1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2014-2019 Intel Corporation
4 */
5
6#include <linux/debugfs.h>
7#include <linux/string_helpers.h>
8
9#include "gt/intel_gt.h"
10#include "i915_drv.h"
11#include "i915_irq.h"
12#include "i915_memcpy.h"
13#include "intel_guc_capture.h"
14#include "intel_guc_log.h"
15#include "intel_guc_print.h"
16
17#if defined(CONFIG_DRM_I915_DEBUG_GUC)
18#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE	SZ_2M
19#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE	SZ_16M
20#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE	SZ_1M
21#elif defined(CONFIG_DRM_I915_DEBUG_GEM)
22#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE	SZ_1M
23#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE	SZ_2M
24#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE	SZ_1M
25#else
26#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE	SZ_8K
27#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE	SZ_64K
28#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE	SZ_1M
29#endif
30
31static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log);
32
33struct guc_log_section {
34	u32 max;
35	u32 flag;
36	u32 default_val;
37	const char *name;
38};
39
40static void _guc_log_init_sizes(struct intel_guc_log *log)
41{
42	struct intel_guc *guc = log_to_guc(log);
43	static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = {
44		{
45			GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT,
46			GUC_LOG_LOG_ALLOC_UNITS,
47			GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE,
48			"crash dump"
49		},
50		{
51			GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT,
52			GUC_LOG_LOG_ALLOC_UNITS,
53			GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE,
54			"debug",
55		},
56		{
57			GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT,
58			GUC_LOG_CAPTURE_ALLOC_UNITS,
59			GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE,
60			"capture",
61		}
62	};
63	int i;
64
65	for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++)
66		log->sizes[i].bytes = sections[i].default_val;
67
68	/* If debug size > 1MB then bump default crash size to keep the same units */
69	if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M &&
70	    GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M)
71		log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M;
72
73	/* Prepare the GuC API structure fields: */
74	for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) {
75		/* Convert to correct units */
76		if ((log->sizes[i].bytes % SZ_1M) == 0) {
77			log->sizes[i].units = SZ_1M;
78			log->sizes[i].flag = sections[i].flag;
79		} else {
80			log->sizes[i].units = SZ_4K;
81			log->sizes[i].flag = 0;
82		}
83
84		if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units))
85			guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n",
86				sections[i].name, log->sizes[i].bytes, log->sizes[i].units);
87		log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units;
88
89		if (!log->sizes[i].count) {
90			guc_err(guc, "Zero log %s size!\n", sections[i].name);
91		} else {
92			/* Size is +1 unit */
93			log->sizes[i].count--;
94		}
95
96		/* Clip to field size */
97		if (log->sizes[i].count > sections[i].max) {
98			guc_err(guc, "log %s size too large: %d vs %d!\n",
99				sections[i].name, log->sizes[i].count + 1, sections[i].max + 1);
100			log->sizes[i].count = sections[i].max;
101		}
102	}
103
104	if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) {
105		guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n",
106			log->sizes[GUC_LOG_SECTIONS_CRASH].units,
107			log->sizes[GUC_LOG_SECTIONS_DEBUG].units);
108		log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units;
109		log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0;
110	}
111
112	log->sizes_initialised = true;
113}
114
115static void guc_log_init_sizes(struct intel_guc_log *log)
116{
117	if (log->sizes_initialised)
118		return;
119
120	_guc_log_init_sizes(log);
121}
122
123static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log)
124{
125	guc_log_init_sizes(log);
126
127	return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes;
128}
129
130static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log)
131{
132	guc_log_init_sizes(log);
133
134	return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes;
135}
136
137u32 intel_guc_log_section_size_capture(struct intel_guc_log *log)
138{
139	guc_log_init_sizes(log);
140
141	return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes;
142}
143
144static u32 intel_guc_log_size(struct intel_guc_log *log)
145{
146	/*
147	 *  GuC Log buffer Layout:
148	 *
149	 *  NB: Ordering must follow "enum guc_log_buffer_type".
