate / (div + 1);
283}
284
285/* find multiplication factor(wrt byte clock) at which the VCO should be set */
286static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate)
287{
288	unsigned long bit_mhz;
289
290	/* convert to bit clock in Mhz */
291	bit_mhz = (byte_clk_rate * 8) / 1000000;
292
293	if (bit_mhz < 125)
294		return 64;
295	else if (bit_mhz < 250)
296		return 32;
297	else if (bit_mhz < 600)
298		return 16;
299	else
300		return 8;
301}
302
303static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long rate,
304				   unsigned long *prate)
305{
306	unsigned long best_parent;
307	unsigned int factor;
308
309	factor = get_vco_mul_factor(rate);
310
311	best_parent = rate * factor;
312	*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
313
314	return *prate / factor;
315}
316
317static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate,
318				unsigned long parent_rate)
319{
320	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
321	u32 val;
322	unsigned int factor;
323
324	factor = get_vco_mul_factor(rate);
325
326	val = dsi_phy_read(bytediv->reg);
327	val |= (factor - 1) & 0xff;
328	dsi_phy_write(bytediv->reg, val);
329
330	return 0;
331}
332
333/* Our special byte clock divider ops */
334static const struct clk_ops clk_bytediv_ops = {
335	.round_rate = clk_bytediv_round_rate,
336	.set_rate = clk_bytediv_set_rate,
337	.recalc_rate = clk_bytediv_recalc_rate,
338};
339
340/*
341 * PLL Callbacks
342 */
343static void dsi_28nm_pll_save_state(struct msm_dsi_phy *phy)
344{
345	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
346	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
347	void __iomem *base = pll_28nm->phy->pll_base;
348
349	cached_state->postdiv3 =
350			dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10);
351	cached_state->postdiv2 =
352			dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
353	cached_state->postdiv1 =
354			dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
355
356	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
357}
358
359static int dsi_28nm_pll_restore_state(struct msm_dsi_phy *phy)
360{
361	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
362	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
363	void __iomem *base = pll_28nm->phy->pll_base;
364	int ret;
365
366	ret = dsi_pll_28nm_clk_set_rate(phy->vco_hw,
367					cached_state->vco_rate, 0);
368	if (ret) {
369		DRM_DEV_ERROR(&pll_28nm->phy->pdev->dev,
370			      "restore vco rate failed. ret=%d\n", ret);
371		return ret;
372	}
373
374	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
375		      cached_state->postdiv3);
376	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9,
377		      cached_state->postdiv2);
378	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
379		      cached_state->postdiv1);
380
381	return 0;
382}
383
384static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm, struct clk_hw **provided_clocks)
385{
386	char clk_name[32];
387	struct clk_init_data vco_init = {
388		.parent_data = &(const struct clk_parent_data) {
389			.fw_name = "ref",
390		},
391		.num_parents = 1,
392		.flags = CLK_IGNORE_UNUSED,
393		.ops = &clk_ops_dsi_pll_28nm_vco,
394	};
395	struct device *dev = &pll_28nm->phy->pdev->dev;
396	struct clk_hw *hw;
397	struct clk_bytediv *bytediv;
398	struct clk_init_data bytediv_init = { };
399	int ret;
400
401	DBG("%d", pll_28nm->phy->id);
402
403	bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL);
404	if (!bytediv)
405		return -ENOMEM;
406
407	snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_28nm->phy->id);
408	vco_init.name = clk_name;
409
410	pll_28nm->clk_hw.init = &vco_init;
411
412	ret = devm_clk_hw_register(dev, &pll_28nm->clk_hw);
413	if (ret)
414		return ret;
415
416	/* prepare and register bytediv */
417	bytediv->hw.init = &bytediv_init;
418	bytediv->reg = pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9;
419
420	snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_28nm->phy->id + 1);
421
422	bytediv_init.name = clk_name;
423	bytediv_init.ops = &clk_bytediv_ops;
424	bytediv_init.flags = CLK_SET_RATE_PARENT;
425	bytediv_init.parent_hws = (const struct clk_hw*[]){
426		&pll_28nm->clk_hw,
427	};
428	bytediv_init.num_parents = 1;
429
430	/* DIV2 */
431	ret = devm_clk_hw_register(dev, &bytediv->hw);
432	if (ret)
433		return ret;
434	provided_clocks[DSI_BYTE_PLL_CLK] = &bytediv->hw;
435
436	snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_28nm->phy->id + 1);
437	/* DIV3 */
438	hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
439			&pll_28nm->clk_hw, 0, pll_28nm->phy->pll_base +
440				REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
441			0, 8, 0, NULL);
442	if (IS_ERR(hw))
443		return PTR_ERR(hw);
444	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
445
446	return 0;
447}
448
449static int dsi_pll_28nm_8960_init(struct msm_dsi_phy *phy)
450{
451	struct platform_device *pdev = phy->pdev;
452	struct dsi_pll_28nm *pll_28nm;
453	int ret;
454
455	if (!pdev)
456		return -ENODEV;
457
458	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
459	if (!pll_28nm)
460		return -ENOMEM;
461
462	pll_28nm->phy = phy;
463
464	ret = pll_28nm_register(pll_28nm, phy->provided_clocks->hws);
465	if (ret) {
466		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
467		return ret;
468	}
469
470	phy->vco_hw = &pll_28nm->clk_hw;
471
472	return 0;
473}
474
475static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy,
476		struct msm_dsi_dphy_timing *timing)
477{
478	void __iomem *base = phy->base;
479
480	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_0,
481		      DSI_28nm_8960_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
482	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_1,
483		      DSI_28nm_8960_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
484	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_2,
485		      DSI_28nm_8960_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
486	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_3, 0x0);
487	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_4,
488		      DSI_28nm_8960_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
489	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_5,
490		      DSI_28nm_8960_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
491	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_6,
