1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2019 Intel Corporation
4 */
5
6#include <linux/string_helpers.h>
7
8#include "i915_drv.h"
9#include "i915_perf_types.h"
10#include "intel_engine_regs.h"
11#include "intel_gt_regs.h"
12#include "intel_sseu.h"
13
14void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
15			 u8 max_subslices, u8 max_eus_per_subslice)
16{
17	sseu->max_slices = max_slices;
18	sseu->max_subslices = max_subslices;
19	sseu->max_eus_per_subslice = max_eus_per_subslice;
20}
21
22unsigned int
23intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
24{
25	unsigned int i, total = 0;
26
27	if (sseu->has_xehp_dss)
28		return bitmap_weight(sseu->subslice_mask.xehp,
29				     XEHP_BITMAP_BITS(sseu->subslice_mask));
30
31	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
32		total += hweight8(sseu->subslice_mask.hsw[i]);
33
34	return total;
35}
36
37unsigned int
38intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
39{
40	WARN_ON(sseu->has_xehp_dss);
41	if (WARN_ON(slice >= sseu->max_slices))
42		return 0;
43
44	return sseu->subslice_mask.hsw[slice];
45}
46
47static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
48			int subslice)
49{
50	if (sseu->has_xehp_dss) {
51		WARN_ON(slice > 0);
52		return sseu->eu_mask.xehp[subslice];
53	} else {
54		return sseu->eu_mask.hsw[slice][subslice];
55	}
56}
57
58static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
59			 u16 eu_mask)
60{
61	GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
62	if (sseu->has_xehp_dss) {
63		GEM_WARN_ON(slice > 0);
64		sseu->eu_mask.xehp[subslice] = eu_mask;
65	} else {
66		sseu->eu_mask.hsw[slice][subslice] = eu_mask;
67	}
68}
69
70static u16 compute_eu_total(const struct sseu_dev_info *sseu)
71{
72	int s, ss, total = 0;
73
74	for (s = 0; s < sseu->max_slices; s++)
75		for (ss = 0; ss < sseu->max_subslices; ss++)
76			if (sseu->has_xehp_dss)
77				total += hweight16(sseu->eu_mask.xehp[ss]);
78			else
79				total += hweight16(sseu->eu_mask.hsw[s][ss]);
80
81	return total;
82}
83
84/**
85 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
86 * @to: Pointer to userspace buffer to copy to
87 * @sseu: SSEU structure containing EU mask to copy
88 *
89 * Copies the EU mask to a userspace buffer in the format expected by
90 * the query ioctl's topology queries.
91 *
92 * Returns the result of the copy_to_user() operation.
93 */
94int intel_sseu_copy_eumask_to_user(void __user *to,
95				   const struct sseu_dev_info *sseu)
96{
97	u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
98	int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
99	int len = sseu->max_slices * sseu->max_subslices * eu_stride;
100	int s, ss, i;
101
102	for (s = 0; s < sseu->max_slices; s++) {
103		for (ss = 0; ss < sseu->max_subslices; ss++) {
104			int uapi_offset =
105				s * sseu->max_subslices * eu_stride +
106				ss * eu_stride;
107			u16 mask = sseu_get_eus(sseu, s, ss);
108
109			for (i = 0; i < eu_stride; i++)
110				eu_mask[uapi_offset + i] =
111					(mask >> (BITS_PER_BYTE * i)) & 0xff;
112		}
113	}
114
115	return copy_to_user(to, eu_mask, len);
116}
117
118/**
119 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
120 * @to: Pointer to userspace buffer to copy to
121 * @sseu: SSEU structure containing subslice mask to copy
122 *
123 * Copies the subslice mask to a userspace buffer in the format expected by
124 * the query ioctl's topology queries.
125 *
126 * Returns the result of the copy_to_user() operation.
