1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2019 Intel Corporation
4 */
5
6#include <drm/drm_managed.h>
7#include <drm/intel-gtt.h>
8
9#include "gem/i915_gem_internal.h"
10#include "gem/i915_gem_lmem.h"
11
12#include "i915_drv.h"
13#include "i915_perf_oa_regs.h"
14#include "i915_reg.h"
15#include "intel_context.h"
16#include "intel_engine_pm.h"
17#include "intel_engine_regs.h"
18#include "intel_ggtt_gmch.h"
19#include "intel_gt.h"
20#include "intel_gt_buffer_pool.h"
21#include "intel_gt_clock_utils.h"
22#include "intel_gt_debugfs.h"
23#include "intel_gt_mcr.h"
24#include "intel_gt_pm.h"
25#include "intel_gt_print.h"
26#include "intel_gt_regs.h"
27#include "intel_gt_requests.h"
28#include "intel_migrate.h"
29#include "intel_mocs.h"
30#include "intel_pci_config.h"
31#include "intel_rc6.h"
32#include "intel_renderstate.h"
33#include "intel_rps.h"
34#include "intel_sa_media.h"
35#include "intel_gt_sysfs.h"
36#include "intel_tlb.h"
37#include "intel_uncore.h"
38#include "shmem_utils.h"
39
40void intel_gt_common_init_early(struct intel_gt *gt)
41{
42	spin_lock_init(gt->irq_lock);
43
44	INIT_LIST_HEAD(&gt->closed_vma);
45	spin_lock_init(&gt->closed_lock);
46
47	init_llist_head(&gt->watchdog.list);
48	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
49
50	intel_gt_init_buffer_pool(gt);
51	intel_gt_init_reset(gt);
52	intel_gt_init_requests(gt);
53	intel_gt_init_timelines(gt);
54	intel_gt_init_tlb(gt);
55	intel_gt_pm_init_early(gt);
56
57	intel_wopcm_init_early(&gt->wopcm);
58	intel_uc_init_early(&gt->uc);
59	intel_rps_init_early(&gt->rps);
60}
61
62/* Preliminary initialization of Tile 0 */
63int intel_root_gt_init_early(struct drm_i915_private *i915)
64{
65	struct intel_gt *gt;
66
67	gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
68	if (!gt)
69		return -ENOMEM;
70
71	i915->gt[0] = gt;
72
73	gt->i915 = i915;
74	gt->uncore = &i915->uncore;
75	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
76	if (!gt->irq_lock)
77		return -ENOMEM;
78
79	intel_gt_common_init_early(gt);
80
81	return 0;
82}
83
84static int intel_gt_probe_lmem(struct intel_gt *gt)
85{
86	struct drm_i915_private *i915 = gt->i915;
87	unsigned int instance = gt->info.id;
88	int id = INTEL_REGION_LMEM_0 + instance;
89	struct intel_memory_region *mem;
90	int err;
91
92	mem = intel_gt_setup_lmem(gt);
93	if (IS_ERR(mem)) {
94		err = PTR_ERR(mem);
95		if (err == -ENODEV)
96			return 0;
97
98		gt_err(gt, "Failed to setup region(%d) type=%d\n",
99		       err, INTEL_MEMORY_LOCAL);
100		return err;
101	}
102
103	mem->id = id;
104	mem->instance = instance;
105
106	intel_memory_region_set_name(mem, "local%u", mem->instance);
107
108	GEM_BUG_ON(!HAS_REGION(i915, id));
109	GEM_BUG_ON(i915->mm.regions[id]);
110	i915->mm.regions[id] = mem;
111
112	return 0;
113}
114
115int intel_gt_assign_ggtt(struct intel_gt *gt)
116{
117	/* Media GT shares primary GT's GGTT */
118	if (gt->type == GT_MEDIA) {
119		gt->ggtt = to_gt(gt->i915)->ggtt;
120	} else {
121		gt->ggtt = i915_ggtt_create(gt->i915);
122		if (IS_ERR(gt->ggtt))
123			return PTR_ERR(gt->ggtt);
124	}
125
126	list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list);
127
128	return 0;
129}
130
131int intel_gt_init_mmio(struct intel_gt *gt)
132{
133	intel_gt_init_clock_frequency(gt);
134
135	intel_uc_init_mmio(&gt->uc);
136	intel_sseu_info_init(gt);
137	intel_gt_mcr_init(gt);
138
139	return intel_engines_init_mmio(gt);
140}
141
142static void init_unused_ring(struct intel_gt *gt, u32 base)
143{
