1/*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 *    Ke Yu
25 *    Kevin Tian <kevin.tian@intel.com>
26 *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 *    Min He <min.he@intel.com>
30 *    Ping Gao <ping.a.gao@intel.com>
31 *    Tina Zhang <tina.zhang@intel.com>
32 *    Yulei Zhang <yulei.zhang@intel.com>
33 *    Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37#include <linux/slab.h>
38
39#include "i915_drv.h"
40#include "i915_reg.h"
41#include "gt/intel_engine_regs.h"
42#include "gt/intel_gpu_commands.h"
43#include "gt/intel_gt_regs.h"
44#include "gt/intel_lrc.h"
45#include "gt/intel_ring.h"
46#include "gt/intel_gt_requests.h"
47#include "gt/shmem_utils.h"
48#include "gvt.h"
49#include "i915_pvinfo.h"
50#include "trace.h"
51
52#include "display/intel_display.h"
53#include "gem/i915_gem_context.h"
54#include "gem/i915_gem_pm.h"
55#include "gt/intel_context.h"
56
57#define INVALID_OP    (~0U)
58
59#define OP_LEN_MI           9
60#define OP_LEN_2D           10
61#define OP_LEN_3D_MEDIA     16
62#define OP_LEN_MFX_VC       16
63#define OP_LEN_VEBOX	    16
64
65#define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
66
67struct sub_op_bits {
68	int hi;
69	int low;
70};
71struct decode_info {
72	const char *name;
73	int op_len;
74	int nr_sub_op;
75	const struct sub_op_bits *sub_op;
76};
77
78#define   MAX_CMD_BUDGET			0x7fffffff
79#define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
80#define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
81#define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
82
83#define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
84#define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
85#define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
86
87/* Render Command Map */
88
89/* MI_* command Opcode (28:23) */
90#define OP_MI_NOOP                          0x0
91#define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
92#define OP_MI_USER_INTERRUPT                0x2
93#define OP_MI_WAIT_FOR_EVENT                0x3
94#define OP_MI_FLUSH                         0x4
95#define OP_MI_ARB_CHECK                     0x5
96#define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
97#define OP_MI_REPORT_HEAD                   0x7
98#define OP_MI_ARB_ON_OFF                    0x8
99#define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
100#define OP_MI_BATCH_BUFFER_END              0xA
101#define OP_MI_SUSPEND_FLUSH                 0xB
102#define OP_MI_PREDICATE                     0xC  /* IVB+ */
103#define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
104#define OP_MI_SET_APPID                     0xE  /* IVB+ */
105#define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
106#define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
107#define OP_MI_DISPLAY_FLIP                  0x14
108#define OP_MI_SEMAPHORE_MBOX                0x16
109#define OP_MI_SET_CONTEXT                   0x18
110#define OP_MI_MATH                          0x1A
111#define OP_MI_URB_CLEAR                     0x19
112#define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
113#define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
114
115#define OP_MI_STORE_DATA_IMM                0x20
116#define OP_MI_STORE_DATA_INDEX              0x21
117#define OP_MI_LOAD_REGISTER_IMM             0x22
118#define OP_MI_UPDATE_GTT                    0x23
119#define OP_MI_STORE_REGISTER_MEM            0x24
120#define OP_MI_FLUSH_DW                      0x26
121#define OP_MI_CLFLUSH                       0x27
122#define OP_MI_REPORT_PERF_COUNT             0x28
123#define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
124#define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
125#define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
126#define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
127#define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
128#define OP_MI_2E			    0x2E  /* BDW+ */
129#define OP_MI_2F			    0x2F  /* BDW+ */
130#define OP_MI_BATCH_BUFFER_START            0x31
131
132/* Bit definition for dword 0 */
133#define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
134
135#define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
136
137#define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
138#define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
139#define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
140#define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
141
142/* 2D command: Opcode (28:22) */
143#define OP_2D(x)    ((2<<7) | x)
144
145#define OP_XY_SETUP_BLT                             OP_2D(0x1)
146#define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
147#define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
148#define OP_XY_PIXEL_BLT                             OP_2D(0x24)
149#define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
150#define OP_XY_TEXT_BLT                              OP_2D(0x26)
151#define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
152#define OP_XY_COLOR_BLT                             OP_2D(0x50)
153#define OP_XY_PAT_BLT                               OP_2D(0x51)
154#define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
155#define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
156#define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
157#define OP_XY_FULL_BLT                              OP_2D(0x55)
158#define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
159#define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
160#define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
161#define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
162#define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
163#define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
164#define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
165#define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
166#define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
167#define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
168#define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
169
170/* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
171#define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
172	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
173
174#define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
175
176#define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
177#define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
178#define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
179#define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
180
181#define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
182
183#define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
184
185#define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
186#define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
187#define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
188#define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
189#define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
190#define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
191
192#define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
193#define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
194#define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
195#define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
196
197#define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
198#define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
199#define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
200#define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
201#define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
202#define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
203#define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
204#define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
205#define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
206#define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
207#define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
208#define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
209#define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
210#define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
211#define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
212#define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
213#define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
214#define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
215#define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
216#define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
217#define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
218#define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
219#define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
220#define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
221#define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
222#define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
223#define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
224#define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
225#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
226#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
227#define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
228#define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
229#define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
230#define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
231#define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
232#define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
233#define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
234#define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
235#define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
236#define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
237#define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
238#define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
239#define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
240#define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
241#define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
242#define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
243#define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
244#define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
245#define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
246#define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
247#define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
248#define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
249#define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
250#define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
251#define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
252#define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
253#define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
254#define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
255#define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
256#define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
257#define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
258#define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
259#define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
260#define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
261#define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
262#define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
263
264#define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
265#define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
266#define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
267#define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
268#define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
269#define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
270#define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
271#define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
272#define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
273#define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
274#define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
275
276#define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
277#define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
278#define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
279#define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
280#define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
281#define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
282#define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
283#define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
284#define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
285#define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
286#define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
287#define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
288#define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
289#define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
290#define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
291#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
292#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
293#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
294#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
295#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
296#define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
297#define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
298#define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
299#define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
300#define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
301#define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
302#define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
303#define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
304
305/* VCCP Command Parser */
306
307/*
308 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
309 * git://anongit.freedesktop.org/vaapi/intel-driver
310 * src/i965_defines.h
311 *
312 */
313
314#define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
315	(3 << 13 | \
316	 (pipeline) << 11 | \
317	 (op) << 8 | \
318	 (sub_opa) << 5 | \
319	 (sub_opb))
320
321#define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
322#define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
323#define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
324#define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
325#define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
326#define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
327#define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
328#define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
329#define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
330#define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
331#define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
332
333#define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
334
335#define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
336#define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
337#define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
338#define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
339#define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
340#define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
341#define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
342#define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
343#define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
344#define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
345#define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
346#define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
347
348#define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
349#define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
350#define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
351#define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
352#define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
353
354#define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
355#define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
356#define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
357#define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
358#define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
359
360#define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
361#define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
362#define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
363
364#define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
365#define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
366#define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
367
368#define OP_VEB(pipeline, op, sub_opa, sub_opb) \
369	(3 << 13 | \
370	 (pipeline) << 11 | \
371	 (op) << 8 | \
372	 (sub_opa) << 5 | \
373	 (sub_opb))
374
375#define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
376#define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
377#define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
378
379struct parser_exec_state;
380
381typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
382
383#define GVT_CMD_HASH_BITS   7
384
385/* which DWords need address fix */
386#define ADDR_FIX_1(x1)			(1 << (x1))
387#define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
388#define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
389#define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
390#define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
391
392#define DWORD_FIELD(dword, end, start) \
393	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
394
395#define OP_LENGTH_BIAS 2
396#define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
397
398static int gvt_check_valid_cmd_length(int len, int valid_len)
399{
400	if (valid_len != len) {
401		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
402			len, valid_len);
403		return -EFAULT;
404	}
405	return 0;
406}
407
408struct cmd_info {
409	const char *name;
410	u32 opcode;
411
412#define F_LEN_MASK	3U
413#define F_LEN_CONST  1U
414#define F_LEN_VAR    0U
415/* value is const although LEN maybe variable */
416#define F_LEN_VAR_FIXED    (1<<1)
417
418/*
419 * command has its own ip advance logic
420 * e.g. MI_BATCH_START, MI_BATCH_END
421 */
422#define F_IP_ADVANCE_CUSTOM (1<<2)
423	u32 flag;
424
425#define R_RCS	BIT(RCS0)
426#define R_VCS1  BIT(VCS0)
427#define R_VCS2  BIT(VCS1)
428#define R_VCS	(R_VCS1 | R_VCS2)
429#define R_BCS	BIT(BCS0)
430#define R_VECS	BIT(VECS0)
431#define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
432	/* rings that support this cmd: BLT/RCS/VCS/VECS */
433	intel_engine_mask_t rings;
434
435	/* devices that support this cmd: SNB/IVB/HSW/... */
436	u16 devices;
437
438	/* which DWords are address that need fix up.
439	 * bit 0 means a 32-bit non address operand in command
440	 * bit 1 means address operand, which could be 32-bit
441	 * or 64-bit depending on different architectures.(
442	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
443	 * No matter the address length, each address only takes
444	 * one bit in the bitmap.
