1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright �� 2018 Intel Corporation
4 */
5
6#include <linux/sort.h>
7
8#include "gt/intel_gt_print.h"
9#include "i915_selftest.h"
10#include "intel_engine_regs.h"
11#include "intel_gpu_commands.h"
12#include "intel_gt_clock_utils.h"
13#include "selftest_engine.h"
14#include "selftest_engine_heartbeat.h"
15#include "selftests/igt_atomic.h"
16#include "selftests/igt_flush_test.h"
17#include "selftests/igt_spinner.h"
18
19#define COUNT 5
20
21static int cmp_u64(const void *A, const void *B)
22{
23	const u64 *a = A, *b = B;
24
25	return *a - *b;
26}
27
28static u64 trifilter(u64 *a)
29{
30	sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
31	return (a[1] + 2 * a[2] + a[3]) >> 2;
32}
33
34static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
35{
36	*cs++ = MI_SEMAPHORE_WAIT |
37		MI_SEMAPHORE_GLOBAL_GTT |
38		MI_SEMAPHORE_POLL |
39		op;
40	*cs++ = value;
41	*cs++ = offset;
42	*cs++ = 0;
43
44	return cs;
45}
46
47static u32 *emit_store(u32 *cs, u32 offset, u32 value)
48{
49	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
50	*cs++ = offset;
51	*cs++ = 0;
52	*cs++ = value;
53
54	return cs;
55}
56
57static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
58{
59	*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
60	*cs++ = i915_mmio_reg_offset(reg);
61	*cs++ = offset;
62	*cs++ = 0;
63
64	return cs;
65}
66
67static void write_semaphore(u32 *x, u32 value)
68{
69	WRITE_ONCE(*x, value);
70	wmb();
71}
72
73static int __measure_timestamps(struct intel_context *ce,
74				u64 *dt, u64 *d_ring, u64 *d_ctx)
75{
76	struct intel_engine_cs *engine = ce->engine;
77	u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
78	u32 offset = i915_ggtt_offset(engine->status_page.vma);
79	struct i915_request *rq;
80	u32 *cs;
81
82	rq = intel_context_create_request(ce);
83	if (IS_ERR(rq))
84		return PTR_ERR(rq);
85
86	cs = intel_ring_begin(rq, 28);
87	if (IS_ERR(cs)) {
88		i915_request_add(rq);
89		return PTR_ERR(cs);
90	}
91
92	/* Signal & wait for start */
93	cs = emit_store(cs, offset + 4008, 1);
94	cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
95
96	cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
97	cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
98
99	/* Busy wait */
100	cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
101
102	cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
103	cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
104
105	intel_ring_advance(rq, cs);
106	i915_request_get(rq);
107	i915_request_add(rq);
108	intel_engine_flush_submission(engine);
109
110	/* Wait for the request to start executing, that then waits for us */
111	while (READ_ONCE(sema[2]) == 0)
112		cpu_relax();
113
114	/* Run the request for a 100us, sampling timestamps before/after */
115	local_irq_disable();
116	write_semaphore(&sema[2], 0);
117	while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
118		cpu_relax();
119	*dt = local_clock();
120	udelay(100);
121	*dt = local_clock() - *dt;
122	write_semaphore(&sema[2], 1);
123	local_irq_enable();
124
125	if (i915_request_wait(rq, 0, HZ / 2) < 0) {
126		i915_request_put(rq);
127		return -ETIME;
128	}
129	i915_request_put(rq);
130
131	pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
132		 engine->name, sema[1], sema[3], sema[0], sema[4]);
133
134	*d_ctx = sema[3] - sema[1];
135	*d_ring = sema[4] - sema[0];
136	return 0;
137}
138
139static int __live_engine_timestamps(struct intel_engine_cs *engine)
140{
141	u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
142	struct intel_context *ce;
143	int i, err = 0;
144
145	ce = intel_context_create(engine);
146	if (IS_ERR(ce))
147		return PTR_ERR(ce);
