1/*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 *    Zhi Wang <zhi.a.wang@intel.com>
27 *    Zhenyu Wang <zhenyuw@linux.intel.com>
28 *    Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 *    Min He <min.he@intel.com>
32 *    Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36#include "i915_drv.h"
37#include "gvt.h"
38#include "i915_pvinfo.h"
39#include "trace.h"
40
41#include "gt/intel_gt_regs.h"
42
43#if defined(VERBOSE_DEBUG)
44#define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
45#else
46#define gvt_vdbg_mm(fmt, args...)
47#endif
48
49static bool enable_out_of_sync = false;
50static int preallocated_oos_pages = 8192;
51
52/*
53 * validate a gm address and related range size,
54 * translate it to host gm address
55 */
56bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
57{
58	if (size == 0)
59		return vgpu_gmadr_is_valid(vgpu, addr);
60
61	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
62	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
63		return true;
64	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
65		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
66		return true;
67
68	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
69		     addr, size);
70	return false;
71}
72
73/* translate a guest gmadr to host gmadr */
74int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
75{
76	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
77
78	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
79		     "invalid guest gmadr %llx\n", g_addr))
80		return -EACCES;
81
82	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
83		*h_addr = vgpu_aperture_gmadr_base(vgpu)
84			  + (g_addr - vgpu_aperture_offset(vgpu));
85	else
86		*h_addr = vgpu_hidden_gmadr_base(vgpu)
87			  + (g_addr - vgpu_hidden_offset(vgpu));
88	return 0;
89}
90
91/* translate a host gmadr to guest gmadr */
92int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
93{
94	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
95
96	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
97		     "invalid host gmadr %llx\n", h_addr))
98		return -EACCES;
99
100	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
101		*g_addr = vgpu_aperture_gmadr_base(vgpu)
102			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
103	else
104		*g_addr = vgpu_hidden_gmadr_base(vgpu)
105			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
106	return 0;
107}
108
109int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
110			     unsigned long *h_index)
111{
112	u64 h_addr;
113	int ret;
114
115	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
116				       &h_addr);
117	if (ret)
118		return ret;
119
120	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
121	return 0;
122}
123
124int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
125			     unsigned long *g_index)
126{
127	u64 g_addr;
128	int ret;
129
130	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
131				       &g_addr);
132	if (ret)
133		return ret;
134
135	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
136	return 0;
137}
138
139#define gtt_type_is_entry(type) \
140	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
141	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
142	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
143
144#define gtt_type_is_pt(type) \
145	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
146
147#define gtt_type_is_pte_pt(type) \
148	(type == GTT_TYPE_PPGTT_PTE_PT)
149
150#define gtt_type_is_root_pointer(type) \
151	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
152
153#define gtt_init_entry(e, t, p, v) do { \
154	(e)->type = t; \
155	(e)->pdev = p; \
156	memcpy(&(e)->val64, &v, sizeof(v)); \
157} while (0)
158
159/*
160 * Mappings between GTT_TYPE* enumerations.
161 * Following information can be found according to the given type:
162 * - type of next level page table
163 * - type of entry inside this level page table
164 * - type of entry with PSE set
165 *
166 * If the given type doesn't have such a kind of information,
167 * e.g. give a l4 root entry type, then request to get its PSE type,
168 * give a PTE page table type, then request to get its next level page
169 * table type, as we know l4 root entry doesn't have a PSE bit,
170 * and a PTE page table doesn't have a next level page table type,
171 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
172 * page table.
173 */
174
175struct gtt_type_table_entry {
176	int entry_type;
177	int pt_type;
178	int next_pt_type;
179	int pse_entry_type;
180};
181
182#define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
183	[type] = { \
184		.entry_type = e_type, \
185		.pt_type = cpt_type, \
186		.next_pt_type = npt_type, \
187		.pse_entry_type = pse_type, \
188	}
189
190static const struct gtt_type_table_entry gtt_type_table[] = {
191	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
192			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
193			GTT_TYPE_INVALID,
194			GTT_TYPE_PPGTT_PML4_PT,
195			GTT_TYPE_INVALID),
196	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
197			GTT_TYPE_PPGTT_PML4_ENTRY,
198			GTT_TYPE_PPGTT_PML4_PT,
199			GTT_TYPE_PPGTT_PDP_PT,
200			GTT_TYPE_INVALID),
201	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
202			GTT_TYPE_PPGTT_PML4_ENTRY,
203			GTT_TYPE_PPGTT_PML4_PT,
204			GTT_TYPE_PPGTT_PDP_PT,
205			GTT_TYPE_INVALID),
206	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
207			GTT_TYPE_PPGTT_PDP_ENTRY,
208			GTT_TYPE_PPGTT_PDP_PT,
209			GTT_TYPE_PPGTT_PDE_PT,
210			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
211	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
212			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
213			GTT_TYPE_INVALID,
214			GTT_TYPE_PPGTT_PDE_PT,
215			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
216	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
217			GTT_TYPE_PPGTT_PDP_ENTRY,
218			GTT_TYPE_PPGTT_PDP_PT,
219			GTT_TYPE_PPGTT_PDE_PT,
220			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
221	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
222			GTT_TYPE_PPGTT_PDE_ENTRY,
223			GTT_TYPE_PPGTT_PDE_PT,
224			GTT_TYPE_PPGTT_PTE_PT,
225			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
226	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
227			GTT_TYPE_PPGTT_PDE_ENTRY,
228			GTT_TYPE_PPGTT_PDE_PT,
229			GTT_TYPE_PPGTT_PTE_PT,
230			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
231	/* We take IPS bit as 'PSE' for PTE level. */
232	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
233			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
234			GTT_TYPE_PPGTT_PTE_PT,
235			GTT_TYPE_INVALID,
236			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
237	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
239			GTT_TYPE_PPGTT_PTE_PT,
240			GTT_TYPE_INVALID,
241			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
242	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
243			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
244			GTT_TYPE_PPGTT_PTE_PT,
245			GTT_TYPE_INVALID,
246			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
247	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
248			GTT_TYPE_PPGTT_PDE_ENTRY,
249			GTT_TYPE_PPGTT_PDE_PT,
250			GTT_TYPE_INVALID,
251			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
252	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
253			GTT_TYPE_PPGTT_PDP_ENTRY,
254			GTT_TYPE_PPGTT_PDP_PT,
255			GTT_TYPE_INVALID,
256			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
257	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
258			GTT_TYPE_GGTT_PTE,
259			GTT_TYPE_INVALID,
260			GTT_TYPE_INVALID,
261			GTT_TYPE_INVALID),
262};
263
264static inline int get_next_pt_type(int type)
265{
266	return gtt_type_table[type].next_pt_type;
267}
268
269static inline int get_entry_type(int type)
270{
271	return gtt_type_table[type].entry_type;
272}
273
274static inline int get_pse_type(int type)
275{
276	return gtt_type_table[type].pse_entry_type;
277}
278
279static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
280{
281	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
282
283	return readq(addr);
284}
285
286static void ggtt_invalidate(struct intel_gt *gt)
287{
288	mmio_hw_access_pre(gt);
289	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
290	mmio_hw_access_post(gt);
291}
292
293static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
294{
295	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
296
297	writeq(pte, addr);
298}
299
300static inline int gtt_get_entry64(void *pt,
301		struct intel_gvt_gtt_entry *e,
302		unsigned long index, bool hypervisor_access, unsigned long gpa,
303		struct intel_vgpu *vgpu)
304{
305	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
306	int ret;
307
308	if (WARN_ON(info->gtt_entry_size != 8))
309		return -EINVAL;
310
311	if (hypervisor_access) {
312		ret = intel_gvt_read_gpa(vgpu, gpa +
313				(index << info->gtt_entry_size_shift),
314				&e->val64, 8);
315		if (WARN_ON(ret))
316			return ret;
317	} else if (!pt) {
318		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
319	} else {
320		e->val64 = *((u64 *)pt + index);
321	}
322	return 0;
323}
324
325static inline int gtt_set_entry64(void *pt,
326		struct intel_gvt_gtt_entry *e,
327		unsigned long index, bool hypervisor_access, unsigned long gpa,
328		struct intel_vgpu *vgpu)
329{
330	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
331	int ret;
332
333	if (WARN_ON(info->gtt_entry_size != 8))
334		return -EINVAL;
335
336	if (hypervisor_access) {
337		ret = intel_gvt_write_gpa(vgpu, gpa +
338				(index << info->gtt_entry_size_shift),
339				&e->val64, 8);
340		if (WARN_ON(ret))
341			return ret;
342	} else if (!pt) {
343		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
344	} else {
345		*((u64 *)pt + index) = e->val64;
346	}
347	return 0;
348}
349
350#define GTT_HAW 46
351
352#define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
353#define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
354#define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
355#define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
356
357#define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
358#define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
359
360#define GTT_64K_PTE_STRIDE 16
361
362static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
363{
364	unsigned long pfn;
365
366	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
367		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
368	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
369		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
370	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
371		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
372	else
373		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
374	return pfn;
375}
376
377static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
378{
379	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
380		e->val64 &= ~ADDR_1G_MASK;
381		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
382	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
383		e->val64 &= ~ADDR_2M_MASK;
384		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
385	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
386		e->val64 &= ~ADDR_64K_MASK;
387		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
388	} else {
389		e->val64 &= ~ADDR_4K_MASK;
390		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
391	}
392
393	e->val64 |= (pfn << PAGE_SHIFT);
394}
395
396static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
397{
398	return !!(e->val64 & _PAGE_PSE);
399}
400
401static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
402{
403	if (gen8_gtt_test_pse(e)) {
404		switch (e->type) {
405		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
406			e->val64 &= ~_PAGE_PSE;
407			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
408			break;
409		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
410			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
411			e->val64 &= ~_PAGE_PSE;
412			break;
413		default:
414			WARN_ON(1);
415		}
416	}
417}
418
419static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
420{
421	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
422		return false;
423
424	return !!(e->val64 & GEN8_PDE_IPS_64K);
425}
426
427static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
428{
429	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
430		return;
431
432	e->val64 &= ~GEN8_PDE_IPS_64K;
433}
434
435static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
436{
437	/*
438	 * i915 writes PDP root pointer registers without present bit,
439	 * it also works, so we need to treat root pointer entry
440	 * specifically.
