1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright �� 2019 Intel Corporation
5 */
6
7#include <linux/debugobjects.h>
8
9#include "gt/intel_context.h"
10#include "gt/intel_engine_heartbeat.h"
11#include "gt/intel_engine_pm.h"
12#include "gt/intel_ring.h"
13
14#include "i915_drv.h"
15#include "i915_active.h"
16
17/*
18 * Active refs memory management
19 *
20 * To be more economical with memory, we reap all the i915_active trees as
21 * they idle (when we know the active requests are inactive) and allocate the
22 * nodes from a local slab cache to hopefully reduce the fragmentation.
23 */
24static struct kmem_cache *slab_cache;
25
26struct active_node {
27	struct rb_node node;
28	struct i915_active_fence base;
29	struct i915_active *ref;
30	u64 timeline;
31};
32
33#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
34
35static inline struct active_node *
36node_from_active(struct i915_active_fence *active)
37{
38	return container_of(active, struct active_node, base);
39}
40
41#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
42
43static inline bool is_barrier(const struct i915_active_fence *active)
44{
45	return IS_ERR(rcu_access_pointer(active->fence));
46}
47
48static inline struct llist_node *barrier_to_ll(struct active_node *node)
49{
50	GEM_BUG_ON(!is_barrier(&node->base));
51	return (struct llist_node *)&node->base.cb.node;
52}
53
54static inline struct intel_engine_cs *
55__barrier_to_engine(struct active_node *node)
56{
57	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
58}
59
60static inline struct intel_engine_cs *
61barrier_to_engine(struct active_node *node)
62{
63	GEM_BUG_ON(!is_barrier(&node->base));
64	return __barrier_to_engine(node);
65}
66
67static inline struct active_node *barrier_from_ll(struct llist_node *x)
68{
69	return container_of((struct list_head *)x,
70			    struct active_node, base.cb.node);
71}
72
73#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
74
75static void *active_debug_hint(void *addr)
76{
77	struct i915_active *ref = addr;
78
79	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
80}
81
82static const struct debug_obj_descr active_debug_desc = {
83	.name = "i915_active",
84	.debug_hint = active_debug_hint,
85};
86
87static void debug_active_init(struct i915_active *ref)
88{
89	debug_object_init(ref, &active_debug_desc);
90}
91
92static void debug_active_activate(struct i915_active *ref)
93{
94	lockdep_assert_held(&ref->tree_lock);
95	debug_object_activate(ref, &active_debug_desc);
96}
97
98static void debug_active_deactivate(struct i915_active *ref)
99{
100	lockdep_assert_held(&ref->tree_lock);
101	if (!atomic_read(&ref->count)) /* after the last dec */
102		debug_object_deactivate(ref, &active_debug_desc);
103}
104
105static void debug_active_fini(struct i915_active *ref)
106{
107	debug_object_free(ref, &active_debug_desc);
108}
109
110static void debug_active_assert(struct i915_active *ref)
111{
112	debug_object_assert_init(ref, &active_debug_desc);
113}
114
115#else
116
117static inline void debug_active_init(struct i915_active *ref) { }
118static inline void debug_active_activate(struct i915_active *ref) { }
119static inline void debug_active_deactivate(struct i915_active *ref) { }
120static inline void debug_active_fini(struct i915_active *ref) { }
121static inline void debug_active_assert(struct i915_active *ref) { }
122
123#endif
124
125static void
126__active_retire(struct i915_active *ref)
127{
128	struct rb_root root = RB_ROOT;
129	struct active_node *it, *n;
130	unsigned long flags;
131
132	GEM_BUG_ON(i915_active_is_idle(ref));
133
134	/* return the unused nodes to our slabcache -- flushing the allocator */
135	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
136		return;
137
138	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
139	debug_active_deactivate(ref);
140
141	/* Even if we have not used the cache, we may still have a barrier */
142	if (!ref->cache)
143		ref->cache = fetch_node(ref->tree.rb_node);
144
145	/* Keep the MRU cached node for reuse */
