1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2008-2015 Intel Corporation
4 */
5
6#include <linux/highmem.h>
7
8#include "display/intel_display.h"
9#include "i915_drv.h"
10#include "i915_reg.h"
11#include "i915_scatterlist.h"
12#include "i915_pvinfo.h"
13#include "i915_vgpu.h"
14#include "intel_gt_regs.h"
15#include "intel_mchbar_regs.h"
16
17/**
18 * DOC: fence register handling
19 *
20 * Important to avoid confusions: "fences" in the i915 driver are not execution
21 * fences used to track command completion but hardware detiler objects which
22 * wrap a given range of the global GTT. Each platform has only a fairly limited
23 * set of these objects.
24 *
25 * Fences are used to detile GTT memory mappings. They're also connected to the
26 * hardware frontbuffer render tracking and hence interact with frontbuffer
27 * compression. Furthermore on older platforms fences are required for tiled
28 * objects used by the display engine. They can also be used by the render
29 * engine - they're required for blitter commands and are optional for render
30 * commands. But on gen4+ both display (with the exception of fbc) and rendering
31 * have their own tiling state bits and don't need fences.
32 *
33 * Also note that fences only support X and Y tiling and hence can't be used for
34 * the fancier new tiling formats like W, Ys and Yf.
35 *
36 * Finally note that because fences are such a restricted resource they're
37 * dynamically associated with objects. Furthermore fence state is committed to
38 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
39 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
40 * for cpu access. Also note that some code wants an unfenced view, for those
41 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
42 *
43 * Internally these functions will synchronize with userspace access by removing
44 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
45 */
46
47#define pipelined 0
48
49static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
50{
51	return fence->ggtt->vm.i915;
52}
53
54static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
55{
56	return fence->ggtt->vm.gt->uncore;
57}
58
59static void i965_write_fence_reg(struct i915_fence_reg *fence)
60{
61	i915_reg_t fence_reg_lo, fence_reg_hi;
62	int fence_pitch_shift;
63	u64 val;
64
65	if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
66		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
67		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
68		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
69
70	} else {
71		fence_reg_lo = FENCE_REG_965_LO(fence->id);
72		fence_reg_hi = FENCE_REG_965_HI(fence->id);
73		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
74	}
75
76	val = 0;
77	if (fence->tiling) {
78		unsigned int stride = fence->stride;
79
80		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
81
82		val = fence->start + fence->size - I965_FENCE_PAGE;
83		val <<= 32;
84		val |= fence->start;
85		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
86		if (fence->tiling == I915_TILING_Y)
87			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
88		val |= I965_FENCE_REG_VALID;
89	}
90
91	if (!pipelined) {
92		struct intel_uncore *uncore = fence_to_uncore(fence);
93
94		/*
95		 * To w/a incoherency with non-atomic 64-bit register updates,
96		 * we split the 64-bit update into two 32-bit writes. In order
97		 * for a partial fence not to be evaluated between writes, we
98		 * precede the update with write to turn off the fence register,
99		 * and only enable the fence as the last step.
100		 *
101		 * For extra levels of paranoia, we make sure each step lands
102		 * before applying the next step.
