1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 */
5
6#include <linux/clk.h>
7#include <linux/clk-provider.h>
8#include <linux/delay.h>
9
10#include "dsi_phy.h"
11#include "dsi.xml.h"
12#include "dsi_phy_14nm.xml.h"
13
14#define PHY_14NM_CKLN_IDX	4
15
16/*
17 * DSI PLL 14nm - clock diagram (eg: DSI0):
18 *
19 *         dsi0n1_postdiv_clk
20 *                         |
21 *                         |
22 *                 +----+  |  +----+
23 *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
24 *                 +----+  |  +----+
25 *                         |           dsi0n1_postdivby2_clk
26 *                         |   +----+  |
27 *                         o---| /2 |--o--|\
28 *                         |   +----+     | \   +----+
29 *                         |              |  |--| n2 |-- dsi0pll
30 *                         o--------------| /   +----+
31 *                                        |/
32 */
33
34#define POLL_MAX_READS			15
35#define POLL_TIMEOUT_US			1000
36
37#define VCO_REF_CLK_RATE		19200000
38#define VCO_MIN_RATE			1300000000UL
39#define VCO_MAX_RATE			2600000000UL
40
41struct dsi_pll_config {
42	u64 vco_current_rate;
43
44	u32 ssc_en;	/* SSC enable/disable */
45
46	/* fixed params */
47	u32 plllock_cnt;
48	u32 ssc_center;
49	u32 ssc_adj_period;
50	u32 ssc_spread;
51	u32 ssc_freq;
52
53	/* calculated */
54	u32 dec_start;
55	u32 div_frac_start;
56	u32 ssc_period;
57	u32 ssc_step_size;
58	u32 plllock_cmp;
59	u32 pll_vco_div_ref;
60	u32 pll_vco_count;
61	u32 pll_kvco_div_ref;
62	u32 pll_kvco_count;
63};
64
65struct pll_14nm_cached_state {
66	unsigned long vco_rate;
67	u8 n2postdiv;
68	u8 n1postdiv;
69};
70
71struct dsi_pll_14nm {
72	struct clk_hw clk_hw;
73
74	struct msm_dsi_phy *phy;
75
76	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
77	spinlock_t postdiv_lock;
78
79	struct pll_14nm_cached_state cached_state;
80
81	struct dsi_pll_14nm *slave;
82};
83
84#define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, clk_hw)
85
86/*
87 * Private struct for N1/N2 post-divider clocks. These clocks are similar to
88 * the generic clk_divider class of clocks. The only difference is that it
89 * also sets the slave DSI PLL's post-dividers if in bonded DSI mode
90 */
91struct dsi_pll_14nm_postdiv {
92	struct clk_hw hw;
93
94	/* divider params */
95	u8 shift;
96	u8 width;
97	u8 flags; /* same flags as used by clk_divider struct */
98
99	struct dsi_pll_14nm *pll;
100};
101
102#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
103
104/*
105 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
106 * mode, where the master PLL's clk_ops needs access the slave's private data
107 */
108static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
109
110static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
111				    u32 nb_tries, u32 timeout_us)
112{
113	bool pll_locked = false, pll_ready = false;
114	void __iomem *base = pll_14nm->phy->pll_base;
115	u32 tries, val;
116
117	tries = nb_tries;
118	while (tries--) {
119		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
120		pll_locked = !!(val & BIT(5));
121
122		if (pll_locked)
123			break;
124
125		udelay(timeout_us);
126	}
127
128	if (!pll_locked)
129		goto out;
130
131	tries = nb_tries;
132	while (tries--) {
133		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
134		pll_ready = !!(val & BIT(0));
135
136		if (pll_ready)
137			break;
138
139		udelay(timeout_us);
140	}
141
142out:
143	DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
144
145	return pll_locked && pll_ready;
146}
147
148static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
149{
150	/* fixed input */
151	pconf->plllock_cnt = 1;
152
153	/*
154	 * SSC is enabled by default. We might need DT props for configuring
155	 * some SSC params like PPM and center/down spread etc.