146	if (ref->cache) {
147		/* Discard all other nodes in the tree */
148		rb_erase(&ref->cache->node, &ref->tree);
149		root = ref->tree;
150
151		/* Rebuild the tree with only the cached node */
152		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
153		rb_insert_color(&ref->cache->node, &ref->tree);
154		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
155
156		/* Make the cached node available for reuse with any timeline */
157		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
158	}
159
160	spin_unlock_irqrestore(&ref->tree_lock, flags);
161
162	/* After the final retire, the entire struct may be freed */
163	if (ref->retire)
164		ref->retire(ref);
165
166	/* ... except if you wait on it, you must manage your own references! */
167	wake_up_var(ref);
168
169	/* Finally free the discarded timeline tree  */
170	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
171		GEM_BUG_ON(i915_active_fence_isset(&it->base));
172		kmem_cache_free(slab_cache, it);
173	}
174}
175
176static void
177active_work(struct work_struct *wrk)
178{
179	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
180
181	GEM_BUG_ON(!atomic_read(&ref->count));
182	if (atomic_add_unless(&ref->count, -1, 1))
183		return;
184
185	__active_retire(ref);
186}
187
188static void
189active_retire(struct i915_active *ref)
190{
191	GEM_BUG_ON(!atomic_read(&ref->count));
192	if (atomic_add_unless(&ref->count, -1, 1))
193		return;
194
195	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
196		queue_work(system_unbound_wq, &ref->work);
197		return;
198	}
199
200	__active_retire(ref);
201}
202
203static inline struct dma_fence **
204__active_fence_slot(struct i915_active_fence *active)
205{
206	return (struct dma_fence ** __force)&active->fence;
207}
208
209static inline bool
210active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
211{
212	struct i915_active_fence *active =
213		container_of(cb, typeof(*active), cb);
214
215	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
216}
217
218static void
219node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
220{
221	if (active_fence_cb(fence, cb))
222		active_retire(container_of(cb, struct active_node, base.cb)->ref);
223}
224
225static void
226excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
227{
228	if (active_fence_cb(fence, cb))
229		active_retire(container_of(cb, struct i915_active, excl.cb));
230}
231
232static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
233{
234	struct active_node *it;
235
236	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
237
238	/*
239	 * We track the most recently used timeline to skip a rbtree search
240	 * for the common case, under typical loads we never need the rbtree
241	 * at all. We can reuse the last slot if it is empty, that is
242	 * after the previous activity has been retired, or if it matches the
243	 * current timeline.
244	 */
245	it = READ_ONCE(ref->cache);
246	if (it) {
247		u64 cached = READ_ONCE(it->timeline);
248
249		/* Once claimed, this slot will only belong to this idx */
250		if (cached == idx)
251			return it;
252
253		/*
254		 * An unclaimed cache [.timeline=0] can only be claimed once.
255		 *
256		 * If the value is already non-zero, some other thread has
257		 * claimed the cache and we know that is does not match our
258		 * idx. If, and only if, the timeline is currently zero is it
259		 * worth competing to claim it atomically for ourselves (for
260		 * only the winner of that race will cmpxchg return the old
261		 * value of 0).
262		 */
263		if (!cached && !cmpxchg64(&it->timeline, 0, idx))
264			return it;
265	}
266
267	BUILD_BUG_ON(offsetof(typeof(*it), node));
268
269	/* While active, the tree can only be built; not destroyed */
270	GEM_BUG_ON(i915_active_is_idle(ref));
271
272	it = fetch_node(ref->tree.rb_node);
273	while (it) {
274		if (it->timeline < idx) {
275			it = fetch_node(it->node.rb_right);
276		} else if (it->timeline > idx) {
277			it = fetch_node(it->node.rb_left);
278		} else {