445	 */
446	u16 addr_bitmap;
447
448	/* flag == F_LEN_CONST : command length
449	 * flag == F_LEN_VAR : length bias bits
450	 * Note: length is in DWord
451	 */
452	u32 len;
453
454	parser_cmd_handler handler;
455
456	/* valid length in DWord */
457	u32 valid_len;
458};
459
460struct cmd_entry {
461	struct hlist_node hlist;
462	const struct cmd_info *info;
463};
464
465enum {
466	RING_BUFFER_INSTRUCTION,
467	BATCH_BUFFER_INSTRUCTION,
468	BATCH_BUFFER_2ND_LEVEL,
469	RING_BUFFER_CTX,
470};
471
472enum {
473	GTT_BUFFER,
474	PPGTT_BUFFER
475};
476
477struct parser_exec_state {
478	struct intel_vgpu *vgpu;
479	const struct intel_engine_cs *engine;
480
481	int buf_type;
482
483	/* batch buffer address type */
484	int buf_addr_type;
485
486	/* graphics memory address of ring buffer start */
487	unsigned long ring_start;
488	unsigned long ring_size;
489	unsigned long ring_head;
490	unsigned long ring_tail;
491
492	/* instruction graphics memory address */
493	unsigned long ip_gma;
494
495	/* mapped va of the instr_gma */
496	void *ip_va;
497	void *rb_va;
498
499	void *ret_bb_va;
500	/* next instruction when return from  batch buffer to ring buffer */
501	unsigned long ret_ip_gma_ring;
502
503	/* next instruction when return from 2nd batch buffer to batch buffer */
504	unsigned long ret_ip_gma_bb;
505
506	/* batch buffer address type (GTT or PPGTT)
507	 * used when ret from 2nd level batch buffer
508	 */
509	int saved_buf_addr_type;
510	bool is_ctx_wa;
511	bool is_init_ctx;
512
513	const struct cmd_info *info;
514
515	struct intel_vgpu_workload *workload;
516};
517
518#define gmadr_dw_number(s)	\
519	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
520
521static unsigned long bypass_scan_mask = 0;
522
523/* ring ALL, type = 0 */
524static const struct sub_op_bits sub_op_mi[] = {
525	{31, 29},
526	{28, 23},
527};
528
529static const struct decode_info decode_info_mi = {
530	"MI",
531	OP_LEN_MI,
532	ARRAY_SIZE(sub_op_mi),
533	sub_op_mi,
534};
535
536/* ring RCS, command type 2 */
537static const struct sub_op_bits sub_op_2d[] = {
538	{31, 29},
539	{28, 22},
540};
541
542static const struct decode_info decode_info_2d = {
543	"2D",
544	OP_LEN_2D,
545	ARRAY_SIZE(sub_op_2d),
546	sub_op_2d,
547};
548
549/* ring RCS, command type 3 */
550static const struct sub_op_bits sub_op_3d_media[] = {
551	{31, 29},
552	{28, 27},
553	{26, 24},
554	{23, 16},
555};
556
557static const struct decode_info decode_info_3d_media = {
558	"3D_Media",
559	OP_LEN_3D_MEDIA,
560	ARRAY_SIZE(sub_op_3d_media),
561	sub_op_3d_media,
562};
563
564/* ring VCS, command type 3 */
565static const struct sub_op_bits sub_op_mfx_vc[] = {
566	{31, 29},
567	{28, 27},
568	{26, 24},
569	{23, 21},
570	{20, 16},
571};
572
573static const struct decode_info decode_info_mfx_vc = {
574	"MFX_VC",
575	OP_LEN_MFX_VC,
576	ARRAY_SIZE(sub_op_mfx_vc),
577	sub_op_mfx_vc,
578};
579
580/* ring VECS, command type 3 */
581static const struct sub_op_bits sub_op_vebox[] = {
582	{31, 29},
583	{28, 27},
584	{26, 24},
585	{23, 21},
586	{20, 16},
587};
588
589static const struct decode_info decode_info_vebox = {
590	"VEBOX",
591	OP_LEN_VEBOX,
592	ARRAY_SIZE(sub_op_vebox),
593	sub_op_vebox,
594};
595
596static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
597	[RCS0] = {
598		&decode_info_mi,
599		NULL,
600		NULL,
601		&decode_info_3d_media,
602		NULL,
603		NULL,
604		NULL,
605		NULL,
606	},
607
608	[VCS0] = {
609		&decode_info_mi,
610		NULL,
611		NULL,
612		&decode_info_mfx_vc,
613		NULL,
614		NULL,
615		NULL,
616		NULL,
617	},
618
619	[BCS0] = {
620		&decode_info_mi,
621		NULL,
622		&decode_info_2d,
623		NULL,
624		NULL,
625		NULL,
626		NULL,
627		NULL,
628	},
629
630	[VECS0] = {
631		&decode_info_mi,
632		NULL,
633		NULL,
634		&decode_info_vebox,
635		NULL,
636		NULL,
637		NULL,
638		NULL,
639	},
640
641	[VCS1] = {
642		&decode_info_mi,
643		NULL,
644		NULL,
645		&decode_info_mfx_vc,
646		NULL,
647		NULL,
648		NULL,
649		NULL,
650	},
651};
652
653static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
654{
655	const struct decode_info *d_info;
656
657	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
658	if (d_info == NULL)
659		return INVALID_OP;
660
661	return cmd >> (32 - d_info->op_len);
662}
663
664static inline const struct cmd_info *
665find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
666	       const struct intel_engine_cs *engine)
667{
668	struct cmd_entry *e;
669
670	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
671		if (opcode == e->info->opcode &&
672		    e->info->rings & engine->mask)
673			return e->info;
674	}
675	return NULL;
676}
677
678static inline const struct cmd_info *
679get_cmd_info(struct intel_gvt *gvt, u32 cmd,
680	     const struct intel_engine_cs *engine)
681{
682	u32 opcode;
683
684	opcode = get_opcode(cmd, engine);
685	if (opcode == INVALID_OP)
686		return NULL;
687
688	return find_cmd_entry(gvt, opcode, engine);
689}
690
691static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
692{
693	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
694}
695
696static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
697{
698	const struct decode_info *d_info;
699	int i;
700
701	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
702	if (d_info == NULL)
703		return;
704
705	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
706			cmd >> (32 - d_info->op_len), d_info->name);
707
708	for (i = 0; i < d_info->nr_sub_op; i++)
709		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
710					d_info->sub_op[i].low));
711
712	pr_err("\n");
713}
714
715static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
716{
717	return s->ip_va + (index << 2);
718}
719
720static inline u32 cmd_val(struct parser_exec_state *s, int index)
721{
722	return *cmd_ptr(s, index);
723}
724
725static inline bool is_init_ctx(struct parser_exec_state *s)
726{
727	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
728}
729
730static void parser_exec_state_dump(struct parser_exec_state *s)
731{
732	int cnt = 0;
733	int i;
734
735	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
736		    " ring_head(%08lx) ring_tail(%08lx)\n",
737		    s->vgpu->id, s->engine->name,
738		    s->ring_start, s->ring_start + s->ring_size,
739		    s->ring_head, s->ring_tail);
740
741	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
742			s->buf_type == RING_BUFFER_INSTRUCTION ?
743			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
744				"CTX_BUFFER" : "BATCH_BUFFER"),
745			s->buf_addr_type == GTT_BUFFER ?
746			"GTT" : "PPGTT", s->ip_gma);
747
748	if (s->ip_va == NULL) {
749		gvt_dbg_cmd(" ip_va(NULL)");
750		return;
751	}
752
753	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
754			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
755			cmd_val(s, 2), cmd_val(s, 3));
756
757	print_opcode(cmd_val(s, 0), s->engine);
758
759	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
760
761	while (cnt < 1024) {
762		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
763		for (i = 0; i < 8; i++)
764			gvt_dbg_cmd("%08x ", cmd_val(s, i));
765		gvt_dbg_cmd("\n");
766
767		s->ip_va += 8 * sizeof(u32);
768		cnt += 8;
769	}
770}
771
772static inline void update_ip_va(struct parser_exec_state *s)
773{
774	unsigned long len = 0;
775
776	if (WARN_ON(s->ring_head == s->ring_tail))
777		return;
778
779	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
780			s->buf_type == RING_BUFFER_CTX) {
781		unsigned long ring_top = s->ring_start + s->ring_size;
782
783		if (s->ring_head > s->ring_tail) {
784			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
785				len = (s->ip_gma - s->ring_head);
786			else if (s->ip_gma >= s->ring_start &&
787					s->ip_gma <= s->ring_tail)
788				len = (ring_top - s->ring_head) +
789					(s->ip_gma - s->ring_start);
790		} else
791			len = (s->ip_gma - s->ring_head);
792
793		s->ip_va = s->rb_va + len;
794	} else {/* shadow batch buffer */
795		s->ip_va = s->ret_bb_va;
796	}
797}
798
799static inline int ip_gma_set(struct parser_exec_state *s,
800		unsigned long ip_gma)
801{
802	WARN_ON(!IS_ALIGNED(ip_gma, 4));
803
804	s->ip_gma = ip_gma;
805	update_ip_va(s);
806	return 0;
807}
808
809static inline int ip_gma_advance(struct parser_exec_state *s,
810		unsigned int dw_len)
811{
812	s->ip_gma += (dw_len << 2);
813
814	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
815		if (s->ip_gma >= s->ring_start + s->ring_size)
816			s->ip_gma -= s->ring_size;
817		update_ip_va(s);
818	} else {
819		s->ip_va += (dw_len << 2);
820	}
821
822	return 0;
823}
824
825static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
826{
827	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
828		return info->len;
829	else
830		return (cmd & ((1U << info->len) - 1)) + 2;
831	return 0;
832}
833
834static inline int cmd_length(struct parser_exec_state *s)
835{
836	return get_cmd_length(s->info, cmd_val(s, 0));
837}
838
839/* do not remove this, some platform may need clflush here */
840#define patch_value(s, addr, val) do { \
841	*addr = val; \
842} while (0)
843
844static inline bool is_mocs_mmio(unsigned int offset)
845{
846	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
847		((offset >= 0xb020) && (offset <= 0xb0a0));
848}
849
850static int is_cmd_update_pdps(unsigned int offset,
851			      struct parser_exec_state *s)
852{
853	u32 base = s->workload->engine->mmio_base;
854	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
855}
856
857static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
858				       unsigned int offset, unsigned int index)
859{
860	struct intel_vgpu *vgpu = s->vgpu;
861	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
862	struct intel_vgpu_mm *mm;
863	u64 pdps[GEN8_3LVL_PDPES];
864
865	if (shadow_mm->ppgtt_mm.root_entry_type ==
866	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
867		pdps[0] = (u64)cmd_val(s, 2) << 32;
868		pdps[0] |= cmd_val(s, 4);
869
870		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
871		if (!mm) {
872			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
873			return -EINVAL;
874		}
875		intel_vgpu_mm_get(mm);
876		list_add_tail(&mm->ppgtt_mm.link,
877			      &s->workload->lri_shadow_mm);
878		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
879		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
880	} else {
881		/* Currently all guests use PML4 table and now can't
882		 * have a guest with 3-level table but uses LRI for