144	struct intel_uncore *uncore = gt->uncore;
145
146	intel_uncore_write(uncore, RING_CTL(base), 0);
147	intel_uncore_write(uncore, RING_HEAD(base), 0);
148	intel_uncore_write(uncore, RING_TAIL(base), 0);
149	intel_uncore_write(uncore, RING_START(base), 0);
150}
151
152static void init_unused_rings(struct intel_gt *gt)
153{
154	struct drm_i915_private *i915 = gt->i915;
155
156	if (IS_I830(i915)) {
157		init_unused_ring(gt, PRB1_BASE);
158		init_unused_ring(gt, SRB0_BASE);
159		init_unused_ring(gt, SRB1_BASE);
160		init_unused_ring(gt, SRB2_BASE);
161		init_unused_ring(gt, SRB3_BASE);
162	} else if (GRAPHICS_VER(i915) == 2) {
163		init_unused_ring(gt, SRB0_BASE);
164		init_unused_ring(gt, SRB1_BASE);
165	} else if (GRAPHICS_VER(i915) == 3) {
166		init_unused_ring(gt, PRB1_BASE);
167		init_unused_ring(gt, PRB2_BASE);
168	}
169}
170
171int intel_gt_init_hw(struct intel_gt *gt)
172{
173	struct drm_i915_private *i915 = gt->i915;
174	struct intel_uncore *uncore = gt->uncore;
175	int ret;
176
177	gt->last_init_time = ktime_get();
178
179	/* Double layer security blanket, see i915_gem_init() */
180	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
181
182	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
183		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
184
185	if (IS_HASWELL(i915))
186		intel_uncore_write(uncore,
187				   HSW_MI_PREDICATE_RESULT_2,
188				   IS_HASWELL_GT3(i915) ?
189				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
190
191	/* Apply the GT workarounds... */
192	intel_gt_apply_workarounds(gt);
193	/* ...and determine whether they are sticking. */
194	intel_gt_verify_workarounds(gt, "init");
195
196	intel_gt_init_swizzling(gt);
197
198	/*
199	 * At least 830 can leave some of the unused rings
200	 * "active" (ie. head != tail) after resume which
201	 * will prevent c3 entry. Makes sure all unused rings
202	 * are totally idle.
203	 */
204	init_unused_rings(gt);
205
206	ret = i915_ppgtt_init_hw(gt);
207	if (ret) {
208		gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
209		goto out;
210	}
211
212	/* We can't enable contexts until all firmware is loaded */
213	ret = intel_uc_init_hw(&gt->uc);
214	if (ret) {
215		gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
216		goto out;
217	}
218
219	intel_mocs_init(gt);
220
221out:
222	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
223	return ret;
224}
225
226static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
227{
228	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
229	GEN6_RING_FAULT_REG_POSTING_READ(engine);
230}
231
232i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
233{
234	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
235	if (GRAPHICS_VER(gt->i915) < 11)
236		return INVALID_MMIO_REG;
237
238	return gt->type == GT_MEDIA ?
239		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
240}
241
242void
243intel_gt_clear_error_registers(struct intel_gt *gt,
244			       intel_engine_mask_t engine_mask)
245{
246	struct drm_i915_private *i915 = gt->i915;
247	struct intel_uncore *uncore = gt->uncore;
248	u32 eir;
249
250	if (GRAPHICS_VER(i915) != 2)
251		intel_uncore_write(uncore, PGTBL_ER, 0);
252
253	if (GRAPHICS_VER(i915) < 4)
254		intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
255	else
256		intel_uncore_write(uncore, IPEIR_I965, 0);
257
258	intel_uncore_write(uncore, EIR, 0);
259	eir = intel_uncore_read(uncore, EIR);
260	if (eir) {
261		/*
262		 * some errors might have become stuck,
263		 * mask them.