441	 */
442	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
443			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
444		return (e->val64 != 0);
445	else
446		return (e->val64 & GEN8_PAGE_PRESENT);
447}
448
449static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
450{
451	e->val64 &= ~GEN8_PAGE_PRESENT;
452}
453
454static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
455{
456	e->val64 |= GEN8_PAGE_PRESENT;
457}
458
459static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
460{
461	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
462}
463
464static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
465{
466	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
467}
468
469static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
470{
471	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
472}
473
474/*
475 * Per-platform GMA routines.
476 */
477static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
478{
479	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
480
481	trace_gma_index(__func__, gma, x);
482	return x;
483}
484
485#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
486static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
487{ \
488	unsigned long x = (exp); \
489	trace_gma_index(__func__, gma, x); \
490	return x; \
491}
492
493DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
494DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
495DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
496DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
497DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
498
499static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
500	.get_entry = gtt_get_entry64,
501	.set_entry = gtt_set_entry64,
502	.clear_present = gtt_entry_clear_present,
503	.set_present = gtt_entry_set_present,
504	.test_present = gen8_gtt_test_present,
505	.test_pse = gen8_gtt_test_pse,
506	.clear_pse = gen8_gtt_clear_pse,
507	.clear_ips = gen8_gtt_clear_ips,
508	.test_ips = gen8_gtt_test_ips,
509	.clear_64k_splited = gen8_gtt_clear_64k_splited,
510	.set_64k_splited = gen8_gtt_set_64k_splited,
511	.test_64k_splited = gen8_gtt_test_64k_splited,
512	.get_pfn = gen8_gtt_get_pfn,
513	.set_pfn = gen8_gtt_set_pfn,
514};
515
516static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
517	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
518	.gma_to_pte_index = gen8_gma_to_pte_index,
519	.gma_to_pde_index = gen8_gma_to_pde_index,
520	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
521	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
522	.gma_to_pml4_index = gen8_gma_to_pml4_index,
523};
524
525/* Update entry type per pse and ips bit. */
526static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
527	struct intel_gvt_gtt_entry *entry, bool ips)
528{
529	switch (entry->type) {
530	case GTT_TYPE_PPGTT_PDE_ENTRY:
531	case GTT_TYPE_PPGTT_PDP_ENTRY:
532		if (pte_ops->test_pse(entry))
533			entry->type = get_pse_type(entry->type);
534		break;
535	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
536		if (ips)
537			entry->type = get_pse_type(entry->type);
538		break;
539	default:
540		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
541	}
542
543	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
544}
545
546/*
547 * MM helpers.
548 */
549static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
550		struct intel_gvt_gtt_entry *entry, unsigned long index,
551		bool guest)
552{
553	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
554
555	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
556
557	entry->type = mm->ppgtt_mm.root_entry_type;
558	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
559			   mm->ppgtt_mm.shadow_pdps,
560			   entry, index, false, 0, mm->vgpu);
561	update_entry_type_for_real(pte_ops, entry, false);
562}
563
564static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
565		struct intel_gvt_gtt_entry *entry, unsigned long index)
566{
567	_ppgtt_get_root_entry(mm, entry, index, true);
568}
569
570static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
571		struct intel_gvt_gtt_entry *entry, unsigned long index)
572{
573	_ppgtt_get_root_entry(mm, entry, index, false);
574}
575
576static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
577		struct intel_gvt_gtt_entry *entry, unsigned long index,
578		bool guest)
579{
580	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
581
582	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
583			   mm->ppgtt_mm.shadow_pdps,
584			   entry, index, false, 0, mm->vgpu);
585}
586
587static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588		struct intel_gvt_gtt_entry *entry, unsigned long index)
589{
590	_ppgtt_set_root_entry(mm, entry, index, false);
591}
592
593static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594		struct intel_gvt_gtt_entry *entry, unsigned long index)
595{
596	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597
598	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599
600	entry->type = GTT_TYPE_GGTT_PTE;
601	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602			   false, 0, mm->vgpu);
603}
604
605static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606		struct intel_gvt_gtt_entry *entry, unsigned long index)
607{
608	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609
610	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611
612	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613			   false, 0, mm->vgpu);
614}
615
616static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617		struct intel_gvt_gtt_entry *entry, unsigned long index)
618{
619	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620
621	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622
623	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624}
625
626static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627		struct intel_gvt_gtt_entry *entry, unsigned long index)
628{
629	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630	unsigned long offset = index;
631
632	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
633
634	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
635		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
636		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
637	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
640	}
641
642	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
643}
644
645/*
646 * PPGTT shadow page table helpers.
647 */
648static inline int ppgtt_spt_get_entry(
649		struct intel_vgpu_ppgtt_spt *spt,
650		void *page_table, int type,
651		struct intel_gvt_gtt_entry *e, unsigned long index,
652		bool guest)
653{
654	struct intel_gvt *gvt = spt->vgpu->gvt;
655	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
656	int ret;
657
658	e->type = get_entry_type(type);
659
660	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
661		return -EINVAL;
662
663	ret = ops->get_entry(page_table, e, index, guest,
664			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
665			spt->vgpu);
666	if (ret)
667		return ret;
668
669	update_entry_type_for_real(ops, e, guest ?
670				   spt->guest_page.pde_ips : false);
671
672	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673		    type, e->type, index, e->val64);
674	return 0;
675}
676
677static inline int ppgtt_spt_set_entry(
678		struct intel_vgpu_ppgtt_spt *spt,
679		void *page_table, int type,
680		struct intel_gvt_gtt_entry *e, unsigned long index,
681		bool guest)
682{
683	struct intel_gvt *gvt = spt->vgpu->gvt;
684	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
685
686	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
687		return -EINVAL;
688
689	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690		    type, e->type, index, e->val64);
691
692	return ops->set_entry(page_table, e, index, guest,
693			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
694			spt->vgpu);
695}
696
697#define ppgtt_get_guest_entry(spt, e, index) \
698	ppgtt_spt_get_entry(spt, NULL, \
699		spt->guest_page.type, e, index, true)
700
701#define ppgtt_set_guest_entry(spt, e, index) \
702	ppgtt_spt_set_entry(spt, NULL, \
703		spt->guest_page.type, e, index, true)
704
705#define ppgtt_get_shadow_entry(spt, e, index) \
706	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707		spt->shadow_page.type, e, index, false)
708
709#define ppgtt_set_shadow_entry(spt, e, index) \
710	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711		spt->shadow_page.type, e, index, false)
712
713static void *alloc_spt(gfp_t gfp_mask)
714{
715	struct intel_vgpu_ppgtt_spt *spt;
716
717	spt = kzalloc(sizeof(*spt), gfp_mask);
718	if (!spt)
719		return NULL;
720
721	spt->shadow_page.page = alloc_page(gfp_mask);
722	if (!spt->shadow_page.page) {
723		kfree(spt);
724		return NULL;
725	}
726	return spt;
727}
728
729static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
730{
731	__free_page(spt->shadow_page.page);
732	kfree(spt);
733}
734
735static int detach_oos_page(struct intel_vgpu *vgpu,
736		struct intel_vgpu_oos_page *oos_page);
737
738static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
739{
740	struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
741
742	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
743
744	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745		       DMA_BIDIRECTIONAL);
746
747	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
748
749	if (spt->guest_page.gfn) {
750		if (spt->guest_page.oos_page)
751			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
752
753		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
754	}
755
756	list_del_init(&spt->post_shadow_list);
757	free_spt(spt);
758}
759
760static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
761{
762	struct intel_vgpu_ppgtt_spt *spt, *spn;
763	struct radix_tree_iter iter;
764	LIST_HEAD(all_spt);
765	void __rcu **slot;
766
767	rcu_read_lock();
768	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769		spt = radix_tree_deref_slot(slot);
770		list_move(&spt->post_shadow_list, &all_spt);
771	}
772	rcu_read_unlock();
773
774	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
775		ppgtt_free_spt(spt);
776}
777
778static int ppgtt_handle_guest_write_page_table_bytes(
779		struct intel_vgpu_ppgtt_spt *spt,
780		u64 pa, void *p_data, int bytes);
781
782static int ppgtt_write_protection_handler(
783		struct intel_vgpu_page_track *page_track,
784		u64 gpa, void *data, int bytes)
785{
786	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
787
788	int ret;
789
790	if (bytes != 4 && bytes != 8)
791		return -EINVAL;
792
793	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
794	if (ret)
795		return ret;
796	return ret;
797}
798
799/* Find a spt by guest gfn. */
800static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801		struct intel_vgpu *vgpu, unsigned long gfn)
802{
803	struct intel_vgpu_page_track *track;
804
805	track = intel_vgpu_find_page_track(vgpu, gfn);
806	if (track && track->handler == ppgtt_write_protection_handler)
807		return track->priv_data;
808
809	return NULL;
810}
811
812/* Find the spt by shadow page mfn. */
813static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814		struct intel_vgpu *vgpu, unsigned long mfn)
815{
816	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
817}
818
819static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
820
821/* Allocate shadow page table without guest page. */
822static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
824{
825	struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
826	struct intel_vgpu_ppgtt_spt *spt = NULL;
827	dma_addr_t daddr;
828	int ret;
829
830retry:
831	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
832	if (!spt) {
833		if (reclaim_one_ppgtt_mm(vgpu->gvt))
834			goto retry;
835
836		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837		return ERR_PTR(-ENOMEM);
838	}
839
840	spt->vgpu = vgpu;
841	atomic_set(&spt->refcount, 1);
842	INIT_LIST_HEAD(&spt->post_shadow_list);
843
844	/*
845	 * Init shadow_page.