883		 * PPGTT update. So this is simply un-testable. */
884		GEM_BUG_ON(1);
885		gvt_vgpu_err("invalid shared shadow vm type\n");
886		return -EINVAL;
887	}
888	return 0;
889}
890
891static int cmd_reg_handler(struct parser_exec_state *s,
892	unsigned int offset, unsigned int index, char *cmd)
893{
894	struct intel_vgpu *vgpu = s->vgpu;
895	struct intel_gvt *gvt = vgpu->gvt;
896	u32 ctx_sr_ctl;
897	u32 *vreg, vreg_old;
898
899	if (offset + 4 > gvt->device_info.mmio_size) {
900		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
901				cmd, offset);
902		return -EFAULT;
903	}
904
905	if (is_init_ctx(s)) {
906		struct intel_gvt_mmio_info *mmio_info;
907
908		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
909		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
910		if (mmio_info && mmio_info->write)
911			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
912		return 0;
913	}
914
915	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
916		gvt_vgpu_err("%s access to non-render register (%x)\n",
917				cmd, offset);
918		return -EBADRQC;
919	}
920
921	if (!strncmp(cmd, "srm", 3) ||
922			!strncmp(cmd, "lrm", 3)) {
923		if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
924		    offset == 0x21f0 ||
925		    (IS_BROADWELL(gvt->gt->i915) &&
926		     offset == i915_mmio_reg_offset(INSTPM)))
927			return 0;
928		else {
929			gvt_vgpu_err("%s access to register (%x)\n",
930					cmd, offset);
931			return -EPERM;
932		}
933	}
934
935	if (!strncmp(cmd, "lrr-src", 7) ||
936			!strncmp(cmd, "lrr-dst", 7)) {
937		if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
938			return 0;
939		else {
940			gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
941			return -EPERM;
942		}
943	}
944
945	if (!strncmp(cmd, "pipe_ctrl", 9)) {
946		/* TODO: add LRI POST logic here */
947		return 0;
948	}
949
950	if (strncmp(cmd, "lri", 3))
951		return -EPERM;
952
953	/* below are all lri handlers */
954	vreg = &vgpu_vreg(s->vgpu, offset);
955
956	if (is_cmd_update_pdps(offset, s) &&
957	    cmd_pdp_mmio_update_handler(s, offset, index))
958		return -EINVAL;
959
960	if (offset == i915_mmio_reg_offset(DERRMR) ||
961		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
962		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
963		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
964	}
965
966	if (is_mocs_mmio(offset))
967		*vreg = cmd_val(s, index + 1);
968
969	vreg_old = *vreg;
970
971	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
972		u32 cmdval_new, cmdval;
973		struct intel_gvt_mmio_info *mmio_info;
974
975		cmdval = cmd_val(s, index + 1);
976
977		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
978		if (!mmio_info) {
979			cmdval_new = cmdval;
980		} else {
981			u64 ro_mask = mmio_info->ro_mask;
982			int ret;
983
984			if (likely(!ro_mask))
985				ret = mmio_info->write(s->vgpu, offset,
986						&cmdval, 4);
987			else {
988				gvt_vgpu_err("try to write RO reg %x\n",
989						offset);
990				ret = -EBADRQC;
991			}
992			if (ret)
993				return ret;
994			cmdval_new = *vreg;
995		}
996		if (cmdval_new != cmdval)
997			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
998	}
999
1000	/* only patch cmd. restore vreg value if changed in mmio write handler*/
1001	*vreg = vreg_old;
1002
1003	/* TODO
1004	 * In order to let workload with inhibit context to generate
1005	 * correct image data into memory, vregs values will be loaded to
1006	 * hw via LRIs in the workload with inhibit context. But as
1007	 * indirect context is loaded prior to LRIs in workload, we don't
1008	 * want reg values specified in indirect context overwritten by
1009	 * LRIs in workloads. So, when scanning an indirect context, we
1010	 * update reg values in it into vregs, so LRIs in workload with
1011	 * inhibit context will restore with correct values
1012	 */
1013	if (GRAPHICS_VER(s->engine->i915) == 9 &&
1014	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1015	    !strncmp(cmd, "lri", 3)) {
1016		intel_gvt_read_gpa(s->vgpu,
1017			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1018		/* check inhibit context */
1019		if (ctx_sr_ctl & 1) {
1020			u32 data = cmd_val(s, index + 1);
1021
1022			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1023				intel_vgpu_mask_mmio_write(vgpu,
1024							offset, &data, 4);
1025			else
1026				vgpu_vreg(vgpu, offset) = data;
1027		}
1028	}
1029
1030	return 0;
1031}
1032
1033#define cmd_reg(s, i) \
1034	(cmd_val(s, i) & GENMASK(22, 2))
1035
1036#define cmd_reg_inhibit(s, i) \
1037	(cmd_val(s, i) & GENMASK(22, 18))
1038
1039#define cmd_gma(s, i) \
1040	(cmd_val(s, i) & GENMASK(31, 2))
1041
1042#define cmd_gma_hi(s, i) \
1043	(cmd_val(s, i) & GENMASK(15, 0))
1044
1045static int cmd_handler_lri(struct parser_exec_state *s)
1046{
1047	int i, ret = 0;
1048	int cmd_len = cmd_length(s);
1049
1050	for (i = 1; i < cmd_len; i += 2) {
1051		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1052			if (s->engine->id == BCS0 &&
1053			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1054				ret |= 0;
1055			else
1056				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1057		}
1058		if (ret)
1059			break;
1060		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1061		if (ret)
1062			break;
1063	}
1064	return ret;
1065}
1066
1067static int cmd_handler_lrr(struct parser_exec_state *s)
1068{
1069	int i, ret = 0;
1070	int cmd_len = cmd_length(s);
1071
1072	for (i = 1; i < cmd_len; i += 2) {
1073		if (IS_BROADWELL(s->engine->i915))
1074			ret |= ((cmd_reg_inhibit(s, i) ||
1075				 (cmd_reg_inhibit(s, i + 1)))) ?
1076				-EBADRQC : 0;
1077		if (ret)
1078			break;
1079		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1080		if (ret)
1081			break;
1082		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1083		if (ret)
1084			break;
1085	}
1086	return ret;
1087}
1088
1089static inline int cmd_address_audit(struct parser_exec_state *s,
1090		unsigned long guest_gma, int op_size, bool index_mode);
1091
1092static int cmd_handler_lrm(struct parser_exec_state *s)
1093{
1094	struct intel_gvt *gvt = s->vgpu->gvt;
1095	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1096	unsigned long gma;
1097	int i, ret = 0;
1098	int cmd_len = cmd_length(s);
1099
1100	for (i = 1; i < cmd_len;) {
1101		if (IS_BROADWELL(s->engine->i915))
1102			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1103		if (ret)
1104			break;
1105		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1106		if (ret)
1107			break;
1108		if (cmd_val(s, 0) & (1 << 22)) {
1109			gma = cmd_gma(s, i + 1);
1110			if (gmadr_bytes == 8)
1111				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1112			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1113			if (ret)
1114				break;
1115		}
1116		i += gmadr_dw_number(s) + 1;
1117	}
1118	return ret;
1119}
1120
1121static int cmd_handler_srm(struct parser_exec_state *s)
1122{
1123	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1124	unsigned long gma;
1125	int i, ret = 0;
1126	int cmd_len = cmd_length(s);
1127
1128	for (i = 1; i < cmd_len;) {
1129		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1130		if (ret)
1131			break;
1132		if (cmd_val(s, 0) & (1 << 22)) {
1133			gma = cmd_gma(s, i + 1);
1134			if (gmadr_bytes == 8)
1135				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1136			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1137			if (ret)
1138				break;
1139		}
1140		i += gmadr_dw_number(s) + 1;
1141	}
1142	return ret;
1143}
1144
1145struct cmd_interrupt_event {
1146	int pipe_control_notify;
1147	int mi_flush_dw;
1148	int mi_user_interrupt;
1149};
1150
1151static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1152	[RCS0] = {
1153		.pipe_control_notify = RCS_PIPE_CONTROL,
1154		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1155		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1156	},
1157	[BCS0] = {
1158		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1159		.mi_flush_dw = BCS_MI_FLUSH_DW,
1160		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1161	},
1162	[VCS0] = {
1163		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1164		.mi_flush_dw = VCS_MI_FLUSH_DW,
1165		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1166	},
1167	[VCS1] = {
1168		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1169		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1170		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1171	},
1172	[VECS0] = {
1173		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1174		.mi_flush_dw = VECS_MI_FLUSH_DW,
1175		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1176	},
1177};
1178
1179static int cmd_handler_pipe_control(struct parser_exec_state *s)
1180{
1181	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1182	unsigned long gma;
1183	bool index_mode = false;
1184	unsigned int post_sync;
1185	int ret = 0;
1186	u32 hws_pga, val;
1187
1188	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1189
1190	/* LRI post sync */
1191	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1192		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1193	/* post sync */
1194	else if (post_sync) {
1195		if (post_sync == 2)
1196			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1197		else if (post_sync == 3)
1198			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1199		else if (post_sync == 1) {
1200			/* check ggtt*/
1201			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1202				gma = cmd_val(s, 2) & GENMASK(31, 3);
1203				if (gmadr_bytes == 8)
1204					gma |= (cmd_gma_hi(s, 3)) << 32;
1205				/* Store Data Index */
1206				if (cmd_val(s, 1) & (1 << 21))
1207					index_mode = true;
1208				ret |= cmd_address_audit(s, gma, sizeof(u64),
1209						index_mode);
1210				if (ret)
1211					return ret;
1212				if (index_mode) {
1213					hws_pga = s->vgpu->hws_pga[s->engine->id];
1214					gma = hws_pga + gma;
1215					patch_value(s, cmd_ptr(s, 2), gma);
1216					val = cmd_val(s, 1) & (~(1 << 21));
1217					patch_value(s, cmd_ptr(s, 1), val);
1218				}
1219			}
1220		}
1221	}
1222
1223	if (ret)
1224		return ret;
1225
1226	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1227		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1228			s->workload->pending_events);
1229	return 0;
1230}
1231
1232static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1233{
1234	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1235		s->workload->pending_events);