264		 */
265		gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
266		intel_uncore_rmw(uncore, EMR, 0, eir);
267		intel_uncore_write(uncore, GEN2_IIR,
268				   I915_MASTER_ERROR_INTERRUPT);
269	}
270
271	/*
272	 * For the media GT, this ring fault register is not replicated,
273	 * so don't do multicast/replicated register read/write operation on it.
274	 */
275	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
276		intel_uncore_rmw(uncore, XELPMP_RING_FAULT_REG,
277				 RING_FAULT_VALID, 0);
278		intel_uncore_posting_read(uncore,
279					  XELPMP_RING_FAULT_REG);
280
281	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
282		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
283					   RING_FAULT_VALID, 0);
284		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
285
286	} else if (GRAPHICS_VER(i915) >= 12) {
287		intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
288		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
289	} else if (GRAPHICS_VER(i915) >= 8) {
290		intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
291		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
292	} else if (GRAPHICS_VER(i915) >= 6) {
293		struct intel_engine_cs *engine;
294		enum intel_engine_id id;
295
296		for_each_engine_masked(engine, gt, engine_mask, id)
297			gen6_clear_engine_error_register(engine);
298	}
299}
300
301static void gen6_check_faults(struct intel_gt *gt)
302{
303	struct intel_engine_cs *engine;
304	enum intel_engine_id id;
305	u32 fault;
306
307	for_each_engine(engine, gt, id) {
308		fault = GEN6_RING_FAULT_REG_READ(engine);
309		if (fault & RING_FAULT_VALID) {
310			gt_dbg(gt, "Unexpected fault\n"
311			       "\tAddr: 0x%08lx\n"
312			       "\tAddress space: %s\n"
313			       "\tSource ID: %d\n"
314			       "\tType: %d\n",
315			       fault & PAGE_MASK,
316			       fault & RING_FAULT_GTTSEL_MASK ?
317			       "GGTT" : "PPGTT",
318			       RING_FAULT_SRCID(fault),
319			       RING_FAULT_FAULT_TYPE(fault));
320		}
321	}
322}
323
324static void xehp_check_faults(struct intel_gt *gt)
325{
326	u32 fault;
327
328	/*
329	 * Although the fault register now lives in an MCR register range,
330	 * the GAM registers are special and we only truly need to read
331	 * the "primary" GAM instance rather than handling each instance
332	 * individually.  intel_gt_mcr_read_any() will automatically steer
333	 * toward the primary instance.
334	 */
335	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
336	if (fault & RING_FAULT_VALID) {
337		u32 fault_data0, fault_data1;
338		u64 fault_addr;
339
340		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
341		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
342
343		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
344			     ((u64)fault_data0 << 12);
345
346		gt_dbg(gt, "Unexpected fault\n"
347		       "\tAddr: 0x%08x_%08x\n"
348		       "\tAddress space: %s\n"
349		       "\tEngine ID: %d\n"
350		       "\tSource ID: %d\n"
351		       "\tType: %d\n",
352		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
353		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
354		       GEN8_RING_FAULT_ENGINE_ID(fault),
355		       RING_FAULT_SRCID(fault),
356		       RING_FAULT_FAULT_TYPE(fault));
357	}
358}
359
360static void gen8_check_faults(struct intel_gt *gt)
361{
362	struct intel_uncore *uncore = gt->uncore;
363	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
364	u32 fault;
365
366	if (GRAPHICS_VER(gt->i915) >= 12) {
367		fault_reg = GEN12_RING_FAULT_REG;
368		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
369		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
370	} else {
371		fault_reg = GEN8_RING_FAULT_REG;
372		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
373		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
374	}
375
376	fault = intel_uncore_read(uncore, fault_reg);
377	if (fault & RING_FAULT_VALID) {
378		u32 fault_data0, fault_data1;
379		u64 fault_addr;
380
381		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
382		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
383
384		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
385			     ((u64)fault_data0 << 12);
386
387		gt_dbg(gt, "Unexpected fault\n"
388		       "\tAddr: 0x%08x_%08x\n"
389		       "\tAddress space: %s\n"
390		       "\tEngine ID: %d\n"