156	 */
157	pconf->ssc_en = 1;
158	pconf->ssc_center = 0;		/* down spread by default */
159	pconf->ssc_spread = 5;		/* PPM / 1000 */
160	pconf->ssc_freq = 31500;	/* default recommended */
161	pconf->ssc_adj_period = 37;
162}
163
164#define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
165
166static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
167{
168	u32 period, ssc_period;
169	u32 ref, rem;
170	u64 step_size;
171
172	DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
173
174	ssc_period = pconf->ssc_freq / 500;
175	period = (u32)VCO_REF_CLK_RATE / 1000;
176	ssc_period  = CEIL(period, ssc_period);
177	ssc_period -= 1;
178	pconf->ssc_period = ssc_period;
179
180	DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
181	    pconf->ssc_spread, pconf->ssc_period);
182
183	step_size = (u32)pconf->vco_current_rate;
184	ref = VCO_REF_CLK_RATE;
185	ref /= 1000;
186	step_size = div_u64(step_size, ref);
187	step_size <<= 20;
188	step_size = div_u64(step_size, 1000);
189	step_size *= pconf->ssc_spread;
190	step_size = div_u64(step_size, 1000);
191	step_size *= (pconf->ssc_adj_period + 1);
192
193	rem = 0;
194	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
195	if (rem)
196		step_size++;
197
198	DBG("step_size=%lld", step_size);
199
200	step_size &= 0x0ffff;	/* take lower 16 bits */
201
202	pconf->ssc_step_size = step_size;
203}
204
205static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
206{
207	u64 multiplier = BIT(20);
208	u64 dec_start_multiple, dec_start, pll_comp_val;
209	u32 duration, div_frac_start;
210	u64 vco_clk_rate = pconf->vco_current_rate;
211	u64 fref = VCO_REF_CLK_RATE;
212
213	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
214
215	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
216	dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
217
218	pconf->dec_start = (u32)dec_start;
219	pconf->div_frac_start = div_frac_start;
220
221	if (pconf->plllock_cnt == 0)
222		duration = 1024;
223	else if (pconf->plllock_cnt == 1)
224		duration = 256;
225	else if (pconf->plllock_cnt == 2)
226		duration = 128;
227	else
228		duration = 32;
229
230	pll_comp_val = duration * dec_start_multiple;
231	pll_comp_val = div_u64(pll_comp_val, multiplier);
232	do_div(pll_comp_val, 10);
233
234	pconf->plllock_cmp = (u32)pll_comp_val;
235}
236
237static u32 pll_14nm_kvco_slop(u32 vrate)
238{
239	u32 slop = 0;
240
241	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
242		slop =  600;
243	else if (vrate > 1800000000UL && vrate < 2300000000UL)
244		slop = 400;
245	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
246		slop = 280;
247
248	return slop;
249}
250
251static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
252{
253	u64 vco_clk_rate = pconf->vco_current_rate;
254	u64 fref = VCO_REF_CLK_RATE;
255	u32 vco_measure_time = 5;
256	u32 kvco_measure_time = 5;
257	u64 data;
258	u32 cnt;
259
260	data = fref * vco_measure_time;
261	do_div(data, 1000000);
262	data &= 0x03ff;	/* 10 bits */
263	data -= 2;
264	pconf->pll_vco_div_ref = data;
265
266	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
267	data *= vco_measure_time;
268	do_div(data, 10);
269	pconf->pll_vco_count = data;
270
271	data = fref * kvco_measure_time;
272	do_div(data, 1000000);
273	data &= 0x03ff;	/* 10 bits */
274	data -= 1;
275	pconf->pll_kvco_div_ref = data;
276
277	cnt = pll_14nm_kvco_slop(vco_clk_rate);
278	cnt *= 2;
279	cnt /= 100;
280	cnt *= kvco_measure_time;
281	pconf->pll_kvco_count = cnt;
282}
283
284static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
285{
286	void __iomem *base = pll->phy->pll_base;
287	u8 data;
288
289	data = pconf->ssc_adj_period;
290	data &= 0x0ff;
291	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
292	data = (pconf->ssc_adj_period >> 8);
293	data &= 0x03;
294	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
295
296	data = pconf->ssc_period;
297	data &= 0x0ff;
298	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
299	data = (pconf->ssc_period >> 8);
300	data &= 0x0ff;
301	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
302
303	data = pconf->ssc_step_size;
304	data &= 0x0ff;
305	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
306	data = (pconf->ssc_step_size >> 8);
307	data &= 0x0ff;
308	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
309
310	data = (pconf->ssc_center & 0x01);