279			WRITE_ONCE(ref->cache, it);
280			break;
281		}
282	}
283
284	/* NB: If the tree rotated beneath us, we may miss our target. */
285	return it;
286}
287
288static struct i915_active_fence *
289active_instance(struct i915_active *ref, u64 idx)
290{
291	struct active_node *node;
292	struct rb_node **p, *parent;
293
294	node = __active_lookup(ref, idx);
295	if (likely(node))
296		return &node->base;
297
298	spin_lock_irq(&ref->tree_lock);
299	GEM_BUG_ON(i915_active_is_idle(ref));
300
301	parent = NULL;
302	p = &ref->tree.rb_node;
303	while (*p) {
304		parent = *p;
305
306		node = rb_entry(parent, struct active_node, node);
307		if (node->timeline == idx)
308			goto out;
309
310		if (node->timeline < idx)
311			p = &parent->rb_right;
312		else
313			p = &parent->rb_left;
314	}
315
316	/*
317	 * XXX: We should preallocate this before i915_active_ref() is ever
318	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
319	 */
320	node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
321	if (!node)
322		goto out;
323
324	__i915_active_fence_init(&node->base, NULL, node_retire);
325	node->ref = ref;
326	node->timeline = idx;
327
328	rb_link_node(&node->node, parent, p);
329	rb_insert_color(&node->node, &ref->tree);
330
331out:
332	WRITE_ONCE(ref->cache, node);
333	spin_unlock_irq(&ref->tree_lock);
334
335	return &node->base;
336}
337
338void __i915_active_init(struct i915_active *ref,
339			int (*active)(struct i915_active *ref),
340			void (*retire)(struct i915_active *ref),
341			unsigned long flags,
342			struct lock_class_key *mkey,
343			struct lock_class_key *wkey)
344{
345	debug_active_init(ref);
346
347	ref->flags = flags;
348	ref->active = active;
349	ref->retire = retire;
350
351	spin_lock_init(&ref->tree_lock);
352	ref->tree = RB_ROOT;
353	ref->cache = NULL;
354
355	init_llist_head(&ref->preallocated_barriers);
356	atomic_set(&ref->count, 0);
357	__mutex_init(&ref->mutex, "i915_active", mkey);
358	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
359	INIT_WORK(&ref->work, active_work);
360#if IS_ENABLED(CONFIG_LOCKDEP)
361	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
362#endif
363}
364
365static bool ____active_del_barrier(struct i915_active *ref,
366				   struct active_node *node,
367				   struct intel_engine_cs *engine)
368
369{
370	struct llist_node *head = NULL, *tail = NULL;
371	struct llist_node *pos, *next;
372
373	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
374
375	/*
376	 * Rebuild the llist excluding our node. We may perform this
377	 * outside of the kernel_context timeline mutex and so someone
378	 * else may be manipulating the engine->barrier_tasks, in
379	 * which case either we or they will be upset :)
380	 *
381	 * A second __active_del_barrier() will report failure to claim
382	 * the active_node and the caller will just shrug and know not to
383	 * claim ownership of its node.
384	 *
385	 * A concurrent i915_request_add_active_barriers() will miss adding
386	 * any of the tasks, but we will try again on the next -- and since
387	 * we are actively using the barrier, we know that there will be
388	 * at least another opportunity when we idle.
389	 */
390	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
391		if (node == barrier_from_ll(pos)) {
392			node = NULL;
393			continue;
394		}
395
396		pos->next = head;
397		head = pos;
398		if (!tail)
399			tail = pos;
400	}
401	if (head)
402		llist_add_batch(head, tail, &engine->barrier_tasks);
403
404	return !node;
405}
406
407static bool
408__active_del_barrier(struct i915_active *ref, struct active_node *node)
409{
410	return ____active_del_barrier(ref, node, barrier_to_engine(node));
411}
412
413static bool
414replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
415{
416	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
417		return false;
418
419	/*
420	 * This request is on the kernel_context timeline, and so
421	 * we can use it to substitute for the pending idle-barrer
422	 * request that we want to emit on the kernel_context.