391		       "\tSource ID: %d\n"
392		       "\tType: %d\n",
393		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
394		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
395		       GEN8_RING_FAULT_ENGINE_ID(fault),
396		       RING_FAULT_SRCID(fault),
397		       RING_FAULT_FAULT_TYPE(fault));
398	}
399}
400
401void intel_gt_check_and_clear_faults(struct intel_gt *gt)
402{
403	struct drm_i915_private *i915 = gt->i915;
404
405	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
406	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
407		xehp_check_faults(gt);
408	else if (GRAPHICS_VER(i915) >= 8)
409		gen8_check_faults(gt);
410	else if (GRAPHICS_VER(i915) >= 6)
411		gen6_check_faults(gt);
412	else
413		return;
414
415	intel_gt_clear_error_registers(gt, ALL_ENGINES);
416}
417
418void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
419{
420	struct intel_uncore *uncore = gt->uncore;
421	intel_wakeref_t wakeref;
422
423	/*
424	 * No actual flushing is required for the GTT write domain for reads
425	 * from the GTT domain. Writes to it "immediately" go to main memory
426	 * as far as we know, so there's no chipset flush. It also doesn't
427	 * land in the GPU render cache.
428	 *
429	 * However, we do have to enforce the order so that all writes through
430	 * the GTT land before any writes to the device, such as updates to
431	 * the GATT itself.
432	 *
433	 * We also have to wait a bit for the writes to land from the GTT.
434	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
435	 * timing. This issue has only been observed when switching quickly
436	 * between GTT writes and CPU reads from inside the kernel on recent hw,
437	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
438	 * system agents we cannot reproduce this behaviour, until Cannonlake
439	 * that was!).
440	 */
441
442	wmb();
443
444	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
445		return;
446
447	intel_gt_chipset_flush(gt);
448
449	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
450		unsigned long flags;
451
452		spin_lock_irqsave(&uncore->lock, flags);
453		intel_uncore_posting_read_fw(uncore,
454					     RING_TAIL(RENDER_RING_BASE));
455		spin_unlock_irqrestore(&uncore->lock, flags);
456	}
457}
458
459void intel_gt_chipset_flush(struct intel_gt *gt)
460{
461	wmb();
462	if (GRAPHICS_VER(gt->i915) < 6)
463		intel_ggtt_gmch_flush();
464}
465
466void intel_gt_driver_register(struct intel_gt *gt)
467{
468	intel_gsc_init(&gt->gsc, gt->i915);
469
470	intel_rps_driver_register(&gt->rps);
471
472	intel_gt_debugfs_register(gt);
473	intel_gt_sysfs_register(gt);
474}
475
476static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
477{
478	struct drm_i915_private *i915 = gt->i915;
479	struct drm_i915_gem_object *obj;
480	struct i915_vma *vma;
481	int ret;
482
483	obj = i915_gem_object_create_lmem(i915, size,
484					  I915_BO_ALLOC_VOLATILE |
485					  I915_BO_ALLOC_GPU_ONLY);
486	if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */
487		obj = i915_gem_object_create_stolen(i915, size);
488	if (IS_ERR(obj))
489		obj = i915_gem_object_create_internal(i915, size);
490	if (IS_ERR(obj)) {
491		gt_err(gt, "Failed to allocate scratch page\n");
492		return PTR_ERR(obj);
493	}
494
495	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
496	if (IS_ERR(vma)) {
497		ret = PTR_ERR(vma);
498		goto err_unref;
499	}
500
501	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
502	if (ret)
503		goto err_unref;
504
505	gt->scratch = i915_vma_make_unshrinkable(vma);
506
507	return 0;
508
509err_unref:
510	i915_gem_object_put(obj);
511	return ret;
512}
513
514static void intel_gt_fini_scratch(struct intel_gt *gt)
515{
516	i915_vma_unpin_and_release(&gt->scratch, 0);
517}
518
519static struct i915_address_space *kernel_vm(struct intel_gt *gt)
520{
521	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
522		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
523	else
524		return i915_vm_get(&gt->ggtt->vm);
525}
526
527static int __engines_record_defaults(struct intel_gt *gt)
528{
529	struct i915_request *requests[I915_NUM_ENGINES] = {};
530	struct intel_engine_cs *engine;
531	enum intel_engine_id id;
532	int err = 0;
533
534	/*
535	 * As we reset the gpu during very early sanitisation, the current
536	 * register state on the GPU should reflect its defaults values.