103		 */
104		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
105		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
106
107		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
108		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
109		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
110	}
111}
112
113static void i915_write_fence_reg(struct i915_fence_reg *fence)
114{
115	u32 val;
116
117	val = 0;
118	if (fence->tiling) {
119		unsigned int stride = fence->stride;
120		unsigned int tiling = fence->tiling;
121		bool is_y_tiled = tiling == I915_TILING_Y;
122
123		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
124			stride /= 128;
125		else
126			stride /= 512;
127		GEM_BUG_ON(!is_power_of_2(stride));
128
129		val = fence->start;
130		if (is_y_tiled)
131			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
132		val |= I915_FENCE_SIZE_BITS(fence->size);
133		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
134
135		val |= I830_FENCE_REG_VALID;
136	}
137
138	if (!pipelined) {
139		struct intel_uncore *uncore = fence_to_uncore(fence);
140		i915_reg_t reg = FENCE_REG(fence->id);
141
142		intel_uncore_write_fw(uncore, reg, val);
143		intel_uncore_posting_read_fw(uncore, reg);
144	}
145}
146
147static void i830_write_fence_reg(struct i915_fence_reg *fence)
148{
149	u32 val;
150
151	val = 0;
152	if (fence->tiling) {
153		unsigned int stride = fence->stride;
154
155		val = fence->start;
156		if (fence->tiling == I915_TILING_Y)
157			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
158		val |= I830_FENCE_SIZE_BITS(fence->size);
159		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
160		val |= I830_FENCE_REG_VALID;
161	}
162
163	if (!pipelined) {
164		struct intel_uncore *uncore = fence_to_uncore(fence);
165		i915_reg_t reg = FENCE_REG(fence->id);
166
167		intel_uncore_write_fw(uncore, reg, val);
168		intel_uncore_posting_read_fw(uncore, reg);
169	}
170}
171
172static void fence_write(struct i915_fence_reg *fence)
173{
174	struct drm_i915_private *i915 = fence_to_i915(fence);
175
176	/*
177	 * Previous access through the fence register is marshalled by
178	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
179	 * and explicitly managed for internal users.
180	 */
181
182	if (GRAPHICS_VER(i915) == 2)
183		i830_write_fence_reg(fence);
184	else if (GRAPHICS_VER(i915) == 3)
185		i915_write_fence_reg(fence);
186	else
187		i965_write_fence_reg(fence);
188
189	/*
190	 * Access through the fenced region afterwards is
191	 * ordered by the posting reads whilst writing the registers.
192	 */
193}
194
195static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
196{
197	return GRAPHICS_VER(fence_to_i915(fence)) < 4;
198}
199
200static int fence_update(struct i915_fence_reg *fence,
201			struct i915_vma *vma)
202{
203	struct i915_ggtt *ggtt = fence->ggtt;
204	struct intel_uncore *uncore = fence_to_uncore(fence);
205	intel_wakeref_t wakeref;
206	struct i915_vma *old;
207	int ret;
208
209	fence->tiling = 0;
210	if (vma) {
211		GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
212			   !i915_gem_object_get_tiling(vma->obj));
213
214		if (!i915_vma_is_map_and_fenceable(vma))
215			return -EINVAL;
216
217		if (gpu_uses_fence_registers(fence)) {
218			/* implicit 'unfenced' GPU blits */
219			ret = i915_vma_sync(vma);
220			if (ret)
221				return ret;
222		}
223
224		GEM_BUG_ON(vma->fence_size > i915_vma_size(vma));
225		fence->start = i915_ggtt_offset(vma);
226		fence->size = vma->fence_size;
227		fence->stride = i915_gem_object_get_stride(vma->obj);
228		fence->tiling = i915_gem_object_get_tiling(vma->obj);
229	}
230	WRITE_ONCE(fence->dirty, false);
231
232	old = xchg(&fence->vma, NULL);
233	if (old) {
234		/* XXX Ideally we would move the waiting to outside the mutex */
235		ret = i915_active_wait(&fence->active);
236		if (ret) {
237			fence->vma = old;
238			return ret;
239		}
240
241		i915_vma_flush_writes(old);
242
243		/*
244		 * Ensure that all userspace CPU access is completed before
245		 * stealing the fence.
246		 */
247		if (old != vma) {
248			GEM_BUG_ON(old->fence != fence);
249			i915_vma_revoke_mmap(old);
250			old->fence = NULL;
251		}
252
253		list_move(&fence->link, &ggtt->fence_list);
254	}
255
256	/*
257	 * We only need to update the register itself if the device is awake.
258	 * If the device is currently powered down, we will defer the write
259	 * to the runtime resume, see intel_ggtt_restore_fences().
260	 *
261	 * This only works for removing the fence register, on acquisition
262	 * the caller must hold the rpm wakeref. The fence register must
263	 * be cleared before we can use any other fences to ensure that
264	 * the new fences do not overlap the elided clears, confusing HW.