423	 */
424	return __active_del_barrier(ref, node_from_active(active));
425}
426
427int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
428{
429	u64 idx = i915_request_timeline(rq)->fence_context;
430	struct dma_fence *fence = &rq->fence;
431	struct i915_active_fence *active;
432	int err;
433
434	/* Prevent reaping in case we malloc/wait while building the tree */
435	err = i915_active_acquire(ref);
436	if (err)
437		return err;
438
439	do {
440		active = active_instance(ref, idx);
441		if (!active) {
442			err = -ENOMEM;
443			goto out;
444		}
445
446		if (replace_barrier(ref, active)) {
447			RCU_INIT_POINTER(active->fence, NULL);
448			atomic_dec(&ref->count);
449		}
450	} while (unlikely(is_barrier(active)));
451
452	fence = __i915_active_fence_set(active, fence);
453	if (!fence)
454		__i915_active_acquire(ref);
455	else
456		dma_fence_put(fence);
457
458out:
459	i915_active_release(ref);
460	return err;
461}
462
463static struct dma_fence *
464__i915_active_set_fence(struct i915_active *ref,
465			struct i915_active_fence *active,
466			struct dma_fence *fence)
467{
468	struct dma_fence *prev;
469
470	if (replace_barrier(ref, active)) {
471		RCU_INIT_POINTER(active->fence, fence);
472		return NULL;
473	}
474
475	prev = __i915_active_fence_set(active, fence);
476	if (!prev)
477		__i915_active_acquire(ref);
478
479	return prev;
480}
481
482struct dma_fence *
483i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
484{
485	/* We expect the caller to manage the exclusive timeline ordering */
486	return __i915_active_set_fence(ref, &ref->excl, f);
487}
488
489bool i915_active_acquire_if_busy(struct i915_active *ref)
490{
491	debug_active_assert(ref);
492	return atomic_add_unless(&ref->count, 1, 0);
493}
494
495static void __i915_active_activate(struct i915_active *ref)
496{
497	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
498	if (!atomic_fetch_inc(&ref->count))
499		debug_active_activate(ref);
500	spin_unlock_irq(&ref->tree_lock);
501}
502
503int i915_active_acquire(struct i915_active *ref)
504{
505	int err;
506
507	if (i915_active_acquire_if_busy(ref))
508		return 0;
509
510	if (!ref->active) {
511		__i915_active_activate(ref);
512		return 0;
513	}
514
515	err = mutex_lock_interruptible(&ref->mutex);
516	if (err)
517		return err;
518
519	if (likely(!i915_active_acquire_if_busy(ref))) {
520		err = ref->active(ref);
521		if (!err)
522			__i915_active_activate(ref);
523	}
524
525	mutex_unlock(&ref->mutex);
526
527	return err;
528}
529
530int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
531{
532	struct i915_active_fence *active;
533	int err;
534
535	err = i915_active_acquire(ref);
536	if (err)
537		return err;
538
539	active = active_instance(ref, idx);
540	if (!active) {
541		i915_active_release(ref);
542		return -ENOMEM;
543	}
544
545	return 0; /* return with active ref */
546}
547
548void i915_active_release(struct i915_active *ref)
549{
550	debug_active_assert(ref);
551	active_retire(ref);
552}
553
554static void enable_signaling(struct i915_active_fence *active)
555{
556	struct dma_fence *fence;
557
558	if (unlikely(is_barrier(active)))
559		return;
560
561	fence = i915_active_fence_get(active);
562	if (!fence)
563		return;
564
565	dma_fence_enable_sw_signaling(fence);
566	dma_fence_put(fence);
567}
568
569static int flush_barrier(struct active_node *it)
570{
571	struct intel_engine_cs *engine;
572
573	if (likely(!is_barrier(&it->base)))
574		return 0;
575
576	engine = __barrier_to_engine(it);
577	smp_rmb(); /* serialise with add_active_barriers */
578	if (!is_barrier(&it->base))
579		return 0;
580
581	return intel_engine_flush_barriers(engine);
582}
583
584static int flush_lazy_signals(struct i915_active *ref)
585{
586	struct active_node *it, *n;
587	int err = 0;
588
589	enable_signaling(&ref->excl);
590	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
591		err = flush_barrier(it); /* unconnected idle barrier? */
592		if (err)
593			break;
594
595		enable_signaling(&it->base);
596	}
597
598	return err;
599}
600
601int __i915_active_wait(struct i915_active *ref, int state)
602{
603	might_sleep();
604
605	/* Any fence added after the wait begins will not be auto-signaled */
606	if (i915_active_acquire_if_busy(ref)) {
607		int err;
608
609		err = flush_lazy_signals(ref);
610		i915_active_release(ref);
611		if (err)
612			return err;
613
614		if (___wait_var_event(ref, i915_active_is_idle(ref),
615				      state, 0, 0, schedule()))
616			return -EINTR;
617	}
618
619	/*
620	 * After the wait is complete, the caller may free the active.
621	 * We have to flush any concurrent retirement before returning.