150	 *
151	 *  +===============================+ 00B
152	 *  |      Debug state header       |
153	 *  +-------------------------------+ 32B
154	 *  |    Crash dump state header    |
155	 *  +-------------------------------+ 64B
156	 *  |     Capture state header      |
157	 *  +-------------------------------+ 96B
158	 *  |                               |
159	 *  +===============================+ PAGE_SIZE (4KB)
160	 *  |          Debug logs           |
161	 *  +===============================+ + DEBUG_SIZE
162	 *  |        Crash Dump logs        |
163	 *  +===============================+ + CRASH_SIZE
164	 *  |         Capture logs          |
165	 *  +===============================+ + CAPTURE_SIZE
166	 */
167	return PAGE_SIZE +
168		intel_guc_log_section_size_crash(log) +
169		intel_guc_log_section_size_debug(log) +
170		intel_guc_log_section_size_capture(log);
171}
172
173/**
174 * DOC: GuC firmware log
175 *
176 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
177 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
178 * i915_guc_load_status will print out firmware loading status and scratch
179 * registers value.
180 */
181
182static int guc_action_flush_log_complete(struct intel_guc *guc)
183{
184	u32 action[] = {
185		INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
186		GUC_DEBUG_LOG_BUFFER
187	};
188
189	return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0);
190}
191
192static int guc_action_flush_log(struct intel_guc *guc)
193{
194	u32 action[] = {
195		INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
196		0
197	};
198
199	return intel_guc_send(guc, action, ARRAY_SIZE(action));
200}
201
202static int guc_action_control_log(struct intel_guc *guc, bool enable,
203				  bool default_logging, u32 verbosity)
204{
205	u32 action[] = {
206		INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
207		(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
208		(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
209		(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
210	};
211
212	GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
213
214	return intel_guc_send(guc, action, ARRAY_SIZE(action));
215}
216
217/*
218 * Sub buffer switch callback. Called whenever relay has to switch to a new
219 * sub buffer, relay stays on the same sub buffer if 0 is returned.
220 */
221static int subbuf_start_callback(struct rchan_buf *buf,
222				 void *subbuf,
223				 void *prev_subbuf,
224				 size_t prev_padding)
225{
226	/*
227	 * Use no-overwrite mode by default, where relay will stop accepting
228	 * new data if there are no empty sub buffers left.
229	 * There is no strict synchronization enforced by relay between Consumer
230	 * and Producer. In overwrite mode, there is a possibility of getting
231	 * inconsistent/garbled data, the producer could be writing on to the
232	 * same sub buffer from which Consumer is reading. This can't be avoided
233	 * unless Consumer is fast enough and can always run in tandem with
234	 * Producer.
235	 */
236	if (relay_buf_full(buf))
237		return 0;
238
239	return 1;
240}
241
242/*
243 * file_create() callback. Creates relay file in debugfs.
244 */
245static struct dentry *create_buf_file_callback(const char *filename,
246					       struct dentry *parent,
247					       umode_t mode,
248					       struct rchan_buf *buf,
249					       int *is_global)
250{
251	struct dentry *buf_file;
252
253	/*
254	 * This to enable the use of a single buffer for the relay channel and
255	 * correspondingly have a single file exposed to User, through which
256	 * it can collect the logs in order without any post-processing.
257	 * Need to set 'is_global' even if parent is NULL for early logging.
258	 */
259	*is_global = 1;
260
261	if (!parent)
262		return NULL;
263
264	buf_file = debugfs_create_file(filename, mode,
265				       parent, buf, &relay_file_operations);
266	if (IS_ERR(buf_file))
267		return NULL;
268
269	return buf_file;
270}
271
272/*
273 * file_remove() default callback. Removes relay file in debugfs.