265	 */
266	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
267	if (!wakeref) {
268		GEM_BUG_ON(vma);
269		return 0;
270	}
271
272	WRITE_ONCE(fence->vma, vma);
273	fence_write(fence);
274
275	if (vma) {
276		vma->fence = fence;
277		list_move_tail(&fence->link, &ggtt->fence_list);
278	}
279
280	intel_runtime_pm_put(uncore->rpm, wakeref);
281	return 0;
282}
283
284/**
285 * i915_vma_revoke_fence - force-remove fence for a VMA
286 * @vma: vma to map linearly (not through a fence reg)
287 *
288 * This function force-removes any fence from the given object, which is useful
289 * if the kernel wants to do untiled GTT access.
290 */
291void i915_vma_revoke_fence(struct i915_vma *vma)
292{
293	struct i915_fence_reg *fence = vma->fence;
294	intel_wakeref_t wakeref;
295
296	lockdep_assert_held(&vma->vm->mutex);
297	if (!fence)
298		return;
299
300	GEM_BUG_ON(fence->vma != vma);
301	GEM_BUG_ON(!i915_active_is_idle(&fence->active));
302	GEM_BUG_ON(atomic_read(&fence->pin_count));
303
304	fence->tiling = 0;
305	WRITE_ONCE(fence->vma, NULL);
306	vma->fence = NULL;
307
308	/*
309	 * Skip the write to HW if and only if the device is currently
310	 * suspended.
311	 *
312	 * If the driver does not currently hold a wakeref (if_in_use == 0),
313	 * the device may currently be runtime suspended, or it may be woken
314	 * up before the suspend takes place. If the device is not suspended
315	 * (powered down) and we skip clearing the fence register, the HW is
316	 * left in an undefined state where we may end up with multiple
317	 * registers overlapping.
318	 */
319	with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
320		fence_write(fence);
321}
322
323static bool fence_is_active(const struct i915_fence_reg *fence)
324{
325	return fence->vma && i915_vma_is_active(fence->vma);
326}
327
328static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
329{
330	struct i915_fence_reg *active = NULL;
331	struct i915_fence_reg *fence, *fn;
332
333	list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
334		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
335
336		if (fence == active) /* now seen this fence twice */
337			active = ERR_PTR(-EAGAIN);
338
339		/* Prefer idle fences so we do not have to wait on the GPU */
340		if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
341			if (!active)
342				active = fence;
343
344			list_move_tail(&fence->link, &ggtt->fence_list);
345			continue;
346		}
347
348		if (atomic_read(&fence->pin_count))
349			continue;
350
351		return fence;
352	}
353
354	/* Wait for completion of pending flips which consume fences */
355	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
356		return ERR_PTR(-EAGAIN);
357
358	return ERR_PTR(-ENOBUFS);
359}
360
361int __i915_vma_pin_fence(struct i915_vma *vma)
362{
363	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
364	struct i915_fence_reg *fence;
365	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
366	int err;
367
368	lockdep_assert_held(&vma->vm->mutex);
369
370	/* Just update our place in the LRU if our fence is getting reused. */
371	if (vma->fence) {
372		fence = vma->fence;
373		GEM_BUG_ON(fence->vma != vma);
374		atomic_inc(&fence->pin_count);
375		if (!fence->dirty) {
376			list_move_tail(&fence->link, &ggtt->fence_list);
377			return 0;
378		}
379	} else if (set) {
380		fence = fence_find(ggtt);
381		if (IS_ERR(fence))
382			return PTR_ERR(fence);
383
384		GEM_BUG_ON(atomic_read(&fence->pin_count));
385		atomic_inc(&fence->pin_count);
386	} else {
387		return 0;
388	}
389
390	err = fence_update(fence, set);
391	if (err)
392		goto out_unpin;
393
394	GEM_BUG_ON(fence->vma != set);
395	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
396
397	if (set)
398		return 0;
399
400out_unpin:
401	atomic_dec(&fence->pin_count);
402	return err;
403}
404
405/**
406 * i915_vma_pin_fence - set up fencing for a vma
407 * @vma: vma to map through a fence reg
408 *
409 * When mapping objects through the GTT, userspace wants to be able to write
410 * to them without having to worry about swizzling if the object is tiled.