846	 */
847	spt->shadow_page.type = type;
848	daddr = dma_map_page(kdev, spt->shadow_page.page,
849			     0, 4096, DMA_BIDIRECTIONAL);
850	if (dma_mapping_error(kdev, daddr)) {
851		gvt_vgpu_err("fail to map dma addr\n");
852		ret = -EINVAL;
853		goto err_free_spt;
854	}
855	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
857
858	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
859	if (ret)
860		goto err_unmap_dma;
861
862	return spt;
863
864err_unmap_dma:
865	dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
866err_free_spt:
867	free_spt(spt);
868	return ERR_PTR(ret);
869}
870
871/* Allocate shadow page table associated with specific gfn. */
872static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874		unsigned long gfn, bool guest_pde_ips)
875{
876	struct intel_vgpu_ppgtt_spt *spt;
877	int ret;
878
879	spt = ppgtt_alloc_spt(vgpu, type);
880	if (IS_ERR(spt))
881		return spt;
882
883	/*
884	 * Init guest_page.
885	 */
886	ret = intel_vgpu_register_page_track(vgpu, gfn,
887			ppgtt_write_protection_handler, spt);
888	if (ret) {
889		ppgtt_free_spt(spt);
890		return ERR_PTR(ret);
891	}
892
893	spt->guest_page.type = type;
894	spt->guest_page.gfn = gfn;
895	spt->guest_page.pde_ips = guest_pde_ips;
896
897	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
898
899	return spt;
900}
901
902#define pt_entry_size_shift(spt) \
903	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
904
905#define pt_entries(spt) \
906	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
907
908#define for_each_present_guest_entry(spt, e, i) \
909	for (i = 0; i < pt_entries(spt); \
910	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911		if (!ppgtt_get_guest_entry(spt, e, i) && \
912		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
913
914#define for_each_present_shadow_entry(spt, e, i) \
915	for (i = 0; i < pt_entries(spt); \
916	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917		if (!ppgtt_get_shadow_entry(spt, e, i) && \
918		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
919
920#define for_each_shadow_entry(spt, e, i) \
921	for (i = 0; i < pt_entries(spt); \
922	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923		if (!ppgtt_get_shadow_entry(spt, e, i))
924
925static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
926{
927	int v = atomic_read(&spt->refcount);
928
929	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930	atomic_inc(&spt->refcount);
931}
932
933static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
934{
935	int v = atomic_read(&spt->refcount);
936
937	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938	return atomic_dec_return(&spt->refcount);
939}
940
941static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
942
943static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944		struct intel_gvt_gtt_entry *e)
945{
946	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948	struct intel_vgpu_ppgtt_spt *s;
949	enum intel_gvt_gtt_type cur_pt_type;
950
951	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
952
953	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955		cur_pt_type = get_next_pt_type(e->type);
956
957		if (!gtt_type_is_pt(cur_pt_type) ||
958				!gtt_type_is_pt(cur_pt_type + 1)) {
959			drm_WARN(&i915->drm, 1,
960				 "Invalid page table type, cur_pt_type is: %d\n",
961				 cur_pt_type);
962			return -EINVAL;
963		}
964
965		cur_pt_type += 1;
966
967		if (ops->get_pfn(e) ==
968			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
969			return 0;
970	}
971	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
972	if (!s) {
973		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
974				ops->get_pfn(e));
975		return -ENXIO;
976	}
977	return ppgtt_invalidate_spt(s);
978}
979
980static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981		struct intel_gvt_gtt_entry *entry)
982{
983	struct intel_vgpu *vgpu = spt->vgpu;
984	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
985	unsigned long pfn;
986	int type;
987
988	pfn = ops->get_pfn(entry);
989	type = spt->shadow_page.type;
990
991	/* Uninitialized spte or unshadowed spte. */
992	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
993		return;
994
995	intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
996}
997
998static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
999{
1000	struct intel_vgpu *vgpu = spt->vgpu;
1001	struct intel_gvt_gtt_entry e;
1002	unsigned long index;
1003	int ret;
1004
1005	trace_spt_change(spt->vgpu->id, "die", spt,
1006			spt->guest_page.gfn, spt->shadow_page.type);
1007
1008	if (ppgtt_put_spt(spt) > 0)
1009		return 0;
1010
1011	for_each_present_shadow_entry(spt, &e, index) {
1012		switch (e.type) {
1013		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014			gvt_vdbg_mm("invalidate 4K entry\n");
1015			ppgtt_invalidate_pte(spt, &e);
1016			break;
1017		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018			/* We don't setup 64K shadow entry so far. */
1019			WARN(1, "suspicious 64K gtt entry\n");
1020			continue;
1021		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022			gvt_vdbg_mm("invalidate 2M entry\n");
1023			continue;
1024		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025			WARN(1, "GVT doesn't support 1GB page\n");
1026			continue;
1027		case GTT_TYPE_PPGTT_PML4_ENTRY:
1028		case GTT_TYPE_PPGTT_PDP_ENTRY:
1029		case GTT_TYPE_PPGTT_PDE_ENTRY:
1030			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031			ret = ppgtt_invalidate_spt_by_shadow_entry(
1032					spt->vgpu, &e);
1033			if (ret)
1034				goto fail;
1035			break;
1036		default:
1037			GEM_BUG_ON(1);
1038		}
1039	}
1040
1041	trace_spt_change(spt->vgpu->id, "release", spt,
1042			 spt->guest_page.gfn, spt->shadow_page.type);
1043	ppgtt_free_spt(spt);
1044	return 0;
1045fail:
1046	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047			spt, e.val64, e.type);
1048	return ret;
1049}
1050
1051static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052{
1053	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054
1055	if (GRAPHICS_VER(dev_priv) == 9) {
1056		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058
1059		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060	} else if (GRAPHICS_VER(dev_priv) >= 11) {
1061		/* 64K paging only controlled by IPS bit in PTE now. */
1062		return true;
1063	} else
1064		return false;
1065}
1066
1067static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068
1069static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071{
1072	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073	struct intel_vgpu_ppgtt_spt *spt = NULL;
1074	bool ips = false;
1075	int ret;
1076
1077	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078
1079	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081
1082	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083	if (spt) {
1084		ppgtt_get_spt(spt);
1085
1086		if (ips != spt->guest_page.pde_ips) {
1087			spt->guest_page.pde_ips = ips;
1088
1089			gvt_dbg_mm("reshadow PDE since ips changed\n");
1090			clear_page(spt->shadow_page.vaddr);
1091			ret = ppgtt_populate_spt(spt);
1092			if (ret) {
1093				ppgtt_put_spt(spt);
1094				goto err;
1095			}
1096		}
1097	} else {
1098		int type = get_next_pt_type(we->type);
1099
1100		if (!gtt_type_is_pt(type)) {
1101			ret = -EINVAL;
1102			goto err;
1103		}
1104
1105		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106		if (IS_ERR(spt)) {
1107			ret = PTR_ERR(spt);
1108			goto err;
1109		}
1110
1111		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112		if (ret)
1113			goto err_free_spt;
1114
1115		ret = ppgtt_populate_spt(spt);
1116		if (ret)
1117			goto err_free_spt;
1118
1119		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120				 spt->shadow_page.type);
1121	}
1122	return spt;
1123
1124err_free_spt:
1125	ppgtt_free_spt(spt);
1126	spt = NULL;
1127err:
1128	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129		     spt, we->val64, we->type);
1130	return ERR_PTR(ret);
1131}
1132
1133static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135{
1136	const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137
1138	se->type = ge->type;
1139	se->val64 = ge->val64;
1140
1141	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143		ops->clear_ips(se);
1144
1145	ops->set_pfn(se, s->shadow_page.mfn);
1146}
1147
1148static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1149	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1150	struct intel_gvt_gtt_entry *se)
1151{
1152	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1153	struct intel_vgpu_ppgtt_spt *sub_spt;
1154	struct intel_gvt_gtt_entry sub_se;
1155	unsigned long start_gfn;
1156	dma_addr_t dma_addr;
1157	unsigned long sub_index;
1158	int ret;
1159
1160	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1161
1162	start_gfn = ops->get_pfn(se);
1163
1164	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1165	if (IS_ERR(sub_spt))
1166		return PTR_ERR(sub_spt);
1167
1168	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1169		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1170						   PAGE_SIZE, &dma_addr);
1171		if (ret)
1172			goto err;
1173		sub_se.val64 = se->val64;
1174
1175		/* Copy the PAT field from PDE. */
1176		sub_se.val64 &= ~_PAGE_PAT;
1177		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1178
1179		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1180		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1181	}
1182
1183	/* Clear dirty field. */
1184	se->val64 &= ~_PAGE_DIRTY;
1185
1186	ops->clear_pse(se);
1187	ops->clear_ips(se);
1188	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1189	ppgtt_set_shadow_entry(spt, se, index);
1190	return 0;
1191err:
1192	/* Cancel the existing addess mappings of DMA addr. */
1193	for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1194		gvt_vdbg_mm("invalidate 4K entry\n");
1195		ppgtt_invalidate_pte(sub_spt, &sub_se);
1196	}
1197	/* Release the new allocated spt. */
1198	trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1199		sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1200	ppgtt_free_spt(sub_spt);
1201	return ret;
1202}
1203
1204static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1205	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1206	struct intel_gvt_gtt_entry *se)
1207{
1208	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1209	struct intel_gvt_gtt_entry entry = *se;