127 */
128int intel_sseu_copy_ssmask_to_user(void __user *to,
129				   const struct sseu_dev_info *sseu)
130{
131	u8 ss_mask[GEN_SS_MASK_SIZE] = {};
132	int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
133	int len = sseu->max_slices * ss_stride;
134	int s, ss, i;
135
136	for (s = 0; s < sseu->max_slices; s++) {
137		for (ss = 0; ss < sseu->max_subslices; ss++) {
138			i = s * ss_stride * BITS_PER_BYTE + ss;
139
140			if (!intel_sseu_has_subslice(sseu, s, ss))
141				continue;
142
143			ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
144		}
145	}
146
147	return copy_to_user(to, ss_mask, len);
148}
149
150static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
151				    u32 ss_en, u16 eu_en)
152{
153	u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
154	int ss;
155
156	sseu->slice_mask |= BIT(0);
157	sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
158
159	for (ss = 0; ss < sseu->max_subslices; ss++)
160		if (intel_sseu_has_subslice(sseu, 0, ss))
161			sseu_set_eus(sseu, 0, ss, eu_en);
162
163	sseu->eu_per_subslice = hweight16(eu_en);
164	sseu->eu_total = compute_eu_total(sseu);
165}
166
167static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
168				   u16 eu_en)
169{
170	int ss;
171
172	sseu->slice_mask |= BIT(0);
173
174	bitmap_or(sseu->subslice_mask.xehp,
175		  sseu->compute_subslice_mask.xehp,
176		  sseu->geometry_subslice_mask.xehp,
177		  XEHP_BITMAP_BITS(sseu->subslice_mask));
178
179	for (ss = 0; ss < sseu->max_subslices; ss++)
180		if (intel_sseu_has_subslice(sseu, 0, ss))
181			sseu_set_eus(sseu, 0, ss, eu_en);
182
183	sseu->eu_per_subslice = hweight16(eu_en);
184	sseu->eu_total = compute_eu_total(sseu);
185}
186
187static void
188xehp_load_dss_mask(struct intel_uncore *uncore,
189		   intel_sseu_ss_mask_t *ssmask,
190		   int numregs,
191		   ...)
192{
193	va_list argp;
194	u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
195	int i;
196
197	if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
198		numregs = I915_MAX_SS_FUSE_REGS;
199
200	va_start(argp, numregs);
201	for (i = 0; i < numregs; i++)
202		fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
203	va_end(argp);
204
205	bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
206}
207
208static void xehp_sseu_info_init(struct intel_gt *gt)
209{
210	struct sseu_dev_info *sseu = &gt->info.sseu;
211	struct intel_uncore *uncore = gt->uncore;
212	u16 eu_en = 0;
213	u8 eu_en_fuse;
214	int num_compute_regs, num_geometry_regs;
215	int eu;
216
217	if (IS_PONTEVECCHIO(gt->i915)) {
218		num_geometry_regs = 0;
219		num_compute_regs = 2;
220	} else {
221		num_geometry_regs = 1;
222		num_compute_regs = 1;
223	}
224
225	/*
226	 * The concept of slice has been removed in Xe_HP.  To be compatible
227	 * with prior generations, assume a single slice across the entire
228	 * device. Then calculate out the DSS for each workload type within
229	 * that software slice.
230	 */
231	intel_sseu_set_info(sseu, 1,
232			    32 * max(num_geometry_regs, num_compute_regs),
233			    HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
234	sseu->has_xehp_dss = 1;
235
236	xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
237			   num_geometry_regs,
238			   GEN12_GT_GEOMETRY_DSS_ENABLE);
239	xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
240			   num_compute_regs,
241			   GEN12_GT_COMPUTE_DSS_ENABLE,
242			   XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
243
244	eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
245
246	if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
247		eu_en = eu_en_fuse;
248	else
249		for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
250			if (eu_en_fuse & BIT(eu))
251				eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
252
253	xehp_compute_sseu_info(sseu, eu_en);
254}
255
256static void gen12_sseu_info_init(struct intel_gt *gt)
257{
258	struct sseu_dev_info *sseu = &gt->info.sseu;
259	struct intel_uncore *uncore = gt->uncore;
260	u32 g_dss_en;
261	u16 eu_en = 0;
262	u8 eu_en_fuse;
263	u8 s_en;
264	int eu;
265
266	/*
267	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
268	 * Instead of splitting these, provide userspace with an array
269	 * of DSS to more closely represent the hardware resource.