1236	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1237	return 0;
1238}
1239
1240static int cmd_advance_default(struct parser_exec_state *s)
1241{
1242	return ip_gma_advance(s, cmd_length(s));
1243}
1244
1245static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1246{
1247	int ret;
1248
1249	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1250		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1251		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1252		s->buf_addr_type = s->saved_buf_addr_type;
1253	} else if (s->buf_type == RING_BUFFER_CTX) {
1254		ret = ip_gma_set(s, s->ring_tail);
1255	} else {
1256		s->buf_type = RING_BUFFER_INSTRUCTION;
1257		s->buf_addr_type = GTT_BUFFER;
1258		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1259			s->ret_ip_gma_ring -= s->ring_size;
1260		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1261	}
1262	return ret;
1263}
1264
1265struct mi_display_flip_command_info {
1266	int pipe;
1267	int plane;
1268	int event;
1269	i915_reg_t stride_reg;
1270	i915_reg_t ctrl_reg;
1271	i915_reg_t surf_reg;
1272	u64 stride_val;
1273	u64 tile_val;
1274	u64 surf_val;
1275	bool async_flip;
1276};
1277
1278struct plane_code_mapping {
1279	int pipe;
1280	int plane;
1281	int event;
1282};
1283
1284static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1285		struct mi_display_flip_command_info *info)
1286{
1287	struct drm_i915_private *dev_priv = s->engine->i915;
1288	struct plane_code_mapping gen8_plane_code[] = {
1289		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1290		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1291		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1292		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1293		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1294		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1295	};
1296	u32 dword0, dword1, dword2;
1297	u32 v;
1298
1299	dword0 = cmd_val(s, 0);
1300	dword1 = cmd_val(s, 1);
1301	dword2 = cmd_val(s, 2);
1302
1303	v = (dword0 & GENMASK(21, 19)) >> 19;
1304	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1305		return -EBADRQC;
1306
1307	info->pipe = gen8_plane_code[v].pipe;
1308	info->plane = gen8_plane_code[v].plane;
1309	info->event = gen8_plane_code[v].event;
1310	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1311	info->tile_val = (dword1 & 0x1);
1312	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1313	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1314
1315	if (info->plane == PLANE_A) {
1316		info->ctrl_reg = DSPCNTR(info->pipe);
1317		info->stride_reg = DSPSTRIDE(info->pipe);
1318		info->surf_reg = DSPSURF(info->pipe);
1319	} else if (info->plane == PLANE_B) {
1320		info->ctrl_reg = SPRCTL(info->pipe);
1321		info->stride_reg = SPRSTRIDE(info->pipe);
1322		info->surf_reg = SPRSURF(info->pipe);
1323	} else {
1324		drm_WARN_ON(&dev_priv->drm, 1);
1325		return -EBADRQC;
1326	}
1327	return 0;
1328}
1329
1330static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1331		struct mi_display_flip_command_info *info)
1332{
1333	struct drm_i915_private *dev_priv = s->engine->i915;
1334	struct intel_vgpu *vgpu = s->vgpu;
1335	u32 dword0 = cmd_val(s, 0);
1336	u32 dword1 = cmd_val(s, 1);
1337	u32 dword2 = cmd_val(s, 2);
1338	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1339
1340	info->plane = PRIMARY_PLANE;
1341
1342	switch (plane) {
1343	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1344		info->pipe = PIPE_A;
1345		info->event = PRIMARY_A_FLIP_DONE;
1346		break;
1347	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1348		info->pipe = PIPE_B;
1349		info->event = PRIMARY_B_FLIP_DONE;
1350		break;
1351	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1352		info->pipe = PIPE_C;
1353		info->event = PRIMARY_C_FLIP_DONE;
1354		break;
1355
1356	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1357		info->pipe = PIPE_A;
1358		info->event = SPRITE_A_FLIP_DONE;
1359		info->plane = SPRITE_PLANE;
1360		break;
1361	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1362		info->pipe = PIPE_B;
1363		info->event = SPRITE_B_FLIP_DONE;
1364		info->plane = SPRITE_PLANE;
1365		break;
1366	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1367		info->pipe = PIPE_C;
1368		info->event = SPRITE_C_FLIP_DONE;
1369		info->plane = SPRITE_PLANE;
1370		break;
1371
1372	default:
1373		gvt_vgpu_err("unknown plane code %d\n", plane);
1374		return -EBADRQC;
1375	}
1376
1377	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1378	info->tile_val = (dword1 & GENMASK(2, 0));
1379	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1380	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1381
1382	info->ctrl_reg = DSPCNTR(info->pipe);
1383	info->stride_reg = DSPSTRIDE(info->pipe);
1384	info->surf_reg = DSPSURF(info->pipe);
1385
1386	return 0;
1387}
1388
1389static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1390		struct mi_display_flip_command_info *info)
1391{
1392	u32 stride, tile;
1393
1394	if (!info->async_flip)
1395		return 0;
1396
1397	if (GRAPHICS_VER(s->engine->i915) >= 9) {
1398		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1399		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1400				GENMASK(12, 10)) >> 10;
1401	} else {
1402		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1403				GENMASK(15, 6)) >> 6;
1404		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1405	}
1406
1407	if (stride != info->stride_val)
1408		gvt_dbg_cmd("cannot change stride during async flip\n");
1409
1410	if (tile != info->tile_val)
1411		gvt_dbg_cmd("cannot change tile during async flip\n");
1412
1413	return 0;
1414}
1415
1416static int gen8_update_plane_mmio_from_mi_display_flip(
1417		struct parser_exec_state *s,
1418		struct mi_display_flip_command_info *info)
1419{
1420	struct drm_i915_private *dev_priv = s->engine->i915;
1421	struct intel_vgpu *vgpu = s->vgpu;
1422
1423	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1424		      info->surf_val << 12);
1425	if (GRAPHICS_VER(dev_priv) >= 9) {
1426		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1427			      info->stride_val);
1428		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1429			      info->tile_val << 10);
1430	} else {
1431		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1432			      info->stride_val << 6);
1433		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1434			      info->tile_val << 10);
1435	}
1436
1437	if (info->plane == PLANE_PRIMARY)
1438		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1439
1440	if (info->async_flip)
1441		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1442	else
1443		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1444
1445	return 0;
1446}
1447
1448static int decode_mi_display_flip(struct parser_exec_state *s,
1449		struct mi_display_flip_command_info *info)
1450{
1451	if (IS_BROADWELL(s->engine->i915))
1452		return gen8_decode_mi_display_flip(s, info);
1453	if (GRAPHICS_VER(s->engine->i915) >= 9)
1454		return skl_decode_mi_display_flip(s, info);
1455
1456	return -ENODEV;
1457}
1458
1459static int check_mi_display_flip(struct parser_exec_state *s,
1460		struct mi_display_flip_command_info *info)
1461{
1462	return gen8_check_mi_display_flip(s, info);
1463}
1464
1465static int update_plane_mmio_from_mi_display_flip(
1466		struct parser_exec_state *s,
1467		struct mi_display_flip_command_info *info)
1468{
1469	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1470}
1471
1472static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1473{
1474	struct mi_display_flip_command_info info;
1475	struct intel_vgpu *vgpu = s->vgpu;
1476	int ret;
1477	int i;
1478	int len = cmd_length(s);
1479	u32 valid_len = CMD_LEN(1);
1480
1481	/* Flip Type == Stereo 3D Flip */
1482	if (DWORD_FIELD(2, 1, 0) == 2)
1483		valid_len++;
1484	ret = gvt_check_valid_cmd_length(cmd_length(s),
1485			valid_len);
1486	if (ret)
1487		return ret;
1488
1489	ret = decode_mi_display_flip(s, &info);
1490	if (ret) {
1491		gvt_vgpu_err("fail to decode MI display flip command\n");
1492		return ret;
1493	}
1494
1495	ret = check_mi_display_flip(s, &info);
1496	if (ret) {
1497		gvt_vgpu_err("invalid MI display flip command\n");
1498		return ret;
1499	}
1500
1501	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1502	if (ret) {
1503		gvt_vgpu_err("fail to update plane mmio\n");
1504		return ret;
1505	}
1506
1507	for (i = 0; i < len; i++)
1508		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1509	return 0;
1510}
1511
1512static bool is_wait_for_flip_pending(u32 cmd)
1513{
1514	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1515			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1516			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1517			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1518			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1519			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1520}
1521
1522static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1523{
1524	u32 cmd = cmd_val(s, 0);
1525
1526	if (!is_wait_for_flip_pending(cmd))
1527		return 0;
1528
1529	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1530	return 0;
1531}
1532
1533static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1534{
1535	unsigned long addr;
1536	unsigned long gma_high, gma_low;
1537	struct intel_vgpu *vgpu = s->vgpu;
1538	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1539
1540	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1541		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1542		return INTEL_GVT_INVALID_ADDR;
1543	}
1544
1545	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1546	if (gmadr_bytes == 4) {
1547		addr = gma_low;
1548	} else {
1549		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1550		addr = (((unsigned long)gma_high) << 32) | gma_low;
1551	}
1552	return addr;
1553}
1554
1555static inline int cmd_address_audit(struct parser_exec_state *s,
1556		unsigned long guest_gma, int op_size, bool index_mode)
1557{
1558	struct intel_vgpu *vgpu = s->vgpu;
1559	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1560	int i;
1561	int ret;
1562
1563	if (op_size > max_surface_size) {
1564		gvt_vgpu_err("command address audit fail name %s\n",
1565			s->info->name);
1566		return -EFAULT;
1567	}
1568
1569	if (index_mode)	{
1570		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1571			ret = -EFAULT;
1572			goto err;
1573		}
1574	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1575		ret = -EFAULT;