411 * This function walks the fence regs looking for a free one for @obj,
412 * stealing one if it can't find any.
413 *
414 * It then sets up the reg based on the object's properties: address, pitch
415 * and tiling format.
416 *
417 * For an untiled surface, this removes any existing fence.
418 *
419 * Returns:
420 *
421 * 0 on success, negative error code on failure.
422 */
423int i915_vma_pin_fence(struct i915_vma *vma)
424{
425	int err;
426
427	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
428		return 0;
429
430	/*
431	 * Note that we revoke fences on runtime suspend. Therefore the user
432	 * must keep the device awake whilst using the fence.
433	 */
434	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
435	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
436
437	err = mutex_lock_interruptible(&vma->vm->mutex);
438	if (err)
439		return err;
440
441	err = __i915_vma_pin_fence(vma);
442	mutex_unlock(&vma->vm->mutex);
443
444	return err;
445}
446
447/**
448 * i915_reserve_fence - Reserve a fence for vGPU
449 * @ggtt: Global GTT
450 *
451 * This function walks the fence regs looking for a free one and remove
452 * it from the fence_list. It is used to reserve fence for vGPU to use.
453 */
454struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
455{
456	struct i915_fence_reg *fence;
457	int count;
458	int ret;
459
460	lockdep_assert_held(&ggtt->vm.mutex);
461
462	/* Keep at least one fence available for the display engine. */
463	count = 0;
464	list_for_each_entry(fence, &ggtt->fence_list, link)
465		count += !atomic_read(&fence->pin_count);
466	if (count <= 1)
467		return ERR_PTR(-ENOSPC);
468
469	fence = fence_find(ggtt);
470	if (IS_ERR(fence))
471		return fence;
472
473	if (fence->vma) {
474		/* Force-remove fence from VMA */
475		ret = fence_update(fence, NULL);
476		if (ret)
477			return ERR_PTR(ret);
478	}
479
480	list_del(&fence->link);
481
482	return fence;
483}
484
485/**
486 * i915_unreserve_fence - Reclaim a reserved fence
487 * @fence: the fence reg
488 *
489 * This function add a reserved fence register from vGPU to the fence_list.
490 */
491void i915_unreserve_fence(struct i915_fence_reg *fence)
492{
493	struct i915_ggtt *ggtt = fence->ggtt;
494
495	lockdep_assert_held(&ggtt->vm.mutex);
496
497	list_add(&fence->link, &ggtt->fence_list);
498}
499
500/**
501 * intel_ggtt_restore_fences - restore fence state
502 * @ggtt: Global GTT
503 *
504 * Restore the hw fence state to match the software tracking again, to be called
505 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
506 * the fences, to be reacquired by the user later.
507 */
508void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
509{
510	int i;
511
512	for (i = 0; i < ggtt->num_fences; i++)
513		fence_write(&ggtt->fence_regs[i]);
514}
515
516/**
517 * DOC: tiling swizzling details
518 *
519 * The idea behind tiling is to increase cache hit rates by rearranging
520 * pixel data so that a group of pixel accesses are in the same cacheline.
521 * Performance improvement from doing this on the back/depth buffer are on
522 * the order of 30%.
523 *
524 * Intel architectures make this somewhat more complicated, though, by
525 * adjustments made to addressing of data when the memory is in interleaved
526 * mode (matched pairs of DIMMS) to improve memory bandwidth.
527 * For interleaved memory, the CPU sends every sequential 64 bytes
528 * to an alternate memory channel so it can get the bandwidth from both.
529 *
530 * The GPU also rearranges its accesses for increased bandwidth to interleaved
531 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
532 * it does it a little differently, since one walks addresses not just in the
533 * X direction but also Y.  So, along with alternating channels when bit
534 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
535 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
536 * are common to both the 915 and 965-class hardware.