492		      DSI_28nm_8960_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
493	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_7,
494		      DSI_28nm_8960_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
495	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_8,
496		      DSI_28nm_8960_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
497	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_9,
498		      DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
499		      DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
500	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_10,
501		      DSI_28nm_8960_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
502	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_11,
503		      DSI_28nm_8960_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
504}
505
506static void dsi_28nm_phy_regulator_init(struct msm_dsi_phy *phy)
507{
508	void __iomem *base = phy->reg_base;
509
510	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0, 0x3);
511	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1, 1);
512	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2, 1);
513	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3, 0);
514	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4,
515		      0x100);
516}
517
518static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy)
519{
520	void __iomem *base = phy->reg_base;
521
522	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0, 0x3);
523	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1, 0xa);
524	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2, 0x4);
525	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3, 0x0);
526	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4, 0x20);
527}
528
529static void dsi_28nm_phy_calibration(struct msm_dsi_phy *phy)
530{
531	void __iomem *base = phy->reg_base;
532	u32 status;
533	int i = 5000;
534
535	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CAL_PWR_CFG,
536		      0x3);
537
538	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_SW_CFG_2, 0x0);
539	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_1, 0x5a);
540	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_3, 0x10);
541	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_4, 0x1);
542	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_0, 0x1);
543
544	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER, 0x1);
545	usleep_range(5000, 6000);
546	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER, 0x0);
547
548	do {
549		status = dsi_phy_read(base +
550				REG_DSI_28nm_8960_PHY_MISC_CAL_STATUS);
551
552		if (!(status & DSI_28nm_8960_PHY_MISC_CAL_STATUS_CAL_BUSY))
553			break;
554
555		udelay(1);
556	} while (--i > 0);
557}
558
559static void dsi_28nm_phy_lane_config(struct msm_dsi_phy *phy)
560{
561	void __iomem *base = phy->base;
562	int i;
563
564	for (i = 0; i < 4; i++) {
565		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_0(i), 0x80);
566		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_1(i), 0x45);
567		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_2(i), 0x00);
568		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_DATAPATH(i),
569			      0x00);
570		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_0(i),
571			      0x01);
572		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_1(i),
573			      0x66);
574	}
575
576	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_0, 0x40);
577	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_1, 0x67);
578	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_2, 0x0);
579	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_DATAPATH, 0x0);
580	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR0, 0x1);
581	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR1, 0x88);
582}
583
584static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy,
585				struct msm_dsi_phy_clk_request *clk_req)
586{
587	struct msm_dsi_dphy_timing *timing = &phy->timing;
588	void __iomem *base = phy->base;
589
590	DBG("");
591
592	if (msm_dsi_dphy_timing_calc(timing, clk_req)) {
593		DRM_DEV_ERROR(&phy->pdev->dev,
594			      "%s: D-PHY timing calculation failed\n",
595			      __func__);
596		return -EINVAL;
597	}
598
599	dsi_28nm_phy_regulator_init(phy);
600
601	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LDO_CTRL, 0x04);
602
603	/* strength control */
604	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_0, 0xff);
605	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_1, 0x00);
606	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_2, 0x06);
607
608	/* phy ctrl */
609	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_0, 0x5f);
610	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_1, 0x00);
611	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_2, 0x00);
612	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_3, 0x10);
613
614	dsi_28nm_phy_regulator_ctrl(phy);
615
616	dsi_28nm_phy_calibration(phy);
617
618	dsi_28nm_phy_lane_config(phy);
619
620	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4, 0x0f);
621	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_1, 0x03);
622	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_0, 0x03);
623	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4, 0x0);
624
625	dsi_28nm_dphy_set_timing(phy, timing);
626
627	return 0;
628}
629
630static void dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
631{
632	dsi_phy_write(phy->base + REG_DSI_28nm_8960_PHY_CTRL_0, 0x0);
633
634	/*
635	 * Wait for the registers writes to complete in order to
636	 * ensure that the phy is completely disabled
637	 */
638	wmb();
639}
640
641static const struct regulator_bulk_data dsi_phy_28nm_8960_regulators[] = {
642	{ .supply = "vddio", .init_load_uA = 100000 },	/* 1.8 V */
643};
644
645const struct msm_dsi_phy_cfg dsi_phy_28nm_8960_cfgs = {
646	.has_phy_regulator = true,
647	.regulator_data = dsi_phy_28nm_8960_regulators,
648	.num_regulators = ARRAY_SIZE(dsi_phy_28nm_8960_regulators),
649	.ops = {
650		.enable = dsi_28nm_phy_enable,
651		.disable = dsi_28nm_phy_disable,
652		.pll_init = dsi_pll_28nm_8960_init,
653		.save_pll_state = dsi_28nm_pll_save_state,
654		.restore_pll_state = dsi_28nm_pll_restore_state,
655	},
656	.min_pll_rate = VCO_MIN_RATE,
657	.max_pll_rate = VCO_MAX_RATE,
658	.io_start = { 0x4700300, 0x5800300 },
659	.num_dsi_phy = 2,
660};
661