148
149	for (i = 0; i < COUNT; i++) {
150		err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
151		if (err)
152			break;
153	}
154	intel_context_put(ce);
155	if (err)
156		return err;
157
158	dt = trifilter(st);
159	d_ring = trifilter(s_ring);
160	d_ctx = trifilter(s_ctx);
161
162	pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
163		engine->name, dt,
164		intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
165		intel_gt_clock_interval_to_ns(engine->gt, d_ring));
166
167	d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
168	if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
169		pr_err("%s Mismatch between ring timestamp and walltime!\n",
170		       engine->name);
171		return -EINVAL;
172	}
173
174	d_ring = trifilter(s_ring);
175	d_ctx = trifilter(s_ctx);
176
177	d_ctx *= engine->gt->clock_frequency;
178	if (GRAPHICS_VER(engine->i915) == 11)
179		d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
180	else
181		d_ring *= engine->gt->clock_frequency;
182
183	if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
184		pr_err("%s Mismatch between ring and context timestamps!\n",
185		       engine->name);
186		return -EINVAL;
187	}
188
189	return 0;
190}
191
192static int live_engine_timestamps(void *arg)
193{
194	struct intel_gt *gt = arg;
195	struct intel_engine_cs *engine;
196	enum intel_engine_id id;
197
198	/*
199	 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
200	 * the same CS clock.
201	 */
202
203	if (GRAPHICS_VER(gt->i915) < 8)
204		return 0;
205
206	for_each_engine(engine, gt, id) {
207		int err;
208
209		st_engine_heartbeat_disable(engine);
210		err = __live_engine_timestamps(engine);
211		st_engine_heartbeat_enable(engine);
212		if (err)
213			return err;
214	}
215
216	return 0;
217}
218
219static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness)
220{
221	ktime_t start, unused, dt;
222
223	if (!intel_engine_uses_guc(engine))
224		return 0;
225
226	/*
227	 * In GuC mode of submission, the busyness stats may get updated after
228	 * the batch starts running. Poll for a change in busyness and timeout
229	 * after 500 us.
230	 */
231	start = ktime_get();
232	while (intel_engine_get_busy_time(engine, &unused) == busyness) {
233		dt = ktime_get() - start;
234		if (dt > 10000000) {
235			pr_err("active wait timed out %lld\n", dt);
236			ENGINE_TRACE(engine, "active wait time out %lld\n", dt);
237			return -ETIME;
238		}
239	}
240
241	return 0;
242}
243
244static int live_engine_busy_stats(void *arg)
245{
246	struct intel_gt *gt = arg;
247	struct intel_engine_cs *engine;
248	enum intel_engine_id id;
249	struct igt_spinner spin;
250	int err = 0;
251
252	/*
253	 * Check that if an engine supports busy-stats, they tell the truth.
254	 */
255
256	if (igt_spinner_init(&spin, gt))
257		return -ENOMEM;
258
259	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
260	for_each_engine(engine, gt, id) {
261		struct i915_request *rq;
262		ktime_t busyness, dummy;
263		ktime_t de, dt;
264		ktime_t t[2];
265
266		if (!intel_engine_supports_stats(engine))
267			continue;
268
269		if (!intel_engine_can_store_dword(engine))
270			continue;
271
272		if (intel_gt_pm_wait_for_idle(gt)) {
273			err = -EBUSY;
274			break;
275		}
276
277		st_engine_heartbeat_disable(engine);
278
279		ENGINE_TRACE(engine, "measuring idle time\n");
280		preempt_disable();
281		de = intel_engine_get_busy_time(engine, &t[0]);
282		udelay(100);
283		de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
284		preempt_enable();
285		dt = ktime_sub(t[1], t[0]);
286		if (de < 0 || de > 10) {
287			pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
288			       engine->name,