1576		goto err;
1577	}
1578
1579	return 0;
1580
1581err:
1582	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1583			s->info->name, guest_gma, op_size);
1584
1585	pr_err("cmd dump: ");
1586	for (i = 0; i < cmd_length(s); i++) {
1587		if (!(i % 4))
1588			pr_err("\n%08x ", cmd_val(s, i));
1589		else
1590			pr_err("%08x ", cmd_val(s, i));
1591	}
1592	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1593			vgpu->id,
1594			vgpu_aperture_gmadr_base(vgpu),
1595			vgpu_aperture_gmadr_end(vgpu),
1596			vgpu_hidden_gmadr_base(vgpu),
1597			vgpu_hidden_gmadr_end(vgpu));
1598	return ret;
1599}
1600
1601static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1602{
1603	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1604	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1605	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1606	unsigned long gma, gma_low, gma_high;
1607	u32 valid_len = CMD_LEN(2);
1608	int ret = 0;
1609
1610	/* check ppggt */
1611	if (!(cmd_val(s, 0) & (1 << 22)))
1612		return 0;
1613
1614	/* check if QWORD */
1615	if (DWORD_FIELD(0, 21, 21))
1616		valid_len++;
1617	ret = gvt_check_valid_cmd_length(cmd_length(s),
1618			valid_len);
1619	if (ret)
1620		return ret;
1621
1622	gma = cmd_val(s, 2) & GENMASK(31, 2);
1623
1624	if (gmadr_bytes == 8) {
1625		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1626		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1627		gma = (gma_high << 32) | gma_low;
1628		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1629	}
1630	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1631	return ret;
1632}
1633
1634static inline int unexpected_cmd(struct parser_exec_state *s)
1635{
1636	struct intel_vgpu *vgpu = s->vgpu;
1637
1638	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1639
1640	return -EBADRQC;
1641}
1642
1643static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1644{
1645	return unexpected_cmd(s);
1646}
1647
1648static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1649{
1650	return unexpected_cmd(s);
1651}
1652
1653static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1654{
1655	return unexpected_cmd(s);
1656}
1657
1658static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1659{
1660	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1661	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1662			sizeof(u32);
1663	unsigned long gma, gma_high;
1664	u32 valid_len = CMD_LEN(1);
1665	int ret = 0;
1666
1667	if (!(cmd_val(s, 0) & (1 << 22)))
1668		return ret;
1669
1670	/* check inline data */
1671	if (cmd_val(s, 0) & BIT(18))
1672		valid_len = CMD_LEN(9);
1673	ret = gvt_check_valid_cmd_length(cmd_length(s),
1674			valid_len);
1675	if (ret)
1676		return ret;
1677
1678	gma = cmd_val(s, 1) & GENMASK(31, 2);
1679	if (gmadr_bytes == 8) {
1680		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1681		gma = (gma_high << 32) | gma;
1682	}
1683	ret = cmd_address_audit(s, gma, op_size, false);
1684	return ret;
1685}
1686
1687static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1688{
1689	return unexpected_cmd(s);
1690}
1691
1692static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1693{
1694	return unexpected_cmd(s);
1695}
1696
1697static int cmd_handler_mi_conditional_batch_buffer_end(
1698		struct parser_exec_state *s)
1699{
1700	return unexpected_cmd(s);
1701}
1702
1703static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1704{
1705	return unexpected_cmd(s);
1706}
1707
1708static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1709{
1710	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1711	unsigned long gma;
1712	bool index_mode = false;
1713	int ret = 0;
1714	u32 hws_pga, val;
1715	u32 valid_len = CMD_LEN(2);
1716
1717	ret = gvt_check_valid_cmd_length(cmd_length(s),
1718			valid_len);
1719	if (ret) {
1720		/* Check again for Qword */
1721		ret = gvt_check_valid_cmd_length(cmd_length(s),
1722			++valid_len);
1723		return ret;
1724	}
1725
1726	/* Check post-sync and ppgtt bit */
1727	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1728		gma = cmd_val(s, 1) & GENMASK(31, 3);
1729		if (gmadr_bytes == 8)
1730			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1731		/* Store Data Index */
1732		if (cmd_val(s, 0) & (1 << 21))
1733			index_mode = true;
1734		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1735		if (ret)
1736			return ret;
1737		if (index_mode) {
1738			hws_pga = s->vgpu->hws_pga[s->engine->id];
1739			gma = hws_pga + gma;
1740			patch_value(s, cmd_ptr(s, 1), gma);
1741			val = cmd_val(s, 0) & (~(1 << 21));
1742			patch_value(s, cmd_ptr(s, 0), val);
1743		}
1744	}
1745	/* Check notify bit */
1746	if ((cmd_val(s, 0) & (1 << 8)))
1747		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1748			s->workload->pending_events);
1749	return ret;
1750}
1751
1752static void addr_type_update_snb(struct parser_exec_state *s)
1753{
1754	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1755			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1756		s->buf_addr_type = PPGTT_BUFFER;
1757	}
1758}
1759
1760
1761static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1762		unsigned long gma, unsigned long end_gma, void *va)
1763{
1764	unsigned long copy_len, offset;
1765	unsigned long len = 0;
1766	unsigned long gpa;
1767
1768	while (gma != end_gma) {
1769		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1770		if (gpa == INTEL_GVT_INVALID_ADDR) {
1771			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1772			return -EFAULT;
1773		}
1774
1775		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1776
1777		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1778			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1779
1780		intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1781
1782		len += copy_len;
1783		gma += copy_len;
1784	}
1785	return len;
1786}
1787
1788
1789/*
1790 * Check whether a batch buffer needs to be scanned. Currently
1791 * the only criteria is based on privilege.
1792 */
1793static int batch_buffer_needs_scan(struct parser_exec_state *s)
1794{
1795	/* Decide privilege based on address space */
1796	if (cmd_val(s, 0) & BIT(8) &&
1797	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1798		return 0;
1799
1800	return 1;
1801}
1802
1803static const char *repr_addr_type(unsigned int type)
1804{
1805	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1806}
1807
1808static int find_bb_size(struct parser_exec_state *s,
1809			unsigned long *bb_size,
1810			unsigned long *bb_end_cmd_offset)
1811{
1812	unsigned long gma = 0;
1813	const struct cmd_info *info;
1814	u32 cmd_len = 0;
1815	bool bb_end = false;
1816	struct intel_vgpu *vgpu = s->vgpu;
1817	u32 cmd;
1818	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1819		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1820
1821	*bb_size = 0;
1822	*bb_end_cmd_offset = 0;
1823
1824	/* get the start gm address of the batch buffer */
1825	gma = get_gma_bb_from_cmd(s, 1);
1826	if (gma == INTEL_GVT_INVALID_ADDR)
1827		return -EFAULT;
1828
1829	cmd = cmd_val(s, 0);
1830	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1831	if (info == NULL) {
1832		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1833			     cmd, get_opcode(cmd, s->engine),
1834			     repr_addr_type(s->buf_addr_type),
1835			     s->engine->name, s->workload);
1836		return -EBADRQC;
1837	}
1838	do {
1839		if (copy_gma_to_hva(s->vgpu, mm,
1840				    gma, gma + 4, &cmd) < 0)
1841			return -EFAULT;
1842		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1843		if (info == NULL) {
1844			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1845				     cmd, get_opcode(cmd, s->engine),
1846				     repr_addr_type(s->buf_addr_type),
1847				     s->engine->name, s->workload);
1848			return -EBADRQC;
1849		}
1850
1851		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1852			bb_end = true;
1853		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1854			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1855				/* chained batch buffer */
1856				bb_end = true;
1857		}
1858
1859		if (bb_end)
1860			*bb_end_cmd_offset = *bb_size;
1861
1862		cmd_len = get_cmd_length(info, cmd) << 2;
1863		*bb_size += cmd_len;
1864		gma += cmd_len;
1865	} while (!bb_end);
1866
1867	return 0;
1868}
1869
1870static int audit_bb_end(struct parser_exec_state *s, void *va)
1871{
1872	struct intel_vgpu *vgpu = s->vgpu;
1873	u32 cmd = *(u32 *)va;
1874	const struct cmd_info *info;
1875
1876	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1877	if (info == NULL) {
1878		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1879			     cmd, get_opcode(cmd, s->engine),
1880			     repr_addr_type(s->buf_addr_type),
1881			     s->engine->name, s->workload);
1882		return -EBADRQC;
1883	}
1884
1885	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1886	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1887	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1888		return 0;
1889
1890	return -EBADRQC;
1891}
1892
1893static int perform_bb_shadow(struct parser_exec_state *s)
1894{
1895	struct intel_vgpu *vgpu = s->vgpu;
1896	struct intel_vgpu_shadow_bb *bb;
1897	unsigned long gma = 0;
1898	unsigned long bb_size;
1899	unsigned long bb_end_cmd_offset;
1900	int ret = 0;
1901	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1902		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1903	unsigned long start_offset = 0;
1904
1905	/* get the start gm address of the batch buffer */
1906	gma = get_gma_bb_from_cmd(s, 1);
1907	if (gma == INTEL_GVT_INVALID_ADDR)
1908		return -EFAULT;
1909
1910	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1911	if (ret)
1912		return ret;
1913
1914	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1915	if (!bb)
1916		return -ENOMEM;
1917
1918	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1919
1920	/* the start_offset stores the batch buffer's start gma's
1921	 * offset relative to page boundary. so for non-privileged batch
1922	 * buffer, the shadowed gem object holds exactly the same page
1923	 * layout as original gem object. This is for the convience of
1924	 * replacing the whole non-privilged batch buffer page to this
1925	 * shadowed one in PPGTT at the same gma address. (this replacing
1926	 * action is not implemented yet now, but may be necessary in
1927	 * future).
1928	 * for prileged batch buffer, we just change start gma address to
1929	 * that of shadowed page.