537	 * We load a context onto the hw (with restore-inhibit), then switch
538	 * over to a second context to save that default register state. We
539	 * can then prime every new context with that state so they all start
540	 * from the same default HW values.
541	 */
542
543	for_each_engine(engine, gt, id) {
544		struct intel_renderstate so;
545		struct intel_context *ce;
546		struct i915_request *rq;
547
548		/* We must be able to switch to something! */
549		GEM_BUG_ON(!engine->kernel_context);
550
551		ce = intel_context_create(engine);
552		if (IS_ERR(ce)) {
553			err = PTR_ERR(ce);
554			goto out;
555		}
556
557		err = intel_renderstate_init(&so, ce);
558		if (err)
559			goto err;
560
561		rq = i915_request_create(ce);
562		if (IS_ERR(rq)) {
563			err = PTR_ERR(rq);
564			goto err_fini;
565		}
566
567		err = intel_engine_emit_ctx_wa(rq);
568		if (err)
569			goto err_rq;
570
571		err = intel_renderstate_emit(&so, rq);
572		if (err)
573			goto err_rq;
574
575err_rq:
576		requests[id] = i915_request_get(rq);
577		i915_request_add(rq);
578err_fini:
579		intel_renderstate_fini(&so, ce);
580err:
581		if (err) {
582			intel_context_put(ce);
583			goto out;
584		}
585	}
586
587	/* Flush the default context image to memory, and enable powersaving. */
588	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
589		err = -EIO;
590		goto out;
591	}
592
593	for (id = 0; id < ARRAY_SIZE(requests); id++) {
594		struct i915_request *rq;
595		struct file *state;
596
597		rq = requests[id];
598		if (!rq)
599			continue;
600
601		if (rq->fence.error) {
602			err = -EIO;
603			goto out;
604		}
605
606		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
607		if (!rq->context->state)
608			continue;
609
610		/* Keep a copy of the state's backing pages; free the obj */
611		state = shmem_create_from_object(rq->context->state->obj);
612		if (IS_ERR(state)) {
613			err = PTR_ERR(state);
614			goto out;
615		}
616		rq->engine->default_state = state;
617	}
618
619out:
620	/*
621	 * If we have to abandon now, we expect the engines to be idle
622	 * and ready to be torn-down. The quickest way we can accomplish
623	 * this is by declaring ourselves wedged.
624	 */
625	if (err)
626		intel_gt_set_wedged(gt);
627
628	for (id = 0; id < ARRAY_SIZE(requests); id++) {
629		struct intel_context *ce;
630		struct i915_request *rq;
631
632		rq = requests[id];
633		if (!rq)
634			continue;
635
636		ce = rq->context;
637		i915_request_put(rq);
638		intel_context_put(ce);
639	}
640	return err;
641}
642
643static int __engines_verify_workarounds(struct intel_gt *gt)
644{
645	struct intel_engine_cs *engine;
646	enum intel_engine_id id;
647	int err = 0;
648
649	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
650		return 0;
651
652	for_each_engine(engine, gt, id) {
653		if (intel_engine_verify_workarounds(engine, "load"))
654			err = -EIO;
655	}
656
657	/* Flush and restore the kernel context for safety */
658	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
659		err = -EIO;
660
661	return err;
662}
663
664static void __intel_gt_disable(struct intel_gt *gt)
665{
666	intel_gt_set_wedged_on_fini(gt);
667
668	intel_gt_suspend_prepare(gt);
669	intel_gt_suspend_late(gt);
670
671	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
672}
673
674int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
675{
676	long remaining_timeout;
677
678	/* If the device is asleep, we have no requests outstanding */
679	if (!intel_gt_pm_is_awake(gt))
680		return 0;
681
682	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
683							   &remaining_timeout)) > 0) {
684		cond_resched();
685		if (signal_pending(current))
686			return -EINTR;
687	}
688
689	if (timeout)
690		return timeout;
691
692	if (remaining_timeout < 0)
693		remaining_timeout = 0;
694
695	return intel_uc_wait_for_idle(&gt->uc, remaining_timeout);
696}
697
698int intel_gt_init(struct intel_gt *gt)
699{
700	int err;
701
702	err = i915_inject_probe_error(gt->i915, -ENODEV);
703	if (err)
704		return err;
705
706	intel_gt_init_workarounds(gt);
707
708	/*
709	 * This is just a security blanket to placate dragons.