311	data <<= 1;
312	data |= 0x01; /* enable */
313	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
314
315	wmb();	/* make sure register committed */
316}
317
318static void pll_db_commit_common(struct dsi_pll_14nm *pll,
319				 struct dsi_pll_config *pconf)
320{
321	void __iomem *base = pll->phy->pll_base;
322	u8 data;
323
324	/* confgiure the non frequency dependent pll registers */
325	data = 0;
326	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
327
328	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
329
330	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
331	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
332	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
333
334	data = pconf->pll_vco_div_ref & 0xff;
335	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
336	data = (pconf->pll_vco_div_ref >> 8) & 0x3;
337	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
338
339	data = pconf->pll_kvco_div_ref & 0xff;
340	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
341	data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
342	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
343
344	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
345
346	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
347
348	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
349
350	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
351
352	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
353
354	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
355
356	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
357
358	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
359
360	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
361
362	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
363}
364
365static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
366{
367	void __iomem *cmn_base = pll_14nm->phy->base;
368
369	/* de assert pll start and apply pll sw reset */
370
371	/* stop pll */
372	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
373
374	/* pll sw reset */
375	dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
376	wmb();	/* make sure register committed */
377
378	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
379	wmb();	/* make sure register committed */
380}
381
382static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
383			       struct dsi_pll_config *pconf)
384{
385	void __iomem *base = pll->phy->pll_base;
386	void __iomem *cmn_base = pll->phy->base;
387	u8 data;
388
389	DBG("DSI%d PLL", pll->phy->id);
390
391	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
392
393	pll_db_commit_common(pll, pconf);
394
395	pll_14nm_software_reset(pll);
396
397	/* Use the /2 path in Mux */
398	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
399
400	data = 0xff; /* data, clk, pll normal operation */
401	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
402
403	/* configure the frequency dependent pll registers */
404	data = pconf->dec_start;
405	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
406
407	data = pconf->div_frac_start & 0xff;
408	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
409	data = (pconf->div_frac_start >> 8) & 0xff;
410	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
411	data = (pconf->div_frac_start >> 16) & 0xf;
412	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
413
414	data = pconf->plllock_cmp & 0xff;
415	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
416
417	data = (pconf->plllock_cmp >> 8) & 0xff;
418	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
419
420	data = (pconf->plllock_cmp >> 16) & 0x3;
421	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
422
423	data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
424	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
425
426	data = pconf->pll_vco_count & 0xff;
427	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
428	data = (pconf->pll_vco_count >> 8) & 0xff;
429	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
430
431	data = pconf->pll_kvco_count & 0xff;
432	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
433	data = (pconf->pll_kvco_count >> 8) & 0x3;
434	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
435
436	/*
437	 * High nibble configures the post divider internal to the VCO. It's
438	 * fixed to divide by 1 for now.