1930	 */
1931	if (bb->ppgtt)
1932		start_offset = gma & ~I915_GTT_PAGE_MASK;
1933
1934	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1935					       round_up(bb_size + start_offset,
1936							PAGE_SIZE));
1937	if (IS_ERR(bb->obj)) {
1938		ret = PTR_ERR(bb->obj);
1939		goto err_free_bb;
1940	}
1941
1942	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1943	if (IS_ERR(bb->va)) {
1944		ret = PTR_ERR(bb->va);
1945		goto err_free_obj;
1946	}
1947
1948	ret = copy_gma_to_hva(s->vgpu, mm,
1949			      gma, gma + bb_size,
1950			      bb->va + start_offset);
1951	if (ret < 0) {
1952		gvt_vgpu_err("fail to copy guest ring buffer\n");
1953		ret = -EFAULT;
1954		goto err_unmap;
1955	}
1956
1957	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1958	if (ret)
1959		goto err_unmap;
1960
1961	i915_gem_object_unlock(bb->obj);
1962	INIT_LIST_HEAD(&bb->list);
1963	list_add(&bb->list, &s->workload->shadow_bb);
1964
1965	bb->bb_start_cmd_va = s->ip_va;
1966
1967	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1968		bb->bb_offset = s->ip_va - s->rb_va;
1969	else
1970		bb->bb_offset = 0;
1971
1972	/*
1973	 * ip_va saves the virtual address of the shadow batch buffer, while
1974	 * ip_gma saves the graphics address of the original batch buffer.
1975	 * As the shadow batch buffer is just a copy from the originial one,
1976	 * it should be right to use shadow batch buffer'va and original batch
1977	 * buffer's gma in pair. After all, we don't want to pin the shadow
1978	 * buffer here (too early).
1979	 */
1980	s->ip_va = bb->va + start_offset;
1981	s->ip_gma = gma;
1982	return 0;
1983err_unmap:
1984	i915_gem_object_unpin_map(bb->obj);
1985err_free_obj:
1986	i915_gem_object_put(bb->obj);
1987err_free_bb:
1988	kfree(bb);
1989	return ret;
1990}
1991
1992static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1993{
1994	bool second_level;
1995	int ret = 0;
1996	struct intel_vgpu *vgpu = s->vgpu;
1997
1998	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1999		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2000		return -EFAULT;
2001	}
2002
2003	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2004	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2005		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2006		return -EFAULT;
2007	}
2008
2009	s->saved_buf_addr_type = s->buf_addr_type;
2010	addr_type_update_snb(s);
2011	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2012		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2013		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2014	} else if (second_level) {
2015		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2016		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2017		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2018	}
2019
2020	if (batch_buffer_needs_scan(s)) {
2021		ret = perform_bb_shadow(s);
2022		if (ret < 0)
2023			gvt_vgpu_err("invalid shadow batch buffer\n");
2024	} else {
2025		/* emulate a batch buffer end to do return right */
2026		ret = cmd_handler_mi_batch_buffer_end(s);
2027		if (ret < 0)
2028			return ret;
2029	}
2030	return ret;
2031}
2032
2033static int mi_noop_index;
2034
2035static const struct cmd_info cmd_info[] = {
2036	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2037
2038	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2039		0, 1, NULL},
2040
2041	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2042		0, 1, cmd_handler_mi_user_interrupt},
2043
2044	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2045		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2046
2047	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2048
2049	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2050		NULL},
2051
2052	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2053		NULL},
2054
2055	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2056		NULL},
2057
2058	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2059		NULL},
2060
2061	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2062		D_ALL, 0, 1, NULL},
2063
2064	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2065		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2066		cmd_handler_mi_batch_buffer_end},
2067
2068	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2069		0, 1, NULL},
2070
2071	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2072		NULL},
2073
2074	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2075		D_ALL, 0, 1, NULL},
2076
2077	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2078		NULL},
2079
2080	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2081		NULL},
2082
2083	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2084		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2085
2086	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2087		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2088
2089	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2090
2091	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2092		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2093
2094	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2095		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2096		NULL, CMD_LEN(0)},
2097
2098	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2099		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2100		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2101
2102	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2103		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2104
2105	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2106		0, 8, cmd_handler_mi_store_data_index},
2107
2108	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2109		D_ALL, 0, 8, cmd_handler_lri},
2110
2111	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2112		cmd_handler_mi_update_gtt},
2113
2114	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2115		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2116		cmd_handler_srm, CMD_LEN(2)},
2117
2118	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2119		cmd_handler_mi_flush_dw},
2120
2121	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2122		10, cmd_handler_mi_clflush},
2123
2124	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2125		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2126		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2127
2128	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2129		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2130		cmd_handler_lrm, CMD_LEN(2)},
2131
2132	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2133		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2134		cmd_handler_lrr, CMD_LEN(1)},
2135
2136	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2137		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2138		8, NULL, CMD_LEN(2)},
2139
2140	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2141		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2142
2143	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2144		ADDR_FIX_1(2), 8, NULL},
2145
2146	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2147		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2148
2149	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2150		8, cmd_handler_mi_op_2f},
2151
2152	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2153		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2154		cmd_handler_mi_batch_buffer_start},
2155
2156	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2157		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2158		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2159
2160	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2161		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2162
2163	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2164		ADDR_FIX_2(4, 7), 8, NULL},
2165
2166	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2167		0, 8, NULL},
2168
2169	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2170		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2171
2172	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2173
2174	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2175		0, 8, NULL},
2176
2177	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2178		ADDR_FIX_1(3), 8, NULL},
2179
2180	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2181		D_ALL, 0, 8, NULL},
2182
2183	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2184		ADDR_FIX_1(4), 8, NULL},
2185
2186	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2187		ADDR_FIX_2(4, 5), 8, NULL},
2188
2189	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2190		ADDR_FIX_1(4), 8, NULL},
2191
2192	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2193		ADDR_FIX_2(4, 7), 8, NULL},
2194
2195	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2196		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2197
2198	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2199
2200	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2201		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2202
2203	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2204		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2205
2206	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2207		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2208		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2209
2210	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2211		D_ALL, ADDR_FIX_1(4), 8, NULL},
2212
2213	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2214		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2215
2216	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2217		D_ALL, ADDR_FIX_1(4), 8, NULL},
2218
2219	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2220		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2221
2222	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2223		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2224
2225	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2226		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2227		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2228
2229	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2230		ADDR_FIX_2(4, 5), 8, NULL},
2231
2232	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2233		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2234
2235	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2236		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2237		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238
2239	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2240		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2241		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242
2243	{"3DSTATE_BLEND_STATE_POINTERS",
2244		OP_3DSTATE_BLEND_STATE_POINTERS,
2245		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246
2247	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2248		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2249		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250
2251	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2252		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2253		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254
2255	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2256		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2257		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258
2259	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2260		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2261		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262
2263	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2264		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2265		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266
2267	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2268		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2269		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270
2271	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2272		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2273		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2276		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2277		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278
2279	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2280		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2281		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2282
2283	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2284		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2285		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286
2287	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2288		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2289		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2290
2291	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2292		0, 8, NULL},
2293
2294	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2295		0, 8, NULL},
2296
2297	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2298		0, 8, NULL},
2299
2300	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2301		0, 8, NULL},
2302
2303	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2304		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2305
2306	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2307		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2308
2309	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2310		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2311
2312	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2313		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2314
2315	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2316		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2317
2318	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2319		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2320
2321	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2322		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2323
2324	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2325		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326
2327	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2328		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2329
2330	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2331		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2332
2333	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2334		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2335
2336	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2337		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2338
2339	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2340		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341
2342	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2343		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2344
2345	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2346		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2347
2348	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2349		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2350