270	 */
271	intel_sseu_set_info(sseu, 1, 6, 16);
272
273	/*
274	 * Although gen12 architecture supported multiple slices, TGL, RKL,
275	 * DG1, and ADL only had a single slice.
276	 */
277	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
278		GEN11_GT_S_ENA_MASK;
279	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
280
281	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
282
283	/* one bit per pair of EUs */
284	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
285		       GEN11_EU_DIS_MASK);
286
287	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
288		if (eu_en_fuse & BIT(eu))
289			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
290
291	gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
292
293	/* TGL only supports slice-level power gating */
294	sseu->has_slice_pg = 1;
295}
296
297static void gen11_sseu_info_init(struct intel_gt *gt)
298{
299	struct sseu_dev_info *sseu = &gt->info.sseu;
300	struct intel_uncore *uncore = gt->uncore;
301	u32 ss_en;
302	u8 eu_en;
303	u8 s_en;
304
305	if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
306		intel_sseu_set_info(sseu, 1, 4, 8);
307	else
308		intel_sseu_set_info(sseu, 1, 8, 8);
309
310	/*
311	 * Although gen11 architecture supported multiple slices, ICL and
312	 * EHL/JSL only had a single slice in practice.
313	 */
314	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
315		GEN11_GT_S_ENA_MASK;
316	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
317
318	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
319
320	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
321		  GEN11_EU_DIS_MASK);
322
323	gen11_compute_sseu_info(sseu, ss_en, eu_en);
324
325	/* ICL has no power gating restrictions. */
326	sseu->has_slice_pg = 1;
327	sseu->has_subslice_pg = 1;
328	sseu->has_eu_pg = 1;
329}
330
331static void cherryview_sseu_info_init(struct intel_gt *gt)
332{
333	struct sseu_dev_info *sseu = &gt->info.sseu;
334	u32 fuse;
335
336	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
337
338	sseu->slice_mask = BIT(0);
339	intel_sseu_set_info(sseu, 1, 2, 8);
340
341	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
342		u8 disabled_mask =
343			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
344			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
345			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
346			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
347
348		sseu->subslice_mask.hsw[0] |= BIT(0);
349		sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
350	}
351
352	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
353		u8 disabled_mask =
354			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
355			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
356			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
357			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
358
359		sseu->subslice_mask.hsw[0] |= BIT(1);
360		sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
361	}
362
363	sseu->eu_total = compute_eu_total(sseu);
364
365	/*
366	 * CHV expected to always have a uniform distribution of EU
367	 * across subslices.
368	 */
369	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
370		sseu->eu_total /
371		intel_sseu_subslice_total(sseu) :
372		0;
373	/*
374	 * CHV supports subslice power gating on devices with more than
375	 * one subslice, and supports EU power gating on devices with
376	 * more than one EU pair per subslice.
377	 */
378	sseu->has_slice_pg = 0;
379	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
380	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
381}
382
383static void gen9_sseu_info_init(struct intel_gt *gt)
384{
385	struct drm_i915_private *i915 = gt->i915;
386	struct sseu_dev_info *sseu = &gt->info.sseu;
387	struct intel_uncore *uncore = gt->uncore;
388	u32 fuse2, eu_disable, subslice_mask;
389	const u8 eu_mask = 0xff;
390	int s, ss;
391
392	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
393	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
394
395	/* BXT has a single slice and at most 3 subslices. */
396	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
397			    IS_GEN9_LP(i915) ? 3 : 4, 8);
398
399	/*
400	 * The subslice disable field is global, i.e. it applies
401	 * to each of the enabled slices.