710	 * On some systems, we very sporadically observe that the first TLBs
711	 * used by the CS may be stale, despite us poking the TLB reset. If
712	 * we hold the forcewake during initialisation these problems
713	 * just magically go away.
714	 */
715	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
716
717	err = intel_gt_init_scratch(gt,
718				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
719	if (err)
720		goto out_fw;
721
722	intel_gt_pm_init(gt);
723
724	gt->vm = kernel_vm(gt);
725	if (!gt->vm) {
726		err = -ENOMEM;
727		goto err_pm;
728	}
729
730	intel_set_mocs_index(gt);
731
732	err = intel_engines_init(gt);
733	if (err)
734		goto err_engines;
735
736	err = intel_uc_init(&gt->uc);
737	if (err)
738		goto err_engines;
739
740	err = intel_gt_resume(gt);
741	if (err)
742		goto err_uc_init;
743
744	err = intel_gt_init_hwconfig(gt);
745	if (err)
746		gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
747
748	err = __engines_record_defaults(gt);
749	if (err)
750		goto err_gt;
751
752	err = __engines_verify_workarounds(gt);
753	if (err)
754		goto err_gt;
755
756	err = i915_inject_probe_error(gt->i915, -EIO);
757	if (err)
758		goto err_gt;
759
760	intel_uc_init_late(&gt->uc);
761
762	intel_migrate_init(&gt->migrate, gt);
763
764	goto out_fw;
765err_gt:
766	__intel_gt_disable(gt);
767	intel_uc_fini_hw(&gt->uc);
768err_uc_init:
769	intel_uc_fini(&gt->uc);
770err_engines:
771	intel_engines_release(gt);
772	i915_vm_put(fetch_and_zero(&gt->vm));
773err_pm:
774	intel_gt_pm_fini(gt);
775	intel_gt_fini_scratch(gt);
776out_fw:
777	if (err)
778		intel_gt_set_wedged_on_init(gt);
779	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
780	return err;
781}
782
783void intel_gt_driver_remove(struct intel_gt *gt)
784{
785	__intel_gt_disable(gt);
786
787	intel_migrate_fini(&gt->migrate);
788	intel_uc_driver_remove(&gt->uc);
789
790	intel_engines_release(gt);
791
792	intel_gt_flush_buffer_pool(gt);
793}
794
795void intel_gt_driver_unregister(struct intel_gt *gt)
796{
797	intel_wakeref_t wakeref;
798
799	intel_gt_sysfs_unregister(gt);
800	intel_rps_driver_unregister(&gt->rps);
801	intel_gsc_fini(&gt->gsc);
802
803	/*
804	 * If we unload the driver and wedge before the GSC worker is complete,
805	 * the worker will hit an error on its submission to the GSC engine and
806	 * then exit. This is hard to hit for a user, but it is reproducible
807	 * with skipping selftests. The error is handled gracefully by the
808	 * worker, so there are no functional issues, but we still end up with
809	 * an error message in dmesg, which is something we want to avoid as
810	 * this is a supported scenario. We could modify the worker to better
811	 * handle a wedging occurring during its execution, but that gets
812	 * complicated for a couple of reasons:
813	 * - We do want the error on runtime wedging, because there are
814	 *   implications for subsystems outside of GT (i.e., PXP, HDCP), it's
815	 *   only the error on driver unload that we want to silence.