1210	unsigned long start_gfn;
1211	dma_addr_t dma_addr;
1212	int i, ret;
1213
1214	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1215
1216	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1217
1218	start_gfn = ops->get_pfn(se);
1219
1220	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1221	ops->set_64k_splited(&entry);
1222
1223	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1224		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1225						   PAGE_SIZE, &dma_addr);
1226		if (ret)
1227			return ret;
1228
1229		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1230		ppgtt_set_shadow_entry(spt, &entry, index + i);
1231	}
1232	return 0;
1233}
1234
1235static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1236	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1237	struct intel_gvt_gtt_entry *ge)
1238{
1239	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1240	struct intel_gvt_gtt_entry se = *ge;
1241	unsigned long gfn;
1242	dma_addr_t dma_addr;
1243	int ret;
1244
1245	if (!pte_ops->test_present(ge))
1246		return 0;
1247
1248	gfn = pte_ops->get_pfn(ge);
1249
1250	switch (ge->type) {
1251	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1252		gvt_vdbg_mm("shadow 4K gtt entry\n");
1253		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, &dma_addr);
1254		if (ret)
1255			return -ENXIO;
1256		break;
1257	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1258		gvt_vdbg_mm("shadow 64K gtt entry\n");
1259		/*
1260		 * The layout of 64K page is special, the page size is
1261		 * controlled by uper PDE. To be simple, we always split
1262		 * 64K page to smaller 4K pages in shadow PT.
1263		 */
1264		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1265	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1266		gvt_vdbg_mm("shadow 2M gtt entry\n");
1267		if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M) ||
1268		    intel_gvt_dma_map_guest_page(vgpu, gfn,
1269						 I915_GTT_PAGE_SIZE_2M, &dma_addr))
1270			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1271		break;
1272	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1273		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1274		return -EINVAL;
1275	default:
1276		GEM_BUG_ON(1);
1277		return -EINVAL;
1278	}
1279
1280	/* Successfully shadowed a 4K or 2M page (without splitting). */
1281	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1282	ppgtt_set_shadow_entry(spt, &se, index);
1283	return 0;
1284}
1285
1286static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1287{
1288	struct intel_vgpu *vgpu = spt->vgpu;
1289	struct intel_vgpu_ppgtt_spt *s;
1290	struct intel_gvt_gtt_entry se, ge;
1291	unsigned long i;
1292	int ret;
1293
1294	trace_spt_change(spt->vgpu->id, "born", spt,
1295			 spt->guest_page.gfn, spt->shadow_page.type);
1296
1297	for_each_present_guest_entry(spt, &ge, i) {
1298		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1299			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1300			if (IS_ERR(s)) {
1301				ret = PTR_ERR(s);
1302				goto fail;
1303			}
1304			ppgtt_get_shadow_entry(spt, &se, i);
1305			ppgtt_generate_shadow_entry(&se, s, &ge);
1306			ppgtt_set_shadow_entry(spt, &se, i);
1307		} else {
1308			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1309			if (ret)
1310				goto fail;
1311		}
1312	}
1313	return 0;
1314fail:
1315	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1316			spt, ge.val64, ge.type);
1317	return ret;
1318}
1319
1320static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1321		struct intel_gvt_gtt_entry *se, unsigned long index)
1322{
1323	struct intel_vgpu *vgpu = spt->vgpu;
1324	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325	int ret;
1326
1327	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1328			       spt->shadow_page.type, se->val64, index);
1329
1330	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1331		    se->type, index, se->val64);
1332
1333	if (!ops->test_present(se))
1334		return 0;
1335
1336	if (ops->get_pfn(se) ==
1337	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1338		return 0;
1339
1340	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1341		struct intel_vgpu_ppgtt_spt *s =
1342			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1343		if (!s) {
1344			gvt_vgpu_err("fail to find guest page\n");
1345			ret = -ENXIO;
1346			goto fail;
1347		}
1348		ret = ppgtt_invalidate_spt(s);
1349		if (ret)
1350			goto fail;
1351	} else {
1352		/* We don't setup 64K shadow entry so far. */
1353		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1354		     "suspicious 64K entry\n");
1355		ppgtt_invalidate_pte(spt, se);
1356	}
1357
1358	return 0;
1359fail:
1360	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1361			spt, se->val64, se->type);
1362	return ret;
1363}
1364
1365static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1366		struct intel_gvt_gtt_entry *we, unsigned long index)
1367{
1368	struct intel_vgpu *vgpu = spt->vgpu;
1369	struct intel_gvt_gtt_entry m;
1370	struct intel_vgpu_ppgtt_spt *s;
1371	int ret;
1372
1373	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1374			       we->val64, index);
1375
1376	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1377		    we->type, index, we->val64);
1378
1379	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1380		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1381		if (IS_ERR(s)) {
1382			ret = PTR_ERR(s);
1383			goto fail;
1384		}
1385		ppgtt_get_shadow_entry(spt, &m, index);
1386		ppgtt_generate_shadow_entry(&m, s, we);
1387		ppgtt_set_shadow_entry(spt, &m, index);
1388	} else {
1389		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1390		if (ret)
1391			goto fail;
1392	}
1393	return 0;
1394fail:
1395	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1396		spt, we->val64, we->type);
1397	return ret;
1398}
1399
1400static int sync_oos_page(struct intel_vgpu *vgpu,
1401		struct intel_vgpu_oos_page *oos_page)
1402{
1403	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1404	struct intel_gvt *gvt = vgpu->gvt;
1405	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1406	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1407	struct intel_gvt_gtt_entry old, new;
1408	int index;
1409	int ret;
1410
1411	trace_oos_change(vgpu->id, "sync", oos_page->id,
1412			 spt, spt->guest_page.type);
1413
1414	old.type = new.type = get_entry_type(spt->guest_page.type);
1415	old.val64 = new.val64 = 0;
1416
1417	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1418				info->gtt_entry_size_shift); index++) {
1419		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1420		ops->get_entry(NULL, &new, index, true,
1421			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1422
1423		if (old.val64 == new.val64
1424			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1425			continue;
1426
1427		trace_oos_sync(vgpu->id, oos_page->id,
1428				spt, spt->guest_page.type,
1429				new.val64, index);
1430
1431		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1432		if (ret)
1433			return ret;
1434
1435		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1436	}
1437
1438	spt->guest_page.write_cnt = 0;
1439	list_del_init(&spt->post_shadow_list);
1440	return 0;
1441}
1442
1443static int detach_oos_page(struct intel_vgpu *vgpu,
1444		struct intel_vgpu_oos_page *oos_page)
1445{
1446	struct intel_gvt *gvt = vgpu->gvt;
1447	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1448
1449	trace_oos_change(vgpu->id, "detach", oos_page->id,
1450			 spt, spt->guest_page.type);
1451
1452	spt->guest_page.write_cnt = 0;
1453	spt->guest_page.oos_page = NULL;
1454	oos_page->spt = NULL;
1455
1456	list_del_init(&oos_page->vm_list);
1457	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1458
1459	return 0;
1460}
1461
1462static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1463		struct intel_vgpu_ppgtt_spt *spt)
1464{
1465	struct intel_gvt *gvt = spt->vgpu->gvt;
1466	int ret;
1467
1468	ret = intel_gvt_read_gpa(spt->vgpu,
1469			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1470			oos_page->mem, I915_GTT_PAGE_SIZE);
1471	if (ret)
1472		return ret;
1473
1474	oos_page->spt = spt;
1475	spt->guest_page.oos_page = oos_page;
1476
1477	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1478
1479	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1480			 spt, spt->guest_page.type);
1481	return 0;
1482}
1483
1484static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1485{
1486	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1487	int ret;
1488
1489	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1490	if (ret)
1491		return ret;
1492
1493	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1494			 spt, spt->guest_page.type);
1495
1496	list_del_init(&oos_page->vm_list);
1497	return sync_oos_page(spt->vgpu, oos_page);
1498}
1499
1500static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1501{
1502	struct intel_gvt *gvt = spt->vgpu->gvt;
1503	struct intel_gvt_gtt *gtt = &gvt->gtt;
1504	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1505	int ret;
1506
1507	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1508
1509	if (list_empty(&gtt->oos_page_free_list_head)) {
1510		oos_page = container_of(gtt->oos_page_use_list_head.next,
1511			struct intel_vgpu_oos_page, list);
1512		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1513		if (ret)
1514			return ret;
1515		ret = detach_oos_page(spt->vgpu, oos_page);
1516		if (ret)
1517			return ret;
1518	} else
1519		oos_page = container_of(gtt->oos_page_free_list_head.next,
1520			struct intel_vgpu_oos_page, list);
1521	return attach_oos_page(oos_page, spt);
1522}
1523
1524static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1525{
1526	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1527
1528	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1529		return -EINVAL;
1530
1531	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1532			 spt, spt->guest_page.type);
1533
1534	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1535	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1536}
1537
1538/**
1539 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1540 * @vgpu: a vGPU
1541 *
1542 * This function is called before submitting a guest workload to host,
1543 * to sync all the out-of-synced shadow for vGPU
1544 *
1545 * Returns:
1546 * Zero on success, negative error code if failed.