2351	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2352		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2353
2354	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2355		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2356
2357	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2358		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2359
2360	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2361		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2362
2363	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2364		D_BDW_PLUS, 0, 8, NULL},
2365
2366	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2367		NULL},
2368
2369	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2370		D_BDW_PLUS, 0, 8, NULL},
2371
2372	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2373		D_BDW_PLUS, 0, 8, NULL},
2374
2375	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2376		8, NULL},
2377
2378	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2379		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2380
2381	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2382		8, NULL},
2383
2384	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2385		NULL},
2386
2387	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2388		NULL},
2389
2390	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2391		NULL},
2392
2393	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2394		D_BDW_PLUS, 0, 8, NULL},
2395
2396	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2397		R_RCS, D_ALL, 0, 8, NULL},
2398
2399	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2400		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2401
2402	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2403		R_RCS, D_ALL, 0, 1, NULL},
2404
2405	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2406
2407	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2408		R_RCS, D_ALL, 0, 8, NULL},
2409
2410	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2411		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416
2417	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2418
2419	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2420		D_BDW_PLUS, 0, 8, NULL},
2421
2422	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2423		D_BDW_PLUS, 0, 8, NULL},
2424
2425	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2426		D_ALL, 0, 8, NULL},
2427
2428	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2429		D_BDW_PLUS, 0, 8, NULL},
2430
2431	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2432		D_BDW_PLUS, 0, 8, NULL},
2433
2434	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437
2438	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439
2440	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2441		D_ALL, 0, 8, NULL},
2442
2443	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444
2445	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446
2447	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2448		R_RCS, D_ALL, 0, 8, NULL},
2449
2450	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2451		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2452
2453	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2454		0, 8, NULL},
2455
2456	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2457		D_ALL, ADDR_FIX_1(2), 8, NULL},
2458
2459	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2460		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2461
2462	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2463		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2464
2465	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2466		D_ALL, 0, 8, NULL},
2467
2468	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2469		D_ALL, 0, 8, NULL},
2470
2471	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2472		D_ALL, 0, 8, NULL},
2473
2474	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2475		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2476
2477	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2478		D_BDW_PLUS, 0, 8, NULL},
2479
2480	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2481		D_ALL, ADDR_FIX_1(2), 8, NULL},
2482
2483	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2484		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2485
2486	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2487		R_RCS, D_ALL, 0, 8, NULL},
2488
2489	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2490		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2491
2492	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2493		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494
2495	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2496		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2497
2498	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2499		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2500
2501	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2502		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2503
2504	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2505		R_RCS, D_ALL, 0, 8, NULL},
2506
2507	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2508		D_ALL, 0, 9, NULL},
2509
2510	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2511		ADDR_FIX_2(2, 4), 8, NULL},
2512
2513	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2514		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2515		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2516
2517	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2518		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2519
2520	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2521		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2522		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2523
2524	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2525		D_BDW_PLUS, 0, 8, NULL},
2526
2527	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2528		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2529
2530	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2531
2532	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2533		1, NULL},
2534
2535	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2536		ADDR_FIX_1(1), 8, NULL},
2537
2538	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2539
2540	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2541		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2542
2543	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2544		ADDR_FIX_1(1), 8, NULL},
2545
2546	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2547		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2548
2549	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2550
2551	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2552
2553	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2554		0, 8, NULL},
2555
2556	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2557		D_SKL_PLUS, 0, 8, NULL},
2558
2559	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2560		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2561
2562	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2563		0, 16, NULL},
2564
2565	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2566		0, 16, NULL},
2567
2568	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2569		0, 16, NULL},
2570
2571	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2572
2573	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2574		0, 16, NULL},
2575
2576	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2577		0, 16, NULL},
2578
2579	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2580		0, 16, NULL},
2581
2582	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2583		0, 8, NULL},
2584
2585	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2586		NULL},
2587
2588	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2589		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2590
2591	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2592		R_VCS, D_ALL, 0, 12, NULL},
2593
2594	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2595		R_VCS, D_ALL, 0, 12, NULL},
2596
2597	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2598		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2599
2600	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2601		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2602
2603	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2604		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2605
2606	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2607
2608	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2609		R_VCS, D_ALL, 0, 12, NULL},
2610
2611	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2612		R_VCS, D_ALL, 0, 12, NULL},
2613
2614	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2615		R_VCS, D_ALL, 0, 12, NULL},
2616
2617	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2618		R_VCS, D_ALL, 0, 12, NULL},
2619
2620	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2621		R_VCS, D_ALL, 0, 12, NULL},
2622
2623	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2624		R_VCS, D_ALL, 0, 12, NULL},
2625
2626	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2627		R_VCS, D_ALL, 0, 6, NULL},
2628
2629	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2630		R_VCS, D_ALL, 0, 12, NULL},
2631
2632	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2633		R_VCS, D_ALL, 0, 12, NULL},
2634
2635	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2636		R_VCS, D_ALL, 0, 12, NULL},
2637
2638	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2639		R_VCS, D_ALL, 0, 12, NULL},
2640
2641	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2642		R_VCS, D_ALL, 0, 12, NULL},
2643
2644	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2645		R_VCS, D_ALL, 0, 12, NULL},
2646
2647	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2648		R_VCS, D_ALL, 0, 12, NULL},
2649	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2650		R_VCS, D_ALL, 0, 12, NULL},
2651
2652	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2653		R_VCS, D_ALL, 0, 12, NULL},
2654
2655	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2656		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2657
2658	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2659		R_VCS, D_ALL, 0, 12, NULL},
2660
2661	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2662		R_VCS, D_ALL, 0, 12, NULL},
2663
2664	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2665		R_VCS, D_ALL, 0, 12, NULL},
2666
2667	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2668		R_VCS, D_ALL, 0, 12, NULL},
2669
2670	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2671		R_VCS, D_ALL, 0, 12, NULL},
2672
2673	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2674		R_VCS, D_ALL, 0, 12, NULL},
2675
2676	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2677		R_VCS, D_ALL, 0, 12, NULL},
2678
2679	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2680		R_VCS, D_ALL, 0, 12, NULL},
2681
2682	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2683		R_VCS, D_ALL, 0, 12, NULL},
2684
2685	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2686		R_VCS, D_ALL, 0, 12, NULL},
2687
2688	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2689		R_VCS, D_ALL, 0, 12, NULL},
2690
2691	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2692		0, 16, NULL},
2693
2694	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2695
2696	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2697
2698	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2699		R_VCS, D_ALL, 0, 12, NULL},
2700
2701	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2702		R_VCS, D_ALL, 0, 12, NULL},
2703
2704	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2705		R_VCS, D_ALL, 0, 12, NULL},
2706
2707	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2708
2709	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2710		0, 12, NULL},
2711
2712	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2713		0, 12, NULL},
2714};
2715
2716static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2717{
2718	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2719}
2720
2721/* call the cmd handler, and advance ip */
2722static int cmd_parser_exec(struct parser_exec_state *s)
2723{
2724	struct intel_vgpu *vgpu = s->vgpu;
2725	const struct cmd_info *info;
2726	u32 cmd;
2727	int ret = 0;
2728
2729	cmd = cmd_val(s, 0);
2730
2731	/* fastpath for MI_NOOP */
2732	if (cmd == MI_NOOP)
2733		info = &cmd_info[mi_noop_index];
2734	else
2735		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2736
2737	if (info == NULL) {
2738		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2739			     cmd, get_opcode(cmd, s->engine),
2740			     repr_addr_type(s->buf_addr_type),
2741			     s->engine->name, s->workload);
2742		return -EBADRQC;
2743	}
2744
2745	s->info = info;
2746
2747	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2748			  cmd_length(s), s->buf_type, s->buf_addr_type,
2749			  s->workload, info->name);
2750
2751	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2752		ret = gvt_check_valid_cmd_length(cmd_length(s),
2753						 info->valid_len);
2754		if (ret)
2755			return ret;
2756	}
2757
2758	if (info->handler) {
2759		ret = info->handler(s);
2760		if (ret < 0) {
2761			gvt_vgpu_err("%s handler error\n", info->name);
2762			return ret;
2763		}
2764	}
2765
2766	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2767		ret = cmd_advance_default(s);
2768		if (ret) {
2769			gvt_vgpu_err("%s IP advance error\n", info->name);
2770			return ret;
2771		}
2772	}
2773	return 0;
2774}
2775
2776static inline bool gma_out_of_range(unsigned long gma,
2777		unsigned long gma_head, unsigned int gma_tail)
2778{
2779	if (gma_tail >= gma_head)
2780		return (gma < gma_head) || (gma > gma_tail);
2781	else
2782		return (gma > gma_tail) && (gma < gma_head);
2783}
2784
2785/* Keep the consistent return type, e.g EBADRQC for unknown
2786 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2787 * works as the input of VM healthy status.
2788 */
2789static int command_scan(struct parser_exec_state *s,
2790		unsigned long rb_head, unsigned long rb_tail,
2791		unsigned long rb_start, unsigned long rb_len)
2792{
2793
2794	unsigned long gma_head, gma_tail, gma_bottom;
2795	int ret = 0;
2796	struct intel_vgpu *vgpu = s->vgpu;
2797
2798	gma_head = rb_start + rb_head;
2799	gma_tail = rb_start + rb_tail;
2800	gma_bottom = rb_start +  rb_len;
2801
2802	while (s->ip_gma != gma_tail) {
2803		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2804				s->buf_type == RING_BUFFER_CTX) {
2805			if (!(s->ip_gma >= rb_start) ||
2806				!(s->ip_gma < gma_bottom)) {
2807				gvt_vgpu_err("ip_gma %lx out of ring scope."
2808					"(base:0x%lx, bottom: 0x%lx)\n",
2809					s->ip_gma, rb_start,
2810					gma_bottom);
2811				parser_exec_state_dump(s);
2812				return -EFAULT;
2813			}
2814			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2815				gvt_vgpu_err("ip_gma %lx out of range."