816	 * - The worker is responsible for multiple submissions (GSC FW load,
817	 *   HuC auth, SW proxy), so all of those will have to be adapted to
818	 *   handle the wedged_on_fini scenario.
819	 * Therefore, it's much simpler to just wait for the worker to be done
820	 * before wedging on driver removal, also considering that the worker
821	 * will likely already be idle in the great majority of non-selftest
822	 * scenarios.
823	 */
824	intel_gsc_uc_flush_work(&gt->uc.gsc);
825
826	/*
827	 * Upon unregistering the device to prevent any new users, cancel
828	 * all in-flight requests so that we can quickly unbind the active
829	 * resources.
830	 */
831	intel_gt_set_wedged_on_fini(gt);
832
833	/* Scrub all HW state upon release */
834	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
835		__intel_gt_reset(gt, ALL_ENGINES);
836}
837
838void intel_gt_driver_release(struct intel_gt *gt)
839{
840	struct i915_address_space *vm;
841
842	vm = fetch_and_zero(&gt->vm);
843	if (vm) /* FIXME being called twice on error paths :( */
844		i915_vm_put(vm);
845
846	intel_wa_list_free(&gt->wa_list);
847	intel_gt_pm_fini(gt);
848	intel_gt_fini_scratch(gt);
849	intel_gt_fini_buffer_pool(gt);
850	intel_gt_fini_hwconfig(gt);
851}
852
853void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
854{
855	struct intel_gt *gt;
856	unsigned int id;
857
858	/* We need to wait for inflight RCU frees to release their grip */
859	rcu_barrier();
860
861	for_each_gt(gt, i915, id) {
862		intel_uc_driver_late_release(&gt->uc);
863		intel_gt_fini_requests(gt);
864		intel_gt_fini_reset(gt);
865		intel_gt_fini_timelines(gt);
866		intel_gt_fini_tlb(gt);
867		intel_engines_free(gt);
868	}
869}
870
871static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
872{
873	int ret;
874
875	if (!gt_is_root(gt)) {
876		struct intel_uncore *uncore;
877		spinlock_t *irq_lock;
878
879		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
880		if (!uncore)
881			return -ENOMEM;
882
883		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
884		if (!irq_lock)
885			return -ENOMEM;
886
887		gt->uncore = uncore;
888		gt->irq_lock = irq_lock;
889
890		intel_gt_common_init_early(gt);
891	}
892
893	intel_uncore_init_early(gt->uncore, gt);
894
895	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
896	if (ret)
897		return ret;
898
899	gt->phys_addr = phys_addr;
900
901	return 0;
902}
903
904int intel_gt_probe_all(struct drm_i915_private *i915)
905{
906	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
907	struct intel_gt *gt = to_gt(i915);
908	const struct intel_gt_definition *gtdef;
909	phys_addr_t phys_addr;
910	unsigned int mmio_bar;
911	unsigned int i;
912	int ret;
913
914	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
915	phys_addr = pci_resource_start(pdev, mmio_bar);
916
917	/*
918	 * We always have at least one primary GT on any device
919	 * and it has been already initialized early during probe
920	 * in i915_driver_probe()
921	 */
922	gt->i915 = i915;
923	gt->name = "Primary GT";
924	gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask;
925
926	gt_dbg(gt, "Setting up %s\n", gt->name);
927	ret = intel_gt_tile_setup(gt, phys_addr);
928	if (ret)
929		return ret;
930
931	if (!HAS_EXTRA_GT_LIST(i915))
932		return 0;
933
934	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
935	     gtdef->name != NULL;
936	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
937		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
938		if (!gt) {
939			ret = -ENOMEM;
940			goto err;
941		}
942
943		gt->i915 = i915;
944		gt->name = gtdef->name;