439	 *
440	 * 0: divided by 1
441	 * 1: divided by 2
442	 * 2: divided by 4
443	 * 3: divided by 8
444	 */
445	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
446
447	if (pconf->ssc_en)
448		pll_db_commit_ssc(pll, pconf);
449
450	wmb();	/* make sure register committed */
451}
452
453/*
454 * VCO clock Callbacks
455 */
456static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
457				     unsigned long parent_rate)
458{
459	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
460	struct dsi_pll_config conf;
461
462	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
463	    parent_rate);
464
465	dsi_pll_14nm_config_init(&conf);
466	conf.vco_current_rate = rate;
467
468	pll_14nm_dec_frac_calc(pll_14nm, &conf);
469
470	if (conf.ssc_en)
471		pll_14nm_ssc_calc(pll_14nm, &conf);
472
473	pll_14nm_calc_vco_count(pll_14nm, &conf);
474
475	/* commit the slave DSI PLL registers if we're master. Note that we
476	 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
477	 * of the master and slave are identical
478	 */
479	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
480		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
481
482		pll_db_commit_14nm(pll_14nm_slave, &conf);
483	}
484
485	pll_db_commit_14nm(pll_14nm, &conf);
486
487	return 0;
488}
489
490static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
491						  unsigned long parent_rate)
492{
493	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
494	void __iomem *base = pll_14nm->phy->pll_base;
495	u64 vco_rate, multiplier = BIT(20);
496	u32 div_frac_start;
497	u32 dec_start;
498	u64 ref_clk = parent_rate;
499
500	dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
501	dec_start &= 0x0ff;
502
503	DBG("dec_start = %x", dec_start);
504
505	div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
506				& 0xf) << 16;
507	div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
508				& 0xff) << 8;
509	div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
510				& 0xff;
511
512	DBG("div_frac_start = %x", div_frac_start);
513
514	vco_rate = ref_clk * dec_start;
515
516	vco_rate += ((ref_clk * div_frac_start) / multiplier);
517
518	/*
519	 * Recalculating the rate from dec_start and frac_start doesn't end up
520	 * the rate we originally set. Convert the freq to KHz, round it up and
521	 * convert it back to MHz.
522	 */
523	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
524
525	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
526
527	return (unsigned long)vco_rate;
528}
529
530static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
531{
532	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
533	void __iomem *base = pll_14nm->phy->pll_base;
534	void __iomem *cmn_base = pll_14nm->phy->base;
535	bool locked;
536
537	DBG("");
538
539	if (unlikely(pll_14nm->phy->pll_on))
540		return 0;
541
542	if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0)
543		dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE);
544
545	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
546	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
547
548	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
549					 POLL_TIMEOUT_US);
550
551	if (unlikely(!locked)) {
552		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
553		return -EINVAL;
554	}
555
556	DBG("DSI PLL lock success");
557	pll_14nm->phy->pll_on = true;
558
559	return 0;
560}
561
562static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
563{
564	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
565	void __iomem *cmn_base = pll_14nm->phy->base;
566
567	DBG("");
568
569	if (unlikely(!pll_14nm->phy->pll_on))
570		return;
571
572	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
573
574	pll_14nm->phy->pll_on = false;
575}
576
577static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
578		unsigned long rate, unsigned long *parent_rate)
579{
580	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
581
582	if      (rate < pll_14nm->phy->cfg->min_pll_rate)
583		return  pll_14nm->phy->cfg->min_pll_rate;
584	else if (rate > pll_14nm->phy->cfg->max_pll_rate)
585		return  pll_14nm->phy->cfg->max_pll_rate;
586	else
587		return rate;
588}
589
590static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
591	.round_rate = dsi_pll_14nm_clk_round_rate,
592	.set_rate = dsi_pll_14nm_vco_set_rate,
593	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
594	.prepare = dsi_pll_14nm_vco_prepare,
595	.unprepare = dsi_pll_14nm_vco_unprepare,
596};
597
598/*
599 * N1 and N2 post-divider clock callbacks
600 */
601#define div_mask(width)	((1 << (width)) - 1)
602static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
603						      unsigned long parent_rate)
604{
605	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
606	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
607	void __iomem *base = pll_14nm->phy->base;
608	u8 shift = postdiv->shift;
609	u8 width = postdiv->width;
610	u32 val;
611
612	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
613
614	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
615	val &= div_mask(width);
616
617	return divider_recalc_rate(hw, parent_rate, val, NULL,
618				   postdiv->flags, width);
619}
620