1547 */
1548int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1549{
1550	struct list_head *pos, *n;
1551	struct intel_vgpu_oos_page *oos_page;
1552	int ret;
1553
1554	if (!enable_out_of_sync)
1555		return 0;
1556
1557	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1558		oos_page = container_of(pos,
1559				struct intel_vgpu_oos_page, vm_list);
1560		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1561		if (ret)
1562			return ret;
1563	}
1564	return 0;
1565}
1566
1567/*
1568 * The heart of PPGTT shadow page table.
1569 */
1570static int ppgtt_handle_guest_write_page_table(
1571		struct intel_vgpu_ppgtt_spt *spt,
1572		struct intel_gvt_gtt_entry *we, unsigned long index)
1573{
1574	struct intel_vgpu *vgpu = spt->vgpu;
1575	int type = spt->shadow_page.type;
1576	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1577	struct intel_gvt_gtt_entry old_se;
1578	int new_present;
1579	int i, ret;
1580
1581	new_present = ops->test_present(we);
1582
1583	/*
1584	 * Adding the new entry first and then removing the old one, that can
1585	 * guarantee the ppgtt table is validated during the window between
1586	 * adding and removal.
1587	 */
1588	ppgtt_get_shadow_entry(spt, &old_se, index);
1589
1590	if (new_present) {
1591		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1592		if (ret)
1593			goto fail;
1594	}
1595
1596	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1597	if (ret)
1598		goto fail;
1599
1600	if (!new_present) {
1601		/* For 64KB splited entries, we need clear them all. */
1602		if (ops->test_64k_splited(&old_se) &&
1603		    !(index % GTT_64K_PTE_STRIDE)) {
1604			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1605			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1606				ops->clear_64k_splited(&old_se);
1607				ops->set_pfn(&old_se,
1608					vgpu->gtt.scratch_pt[type].page_mfn);
1609				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1610			}
1611		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1612			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1613			ops->clear_pse(&old_se);
1614			ops->set_pfn(&old_se,
1615				     vgpu->gtt.scratch_pt[type].page_mfn);
1616			ppgtt_set_shadow_entry(spt, &old_se, index);
1617		} else {
1618			ops->set_pfn(&old_se,
1619				     vgpu->gtt.scratch_pt[type].page_mfn);
1620			ppgtt_set_shadow_entry(spt, &old_se, index);
1621		}
1622	}
1623
1624	return 0;
1625fail:
1626	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1627			spt, we->val64, we->type);
1628	return ret;
1629}
1630
1631
1632
1633static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1634{
1635	return enable_out_of_sync
1636		&& gtt_type_is_pte_pt(spt->guest_page.type)
1637		&& spt->guest_page.write_cnt >= 2;
1638}
1639
1640static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1641		unsigned long index)
1642{
1643	set_bit(index, spt->post_shadow_bitmap);
1644	if (!list_empty(&spt->post_shadow_list))
1645		return;
1646
1647	list_add_tail(&spt->post_shadow_list,
1648			&spt->vgpu->gtt.post_shadow_list_head);
1649}
1650
1651/**
1652 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1653 * @vgpu: a vGPU
1654 *
1655 * This function is called before submitting a guest workload to host,
1656 * to flush all the post shadows for a vGPU.
1657 *
1658 * Returns:
1659 * Zero on success, negative error code if failed.
1660 */
1661int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1662{
1663	struct list_head *pos, *n;
1664	struct intel_vgpu_ppgtt_spt *spt;
1665	struct intel_gvt_gtt_entry ge;
1666	unsigned long index;
1667	int ret;
1668
1669	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1670		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1671				post_shadow_list);
1672
1673		for_each_set_bit(index, spt->post_shadow_bitmap,
1674				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1675			ppgtt_get_guest_entry(spt, &ge, index);
1676
1677			ret = ppgtt_handle_guest_write_page_table(spt,
1678							&ge, index);
1679			if (ret)
1680				return ret;
1681			clear_bit(index, spt->post_shadow_bitmap);
1682		}
1683		list_del_init(&spt->post_shadow_list);
1684	}
1685	return 0;
1686}
1687
1688static int ppgtt_handle_guest_write_page_table_bytes(
1689		struct intel_vgpu_ppgtt_spt *spt,
1690		u64 pa, void *p_data, int bytes)
1691{
1692	struct intel_vgpu *vgpu = spt->vgpu;
1693	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1694	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1695	struct intel_gvt_gtt_entry we, se;
1696	unsigned long index;
1697	int ret;
1698
1699	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1700
1701	ppgtt_get_guest_entry(spt, &we, index);
1702
1703	/*
1704	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1705	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1706	 * ignored.
1707	 */
1708	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1709	    (index % GTT_64K_PTE_STRIDE)) {
1710		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1711			    index);
1712		return 0;
1713	}
1714
1715	if (bytes == info->gtt_entry_size) {
1716		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1717		if (ret)
1718			return ret;
1719	} else {
1720		if (!test_bit(index, spt->post_shadow_bitmap)) {
1721			int type = spt->shadow_page.type;
1722
1723			ppgtt_get_shadow_entry(spt, &se, index);
1724			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1725			if (ret)
1726				return ret;
1727			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1728			ppgtt_set_shadow_entry(spt, &se, index);
1729		}
1730		ppgtt_set_post_shadow(spt, index);
1731	}
1732
1733	if (!enable_out_of_sync)
1734		return 0;
1735
1736	spt->guest_page.write_cnt++;
1737
1738	if (spt->guest_page.oos_page)
1739		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1740				false, 0, vgpu);
1741
1742	if (can_do_out_of_sync(spt)) {
1743		if (!spt->guest_page.oos_page)
1744			ppgtt_allocate_oos_page(spt);
1745
1746		ret = ppgtt_set_guest_page_oos(spt);
1747		if (ret < 0)
1748			return ret;
1749	}
1750	return 0;
1751}
1752
1753static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1754{
1755	struct intel_vgpu *vgpu = mm->vgpu;
1756	struct intel_gvt *gvt = vgpu->gvt;
1757	struct intel_gvt_gtt *gtt = &gvt->gtt;
1758	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1759	struct intel_gvt_gtt_entry se;
1760	int index;
1761
1762	if (!mm->ppgtt_mm.shadowed)
1763		return;
1764
1765	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1766		ppgtt_get_shadow_root_entry(mm, &se, index);
1767
1768		if (!ops->test_present(&se))
1769			continue;
1770
1771		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1772		se.val64 = 0;
1773		ppgtt_set_shadow_root_entry(mm, &se, index);
1774
1775		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1776				       NULL, se.type, se.val64, index);
1777	}
1778
1779	mm->ppgtt_mm.shadowed = false;
1780}
1781
1782
1783static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1784{
1785	struct intel_vgpu *vgpu = mm->vgpu;
1786	struct intel_gvt *gvt = vgpu->gvt;
1787	struct intel_gvt_gtt *gtt = &gvt->gtt;
1788	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789	struct intel_vgpu_ppgtt_spt *spt;
1790	struct intel_gvt_gtt_entry ge, se;
1791	int index, ret;
1792
1793	if (mm->ppgtt_mm.shadowed)
1794		return 0;
1795
1796	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1797		return -EINVAL;
1798
1799	mm->ppgtt_mm.shadowed = true;
1800
1801	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1802		ppgtt_get_guest_root_entry(mm, &ge, index);
1803
1804		if (!ops->test_present(&ge))
1805			continue;
1806
1807		trace_spt_guest_change(vgpu->id, __func__, NULL,
1808				       ge.type, ge.val64, index);
1809
1810		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1811		if (IS_ERR(spt)) {
1812			gvt_vgpu_err("fail to populate guest root pointer\n");
1813			ret = PTR_ERR(spt);
1814			goto fail;
1815		}
1816		ppgtt_generate_shadow_entry(&se, spt, &ge);
1817		ppgtt_set_shadow_root_entry(mm, &se, index);
1818
1819		trace_spt_guest_change(vgpu->id, "populate root pointer",
1820				       NULL, se.type, se.val64, index);
1821	}
1822
1823	return 0;
1824fail:
1825	invalidate_ppgtt_mm(mm);
1826	return ret;
1827}
1828
1829static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1830{
1831	struct intel_vgpu_mm *mm;
1832
1833	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1834	if (!mm)
1835		return NULL;
1836
1837	mm->vgpu = vgpu;
1838	kref_init(&mm->ref);
1839	atomic_set(&mm->pincount, 0);
1840
1841	return mm;
1842}
1843
1844static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1845{
1846	kfree(mm);
1847}
1848
1849/**
1850 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1851 * @vgpu: a vGPU
1852 * @root_entry_type: ppgtt root entry type
1853 * @pdps: guest pdps.