274 */
275static int remove_buf_file_callback(struct dentry *dentry)
276{
277	debugfs_remove(dentry);
278	return 0;
279}
280
281/* relay channel callbacks */
282static const struct rchan_callbacks relay_callbacks = {
283	.subbuf_start = subbuf_start_callback,
284	.create_buf_file = create_buf_file_callback,
285	.remove_buf_file = remove_buf_file_callback,
286};
287
288static void guc_move_to_next_buf(struct intel_guc_log *log)
289{
290	/*
291	 * Make sure the updates made in the sub buffer are visible when
292	 * Consumer sees the following update to offset inside the sub buffer.
293	 */
294	smp_wmb();
295
296	/* All data has been written, so now move the offset of sub buffer. */
297	relay_reserve(log->relay.channel, log->vma->obj->base.size -
298					  intel_guc_log_section_size_capture(log));
299
300	/* Switch to the next sub buffer */
301	relay_flush(log->relay.channel);
302}
303
304static void *guc_get_write_buffer(struct intel_guc_log *log)
305{
306	/*
307	 * Just get the base address of a new sub buffer and copy data into it
308	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
309	 * buffers are full. Could have used the relay_write() to indirectly
310	 * copy the data, but that would have been bit convoluted, as we need to
311	 * write to only certain locations inside a sub buffer which cannot be
312	 * done without using relay_reserve() along with relay_write(). So its
313	 * better to use relay_reserve() alone.
314	 */
315	return relay_reserve(log->relay.channel, 0);
316}
317
318bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log,
319				      enum guc_log_buffer_type type,
320				      unsigned int full_cnt)
321{
322	unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
323	bool overflow = false;
324
325	if (full_cnt != prev_full_cnt) {
326		overflow = true;
327
328		log->stats[type].overflow = full_cnt;
329		log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
330
331		if (full_cnt < prev_full_cnt) {
332			/* buffer_full_cnt is a 4 bit counter */
333			log->stats[type].sampled_overflow += 16;
334		}
335
336		guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n");
337	}
338
339	return overflow;
340}
341
342unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log,
343					   enum guc_log_buffer_type type)
344{
345	switch (type) {
346	case GUC_DEBUG_LOG_BUFFER:
347		return intel_guc_log_section_size_debug(log);
348	case GUC_CRASH_DUMP_LOG_BUFFER:
349		return intel_guc_log_section_size_crash(log);
350	case GUC_CAPTURE_LOG_BUFFER:
351		return intel_guc_log_section_size_capture(log);
352	default:
353		MISSING_CASE(type);
354	}
355
356	return 0;
357}
358
359size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log,
360				       enum guc_log_buffer_type type)
361{
362	enum guc_log_buffer_type i;
363	size_t offset = PAGE_SIZE;/* for the log_buffer_states */
364
365	for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) {
366		if (i == type)
367			break;
368		offset += intel_guc_get_log_buffer_size(log, i);
369	}
370
371	return offset;
372}
373
374static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
375{
376	struct intel_guc *guc = log_to_guc(log);
377	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
378	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
379	struct guc_log_buffer_state log_buf_state_local;
380	enum guc_log_buffer_type type;
381	void *src_data, *dst_data;
382	bool new_overflow;
383
384	mutex_lock(&log->relay.lock);
385
386	if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log)))
387		goto out_unlock;
388
389	/* Get the pointer to shared GuC log buffer */
390	src_data = log->buf_addr;
391	log_buf_state = src_data;
392
393	/* Get the pointer to local buffer to store the logs */
394	log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
395
396	if (unlikely(!log_buf_snapshot_state)) {
397		/*
398		 * Used rate limited to avoid deluge of messages, logs might be
399		 * getting consumed by User at a slow rate.