621static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
622					    unsigned long rate,
623					    unsigned long *prate)
624{
625	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
626	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
627
628	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
629
630	return divider_round_rate(hw, rate, prate, NULL,
631				  postdiv->width,
632				  postdiv->flags);
633}
634
635static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
636					 unsigned long parent_rate)
637{
638	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
639	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
640	void __iomem *base = pll_14nm->phy->base;
641	spinlock_t *lock = &pll_14nm->postdiv_lock;
642	u8 shift = postdiv->shift;
643	u8 width = postdiv->width;
644	unsigned int value;
645	unsigned long flags = 0;
646	u32 val;
647
648	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
649	    parent_rate);
650
651	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
652				postdiv->flags);
653
654	spin_lock_irqsave(lock, flags);
655
656	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
657	val &= ~(div_mask(width) << shift);
658
659	val |= value << shift;
660	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
661
662	/* If we're master in bonded DSI mode, then the slave PLL's post-dividers
663	 * follow the master's post dividers
664	 */
665	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
666		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
667		void __iomem *slave_base = pll_14nm_slave->phy->base;
668
669		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
670	}
671
672	spin_unlock_irqrestore(lock, flags);
673
674	return 0;
675}
676
677static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
678	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
679	.round_rate = dsi_pll_14nm_postdiv_round_rate,
680	.set_rate = dsi_pll_14nm_postdiv_set_rate,
681};
682
683/*
684 * PLL Callbacks
685 */
686
687static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
688{
689	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
690	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
691	void __iomem *cmn_base = pll_14nm->phy->base;
692	u32 data;
693
694	data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
695
696	cached_state->n1postdiv = data & 0xf;
697	cached_state->n2postdiv = (data >> 4) & 0xf;
698
699	DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
700	    cached_state->n1postdiv, cached_state->n2postdiv);
701
702	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
703}
704
705static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
706{
707	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
708	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
709	void __iomem *cmn_base = pll_14nm->phy->base;
710	u32 data;
711	int ret;
712
713	ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
714					cached_state->vco_rate, 0);
715	if (ret) {
716		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
717			      "restore vco rate failed. ret=%d\n", ret);
718		return ret;
719	}
720
721	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
722
723	DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
724	    cached_state->n1postdiv, cached_state->n2postdiv);
725
726	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
727
728	/* also restore post-dividers for slave DSI PLL */
729	if (phy->usecase == MSM_DSI_PHY_MASTER) {
730		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
731		void __iomem *slave_base = pll_14nm_slave->phy->base;
732
733		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
734	}
735
736	return 0;
737}
738
739static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
740{
741	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
742	void __iomem *base = phy->pll_base;
743	u32 clkbuflr_en, bandgap = 0;
744
745	switch (phy->usecase) {
746	case MSM_DSI_PHY_STANDALONE:
747		clkbuflr_en = 0x1;
748		break;
749	case MSM_DSI_PHY_MASTER:
750		clkbuflr_en = 0x3;
751		pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
752		break;
753	case MSM_DSI_PHY_SLAVE:
754		clkbuflr_en = 0x0;
755		bandgap = 0x3;
756		break;
757	default:
758		return -EINVAL;
759	}
760
761	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
762	if (bandgap)
763		dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
764
765	return 0;
766}
767
768static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
769						const char *name,
770						const struct clk_hw *parent_hw,
771						unsigned long flags,
772						u8 shift)
773{
774	struct dsi_pll_14nm_postdiv *pll_postdiv;
775	struct device *dev = &pll_14nm->phy->pdev->dev;
776	struct clk_init_data postdiv_init = {
777		.parent_hws = (const struct clk_hw *[]) { parent_hw },
778		.num_parents = 1,
779		.name = name,
780		.flags = flags,
781		.ops = &clk_ops_dsi_pll_14nm_postdiv,
782	};
783	int ret;
784
785	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
786	if (!pll_postdiv)
787		return ERR_PTR(-ENOMEM);
788
789	pll_postdiv->pll = pll_14nm;
790	pll_postdiv->shift = shift;
791	/* both N1 and N2 postdividers are 4 bits wide */
792	pll_postdiv->width = 4;
793	/* range of each divider is from 1 to 15 */