402	 */
403	subslice_mask = (1 << sseu->max_subslices) - 1;
404	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
405			   GEN9_F2_SS_DIS_SHIFT);
406
407	/*
408	 * Iterate through enabled slices and subslices to
409	 * count the total enabled EU.
410	 */
411	for (s = 0; s < sseu->max_slices; s++) {
412		if (!(sseu->slice_mask & BIT(s)))
413			/* skip disabled slice */
414			continue;
415
416		sseu->subslice_mask.hsw[s] = subslice_mask;
417
418		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
419		for (ss = 0; ss < sseu->max_subslices; ss++) {
420			int eu_per_ss;
421			u8 eu_disabled_mask;
422
423			if (!intel_sseu_has_subslice(sseu, s, ss))
424				/* skip disabled subslice */
425				continue;
426
427			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
428
429			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
430
431			eu_per_ss = sseu->max_eus_per_subslice -
432				hweight8(eu_disabled_mask);
433
434			/*
435			 * Record which subslice(s) has(have) 7 EUs. we
436			 * can tune the hash used to spread work among
437			 * subslices if they are unbalanced.
438			 */
439			if (eu_per_ss == 7)
440				sseu->subslice_7eu[s] |= BIT(ss);
441		}
442	}
443
444	sseu->eu_total = compute_eu_total(sseu);
445
446	/*
447	 * SKL is expected to always have a uniform distribution
448	 * of EU across subslices with the exception that any one
449	 * EU in any one subslice may be fused off for die
450	 * recovery. BXT is expected to be perfectly uniform in EU
451	 * distribution.
452	 */
453	sseu->eu_per_subslice =
454		intel_sseu_subslice_total(sseu) ?
455		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
456		0;
457
458	/*
459	 * SKL+ supports slice power gating on devices with more than
460	 * one slice, and supports EU power gating on devices with
461	 * more than one EU pair per subslice. BXT+ supports subslice
462	 * power gating on devices with more than one subslice, and
463	 * supports EU power gating on devices with more than one EU
464	 * pair per subslice.
465	 */
466	sseu->has_slice_pg =
467		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
468	sseu->has_subslice_pg =
469		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
470	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
471
472	if (IS_GEN9_LP(i915)) {
473#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask.hsw[0] & BIT(ss)))
474		RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
475
476		sseu->min_eu_in_pool = 0;
477		if (HAS_POOLED_EU(i915)) {
478			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
479				sseu->min_eu_in_pool = 3;
480			else if (IS_SS_DISABLED(1))
481				sseu->min_eu_in_pool = 6;
482			else
483				sseu->min_eu_in_pool = 9;
484		}
485#undef IS_SS_DISABLED
486	}
487}
488
489static void bdw_sseu_info_init(struct intel_gt *gt)
490{
491	struct sseu_dev_info *sseu = &gt->info.sseu;
492	struct intel_uncore *uncore = gt->uncore;
493	int s, ss;
494	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
495	u32 eu_disable0, eu_disable1, eu_disable2;
496
497	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
498	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
499	intel_sseu_set_info(sseu, 3, 3, 8);
500
501	/*
502	 * The subslice disable field is global, i.e. it applies
503	 * to each of the enabled slices.
504	 */
505	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
506	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
507			   GEN8_F2_SS_DIS_SHIFT);
508	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
509	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
510	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
511	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
512	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
513		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
514		 (32 - GEN8_EU_DIS0_S1_SHIFT));
515	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
516		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
517		 (32 - GEN8_EU_DIS1_S2_SHIFT));
518
519	/*
520	 * Iterate through enabled slices and subslices to
521	 * count the total enabled EU.