537 *
538 * The CPU also sometimes XORs in higher bits as well, to improve
539 * bandwidth doing strided access like we do so frequently in graphics.  This
540 * is called "Channel XOR Randomization" in the MCH documentation.  The result
541 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
542 * decode.
543 *
544 * All of this bit 6 XORing has an effect on our memory management,
545 * as we need to make sure that the 3d driver can correctly address object
546 * contents.
547 *
548 * If we don't have interleaved memory, all tiling is safe and no swizzling is
549 * required.
550 *
551 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
552 * 17 is not just a page offset, so as we page an object out and back in,
553 * individual pages in it will have different bit 17 addresses, resulting in
554 * each 64 bytes being swapped with its neighbor!
555 *
556 * Otherwise, if interleaved, we have to tell the 3d driver what the address
557 * swizzling it needs to do is, since it's writing with the CPU to the pages
558 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
559 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
560 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
561 * to match what the GPU expects.
562 */
563
564/**
565 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
566 * @ggtt: Global GGTT
567 *
568 * Detects bit 6 swizzling of address lookup between IGD access and CPU
569 * access through main memory.
570 */
571static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
572{
573	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
574	struct drm_i915_private *i915 = ggtt->vm.i915;
575	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
576	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
577
578	if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
579		/*
580		 * On BDW+, swizzling is not used. We leave the CPU memory
581		 * controller in charge of optimizing memory accesses without
582		 * the extra address manipulation GPU side.
583		 *
584		 * VLV and CHV don't have GPU swizzling.
585		 */
586		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
587		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
588	} else if (GRAPHICS_VER(i915) >= 6) {
589		if (i915->preserve_bios_swizzle) {
590			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
591			    DISP_TILE_SURFACE_SWIZZLING) {
592				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
593				swizzle_y = I915_BIT_6_SWIZZLE_9;
594			} else {
595				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
596				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
597			}
598		} else {
599			u32 dimm_c0, dimm_c1;
600
601			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
602			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
603			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
604			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
605			/*
606			 * Enable swizzling when the channels are populated
607			 * with identically sized dimms. We don't need to check
608			 * the 3rd channel because no cpu with gpu attached
609			 * ships in that configuration. Also, swizzling only
610			 * makes sense for 2 channels anyway.
611			 */
612			if (dimm_c0 == dimm_c1) {
613				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
614				swizzle_y = I915_BIT_6_SWIZZLE_9;
615			} else {
616				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
617				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
618			}
619		}
620	} else if (GRAPHICS_VER(i915) == 5) {
621		/*
622		 * On Ironlake whatever DRAM config, GPU always do
623		 * same swizzling setup.
624		 */
625		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
626		swizzle_y = I915_BIT_6_SWIZZLE_9;
627	} else if (GRAPHICS_VER(i915) == 2) {
628		/*
629		 * As far as we know, the 865 doesn't have these bit 6
630		 * swizzling issues.
631		 */
632		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
633		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
634	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
635		/*
636		 * The 965, G33, and newer, have a very flexible memory
637		 * configuration.  It will enable dual-channel mode
638		 * (interleaving) on as much memory as it can, and the GPU
639		 * will additionally sometimes enable different bit 6
640		 * swizzling for tiled objects from the CPU.
641		 *
642		 * Here's what I found on the G965:
643		 *    slot fill         memory size  swizzling
644		 * 0A   0B   1A   1B    1-ch   2-ch
645		 * 512  0    0    0     512    0     O
646		 * 512  0    512  0     16     1008  X
647		 * 512  0    0    512   16     1008  X
648		 * 0    512  0    512   16     1008  X
649		 * 1024 1024 1024 0     2048   1024  O
650		 *
651		 * We could probably detect this based on either the DRB
652		 * matching, which was the case for the swizzling required in
653		 * the table above, or from the 1-ch value being less than
654		 * the minimum size of a rank.