794	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
795	pll_postdiv->hw.init = &postdiv_init;
796
797	ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
798	if (ret)
799		return ERR_PTR(ret);
800
801	return &pll_postdiv->hw;
802}
803
804static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
805{
806	char clk_name[32];
807	struct clk_init_data vco_init = {
808		.parent_data = &(const struct clk_parent_data) {
809			.fw_name = "ref",
810		},
811		.num_parents = 1,
812		.name = clk_name,
813		.flags = CLK_IGNORE_UNUSED,
814		.ops = &clk_ops_dsi_pll_14nm_vco,
815	};
816	struct device *dev = &pll_14nm->phy->pdev->dev;
817	struct clk_hw *hw, *n1_postdiv, *n1_postdivby2;
818	int ret;
819
820	DBG("DSI%d", pll_14nm->phy->id);
821
822	snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id);
823	pll_14nm->clk_hw.init = &vco_init;
824
825	ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
826	if (ret)
827		return ret;
828
829	snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
830
831	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
832	n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name,
833			&pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0);
834	if (IS_ERR(n1_postdiv))
835		return PTR_ERR(n1_postdiv);
836
837	snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id);
838
839	/* DSI Byte clock = VCO_CLK / N1 / 8 */
840	hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
841			n1_postdiv, CLK_SET_RATE_PARENT, 1, 8);
842	if (IS_ERR(hw))
843		return PTR_ERR(hw);
844
845	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
846
847	snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
848
849	/*
850	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
851	 * on the way. Don't let it set parent.
852	 */
853	n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
854			clk_name, n1_postdiv, 0, 1, 2);
855	if (IS_ERR(n1_postdivby2))
856		return PTR_ERR(n1_postdivby2);
857
858	snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id);
859
860	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
861	 * This is the output of N2 post-divider, bits 4-7 in
862	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
863	 */
864	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2,
865			0, 4);
866	if (IS_ERR(hw))
867		return PTR_ERR(hw);
868
869	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
870
871	return 0;
872}
873
874static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
875{
876	struct platform_device *pdev = phy->pdev;
877	struct dsi_pll_14nm *pll_14nm;
878	int ret;
879
880	if (!pdev)
881		return -ENODEV;
882
883	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
884	if (!pll_14nm)
885		return -ENOMEM;
886
887	DBG("PLL%d", phy->id);
888
889	pll_14nm_list[phy->id] = pll_14nm;
890
891	spin_lock_init(&pll_14nm->postdiv_lock);
892
893	pll_14nm->phy = phy;
894
895	ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
896	if (ret) {
897		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
898		return ret;
899	}
900
901	phy->vco_hw = &pll_14nm->clk_hw;
902
903	return 0;
904}
905
906static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
907				     struct msm_dsi_dphy_timing *timing,
908				     int lane_idx)
909{
910	void __iomem *base = phy->lane_base;
911	bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
912	u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
913	u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
914	u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
915	u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
916	u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
917	u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
918				   timing->hs_halfbyte_en;
919
920	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
921		      DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
922	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
923		      DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
924	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
925		      DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
926	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
927		      DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
928	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
929		      DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
930	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
931		      DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
932	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
933		      halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
934	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
935		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
936		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
937	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
938		      DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
939	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
940		      DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
941}
942
943static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
944			       struct msm_dsi_phy_clk_request *clk_req)
945{
946	struct msm_dsi_dphy_timing *timing = &phy->timing;