1854 *
1855 * This function is used to create a ppgtt mm object for a vGPU.
1856 *
1857 * Returns:
1858 * Zero on success, negative error code in pointer if failed.
1859 */
1860struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1861		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1862{
1863	struct intel_gvt *gvt = vgpu->gvt;
1864	struct intel_vgpu_mm *mm;
1865	int ret;
1866
1867	mm = vgpu_alloc_mm(vgpu);
1868	if (!mm)
1869		return ERR_PTR(-ENOMEM);
1870
1871	mm->type = INTEL_GVT_MM_PPGTT;
1872
1873	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1874		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1875	mm->ppgtt_mm.root_entry_type = root_entry_type;
1876
1877	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1878	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1879	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1880
1881	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1882		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1883	else
1884		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1885		       sizeof(mm->ppgtt_mm.guest_pdps));
1886
1887	ret = shadow_ppgtt_mm(mm);
1888	if (ret) {
1889		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1890		vgpu_free_mm(mm);
1891		return ERR_PTR(ret);
1892	}
1893
1894	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1895
1896	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1897	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1898	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1899
1900	return mm;
1901}
1902
1903static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1904{
1905	struct intel_vgpu_mm *mm;
1906	unsigned long nr_entries;
1907
1908	mm = vgpu_alloc_mm(vgpu);
1909	if (!mm)
1910		return ERR_PTR(-ENOMEM);
1911
1912	mm->type = INTEL_GVT_MM_GGTT;
1913
1914	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1915	mm->ggtt_mm.virtual_ggtt =
1916		vzalloc(array_size(nr_entries,
1917				   vgpu->gvt->device_info.gtt_entry_size));
1918	if (!mm->ggtt_mm.virtual_ggtt) {
1919		vgpu_free_mm(mm);
1920		return ERR_PTR(-ENOMEM);
1921	}
1922
1923	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1924	if (!mm->ggtt_mm.host_ggtt_aperture) {
1925		vfree(mm->ggtt_mm.virtual_ggtt);
1926		vgpu_free_mm(mm);
1927		return ERR_PTR(-ENOMEM);
1928	}
1929
1930	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1931	if (!mm->ggtt_mm.host_ggtt_hidden) {
1932		vfree(mm->ggtt_mm.host_ggtt_aperture);
1933		vfree(mm->ggtt_mm.virtual_ggtt);
1934		vgpu_free_mm(mm);
1935		return ERR_PTR(-ENOMEM);
1936	}
1937
1938	return mm;
1939}
1940
1941/**
1942 * _intel_vgpu_mm_release - destroy a mm object
1943 * @mm_ref: a kref object
1944 *
1945 * This function is used to destroy a mm object for vGPU
1946 *
1947 */
1948void _intel_vgpu_mm_release(struct kref *mm_ref)
1949{
1950	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1951
1952	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1953		gvt_err("vgpu mm pin count bug detected\n");
1954
1955	if (mm->type == INTEL_GVT_MM_PPGTT) {
1956		list_del(&mm->ppgtt_mm.list);
1957
1958		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1959		list_del(&mm->ppgtt_mm.lru_list);
1960		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1961
1962		invalidate_ppgtt_mm(mm);
1963	} else {
1964		vfree(mm->ggtt_mm.virtual_ggtt);
1965		vfree(mm->ggtt_mm.host_ggtt_aperture);
1966		vfree(mm->ggtt_mm.host_ggtt_hidden);
1967	}
1968
1969	vgpu_free_mm(mm);
1970}
1971
1972/**
1973 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1974 * @mm: a vGPU mm object
1975 *
1976 * This function is called when user doesn't want to use a vGPU mm object
1977 */
1978void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1979{
1980	atomic_dec_if_positive(&mm->pincount);
1981}
1982
1983/**
1984 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1985 * @mm: target vgpu mm
1986 *
1987 * This function is called when user wants to use a vGPU mm object. If this
1988 * mm object hasn't been shadowed yet, the shadow will be populated at this
1989 * time.
1990 *
1991 * Returns:
1992 * Zero on success, negative error code if failed.
1993 */
1994int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1995{
1996	int ret;
1997
1998	atomic_inc(&mm->pincount);
1999
2000	if (mm->type == INTEL_GVT_MM_PPGTT) {
2001		ret = shadow_ppgtt_mm(mm);
2002		if (ret)
2003			return ret;
2004
2005		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2006		list_move_tail(&mm->ppgtt_mm.lru_list,
2007			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2008		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2009	}
2010
2011	return 0;
2012}
2013
2014static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2015{
2016	struct intel_vgpu_mm *mm;
2017	struct list_head *pos, *n;
2018
2019	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2020
2021	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2022		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2023
2024		if (atomic_read(&mm->pincount))
2025			continue;
2026
2027		list_del_init(&mm->ppgtt_mm.lru_list);
2028		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2029		invalidate_ppgtt_mm(mm);
2030		return 1;
2031	}
2032	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2033	return 0;
2034}
2035
2036/*
2037 * GMA translation APIs.
2038 */
2039static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2040		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2041{
2042	struct intel_vgpu *vgpu = mm->vgpu;
2043	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2044	struct intel_vgpu_ppgtt_spt *s;
2045
2046	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2047	if (!s)
2048		return -ENXIO;
2049
2050	if (!guest)
2051		ppgtt_get_shadow_entry(s, e, index);
2052	else
2053		ppgtt_get_guest_entry(s, e, index);
2054	return 0;
2055}
2056
2057/**
2058 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2059 * @mm: mm object. could be a PPGTT or GGTT mm object
2060 * @gma: graphics memory address in this mm object
2061 *
2062 * This function is used to translate a graphics memory address in specific
2063 * graphics memory space to guest physical address.
2064 *
2065 * Returns:
2066 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2067 */
2068unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2069{
2070	struct intel_vgpu *vgpu = mm->vgpu;
2071	struct intel_gvt *gvt = vgpu->gvt;
2072	const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2073	const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2074	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2075	unsigned long gma_index[4];
2076	struct intel_gvt_gtt_entry e;
2077	int i, levels = 0;
2078	int ret;
2079
2080	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2081		   mm->type != INTEL_GVT_MM_PPGTT);
2082
2083	if (mm->type == INTEL_GVT_MM_GGTT) {
2084		if (!vgpu_gmadr_is_valid(vgpu, gma))
2085			goto err;
2086
2087		ggtt_get_guest_entry(mm, &e,
2088			gma_ops->gma_to_ggtt_pte_index(gma));
2089
2090		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2091			+ (gma & ~I915_GTT_PAGE_MASK);
2092
2093		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2094	} else {
2095		switch (mm->ppgtt_mm.root_entry_type) {
2096		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2097			ppgtt_get_shadow_root_entry(mm, &e, 0);
2098
2099			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2100			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2101			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2102			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2103			levels = 4;
2104			break;
2105		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2106			ppgtt_get_shadow_root_entry(mm, &e,
2107					gma_ops->gma_to_l3_pdp_index(gma));
2108
2109			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2110			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2111			levels = 2;
2112			break;
2113		default:
2114			GEM_BUG_ON(1);
2115		}
2116
2117		/* walk the shadow page table and get gpa from guest entry */
2118		for (i = 0; i < levels; i++) {
2119			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2120				(i == levels - 1));
2121			if (ret)
2122				goto err;
2123
2124			if (!pte_ops->test_present(&e)) {
2125				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2126				goto err;
2127			}
2128		}
2129
2130		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2131					(gma & ~I915_GTT_PAGE_MASK);
2132		trace_gma_translate(vgpu->id, "ppgtt", 0,
2133				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2134	}
2135
2136	return gpa;
2137err:
2138	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2139	return INTEL_GVT_INVALID_ADDR;
2140}
2141
2142static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2143	unsigned int off, void *p_data, unsigned int bytes)
2144{
2145	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2146	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2147	unsigned long index = off >> info->gtt_entry_size_shift;
2148	unsigned long gma;
2149	struct intel_gvt_gtt_entry e;
2150
2151	if (bytes != 4 && bytes != 8)
2152		return -EINVAL;
2153
2154	gma = index << I915_GTT_PAGE_SHIFT;
2155	if (!intel_gvt_ggtt_validate_range(vgpu,
2156					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2157		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2158		memset(p_data, 0, bytes);
2159		return 0;
2160	}
2161
2162	ggtt_get_guest_entry(ggtt_mm, &e, index);
2163	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2164			bytes);
2165	return 0;
2166}
2167
2168/**
2169 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2170 * @vgpu: a vGPU
2171 * @off: register offset
2172 * @p_data: data will be returned to guest
2173 * @bytes: data length
2174 *
2175 * This function is used to emulate the GTT MMIO register read
2176 *
2177 * Returns:
2178 * Zero on success, error code if failed.