400		 */
401		guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n");
402		log->relay.full_count++;
403
404		goto out_unlock;
405	}
406
407	/* Actual logs are present from the 2nd page */
408	src_data += PAGE_SIZE;
409	dst_data += PAGE_SIZE;
410
411	/* For relay logging, we exclude error state capture */
412	for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) {
413		/*
414		 * Make a copy of the state structure, inside GuC log buffer
415		 * (which is uncached mapped), on the stack to avoid reading
416		 * from it multiple times.
417		 */
418		memcpy(&log_buf_state_local, log_buf_state,
419		       sizeof(struct guc_log_buffer_state));
420		buffer_size = intel_guc_get_log_buffer_size(log, type);
421		read_offset = log_buf_state_local.read_ptr;
422		write_offset = log_buf_state_local.sampled_write_ptr;
423		full_cnt = log_buf_state_local.buffer_full_cnt;
424
425		/* Bookkeeping stuff */
426		log->stats[type].flush += log_buf_state_local.flush_to_file;
427		new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt);
428
429		/* Update the state of shared log buffer */
430		log_buf_state->read_ptr = write_offset;
431		log_buf_state->flush_to_file = 0;
432		log_buf_state++;
433
434		/* First copy the state structure in snapshot buffer */
435		memcpy(log_buf_snapshot_state, &log_buf_state_local,
436		       sizeof(struct guc_log_buffer_state));
437
438		/*
439		 * The write pointer could have been updated by GuC firmware,
440		 * after sending the flush interrupt to Host, for consistency
441		 * set write pointer value to same value of sampled_write_ptr
442		 * in the snapshot buffer.
443		 */
444		log_buf_snapshot_state->write_ptr = write_offset;
445		log_buf_snapshot_state++;
446
447		/* Now copy the actual logs. */
448		if (unlikely(new_overflow)) {
449			/* copy the whole buffer in case of overflow */
450			read_offset = 0;
451			write_offset = buffer_size;
452		} else if (unlikely((read_offset > buffer_size) ||
453				    (write_offset > buffer_size))) {
454			guc_err(guc, "invalid log buffer state\n");
455			/* copy whole buffer as offsets are unreliable */
456			read_offset = 0;
457			write_offset = buffer_size;
458		}
459
460		/* Just copy the newly written data */
461		if (read_offset > write_offset) {
462			i915_memcpy_from_wc(dst_data, src_data, write_offset);
463			bytes_to_copy = buffer_size - read_offset;
464		} else {
465			bytes_to_copy = write_offset - read_offset;
466		}
467		i915_memcpy_from_wc(dst_data + read_offset,
468				    src_data + read_offset, bytes_to_copy);
469
470		src_data += buffer_size;
471		dst_data += buffer_size;
472	}
473
474	guc_move_to_next_buf(log);
475
476out_unlock:
477	mutex_unlock(&log->relay.lock);
478}
479
480static void copy_debug_logs_work(struct work_struct *work)
481{
482	struct intel_guc_log *log =
483		container_of(work, struct intel_guc_log, relay.flush_work);
484
485	guc_log_copy_debuglogs_for_relay(log);
486}
487
488static int guc_log_relay_map(struct intel_guc_log *log)
489{
490	lockdep_assert_held(&log->relay.lock);
491
492	if (!log->vma || !log->buf_addr)
493		return -ENODEV;
494
495	/*
496	 * WC vmalloc mapping of log buffer pages was done at
497	 * GuC Log Init time, but lets keep a ref for book-keeping
498	 */
499	i915_gem_object_get(log->vma->obj);
500	log->relay.buf_in_use = true;
501
502	return 0;
503}
504
505static void guc_log_relay_unmap(struct intel_guc_log *log)
506{
507	lockdep_assert_held(&log->relay.lock);
508
509	i915_gem_object_put(log->vma->obj);
510	log->relay.buf_in_use = false;
511}
512
513void intel_guc_log_init_early(struct intel_guc_log *log)
514{
515	mutex_init(&log->relay.lock);
516	INIT_WORK(&log->relay.flush_work, copy_debug_logs_work);
517	log->relay.started = false;
518}
519
520static int guc_log_relay_create(struct intel_guc_log *log)
521{
522	struct intel_guc *guc = log_to_guc(log);
523	struct drm_i915_private *i915 = guc_to_i915(guc);
524	struct rchan *guc_log_relay_chan;
525	size_t n_subbufs, subbuf_size;
526	int ret;
527
528	lockdep_assert_held(&log->relay.lock);
529	GEM_BUG_ON(!log->vma);
530
531	 /*
532	  * Keep the size of sub buffers same as shared log buffer
533	  * but GuC log-events excludes the error-state-capture logs
534	  */
535	subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log);
536
537	/*
538	 * Store up to 8 snapshots, which is large enough to buffer sufficient
539	 * boot time logs and provides enough leeway to User, in terms of
540	 * latency, for consuming the logs from relay. Also doesn't take
541	 * up too much memory.