622	 */
623	flush_work(&ref->work);
624	return 0;
625}
626
627static int __await_active(struct i915_active_fence *active,
628			  int (*fn)(void *arg, struct dma_fence *fence),
629			  void *arg)
630{
631	struct dma_fence *fence;
632
633	if (is_barrier(active)) /* XXX flush the barrier? */
634		return 0;
635
636	fence = i915_active_fence_get(active);
637	if (fence) {
638		int err;
639
640		err = fn(arg, fence);
641		dma_fence_put(fence);
642		if (err < 0)
643			return err;
644	}
645
646	return 0;
647}
648
649struct wait_barrier {
650	struct wait_queue_entry base;
651	struct i915_active *ref;
652};
653
654static int
655barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
656{
657	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
658
659	if (i915_active_is_idle(wb->ref)) {
660		list_del(&wq->entry);
661		i915_sw_fence_complete(wq->private);
662		kfree(wq);
663	}
664
665	return 0;
666}
667
668static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
669{
670	struct wait_barrier *wb;
671
672	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
673	if (unlikely(!wb))
674		return -ENOMEM;
675
676	GEM_BUG_ON(i915_active_is_idle(ref));
677	if (!i915_sw_fence_await(fence)) {
678		kfree(wb);
679		return -EINVAL;
680	}
681
682	wb->base.flags = 0;
683	wb->base.func = barrier_wake;
684	wb->base.private = fence;
685	wb->ref = ref;
686
687	add_wait_queue(__var_waitqueue(ref), &wb->base);
688	return 0;
689}
690
691static int await_active(struct i915_active *ref,
692			unsigned int flags,
693			int (*fn)(void *arg, struct dma_fence *fence),
694			void *arg, struct i915_sw_fence *barrier)
695{
696	int err = 0;
697
698	if (!i915_active_acquire_if_busy(ref))
699		return 0;
700
701	if (flags & I915_ACTIVE_AWAIT_EXCL &&
702	    rcu_access_pointer(ref->excl.fence)) {
703		err = __await_active(&ref->excl, fn, arg);
704		if (err)
705			goto out;
706	}
707
708	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
709		struct active_node *it, *n;
710
711		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
712			err = __await_active(&it->base, fn, arg);
713			if (err)
714				goto out;
715		}
716	}
717
718	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
719		err = flush_lazy_signals(ref);
720		if (err)
721			goto out;
722
723		err = __await_barrier(ref, barrier);
724		if (err)
725			goto out;
726	}
727
728out:
729	i915_active_release(ref);
730	return err;
731}
732
733static int rq_await_fence(void *arg, struct dma_fence *fence)
734{
735	return i915_request_await_dma_fence(arg, fence);
736}
737
738int i915_request_await_active(struct i915_request *rq,
739			      struct i915_active *ref,
740			      unsigned int flags)
741{
742	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
743}
744
745static int sw_await_fence(void *arg, struct dma_fence *fence)
746{
747	return i915_sw_fence_await_dma_fence(arg, fence, 0,
748					     GFP_NOWAIT | __GFP_NOWARN);
749}
750
751int i915_sw_fence_await_active(struct i915_sw_fence *fence,
752			       struct i915_active *ref,
753			       unsigned int flags)
754{
755	return await_active(ref, flags, sw_await_fence, fence, fence);
756}
757
758void i915_active_fini(struct i915_active *ref)
759{
760	debug_active_fini(ref);
761	GEM_BUG_ON(atomic_read(&ref->count));
762	GEM_BUG_ON(work_pending(&ref->work));
763	mutex_destroy(&ref->mutex);
764
765	if (ref->cache)
766		kmem_cache_free(slab_cache, ref->cache);
767}
768
769static inline bool is_idle_barrier(struct active_node *node, u64 idx)
770{
771	return node->timeline == idx && !i915_active_fence_isset(&node->base);
772}
773
774static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
775{
776	struct rb_node *prev, *p;
777
778	if (RB_EMPTY_ROOT(&ref->tree))
779		return NULL;
780
781	GEM_BUG_ON(i915_active_is_idle(ref));
782
783	/*
784	 * Try to reuse any existing barrier nodes already allocated for this
785	 * i915_active, due to overlapping active phases there is likely a
786	 * node kept alive (as we reuse before parking). We prefer to reuse
787	 * completely idle barriers (less hassle in manipulating the llists),
788	 * but otherwise any will do.