2179 */
2180int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2181	void *p_data, unsigned int bytes)
2182{
2183	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2184	int ret;
2185
2186	if (bytes != 4 && bytes != 8)
2187		return -EINVAL;
2188
2189	off -= info->gtt_start_offset;
2190	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2191	return ret;
2192}
2193
2194static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2195		struct intel_gvt_gtt_entry *entry)
2196{
2197	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2198	unsigned long pfn;
2199
2200	pfn = pte_ops->get_pfn(entry);
2201	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2202		intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2203}
2204
2205static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2206	void *p_data, unsigned int bytes)
2207{
2208	struct intel_gvt *gvt = vgpu->gvt;
2209	const struct intel_gvt_device_info *info = &gvt->device_info;
2210	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2211	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2212	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2213	unsigned long gma, gfn;
2214	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2215	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2216	dma_addr_t dma_addr;
2217	int ret;
2218	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2219	bool partial_update = false;
2220
2221	if (bytes != 4 && bytes != 8)
2222		return -EINVAL;
2223
2224	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2225
2226	/* the VM may configure the whole GM space when ballooning is used */
2227	if (!vgpu_gmadr_is_valid(vgpu, gma))
2228		return 0;
2229
2230	e.type = GTT_TYPE_GGTT_PTE;
2231	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2232			bytes);
2233
2234	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2235	 * write, save the first 4 bytes in a list and update virtual
2236	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2237	 */
2238	if (bytes < info->gtt_entry_size) {
2239		bool found = false;
2240
2241		list_for_each_entry_safe(pos, n,
2242				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2243			if (g_gtt_index == pos->offset >>
2244					info->gtt_entry_size_shift) {
2245				if (off != pos->offset) {
2246					/* the second partial part*/
2247					int last_off = pos->offset &
2248						(info->gtt_entry_size - 1);
2249
2250					memcpy((void *)&e.val64 + last_off,
2251						(void *)&pos->data + last_off,
2252						bytes);
2253
2254					list_del(&pos->list);
2255					kfree(pos);
2256					found = true;
2257					break;
2258				}
2259
2260				/* update of the first partial part */
2261				pos->data = e.val64;
2262				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2263				return 0;
2264			}
2265		}
2266
2267		if (!found) {
2268			/* the first partial part */
2269			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2270			if (!partial_pte)
2271				return -ENOMEM;
2272			partial_pte->offset = off;
2273			partial_pte->data = e.val64;
2274			list_add_tail(&partial_pte->list,
2275				&ggtt_mm->ggtt_mm.partial_pte_list);
2276			partial_update = true;
2277		}
2278	}
2279
2280	if (!partial_update && (ops->test_present(&e))) {
2281		gfn = ops->get_pfn(&e);
2282		m.val64 = e.val64;
2283		m.type = e.type;
2284
2285		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2286						   &dma_addr);
2287		if (ret) {
2288			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2289			/* guest driver may read/write the entry when partial
2290			 * update the entry in this situation p2m will fail
2291			 * setting the shadow entry to point to a scratch page
2292			 */
2293			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2294		} else
2295			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2296	} else {
2297		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2298		ops->clear_present(&m);
2299	}
2300
2301	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2302
2303	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2304	ggtt_invalidate_pte(vgpu, &e);
2305
2306	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2307	ggtt_invalidate(gvt->gt);
2308	return 0;
2309}
2310
2311/*
2312 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2313 * @vgpu: a vGPU
2314 * @off: register offset
2315 * @p_data: data from guest write
2316 * @bytes: data length
2317 *
2318 * This function is used to emulate the GTT MMIO register write
2319 *
2320 * Returns:
2321 * Zero on success, error code if failed.
2322 */
2323int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2324		unsigned int off, void *p_data, unsigned int bytes)
2325{
2326	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2327	int ret;
2328	struct intel_vgpu_submission *s = &vgpu->submission;
2329	struct intel_engine_cs *engine;
2330	int i;
2331
2332	if (bytes != 4 && bytes != 8)
2333		return -EINVAL;
2334
2335	off -= info->gtt_start_offset;
2336	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2337
2338	/* if ggtt of last submitted context is written,
2339	 * that context is probably got unpinned.
2340	 * Set last shadowed ctx to invalid.
2341	 */
2342	for_each_engine(engine, vgpu->gvt->gt, i) {
2343		if (!s->last_ctx[i].valid)
2344			continue;
2345
2346		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2347			s->last_ctx[i].valid = false;
2348	}
2349	return ret;
2350}
2351
2352static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2353		enum intel_gvt_gtt_type type)
2354{
2355	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2356	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2357	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2358	int page_entry_num = I915_GTT_PAGE_SIZE >>
2359				vgpu->gvt->device_info.gtt_entry_size_shift;
2360	void *scratch_pt;
2361	int i;
2362	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2363	dma_addr_t daddr;
2364
2365	if (drm_WARN_ON(&i915->drm,
2366			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2367		return -EINVAL;
2368
2369	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2370	if (!scratch_pt) {
2371		gvt_vgpu_err("fail to allocate scratch page\n");
2372		return -ENOMEM;
2373	}
2374
2375	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2376	if (dma_mapping_error(dev, daddr)) {
2377		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2378		__free_page(virt_to_page(scratch_pt));
2379		return -ENOMEM;
2380	}
2381	gtt->scratch_pt[type].page_mfn =
2382		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2383	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2384	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2385			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2386
2387	/* Build the tree by full filled the scratch pt with the entries which
2388	 * point to the next level scratch pt or scratch page. The
2389	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2390	 * 'type' pt.
2391	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2392	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2393	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2394	 */
2395	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2396		struct intel_gvt_gtt_entry se;
2397
2398		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2399		se.type = get_entry_type(type - 1);
2400		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2401
2402		/* The entry parameters like present/writeable/cache type
2403		 * set to the same as i915's scratch page tree.
2404		 */
2405		se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2406		if (type == GTT_TYPE_PPGTT_PDE_PT)
2407			se.val64 |= PPAT_CACHED;
2408
2409		for (i = 0; i < page_entry_num; i++)
2410			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2411	}
2412
2413	return 0;
2414}
2415
2416static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2417{
2418	int i;
2419	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2420	dma_addr_t daddr;
2421
2422	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2423		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2424			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2425					I915_GTT_PAGE_SHIFT);
2426			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2427			__free_page(vgpu->gtt.scratch_pt[i].page);
2428			vgpu->gtt.scratch_pt[i].page = NULL;
2429			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2430		}
2431	}
2432
2433	return 0;
2434}
2435
2436static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2437{
2438	int i, ret;
2439
2440	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2441		ret = alloc_scratch_pages(vgpu, i);
2442		if (ret)
2443			goto err;
2444	}
2445
2446	return 0;
2447
2448err:
2449	release_scratch_page_tree(vgpu);
2450	return ret;
2451}
2452
2453/**
2454 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2455 * @vgpu: a vGPU
2456 *
2457 * This function is used to initialize per-vGPU graphics memory virtualization
2458 * components.
2459 *
2460 * Returns:
2461 * Zero on success, error code if failed.
2462 */
2463int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2464{
2465	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2466
2467	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2468
2469	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2470	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2471	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2472
2473	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2474	if (IS_ERR(gtt->ggtt_mm)) {
2475		gvt_vgpu_err("fail to create mm for ggtt.\n");
2476		return PTR_ERR(gtt->ggtt_mm);
2477	}
2478
2479	intel_vgpu_reset_ggtt(vgpu, false);
2480
2481	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2482
2483	return create_scratch_page_tree(vgpu);
2484}
2485
2486void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2487{
2488	struct list_head *pos, *n;
2489	struct intel_vgpu_mm *mm;
2490
2491	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2492		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2493		intel_vgpu_destroy_mm(mm);
2494	}
2495
2496	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2497		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2498
2499	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2500		gvt_err("Why we still has spt not freed?\n");
2501		ppgtt_free_all_spt(vgpu);
2502	}
2503}
2504
2505static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2506{
2507	struct intel_gvt_partial_pte *pos, *next;
2508
2509	list_for_each_entry_safe(pos, next,
2510				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2511				 list) {
2512		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2513			pos->offset, pos->data);
2514		kfree(pos);
2515	}
2516	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2517	vgpu->gtt.ggtt_mm = NULL;
2518}
2519
2520/**
2521 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2522 * @vgpu: a vGPU
2523 *
2524 * This function is used to clean up per-vGPU graphics memory virtualization
2525 * components.