2816					"base 0x%lx head 0x%lx tail 0x%lx\n",
2817					s->ip_gma, rb_start,
2818					rb_head, rb_tail);
2819				parser_exec_state_dump(s);
2820				break;
2821			}
2822		}
2823		ret = cmd_parser_exec(s);
2824		if (ret) {
2825			gvt_vgpu_err("cmd parser error\n");
2826			parser_exec_state_dump(s);
2827			break;
2828		}
2829	}
2830
2831	return ret;
2832}
2833
2834static int scan_workload(struct intel_vgpu_workload *workload)
2835{
2836	unsigned long gma_head, gma_tail;
2837	struct parser_exec_state s;
2838	int ret = 0;
2839
2840	/* ring base is page aligned */
2841	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2842		return -EINVAL;
2843
2844	gma_head = workload->rb_start + workload->rb_head;
2845	gma_tail = workload->rb_start + workload->rb_tail;
2846
2847	s.buf_type = RING_BUFFER_INSTRUCTION;
2848	s.buf_addr_type = GTT_BUFFER;
2849	s.vgpu = workload->vgpu;
2850	s.engine = workload->engine;
2851	s.ring_start = workload->rb_start;
2852	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2853	s.ring_head = gma_head;
2854	s.ring_tail = gma_tail;
2855	s.rb_va = workload->shadow_ring_buffer_va;
2856	s.workload = workload;
2857	s.is_ctx_wa = false;
2858
2859	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2860		return 0;
2861
2862	ret = ip_gma_set(&s, gma_head);
2863	if (ret)
2864		goto out;
2865
2866	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2867		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2868
2869out:
2870	return ret;
2871}
2872
2873static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2874{
2875
2876	unsigned long gma_head, gma_tail, ring_size, ring_tail;
2877	struct parser_exec_state s;
2878	int ret = 0;
2879	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2880				struct intel_vgpu_workload,
2881				wa_ctx);
2882
2883	/* ring base is page aligned */
2884	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2885					I915_GTT_PAGE_SIZE)))
2886		return -EINVAL;
2887
2888	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2889	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2890			PAGE_SIZE);
2891	gma_head = wa_ctx->indirect_ctx.guest_gma;
2892	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2893
2894	s.buf_type = RING_BUFFER_INSTRUCTION;
2895	s.buf_addr_type = GTT_BUFFER;
2896	s.vgpu = workload->vgpu;
2897	s.engine = workload->engine;
2898	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2899	s.ring_size = ring_size;
2900	s.ring_head = gma_head;
2901	s.ring_tail = gma_tail;
2902	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2903	s.workload = workload;
2904	s.is_ctx_wa = true;
2905
2906	ret = ip_gma_set(&s, gma_head);
2907	if (ret)
2908		goto out;
2909
2910	ret = command_scan(&s, 0, ring_tail,
2911		wa_ctx->indirect_ctx.guest_gma, ring_size);
2912out:
2913	return ret;
2914}
2915
2916static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2917{
2918	struct intel_vgpu *vgpu = workload->vgpu;
2919	struct intel_vgpu_submission *s = &vgpu->submission;
2920	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2921	void *shadow_ring_buffer_va;
2922	int ret;
2923
2924	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2925
2926	/* calculate workload ring buffer size */
2927	workload->rb_len = (workload->rb_tail + guest_rb_size -
2928			workload->rb_head) % guest_rb_size;
2929
2930	gma_head = workload->rb_start + workload->rb_head;
2931	gma_tail = workload->rb_start + workload->rb_tail;
2932	gma_top = workload->rb_start + guest_rb_size;
2933
2934	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2935		void *p;
2936
2937		/* realloc the new ring buffer if needed */
2938		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2939			     workload->rb_len, GFP_KERNEL);
2940		if (!p) {
2941			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2942			return -ENOMEM;
2943		}
2944		s->ring_scan_buffer[workload->engine->id] = p;
2945		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2946	}
2947
2948	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2949
2950	/* get shadow ring buffer va */
2951	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2952
2953	/* head > tail --> copy head <-> top */
2954	if (gma_head > gma_tail) {
2955		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2956				      gma_head, gma_top, shadow_ring_buffer_va);
2957		if (ret < 0) {
2958			gvt_vgpu_err("fail to copy guest ring buffer\n");
2959			return ret;
2960		}
2961		shadow_ring_buffer_va += ret;
2962		gma_head = workload->rb_start;
2963	}
2964
2965	/* copy head or start <-> tail */
2966	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2967				shadow_ring_buffer_va);
2968	if (ret < 0) {
2969		gvt_vgpu_err("fail to copy guest ring buffer\n");
2970		return ret;
2971	}
2972	return 0;
2973}
2974
2975int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2976{
2977	int ret;
2978	struct intel_vgpu *vgpu = workload->vgpu;
2979
2980	ret = shadow_workload_ring_buffer(workload);
2981	if (ret) {
2982		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2983		return ret;
2984	}
2985
2986	ret = scan_workload(workload);
2987	if (ret) {
2988		gvt_vgpu_err("scan workload error\n");
2989		return ret;
2990	}
2991	return 0;
2992}
2993
2994static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2995{
2996	int ctx_size = wa_ctx->indirect_ctx.size;
2997	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2998	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2999					struct intel_vgpu_workload,
3000					wa_ctx);
3001	struct intel_vgpu *vgpu = workload->vgpu;
3002	struct drm_i915_gem_object *obj;
3003	int ret = 0;
3004	void *map;
3005
3006	obj = i915_gem_object_create_shmem(workload->engine->i915,
3007					   roundup(ctx_size + CACHELINE_BYTES,
3008						   PAGE_SIZE));
3009	if (IS_ERR(obj))
3010		return PTR_ERR(obj);
3011
3012	/* get the va of the shadow batch buffer */
3013	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3014	if (IS_ERR(map)) {
3015		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3016		ret = PTR_ERR(map);
3017		goto put_obj;
3018	}
3019
3020	i915_gem_object_lock(obj, NULL);
3021	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3022	i915_gem_object_unlock(obj);
3023	if (ret) {
3024		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3025		goto unmap_src;
3026	}
3027
3028	ret = copy_gma_to_hva(workload->vgpu,
3029				workload->vgpu->gtt.ggtt_mm,
3030				guest_gma, guest_gma + ctx_size,
3031				map);
3032	if (ret < 0) {
3033		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3034		goto unmap_src;
3035	}
3036
3037	wa_ctx->indirect_ctx.obj = obj;
3038	wa_ctx->indirect_ctx.shadow_va = map;
3039	return 0;
3040
3041unmap_src:
3042	i915_gem_object_unpin_map(obj);
3043put_obj:
3044	i915_gem_object_put(obj);
3045	return ret;
3046}
3047
3048static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3049{
3050	u32 per_ctx_start[CACHELINE_DWORDS] = {};
3051	unsigned char *bb_start_sva;
3052
3053	if (!wa_ctx->per_ctx.valid)
3054		return 0;
3055
3056	per_ctx_start[0] = 0x18800001;
3057	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3058
3059	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3060				wa_ctx->indirect_ctx.size;
3061
3062	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3063
3064	return 0;
3065}
3066
3067int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3068{
3069	int ret;
3070	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3071					struct intel_vgpu_workload,
3072					wa_ctx);
3073	struct intel_vgpu *vgpu = workload->vgpu;
3074
3075	if (wa_ctx->indirect_ctx.size == 0)
3076		return 0;
3077
3078	ret = shadow_indirect_ctx(wa_ctx);
3079	if (ret) {
3080		gvt_vgpu_err("fail to shadow indirect ctx\n");
3081		return ret;
3082	}
3083
3084	combine_wa_ctx(wa_ctx);
3085
3086	ret = scan_wa_ctx(wa_ctx);
3087	if (ret) {
3088		gvt_vgpu_err("scan wa ctx error\n");
3089		return ret;
3090	}
3091
3092	return 0;
3093}
3094
3095/* generate dummy contexts by sending empty requests to HW, and let
3096 * the HW to fill Engine Contexts. This dummy contexts are used for
3097 * initialization purpose (update reg whitelist), so referred to as
3098 * init context here
3099 */
3100void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3101{
3102	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3103	struct intel_gvt *gvt = vgpu->gvt;
3104	struct intel_engine_cs *engine;
3105	enum intel_engine_id id;
3106
3107	if (gvt->is_reg_whitelist_updated)
3108		return;
3109
3110	/* scan init ctx to update cmd accessible list */
3111	for_each_engine(engine, gvt->gt, id) {
3112		struct parser_exec_state s;
3113		void *vaddr;
3114		int ret;
3115
3116		if (!engine->default_state)
3117			continue;
3118
3119		vaddr = shmem_pin_map(engine->default_state);
3120		if (!vaddr) {
3121			gvt_err("failed to map %s->default state\n",
3122				engine->name);
3123			return;
3124		}
3125
3126		s.buf_type = RING_BUFFER_CTX;
3127		s.buf_addr_type = GTT_BUFFER;
3128		s.vgpu = vgpu;
3129		s.engine = engine;
3130		s.ring_start = 0;
3131		s.ring_size = engine->context_size - start;
3132		s.ring_head = 0;
3133		s.ring_tail = s.ring_size;
3134		s.rb_va = vaddr + start;
3135		s.workload = NULL;
3136		s.is_ctx_wa = false;
3137		s.is_init_ctx = true;
3138
3139		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3140		ret = ip_gma_set(&s, RING_CTX_SIZE);
3141		if (ret == 0) {
3142			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3143			if (ret)
3144				gvt_err("Scan init ctx error\n");
3145		}
3146
3147		shmem_unpin_map(engine->default_state, vaddr);
3148		if (ret)
3149			return;
3150	}
3151
3152	gvt->is_reg_whitelist_updated = true;
3153}
3154
3155int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3156{
3157	struct intel_vgpu *vgpu = workload->vgpu;
3158	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3159	struct parser_exec_state s;
3160	int ring_id = workload->engine->id;
3161	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3162	int ret;
3163
3164	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3165
3166	ctx_size = workload->engine->context_size - PAGE_SIZE;
3167
3168	/* Only ring contxt is loaded to HW for inhibit context, no need to
3169	 * scan engine context
3170	 */
3171	if (is_inhibit_context(ce))
3172		return 0;
3173
3174	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3175	gma_head = 0;
3176	gma_tail = ctx_size;
3177
3178	s.buf_type = RING_BUFFER_CTX;
3179	s.buf_addr_type = GTT_BUFFER;
3180	s.vgpu = workload->vgpu;
3181	s.engine = workload->engine;
3182	s.ring_start = gma_start;
3183	s.ring_size = ctx_size;
3184	s.ring_head = gma_start + gma_head;
3185	s.ring_tail = gma_start + gma_tail;
3186	s.rb_va = ce->lrc_reg_state;
3187	s.workload = workload;
3188	s.is_ctx_wa = false;
3189	s.is_init_ctx = false;
3190
3191	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3192	 * context
3193	 */
3194	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3195	if (ret)
3196		goto out;
3197
3198	ret = command_scan(&s, gma_head, gma_tail,
3199		gma_start, ctx_size);
3200out:
3201	if (ret)
3202		gvt_vgpu_err("scan shadow ctx error\n");
3203
3204	return ret;
3205}
3206
3207static int init_cmd_table(struct intel_gvt *gvt)
3208{
3209	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3210	int i;
3211
3212	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3213		struct cmd_entry *e;
3214
3215		if (!(cmd_info[i].devices & gen_type))
3216			continue;
3217
3218		e = kzalloc(sizeof(*e), GFP_KERNEL);
3219		if (!e)
3220			return -ENOMEM;
3221
3222		e->info = &cmd_info[i];
3223		if (cmd_info[i].opcode == OP_MI_NOOP)
3224			mi_noop_index = i;
3225
3226		INIT_HLIST_NODE(&e->hlist);
3227		add_cmd_entry(gvt, e);
3228		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3229			    e->info->name, e->info->opcode, e->info->flag,
3230			    e->info->devices, e->info->rings);
3231	}
3232
3233	return 0;
3234}
3235
3236static void clean_cmd_table(struct intel_gvt *gvt)
3237{
3238	struct hlist_node *tmp;
3239	struct cmd_entry *e;
3240	int i;
3241
3242	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3243		kfree(e);
3244
3245	hash_init(gvt->cmd_table);
3246}
3247
3248void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3249{
3250	clean_cmd_table(gvt);
3251}
3252
3253int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3254{
3255	int ret;
3256
3257	ret = init_cmd_table(gvt);
3258	if (ret) {
3259		intel_gvt_clean_cmd_parser(gvt);
3260		return ret;
3261	}
3262	return 0;
3263}
3264