789	 */
790	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
791		p = &ref->cache->node;
792		goto match;
793	}
794
795	prev = NULL;
796	p = ref->tree.rb_node;
797	while (p) {
798		struct active_node *node =
799			rb_entry(p, struct active_node, node);
800
801		if (is_idle_barrier(node, idx))
802			goto match;
803
804		prev = p;
805		if (node->timeline < idx)
806			p = READ_ONCE(p->rb_right);
807		else
808			p = READ_ONCE(p->rb_left);
809	}
810
811	/*
812	 * No quick match, but we did find the leftmost rb_node for the
813	 * kernel_context. Walk the rb_tree in-order to see if there were
814	 * any idle-barriers on this timeline that we missed, or just use
815	 * the first pending barrier.
816	 */
817	for (p = prev; p; p = rb_next(p)) {
818		struct active_node *node =
819			rb_entry(p, struct active_node, node);
820		struct intel_engine_cs *engine;
821
822		if (node->timeline > idx)
823			break;
824
825		if (node->timeline < idx)
826			continue;
827
828		if (is_idle_barrier(node, idx))
829			goto match;
830
831		/*
832		 * The list of pending barriers is protected by the
833		 * kernel_context timeline, which notably we do not hold
834		 * here. i915_request_add_active_barriers() may consume
835		 * the barrier before we claim it, so we have to check
836		 * for success.
837		 */
838		engine = __barrier_to_engine(node);
839		smp_rmb(); /* serialise with add_active_barriers */
840		if (is_barrier(&node->base) &&
841		    ____active_del_barrier(ref, node, engine))
842			goto match;
843	}
844
845	return NULL;
846
847match:
848	spin_lock_irq(&ref->tree_lock);
849	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
850	if (p == &ref->cache->node)
851		WRITE_ONCE(ref->cache, NULL);
852	spin_unlock_irq(&ref->tree_lock);
853
854	return rb_entry(p, struct active_node, node);
855}
856
857int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
858					    struct intel_engine_cs *engine)
859{
860	intel_engine_mask_t tmp, mask = engine->mask;
861	struct llist_node *first = NULL, *last = NULL;
862	struct intel_gt *gt = engine->gt;
863
864	GEM_BUG_ON(i915_active_is_idle(ref));
865
866	/* Wait until the previous preallocation is completed */
867	while (!llist_empty(&ref->preallocated_barriers))
868		cond_resched();
869
870	/*
871	 * Preallocate a node for each physical engine supporting the target
872	 * engine (remember virtual engines have more than one sibling).
873	 * We can then use the preallocated nodes in
874	 * i915_active_acquire_barrier()
875	 */
876	GEM_BUG_ON(!mask);
877	for_each_engine_masked(engine, gt, mask, tmp) {
878		u64 idx = engine->kernel_context->timeline->fence_context;
879		struct llist_node *prev = first;
880		struct active_node *node;
881
882		rcu_read_lock();
883		node = reuse_idle_barrier(ref, idx);
884		rcu_read_unlock();
885		if (!node) {
886			node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
887			if (!node)
888				goto unwind;
889
890			RCU_INIT_POINTER(node->base.fence, NULL);
891			node->base.cb.func = node_retire;
892			node->timeline = idx;
893			node->ref = ref;
894		}
895
896		if (!i915_active_fence_isset(&node->base)) {
897			/*
898			 * Mark this as being *our* unconnected proto-node.
899			 *
900			 * Since this node is not in any list, and we have
901			 * decoupled it from the rbtree, we can reuse the
902			 * request to indicate this is an idle-barrier node
903			 * and then we can use the rb_node and list pointers
904			 * for our tracking of the pending barrier.
905			 */
906			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
907			node->base.cb.node.prev = (void *)engine;
908			__i915_active_acquire(ref);
909		}
910		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
911
912		GEM_BUG_ON(barrier_to_engine(node) != engine);
913		first = barrier_to_ll(node);
914		first->next = prev;
915		if (!last)
916			last = first;
917		intel_engine_pm_get(engine);
918	}
919
920	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
921	llist_add_batch(first, last, &ref->preallocated_barriers);
922
923	return 0;
924
925unwind:
926	while (first) {
927		struct active_node *node = barrier_from_ll(first);
928
929		first = first->next;
930
931		atomic_dec(&ref->count);
932		intel_engine_pm_put(barrier_to_engine(node));
933
934		kmem_cache_free(slab_cache, node);
935	}
936	return -ENOMEM;
937}
938
939void i915_active_acquire_barrier(struct i915_active *ref)
940{
941	struct llist_node *pos, *next;
942	unsigned long flags;
943
944	GEM_BUG_ON(i915_active_is_idle(ref));
945
946	/*
947	 * Transfer the list of preallocated barriers into the
948	 * i915_active rbtree, but only as proto-nodes. They will be
949	 * populated by i915_request_add_active_barriers() to point to the
950	 * request that will eventually release them.