2526 *
2527 * Returns:
2528 * Zero on success, error code if failed.
2529 */
2530void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2531{
2532	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2533	intel_vgpu_destroy_ggtt_mm(vgpu);
2534	release_scratch_page_tree(vgpu);
2535}
2536
2537static void clean_spt_oos(struct intel_gvt *gvt)
2538{
2539	struct intel_gvt_gtt *gtt = &gvt->gtt;
2540	struct list_head *pos, *n;
2541	struct intel_vgpu_oos_page *oos_page;
2542
2543	WARN(!list_empty(&gtt->oos_page_use_list_head),
2544		"someone is still using oos page\n");
2545
2546	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2547		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2548		list_del(&oos_page->list);
2549		free_page((unsigned long)oos_page->mem);
2550		kfree(oos_page);
2551	}
2552}
2553
2554static int setup_spt_oos(struct intel_gvt *gvt)
2555{
2556	struct intel_gvt_gtt *gtt = &gvt->gtt;
2557	struct intel_vgpu_oos_page *oos_page;
2558	int i;
2559	int ret;
2560
2561	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2562	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2563
2564	for (i = 0; i < preallocated_oos_pages; i++) {
2565		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2566		if (!oos_page) {
2567			ret = -ENOMEM;
2568			goto fail;
2569		}
2570		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2571		if (!oos_page->mem) {
2572			ret = -ENOMEM;
2573			kfree(oos_page);
2574			goto fail;
2575		}
2576
2577		INIT_LIST_HEAD(&oos_page->list);
2578		INIT_LIST_HEAD(&oos_page->vm_list);
2579		oos_page->id = i;
2580		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2581	}
2582
2583	gvt_dbg_mm("%d oos pages preallocated\n", i);
2584
2585	return 0;
2586fail:
2587	clean_spt_oos(gvt);
2588	return ret;
2589}
2590
2591/**
2592 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2593 * @vgpu: a vGPU
2594 * @pdps: pdp root array
2595 *
2596 * This function is used to find a PPGTT mm object from mm object pool
2597 *
2598 * Returns:
2599 * pointer to mm object on success, NULL if failed.
2600 */
2601struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2602		u64 pdps[])
2603{
2604	struct intel_vgpu_mm *mm;
2605	struct list_head *pos;
2606
2607	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2608		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2609
2610		switch (mm->ppgtt_mm.root_entry_type) {
2611		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2612			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2613				return mm;
2614			break;
2615		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2616			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2617				    sizeof(mm->ppgtt_mm.guest_pdps)))
2618				return mm;
2619			break;
2620		default:
2621			GEM_BUG_ON(1);
2622		}
2623	}
2624	return NULL;
2625}
2626
2627/**
2628 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2629 * @vgpu: a vGPU
2630 * @root_entry_type: ppgtt root entry type
2631 * @pdps: guest pdps
2632 *
2633 * This function is used to find or create a PPGTT mm object from a guest.
2634 *
2635 * Returns:
2636 * Zero on success, negative error code if failed.
2637 */
2638struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2639		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2640{
2641	struct intel_vgpu_mm *mm;
2642
2643	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2644	if (mm) {
2645		intel_vgpu_mm_get(mm);
2646	} else {
2647		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2648		if (IS_ERR(mm))
2649			gvt_vgpu_err("fail to create mm\n");
2650	}
2651	return mm;
2652}
2653
2654/**
2655 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2656 * @vgpu: a vGPU
2657 * @pdps: guest pdps
2658 *
2659 * This function is used to find a PPGTT mm object from a guest and destroy it.
2660 *
2661 * Returns:
2662 * Zero on success, negative error code if failed.
2663 */
2664int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2665{
2666	struct intel_vgpu_mm *mm;
2667
2668	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2669	if (!mm) {
2670		gvt_vgpu_err("fail to find ppgtt instance.\n");
2671		return -EINVAL;
2672	}
2673	intel_vgpu_mm_put(mm);
2674	return 0;
2675}
2676
2677/**
2678 * intel_gvt_init_gtt - initialize mm components of a GVT device
2679 * @gvt: GVT device
2680 *
2681 * This function is called at the initialization stage, to initialize
2682 * the mm components of a GVT device.
2683 *
2684 * Returns:
2685 * zero on success, negative error code if failed.
2686 */
2687int intel_gvt_init_gtt(struct intel_gvt *gvt)
2688{
2689	int ret;
2690	void *page;
2691	struct device *dev = gvt->gt->i915->drm.dev;
2692	dma_addr_t daddr;
2693
2694	gvt_dbg_core("init gtt\n");
2695
2696	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2697	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2698
2699	page = (void *)get_zeroed_page(GFP_KERNEL);
2700	if (!page) {
2701		gvt_err("fail to allocate scratch ggtt page\n");
2702		return -ENOMEM;
2703	}
2704
2705	daddr = dma_map_page(dev, virt_to_page(page), 0,
2706			4096, DMA_BIDIRECTIONAL);
2707	if (dma_mapping_error(dev, daddr)) {
2708		gvt_err("fail to dmamap scratch ggtt page\n");
2709		__free_page(virt_to_page(page));
2710		return -ENOMEM;
2711	}
2712
2713	gvt->gtt.scratch_page = virt_to_page(page);
2714	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2715
2716	if (enable_out_of_sync) {
2717		ret = setup_spt_oos(gvt);
2718		if (ret) {
2719			gvt_err("fail to initialize SPT oos\n");
2720			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2721			__free_page(gvt->gtt.scratch_page);
2722			return ret;
2723		}
2724	}
2725	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2726	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2727	return 0;
2728}
2729
2730/**
2731 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2732 * @gvt: GVT device
2733 *
2734 * This function is called at the driver unloading stage, to clean up
2735 * the mm components of a GVT device.
2736 *
2737 */
2738void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2739{
2740	struct device *dev = gvt->gt->i915->drm.dev;
2741	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2742					I915_GTT_PAGE_SHIFT);
2743
2744	dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2745
2746	__free_page(gvt->gtt.scratch_page);
2747
2748	if (enable_out_of_sync)
2749		clean_spt_oos(gvt);
2750}
2751
2752/**
2753 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2754 * @vgpu: a vGPU
2755 *
2756 * This function is called when invalidate all PPGTT instances of a vGPU.
2757 *
2758 */
2759void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2760{
2761	struct list_head *pos, *n;
2762	struct intel_vgpu_mm *mm;
2763
2764	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2765		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2766		if (mm->type == INTEL_GVT_MM_PPGTT) {
2767			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2768			list_del_init(&mm->ppgtt_mm.lru_list);
2769			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2770			if (mm->ppgtt_mm.shadowed)
2771				invalidate_ppgtt_mm(mm);
2772		}
2773	}
2774}
2775
2776/**
2777 * intel_vgpu_reset_ggtt - reset the GGTT entry
2778 * @vgpu: a vGPU
2779 * @invalidate_old: invalidate old entries
2780 *
2781 * This function is called at the vGPU create stage
2782 * to reset all the GGTT entries.
2783 *
2784 */
2785void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2786{
2787	struct intel_gvt *gvt = vgpu->gvt;
2788	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2789	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2790	struct intel_gvt_gtt_entry old_entry;
2791	u32 index;
2792	u32 num_entries;
2793
2794	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2795	pte_ops->set_present(&entry);
2796
2797	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2798	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2799	while (num_entries--) {
2800		if (invalidate_old) {
2801			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2802			ggtt_invalidate_pte(vgpu, &old_entry);
2803		}
2804		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2805	}
2806
2807	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2808	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2809	while (num_entries--) {
2810		if (invalidate_old) {
2811			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2812			ggtt_invalidate_pte(vgpu, &old_entry);
2813		}
2814		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2815	}
2816
2817	ggtt_invalidate(gvt->gt);
2818}
2819
2820/**
2821 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2822 * @gvt: intel gvt device
2823 *
2824 * This function is called at driver resume stage to restore
2825 * GGTT entries of every vGPU.
2826 *
2827 */
2828void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2829{
2830	struct intel_vgpu *vgpu;
2831	struct intel_vgpu_mm *mm;
2832	int id;
2833	gen8_pte_t pte;
2834	u32 idx, num_low, num_hi, offset;
2835
2836	/* Restore dirty host ggtt for all vGPUs */
2837	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2838		mm = vgpu->gtt.ggtt_mm;
2839
2840		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2841		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2842		for (idx = 0; idx < num_low; idx++) {
2843			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2844			if (pte & GEN8_PAGE_PRESENT)
2845				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2846		}
2847
2848		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2849		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2850		for (idx = 0; idx < num_hi; idx++) {
2851			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2852			if (pte & GEN8_PAGE_PRESENT)
2853				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2854		}
2855	}
2856}
2857