522	 */
523	for (s = 0; s < sseu->max_slices; s++) {
524		if (!(sseu->slice_mask & BIT(s)))
525			/* skip disabled slice */
526			continue;
527
528		sseu->subslice_mask.hsw[s] = subslice_mask;
529
530		for (ss = 0; ss < sseu->max_subslices; ss++) {
531			u8 eu_disabled_mask;
532			u32 n_disabled;
533
534			if (!intel_sseu_has_subslice(sseu, s, ss))
535				/* skip disabled subslice */
536				continue;
537
538			eu_disabled_mask =
539				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
540
541			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
542
543			n_disabled = hweight8(eu_disabled_mask);
544
545			/*
546			 * Record which subslices have 7 EUs.
547			 */
548			if (sseu->max_eus_per_subslice - n_disabled == 7)
549				sseu->subslice_7eu[s] |= 1 << ss;
550		}
551	}
552
553	sseu->eu_total = compute_eu_total(sseu);
554
555	/*
556	 * BDW is expected to always have a uniform distribution of EU across
557	 * subslices with the exception that any one EU in any one subslice may
558	 * be fused off for die recovery.
559	 */
560	sseu->eu_per_subslice =
561		intel_sseu_subslice_total(sseu) ?
562		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
563		0;
564
565	/*
566	 * BDW supports slice power gating on devices with more than
567	 * one slice.
568	 */
569	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
570	sseu->has_subslice_pg = 0;
571	sseu->has_eu_pg = 0;
572}
573
574static void hsw_sseu_info_init(struct intel_gt *gt)
575{
576	struct drm_i915_private *i915 = gt->i915;
577	struct sseu_dev_info *sseu = &gt->info.sseu;
578	u32 fuse1;
579	u8 subslice_mask = 0;
580	int s, ss;
581
582	/*
583	 * There isn't a register to tell us how many slices/subslices. We
584	 * work off the PCI-ids here.
585	 */
586	switch (INTEL_INFO(i915)->gt) {
587	default:
588		MISSING_CASE(INTEL_INFO(i915)->gt);
589		fallthrough;
590	case 1:
591		sseu->slice_mask = BIT(0);
592		subslice_mask = BIT(0);
593		break;
594	case 2:
595		sseu->slice_mask = BIT(0);
596		subslice_mask = BIT(0) | BIT(1);
597		break;
598	case 3:
599		sseu->slice_mask = BIT(0) | BIT(1);
600		subslice_mask = BIT(0) | BIT(1);
601		break;
602	}
603
604	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
605	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
606	default:
607		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
608		fallthrough;
609	case HSW_F1_EU_DIS_10EUS:
610		sseu->eu_per_subslice = 10;
611		break;
612	case HSW_F1_EU_DIS_8EUS:
613		sseu->eu_per_subslice = 8;
614		break;
615	case HSW_F1_EU_DIS_6EUS:
616		sseu->eu_per_subslice = 6;
617		break;
618	}
619
620	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
621			    hweight8(subslice_mask),
622			    sseu->eu_per_subslice);
623
624	for (s = 0; s < sseu->max_slices; s++) {
625		sseu->subslice_mask.hsw[s] = subslice_mask;
626
627		for (ss = 0; ss < sseu->max_subslices; ss++) {
628			sseu_set_eus(sseu, s, ss,
629				     (1UL << sseu->eu_per_subslice) - 1);
630		}
631	}
632
633	sseu->eu_total = compute_eu_total(sseu);
634
635	/* No powergating for you. */
636	sseu->has_slice_pg = 0;
637	sseu->has_subslice_pg = 0;
638	sseu->has_eu_pg = 0;
639}
640
641void intel_sseu_info_init(struct intel_gt *gt)
642{
643	struct drm_i915_private *i915 = gt->i915;
644
645	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
646		xehp_sseu_info_init(gt);
647	else if (GRAPHICS_VER(i915) >= 12)
648		gen12_sseu_info_init(gt);
649	else if (GRAPHICS_VER(i915) >= 11)
650		gen11_sseu_info_init(gt);
651	else if (GRAPHICS_VER(i915) >= 9)
652		gen9_sseu_info_init(gt);
653	else if (IS_BROADWELL(i915))
654		bdw_sseu_info_init(gt);
655	else if (IS_CHERRYVIEW(i915))
656		cherryview_sseu_info_init(gt);
657	else if (IS_HASWELL(i915))
658		hsw_sseu_info_init(gt);
659}
660
661u32 intel_sseu_make_rpcs(struct intel_gt *gt,
662			 const struct intel_sseu *req_sseu)
663{
664	struct drm_i915_private *i915 = gt->i915;
665	const struct sseu_dev_info *sseu = &gt->info.sseu;
666	bool subslice_pg = sseu->has_subslice_pg;
667	u8 slices, subslices;
668	u32 rpcs = 0;
669
670	/*
671	 * No explicit RPCS request is needed to ensure full
672	 * slice/subslice/EU enablement prior to Gen9.