289			       de, (int)div64_u64(100 * de, dt), dt);
290			GEM_TRACE_DUMP();
291			err = -EINVAL;
292			goto end;
293		}
294
295		/* 100% busy */
296		rq = igt_spinner_create_request(&spin,
297						engine->kernel_context,
298						MI_NOOP);
299		if (IS_ERR(rq)) {
300			err = PTR_ERR(rq);
301			goto end;
302		}
303		i915_request_add(rq);
304
305		busyness = intel_engine_get_busy_time(engine, &dummy);
306		if (!igt_wait_for_spinner(&spin, rq)) {
307			intel_gt_set_wedged(engine->gt);
308			err = -ETIME;
309			goto end;
310		}
311
312		err = __spin_until_busier(engine, busyness);
313		if (err) {
314			GEM_TRACE_DUMP();
315			goto end;
316		}
317
318		ENGINE_TRACE(engine, "measuring busy time\n");
319		preempt_disable();
320		de = intel_engine_get_busy_time(engine, &t[0]);
321		mdelay(100);
322		de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
323		preempt_enable();
324		dt = ktime_sub(t[1], t[0]);
325		if (100 * de < 95 * dt || 95 * de > 100 * dt) {
326			pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
327			       engine->name,
328			       de, (int)div64_u64(100 * de, dt), dt);
329			GEM_TRACE_DUMP();
330			err = -EINVAL;
331			goto end;
332		}
333
334end:
335		st_engine_heartbeat_enable(engine);
336		igt_spinner_end(&spin);
337		if (igt_flush_test(gt->i915))
338			err = -EIO;
339		if (err)
340			break;
341	}
342
343	igt_spinner_fini(&spin);
344	if (igt_flush_test(gt->i915))
345		err = -EIO;
346	return err;
347}
348
349static int live_engine_pm(void *arg)
350{
351	struct intel_gt *gt = arg;
352	struct intel_engine_cs *engine;
353	enum intel_engine_id id;
354
355	/*
356	 * Check we can call intel_engine_pm_put from any context. No
357	 * failures are reported directly, but if we mess up lockdep should
358	 * tell us.
359	 */
360	if (intel_gt_pm_wait_for_idle(gt)) {
361		pr_err("Unable to flush GT pm before test\n");
362		return -EBUSY;
363	}
364
365	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
366	for_each_engine(engine, gt, id) {
367		const typeof(*igt_atomic_phases) *p;
368
369		for (p = igt_atomic_phases; p->name; p++) {
370			/*
371			 * Acquisition is always synchronous, except if we
372			 * know that the engine is already awake, in which
373			 * case we should use intel_engine_pm_get_if_awake()
374			 * to atomically grab the wakeref.
375			 *
376			 * In practice,
377			 *    intel_engine_pm_get();
378			 *    intel_engine_pm_put();
379			 * occurs in one thread, while simultaneously
380			 *    intel_engine_pm_get_if_awake();
381			 *    intel_engine_pm_put();
382			 * occurs from atomic context in another.
383			 */
384			GEM_BUG_ON(intel_engine_pm_is_awake(engine));
385			intel_engine_pm_get(engine);
386
387			p->critical_section_begin();
388			if (!intel_engine_pm_get_if_awake(engine))
389				pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
390				       engine->name, p->name);
391			else
392				intel_engine_pm_put_async(engine);
393			intel_engine_pm_put_async(engine);
394			p->critical_section_end();
395
396			intel_engine_pm_flush(engine);
397
398			if (intel_engine_pm_is_awake(engine)) {
399				pr_err("%s is still awake after flushing pm\n",
400				       engine->name);
401				return -EINVAL;
402			}
403
404			/* gt wakeref is async (deferred to workqueue) */
405			if (intel_gt_pm_wait_for_idle(gt)) {
406				gt_err(gt, "GT failed to idle\n");
407				return -EINVAL;
408			}
409		}
410	}
411
412	return 0;
413}
414
415int live_engine_pm_selftests(struct intel_gt *gt)
416{
417	static const struct i915_subtest tests[] = {
418		SUBTEST(live_engine_timestamps),
419		SUBTEST(live_engine_busy_stats),
420		SUBTEST(live_engine_pm),
421	};
422
423	return intel_gt_live_subtests(tests, gt);
424}
425