951	 */
952	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
953		struct active_node *node = barrier_from_ll(pos);
954		struct intel_engine_cs *engine = barrier_to_engine(node);
955		struct rb_node **p, *parent;
956
957		spin_lock_irqsave_nested(&ref->tree_lock, flags,
958					 SINGLE_DEPTH_NESTING);
959		parent = NULL;
960		p = &ref->tree.rb_node;
961		while (*p) {
962			struct active_node *it;
963
964			parent = *p;
965
966			it = rb_entry(parent, struct active_node, node);
967			if (it->timeline < node->timeline)
968				p = &parent->rb_right;
969			else
970				p = &parent->rb_left;
971		}
972		rb_link_node(&node->node, parent, p);
973		rb_insert_color(&node->node, &ref->tree);
974		spin_unlock_irqrestore(&ref->tree_lock, flags);
975
976		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
977		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
978		intel_engine_pm_put_delay(engine, 2);
979	}
980}
981
982static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
983{
984	return __active_fence_slot(&barrier_from_ll(node)->base);
985}
986
987void i915_request_add_active_barriers(struct i915_request *rq)
988{
989	struct intel_engine_cs *engine = rq->engine;
990	struct llist_node *node, *next;
991	unsigned long flags;
992
993	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
994	GEM_BUG_ON(intel_engine_is_virtual(engine));
995	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
996
997	node = llist_del_all(&engine->barrier_tasks);
998	if (!node)
999		return;
1000	/*
1001	 * Attach the list of proto-fences to the in-flight request such
1002	 * that the parent i915_active will be released when this request
1003	 * is retired.
1004	 */
1005	spin_lock_irqsave(&rq->lock, flags);
1006	llist_for_each_safe(node, next, node) {
1007		/* serialise with reuse_idle_barrier */
1008		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1009		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1010	}
1011	spin_unlock_irqrestore(&rq->lock, flags);
1012}
1013
1014/*
1015 * __i915_active_fence_set: Update the last active fence along its timeline
1016 * @active: the active tracker
1017 * @fence: the new fence (under construction)
1018 *
1019 * Records the new @fence as the last active fence along its timeline in
1020 * this active tracker, moving the tracking callbacks from the previous
1021 * fence onto this one. Gets and returns a reference to the previous fence
1022 * (if not already completed), which the caller must put after making sure
1023 * that it is executed before the new fence. To ensure that the order of
1024 * fences within the timeline of the i915_active_fence is understood, it
1025 * should be locked by the caller.
1026 */
1027struct dma_fence *
1028__i915_active_fence_set(struct i915_active_fence *active,
1029			struct dma_fence *fence)
1030{
1031	struct dma_fence *prev;
1032	unsigned long flags;
1033
1034	/*
1035	 * In case of fences embedded in i915_requests, their memory is
1036	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
1037	 * by new requests.  Then, there is a risk of passing back a pointer
1038	 * to a new, completely unrelated fence that reuses the same memory
1039	 * while tracked under a different active tracker.  Combined with i915
1040	 * perf open/close operations that build await dependencies between
1041	 * engine kernel context requests and user requests from different
1042	 * timelines, this can lead to dependency loops and infinite waits.
1043	 *
1044	 * As a countermeasure, we try to get a reference to the active->fence
1045	 * first, so if we succeed and pass it back to our user then it is not
1046	 * released and potentially reused by an unrelated request before the
1047	 * user has a chance to set up an await dependency on it.
1048	 */
1049	prev = i915_active_fence_get(active);
1050	if (fence == prev)
1051		return fence;
1052
1053	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1054
1055	/*
1056	 * Consider that we have two threads arriving (A and B), with
1057	 * C already resident as the active->fence.