673	 */
674	if (GRAPHICS_VER(i915) < 9)
675		return 0;
676
677	/*
678	 * If i915/perf is active, we want a stable powergating configuration
679	 * on the system. Use the configuration pinned by i915/perf.
680	 */
681	if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
682		req_sseu = &gt->perf.sseu;
683
684	slices = hweight8(req_sseu->slice_mask);
685	subslices = hweight8(req_sseu->subslice_mask);
686
687	/*
688	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
689	 * wide and Icelake has up to eight subslices, specfial programming is
690	 * needed in order to correctly enable all subslices.
691	 *
692	 * According to documentation software must consider the configuration
693	 * as 2x4x8 and hardware will translate this to 1x8x8.
694	 *
695	 * Furthemore, even though SScount is three bits, maximum documented
696	 * value for it is four. From this some rules/restrictions follow:
697	 *
698	 * 1.
699	 * If enabled subslice count is greater than four, two whole slices must
700	 * be enabled instead.
701	 *
702	 * 2.
703	 * When more than one slice is enabled, hardware ignores the subslice
704	 * count altogether.
705	 *
706	 * From these restrictions it follows that it is not possible to enable
707	 * a count of subslices between the SScount maximum of four restriction,
708	 * and the maximum available number on a particular SKU. Either all
709	 * subslices are enabled, or a count between one and four on the first
710	 * slice.
711	 */
712	if (GRAPHICS_VER(i915) == 11 &&
713	    slices == 1 &&
714	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
715		GEM_BUG_ON(subslices & 1);
716
717		subslice_pg = false;
718		slices *= 2;
719	}
720
721	/*
722	 * Starting in Gen9, render power gating can leave
723	 * slice/subslice/EU in a partially enabled state. We
724	 * must make an explicit request through RPCS for full
725	 * enablement.
726	 */
727	if (sseu->has_slice_pg) {
728		u32 mask, val = slices;
729
730		if (GRAPHICS_VER(i915) >= 11) {
731			mask = GEN11_RPCS_S_CNT_MASK;
732			val <<= GEN11_RPCS_S_CNT_SHIFT;
733		} else {
734			mask = GEN8_RPCS_S_CNT_MASK;
735			val <<= GEN8_RPCS_S_CNT_SHIFT;
736		}
737
738		GEM_BUG_ON(val & ~mask);
739		val &= mask;
740
741		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
742	}
743
744	if (subslice_pg) {
745		u32 val = subslices;
746
747		val <<= GEN8_RPCS_SS_CNT_SHIFT;
748
749		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
750		val &= GEN8_RPCS_SS_CNT_MASK;
751
752		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
753	}
754
755	if (sseu->has_eu_pg) {
756		u32 val;
757
758		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
759		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
760		val &= GEN8_RPCS_EU_MIN_MASK;
761
762		rpcs |= val;
763
764		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
765		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
766		val &= GEN8_RPCS_EU_MAX_MASK;
767
768		rpcs |= val;
769
770		rpcs |= GEN8_RPCS_ENABLE;
771	}
772
773	return rpcs;
774}
775
776void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
777{
778	int s;
779
780	if (sseu->has_xehp_dss) {
781		drm_printf(p, "subslice total: %u\n",
782			   intel_sseu_subslice_total(sseu));
783		drm_printf(p, "geometry dss mask=%*pb\n",
784			   XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
785			   sseu->geometry_subslice_mask.xehp);
786		drm_printf(p, "compute dss mask=%*pb\n",
787			   XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
788			   sseu->compute_subslice_mask.xehp);
789	} else {
790		drm_printf(p, "slice total: %u, mask=%04x\n",