947	u32 data;
948	int i;
949	int ret;
950	void __iomem *base = phy->base;
951	void __iomem *lane_base = phy->lane_base;
952	u32 glbl_test_ctrl;
953
954	if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
955		DRM_DEV_ERROR(&phy->pdev->dev,
956			      "%s: D-PHY timing calculation failed\n",
957			      __func__);
958		return -EINVAL;
959	}
960
961	data = 0x1c;
962	if (phy->usecase != MSM_DSI_PHY_STANDALONE)
963		data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
964	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
965
966	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
967
968	/* 4 data lanes + 1 clk lane configuration */
969	for (i = 0; i < 5; i++) {
970		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
971			      0x1d);
972
973		dsi_phy_write(lane_base +
974			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
975		dsi_phy_write(lane_base +
976			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
977			      (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
978
979		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
980			      (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
981		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
982		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
983			      0);
984		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
985			      0x88);
986
987		dsi_14nm_dphy_set_timing(phy, timing, i);
988	}
989
990	/* Make sure PLL is not start */
991	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
992
993	wmb(); /* make sure everything is written before reset and enable */
994
995	/* reset digital block */
996	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
997	wmb(); /* ensure reset is asserted */
998	udelay(100);
999	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
1000
1001	glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1002	if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1003		glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1004	else
1005		glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1006	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
1007	ret = dsi_14nm_set_usecase(phy);
1008	if (ret) {
1009		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1010			      __func__, ret);
1011		return ret;
1012	}
1013
1014	/* Remove power down from PLL and all lanes */
1015	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
1016
1017	return 0;
1018}
1019
1020static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1021{
1022	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
1023	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
1024
1025	/* ensure that the phy is completely disabled */
1026	wmb();
1027}
1028
1029static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = {
1030	{ .supply = "vcca", .init_load_uA = 17000 },
1031};
1032
1033static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = {
1034	{ .supply = "vcca", .init_load_uA = 73400 },
1035};
1036
1037const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1038	.has_phy_lane = true,
1039	.regulator_data = dsi_phy_14nm_17mA_regulators,
1040	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1041	.ops = {
1042		.enable = dsi_14nm_phy_enable,
1043		.disable = dsi_14nm_phy_disable,
1044		.pll_init = dsi_pll_14nm_init,
1045		.save_pll_state = dsi_14nm_pll_save_state,
1046		.restore_pll_state = dsi_14nm_pll_restore_state,
1047	},
1048	.min_pll_rate = VCO_MIN_RATE,
1049	.max_pll_rate = VCO_MAX_RATE,
1050	.io_start = { 0x994400, 0x996400 },
1051	.num_dsi_phy = 2,
1052};
1053
1054const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1055	.has_phy_lane = true,
1056	.regulator_data = dsi_phy_14nm_73p4mA_regulators,
1057	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators),
1058	.ops = {
1059		.enable = dsi_14nm_phy_enable,
1060		.disable = dsi_14nm_phy_disable,
1061		.pll_init = dsi_pll_14nm_init,
1062		.save_pll_state = dsi_14nm_pll_save_state,
1063		.restore_pll_state = dsi_14nm_pll_restore_state,
1064	},
1065	.min_pll_rate = VCO_MIN_RATE,
1066	.max_pll_rate = VCO_MAX_RATE,
1067	.io_start = { 0xc994400, 0xc996400 },
1068	.num_dsi_phy = 2,
1069};
1070
1071const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
1072	.has_phy_lane = true,
1073	.regulator_data = dsi_phy_14nm_17mA_regulators,
1074	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1075	.ops = {
1076		.enable = dsi_14nm_phy_enable,
1077		.disable = dsi_14nm_phy_disable,
1078		.pll_init = dsi_pll_14nm_init,
1079		.save_pll_state = dsi_14nm_pll_save_state,
1080		.restore_pll_state = dsi_14nm_pll_restore_state,
1081	},
1082	.min_pll_rate = VCO_MIN_RATE,
1083	.max_pll_rate = VCO_MAX_RATE,
1084	.io_start = { 0x1a94400, 0x1a96400 },
1085	.num_dsi_phy = 2,
1086};
1087
1088const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = {
1089	.has_phy_lane = true,
1090	.ops = {
1091		.enable = dsi_14nm_phy_enable,
1092		.disable = dsi_14nm_phy_disable,
1093		.pll_init = dsi_pll_14nm_init,
1094		.save_pll_state = dsi_14nm_pll_save_state,
1095		.restore_pll_state = dsi_14nm_pll_restore_state,
1096	},
1097	.min_pll_rate = VCO_MIN_RATE,
1098	.max_pll_rate = VCO_MAX_RATE,
1099	.io_start = { 0x5e94400 },
1100	.num_dsi_phy = 1,
1101};
1102