542	 */
543	n_subbufs = 8;
544
545	if (!guc->dbgfs_node)
546		return -ENOENT;
547
548	guc_log_relay_chan = relay_open("guc_log",
549					guc->dbgfs_node,
550					subbuf_size, n_subbufs,
551					&relay_callbacks, i915);
552	if (!guc_log_relay_chan) {
553		guc_err(guc, "Couldn't create relay channel for logging\n");
554
555		ret = -ENOMEM;
556		return ret;
557	}
558
559	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
560	log->relay.channel = guc_log_relay_chan;
561
562	return 0;
563}
564
565static void guc_log_relay_destroy(struct intel_guc_log *log)
566{
567	lockdep_assert_held(&log->relay.lock);
568
569	relay_close(log->relay.channel);
570	log->relay.channel = NULL;
571}
572
573static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
574{
575	struct intel_guc *guc = log_to_guc(log);
576	struct drm_i915_private *i915 = guc_to_i915(guc);
577	intel_wakeref_t wakeref;
578
579	_guc_log_copy_debuglogs_for_relay(log);
580
581	/*
582	 * Generally device is expected to be active only at this
583	 * time, so get/put should be really quick.
584	 */
585	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
586		guc_action_flush_log_complete(guc);
587}
588
589static u32 __get_default_log_level(struct intel_guc_log *log)
590{
591	struct intel_guc *guc = log_to_guc(log);
592	struct drm_i915_private *i915 = guc_to_i915(guc);
593
594	/* A negative value means "use platform/config default" */
595	if (i915->params.guc_log_level < 0) {
596		return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
597			IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
598			GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
599	}
600
601	if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) {
602		guc_warn(guc, "Log verbosity param out of range: %d > %d!\n",
603			 i915->params.guc_log_level, GUC_LOG_LEVEL_MAX);
604		return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
605			IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
606			GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
607	}
608
609	GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED);
610	GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX);
611	return i915->params.guc_log_level;
612}
613
614int intel_guc_log_create(struct intel_guc_log *log)
615{
616	struct intel_guc *guc = log_to_guc(log);
617	struct i915_vma *vma;
618	void *vaddr;
619	u32 guc_log_size;
620	int ret;
621
622	GEM_BUG_ON(log->vma);
623
624	guc_log_size = intel_guc_log_size(log);
625
626	vma = intel_guc_allocate_vma(guc, guc_log_size);
627	if (IS_ERR(vma)) {
628		ret = PTR_ERR(vma);
629		goto err;
630	}
631
632	log->vma = vma;
633	/*
634	 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to
635	 * data from memory during  critical events such as error capture
636	 */
637	vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC);
638	if (IS_ERR(vaddr)) {
639		ret = PTR_ERR(vaddr);
640		i915_vma_unpin_and_release(&log->vma, 0);
641		goto err;
642	}
643	log->buf_addr = vaddr;
644
645	log->level = __get_default_log_level(log);
646	guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
647		log->level, str_enabled_disabled(log->level),
648		str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
649		GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
650
651	return 0;
652
653err:
654	guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret));
655	return ret;
656}
657
658void intel_guc_log_destroy(struct intel_guc_log *log)
659{
660	log->buf_addr = NULL;
661	i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP);
662}
663
664int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
665{
666	struct intel_guc *guc = log_to_guc(log);
667	struct drm_i915_private *i915 = guc_to_i915(guc);
668	intel_wakeref_t wakeref;
669	int ret = 0;
670
671	BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
672	GEM_BUG_ON(!log->vma);
673
674	/*
675	 * GuC is recognizing log levels starting from 0 to max, we're using 0
676	 * as indication that logging should be disabled.