945		gt->type = gtdef->type;
946		gt->info.engine_mask = gtdef->engine_mask;
947		gt->info.id = i;
948
949		gt_dbg(gt, "Setting up %s\n", gt->name);
950		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
951						  gtdef->mapping_base,
952						  SZ_16M,
953						  pci_resource_len(pdev, mmio_bar)))) {
954			ret = -ENODEV;
955			goto err;
956		}
957
958		switch (gtdef->type) {
959		case GT_TILE:
960			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
961			break;
962
963		case GT_MEDIA:
964			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
965						     gtdef->gsi_offset);
966			break;
967
968		case GT_PRIMARY:
969			/* Primary GT should not appear in extra GT list */
970		default:
971			MISSING_CASE(gtdef->type);
972			ret = -ENODEV;
973		}
974
975		if (ret)
976			goto err;
977
978		i915->gt[i] = gt;
979	}
980
981	return 0;
982
983err:
984	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
985	return ret;
986}
987
988int intel_gt_tiles_init(struct drm_i915_private *i915)
989{
990	struct intel_gt *gt;
991	unsigned int id;
992	int ret;
993
994	for_each_gt(gt, i915, id) {
995		ret = intel_gt_probe_lmem(gt);
996		if (ret)
997			return ret;
998	}
999
1000	return 0;
1001}
1002
1003void intel_gt_info_print(const struct intel_gt_info *info,
1004			 struct drm_printer *p)
1005{
1006	drm_printf(p, "available engines: %x\n", info->engine_mask);
1007
1008	intel_sseu_dump(&info->sseu, p);
1009}
1010
1011enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt,
1012					      struct drm_i915_gem_object *obj,
1013					      bool always_coherent)
1014{
1015	/*
1016	 * Wa_22016122933: always return I915_MAP_WC for Media
1017	 * version 13.0 when the object is on the Media GT
1018	 */
1019	if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt))
1020		return I915_MAP_WC;
1021	if (HAS_LLC(gt->i915) || always_coherent)
1022		return I915_MAP_WB;
1023	else
1024		return I915_MAP_WC;
1025}
1026
1027bool intel_gt_needs_wa_16018031267(struct intel_gt *gt)
1028{
1029	/* Wa_16018031267, Wa_16018063123 */
1030	return IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 55), IP_VER(12, 71));
1031}
1032
1033bool intel_gt_needs_wa_22016122933(struct intel_gt *gt)
1034{
1035	return MEDIA_VER_FULL(gt->i915) == IP_VER(13, 0) && gt->type == GT_MEDIA;
1036}
1037
1038static void __intel_gt_bind_context_set_ready(struct intel_gt *gt, bool ready)
1039{
1040	struct intel_engine_cs *engine = gt->engine[BCS0];
1041
1042	if (engine && engine->bind_context)
1043		engine->bind_context_ready = ready;
1044}
1045
1046/**
1047 * intel_gt_bind_context_set_ready - Set the context binding as ready
1048 *
1049 * @gt: GT structure
1050 *
1051 * This function marks the binder context as ready.
1052 */
1053void intel_gt_bind_context_set_ready(struct intel_gt *gt)
1054{
1055	__intel_gt_bind_context_set_ready(gt, true);
1056}
1057
1058/**
1059 * intel_gt_bind_context_set_unready - Set the context binding as ready
1060 * @gt: GT structure
1061 *
1062 * This function marks the binder context as not ready.
1063 */
1064
1065void intel_gt_bind_context_set_unready(struct intel_gt *gt)
1066{
1067	__intel_gt_bind_context_set_ready(gt, false);
1068}
1069
1070/**
1071 * intel_gt_is_bind_context_ready - Check if context binding is ready
1072 *
1073 * @gt: GT structure
1074 *
1075 * This function returns binder context's ready status.
1076 */
1077bool intel_gt_is_bind_context_ready(struct intel_gt *gt)
1078{
1079	struct intel_engine_cs *engine = gt->engine[BCS0];
1080
1081	if (engine)
1082		return engine->bind_context_ready;
1083
1084	return false;
1085}
1086