1058	 *
1059	 * Both A and B have got a reference to C or NULL, depending on the
1060	 * timing of the interrupt handler.  Let's assume that if A has got C
1061	 * then it has locked C first (before B).
1062	 *
1063	 * Note the strong ordering of the timeline also provides consistent
1064	 * nesting rules for the fence->lock; the inner lock is always the
1065	 * older lock.
1066	 */
1067	spin_lock_irqsave(fence->lock, flags);
1068	if (prev)
1069		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1070
1071	/*
1072	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
1073	 * something else, depending on the timing of other threads and/or
1074	 * interrupt handler.  If not the same as before then A unlocks C if
1075	 * applicable and retries, starting from an attempt to get a new
1076	 * active->fence.  Meanwhile, B follows the same path as A.
1077	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
1078	 * active->fence, locks it as soon as A completes, and possibly
1079	 * succeeds with cmpxchg.
1080	 */
1081	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
1082		if (prev) {
1083			spin_unlock(prev->lock);
1084			dma_fence_put(prev);
1085		}
1086		spin_unlock_irqrestore(fence->lock, flags);
1087
1088		prev = i915_active_fence_get(active);
1089		GEM_BUG_ON(prev == fence);
1090
1091		spin_lock_irqsave(fence->lock, flags);
1092		if (prev)
1093			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1094	}
1095
1096	/*
1097	 * If prev is NULL then the previous fence must have been signaled
1098	 * and we know that we are first on the timeline.  If it is still
1099	 * present then, having the lock on that fence already acquired, we
1100	 * serialise with the interrupt handler, in the process of removing it
1101	 * from any future interrupt callback.  A will then wait on C before
1102	 * executing (if present).
1103	 *
1104	 * As B is second, it sees A as the previous fence and so waits for
1105	 * it to complete its transition and takes over the occupancy for
1106	 * itself -- remembering that it needs to wait on A before executing.
1107	 */
1108	if (prev) {
1109		__list_del_entry(&active->cb.node);
1110		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1111	}
1112	list_add_tail(&active->cb.node, &fence->cb_list);
1113	spin_unlock_irqrestore(fence->lock, flags);
1114
1115	return prev;
1116}
1117
1118int i915_active_fence_set(struct i915_active_fence *active,
1119			  struct i915_request *rq)
1120{
1121	struct dma_fence *fence;
1122	int err = 0;
1123
1124	/* Must maintain timeline ordering wrt previous active requests */
1125	fence = __i915_active_fence_set(active, &rq->fence);
1126	if (fence) {
1127		err = i915_request_await_dma_fence(rq, fence);
1128		dma_fence_put(fence);
1129	}
1130
1131	return err;
1132}
1133
1134void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1135{
1136	active_fence_cb(fence, cb);
1137}
1138
1139struct auto_active {
1140	struct i915_active base;
1141	struct kref ref;
1142};
1143
1144struct i915_active *i915_active_get(struct i915_active *ref)
1145{
1146	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1147
1148	kref_get(&aa->ref);
1149	return &aa->base;
1150}
1151
1152static void auto_release(struct kref *ref)
1153{
1154	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1155
1156	i915_active_fini(&aa->base);
1157	kfree(aa);
1158}
1159
1160void i915_active_put(struct i915_active *ref)
1161{
1162	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1163
1164	kref_put(&aa->ref, auto_release);
1165}
1166
1167static int auto_active(struct i915_active *ref)
1168{
1169	i915_active_get(ref);
1170	return 0;
1171}
1172
1173static void auto_retire(struct i915_active *ref)
1174{
1175	i915_active_put(ref);
1176}
1177
1178struct i915_active *i915_active_create(void)
1179{
1180	struct auto_active *aa;
1181
1182	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1183	if (!aa)
1184		return NULL;
1185
1186	kref_init(&aa->ref);
1187	i915_active_init(&aa->base, auto_active, auto_retire, 0);
1188
1189	return &aa->base;
1190}
1191
1192#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1193#include "selftests/i915_active.c"
1194#endif
1195
1196void i915_active_module_exit(void)
1197{
1198	kmem_cache_destroy(slab_cache);
1199}
1200
1201int __init i915_active_module_init(void)
1202{
1203	slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1204	if (!slab_cache)
1205		return -ENOMEM;
1206
1207	return 0;
1208}
1209