677	 */
678	if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
679		return -EINVAL;
680
681	mutex_lock(&i915->drm.struct_mutex);
682
683	if (log->level == level)
684		goto out_unlock;
685
686	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
687		ret = guc_action_control_log(guc,
688					     GUC_LOG_LEVEL_IS_VERBOSE(level),
689					     GUC_LOG_LEVEL_IS_ENABLED(level),
690					     GUC_LOG_LEVEL_TO_VERBOSITY(level));
691	if (ret) {
692		guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret));
693		goto out_unlock;
694	}
695
696	log->level = level;
697
698out_unlock:
699	mutex_unlock(&i915->drm.struct_mutex);
700
701	return ret;
702}
703
704bool intel_guc_log_relay_created(const struct intel_guc_log *log)
705{
706	return log->buf_addr;
707}
708
709int intel_guc_log_relay_open(struct intel_guc_log *log)
710{
711	int ret;
712
713	if (!log->vma)
714		return -ENODEV;
715
716	mutex_lock(&log->relay.lock);
717
718	if (intel_guc_log_relay_created(log)) {
719		ret = -EEXIST;
720		goto out_unlock;
721	}
722
723	/*
724	 * We require SSE 4.1 for fast reads from the GuC log buffer and
725	 * it should be present on the chipsets supporting GuC based
726	 * submissions.
727	 */
728	if (!i915_has_memcpy_from_wc()) {
729		ret = -ENXIO;
730		goto out_unlock;
731	}
732
733	ret = guc_log_relay_create(log);
734	if (ret)
735		goto out_unlock;
736
737	ret = guc_log_relay_map(log);
738	if (ret)
739		goto out_relay;
740
741	mutex_unlock(&log->relay.lock);
742
743	return 0;
744
745out_relay:
746	guc_log_relay_destroy(log);
747out_unlock:
748	mutex_unlock(&log->relay.lock);
749
750	return ret;
751}
752
753int intel_guc_log_relay_start(struct intel_guc_log *log)
754{
755	if (log->relay.started)
756		return -EEXIST;
757
758	/*
759	 * When GuC is logging without us relaying to userspace, we're ignoring
760	 * the flush notification. This means that we need to unconditionally
761	 * flush on relay enabling, since GuC only notifies us once.
762	 */
763	queue_work(system_highpri_wq, &log->relay.flush_work);
764
765	log->relay.started = true;
766
767	return 0;
768}
769
770void intel_guc_log_relay_flush(struct intel_guc_log *log)
771{
772	struct intel_guc *guc = log_to_guc(log);
773	intel_wakeref_t wakeref;
774
775	if (!log->relay.started)
776		return;
777
778	/*
779	 * Before initiating the forceful flush, wait for any pending/ongoing
780	 * flush to complete otherwise forceful flush may not actually happen.
781	 */
782	flush_work(&log->relay.flush_work);
783
784	with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
785		guc_action_flush_log(guc);
786
787	/* GuC would have updated log buffer by now, so copy it */
788	guc_log_copy_debuglogs_for_relay(log);
789}
790
791/*
792 * Stops the relay log. Called from intel_guc_log_relay_close(), so no
793 * possibility of race with start/flush since relay_write cannot race
794 * relay_close.