791			   hweight8(sseu->slice_mask), sseu->slice_mask);
792		drm_printf(p, "subslice total: %u\n",
793			   intel_sseu_subslice_total(sseu));
794
795		for (s = 0; s < sseu->max_slices; s++) {
796			u8 ss_mask = sseu->subslice_mask.hsw[s];
797
798			drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
799				   s, hweight8(ss_mask), ss_mask);
800		}
801	}
802
803	drm_printf(p, "EU total: %u\n", sseu->eu_total);
804	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
805	drm_printf(p, "has slice power gating: %s\n",
806		   str_yes_no(sseu->has_slice_pg));
807	drm_printf(p, "has subslice power gating: %s\n",
808		   str_yes_no(sseu->has_subslice_pg));
809	drm_printf(p, "has EU power gating: %s\n",
810		   str_yes_no(sseu->has_eu_pg));
811}
812
813static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
814				    struct drm_printer *p)
815{
816	int s, ss;
817
818	for (s = 0; s < sseu->max_slices; s++) {
819		u8 ss_mask = sseu->subslice_mask.hsw[s];
820
821		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
822			   s, hweight8(ss_mask), ss_mask);
823
824		for (ss = 0; ss < sseu->max_subslices; ss++) {
825			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
826
827			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
828				   ss, hweight16(enabled_eus), enabled_eus);
829		}
830	}
831}
832
833static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
834				     struct drm_printer *p)
835{
836	int dss;
837
838	for (dss = 0; dss < sseu->max_subslices; dss++) {
839		u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
840
841		drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
842			   str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
843			   str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
844			   hweight16(enabled_eus), enabled_eus);
845	}
846}
847
848void intel_sseu_print_topology(struct drm_i915_private *i915,
849			       const struct sseu_dev_info *sseu,
850			       struct drm_printer *p)
851{
852	if (sseu->max_slices == 0)
853		drm_printf(p, "Unavailable\n");
854	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
855		sseu_print_xehp_topology(sseu, p);
856	else
857		sseu_print_hsw_topology(sseu, p);
858}
859
860void intel_sseu_print_ss_info(const char *type,
861			      const struct sseu_dev_info *sseu,
862			      struct seq_file *m)
863{
864	int s;
865
866	if (sseu->has_xehp_dss) {
867		seq_printf(m, "  %s Geometry DSS: %u\n", type,
868			   bitmap_weight(sseu->geometry_subslice_mask.xehp,
869					 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
870		seq_printf(m, "  %s Compute DSS: %u\n", type,
871			   bitmap_weight(sseu->compute_subslice_mask.xehp,
872					 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
873	} else {
874		for (s = 0; s < fls(sseu->slice_mask); s++)
875			seq_printf(m, "  %s Slice%i subslices: %u\n", type,
876				   s, hweight8(sseu->subslice_mask.hsw[s]));
877	}
878}
879
880u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
881				      int dss_per_slice)
882{
883	intel_sseu_ss_mask_t per_slice_mask = {};
884	unsigned long slice_mask = 0;
885	int i;
886
887	WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
888		8 * sizeof(slice_mask));
889
890	bitmap_fill(per_slice_mask.xehp, dss_per_slice);
891	for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
892		if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
893			slice_mask |= BIT(i);
894
895		bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
896				   XEHP_BITMAP_BITS(dss_mask));
897	}
898
899	return slice_mask;
900}
901