795 */
796static void guc_log_relay_stop(struct intel_guc_log *log)
797{
798	struct intel_guc *guc = log_to_guc(log);
799	struct drm_i915_private *i915 = guc_to_i915(guc);
800
801	if (!log->relay.started)
802		return;
803
804	intel_synchronize_irq(i915);
805
806	flush_work(&log->relay.flush_work);
807
808	log->relay.started = false;
809}
810
811void intel_guc_log_relay_close(struct intel_guc_log *log)
812{
813	guc_log_relay_stop(log);
814
815	mutex_lock(&log->relay.lock);
816	GEM_BUG_ON(!intel_guc_log_relay_created(log));
817	guc_log_relay_unmap(log);
818	guc_log_relay_destroy(log);
819	mutex_unlock(&log->relay.lock);
820}
821
822void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
823{
824	if (log->relay.started)
825		queue_work(system_highpri_wq, &log->relay.flush_work);
826}
827
828static const char *
829stringify_guc_log_type(enum guc_log_buffer_type type)
830{
831	switch (type) {
832	case GUC_DEBUG_LOG_BUFFER:
833		return "DEBUG";
834	case GUC_CRASH_DUMP_LOG_BUFFER:
835		return "CRASH";
836	case GUC_CAPTURE_LOG_BUFFER:
837		return "CAPTURE";
838	default:
839		MISSING_CASE(type);
840	}
841
842	return "";
843}
844
845/**
846 * intel_guc_log_info - dump information about GuC log relay
847 * @log: the GuC log
848 * @p: the &drm_printer
849 *
850 * Pretty printer for GuC log info
851 */
852void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p)
853{
854	enum guc_log_buffer_type type;
855
856	if (!intel_guc_log_relay_created(log)) {
857		drm_puts(p, "GuC log relay not created\n");
858		return;
859	}
860
861	drm_puts(p, "GuC logging stats:\n");
862
863	drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count);
864
865	for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
866		drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n",
867			   stringify_guc_log_type(type),
868			   log->stats[type].flush,
869			   log->stats[type].sampled_overflow);
870	}
871}
872
873/**
874 * intel_guc_log_dump - dump the contents of the GuC log
875 * @log: the GuC log
876 * @p: the &drm_printer
877 * @dump_load_err: dump the log saved on GuC load error
878 *
879 * Pretty printer for the GuC log
880 */
881int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p,
882		       bool dump_load_err)
883{
884	struct intel_guc *guc = log_to_guc(log);
885	struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
886	struct drm_i915_gem_object *obj = NULL;
887	void *map;
888	u32 *page;
889	int i, j;
890
891	if (!intel_guc_is_supported(guc))
892		return -ENODEV;
893
894	if (dump_load_err)
895		obj = uc->load_err_log;
896	else if (guc->log.vma)
897		obj = guc->log.vma->obj;
898
899	if (!obj)
900		return 0;
901
902	page = (u32 *)__get_free_page(GFP_KERNEL);
903	if (!page)
904		return -ENOMEM;
905
906	intel_guc_dump_time_info(guc, p);
907
908	map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
909	if (IS_ERR(map)) {
910		guc_dbg(guc, "Failed to pin log object: %pe\n", map);
911		drm_puts(p, "(log data unaccessible)\n");
912		free_page((unsigned long)page);
913		return PTR_ERR(map);
914	}
915
916	for (i = 0; i < obj->base.size; i += PAGE_SIZE) {
917		if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE))
918			memcpy(page, map + i, PAGE_SIZE);
919
920		for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4)
921			drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n",
922				   *(page + j + 0), *(page + j + 1),
923				   *(page + j + 2), *(page + j + 3));
924	}
925
926	drm_puts(p, "\n");
927
928	i915_gem_object_unpin_map(obj);
929	free_page((unsigned long)page);
930
931	return 0;
932}
933