655		 *
656		 * Reports indicate that the swizzling actually
657		 * varies depending upon page placement inside the
658		 * channels, i.e. we see swizzled pages where the
659		 * banks of memory are paired and unswizzled on the
660		 * uneven portion, so leave that as unknown.
661		 */
662		if (intel_uncore_read16(uncore, C0DRB3_BW) ==
663		    intel_uncore_read16(uncore, C1DRB3_BW)) {
664			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
665			swizzle_y = I915_BIT_6_SWIZZLE_9;
666		}
667	} else {
668		u32 dcc = intel_uncore_read(uncore, DCC);
669
670		/*
671		 * On 9xx chipsets, channel interleave by the CPU is
672		 * determined by DCC.  For single-channel, neither the CPU
673		 * nor the GPU do swizzling.  For dual channel interleaved,
674		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
675		 * 9 for Y tiled.  The CPU's interleave is independent, and
676		 * can be based on either bit 11 (haven't seen this yet) or
677		 * bit 17 (common).
678		 */
679		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
680		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
681		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
682			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
683			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
684			break;
685		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
686			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
687				/*
688				 * This is the base swizzling by the GPU for
689				 * tiled buffers.
690				 */
691				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
692				swizzle_y = I915_BIT_6_SWIZZLE_9;
693			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
694				/* Bit 11 swizzling by the CPU in addition. */
695				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
696				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
697			} else {
698				/* Bit 17 swizzling by the CPU in addition. */
699				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
700				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
701			}
702			break;
703		}
704
705		/* check for L-shaped memory aka modified enhanced addressing */
706		if (GRAPHICS_VER(i915) == 4 &&
707		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
708			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
709			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
710		}
711
712		if (dcc == 0xffffffff) {
713			drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
714				  "Disabling tiling.\n");
715			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
716			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
717		}
718	}
719
720	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
721	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
722		/*
723		 * Userspace likes to explode if it sees unknown swizzling,
724		 * so lie. We will finish the lie when reporting through
725		 * the get-tiling-ioctl by reporting the physical swizzle
726		 * mode as unknown instead.
727		 *
728		 * As we don't strictly know what the swizzling is, it may be
729		 * bit17 dependent, and so we need to also prevent the pages
730		 * from being moved.
731		 */
732		i915->gem_quirks |= GEM_QUIRK_PIN_SWIZZLED_PAGES;
733		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
734		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
735	}
736
737	to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x;
738	to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y;
739}
740
741/*
742 * Swap every 64 bytes of this page around, to account for it having a new
743 * bit 17 of its physical address and therefore being interpreted differently
744 * by the GPU.
745 */
746static void swizzle_page(struct page *page)
747{
748	char temp[64];
749	char *vaddr;
750	int i;
751
752	vaddr = kmap(page);
753
754	for (i = 0; i < PAGE_SIZE; i += 128) {
755		memcpy(temp, &vaddr[i], 64);
756		memcpy(&vaddr[i], &vaddr[i + 64], 64);
757		memcpy(&vaddr[i + 64], temp, 64);
758	}
759
760	kunmap(page);
761}
762
763/**
764 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
765 * @obj: i915 GEM buffer object
766 * @pages: the scattergather list of physical pages
767 *
768 * This function fixes up the swizzling in case any page frame number for this
769 * object has changed in bit 17 since that state has been saved with
770 * i915_gem_object_save_bit_17_swizzle().
771 *
772 * This is called when pinning backing storage again, since the kernel is free
773 * to move unpinned backing storage around (either by directly moving pages or
774 * by swapping them out and back in again).
775 */
776void
777i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
778				  struct sg_table *pages)
779{
780	struct sgt_iter sgt_iter;
781	struct page *page;
782	int i;
783
784	if (obj->bit_17 == NULL)
785		return;
786
787	i = 0;
788	for_each_sgt_page(page, sgt_iter, pages) {
789		char new_bit_17 = page_to_phys(page) >> 17;
790
791		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
792			swizzle_page(page);
793			set_page_dirty(page);
794		}
795
796		i++;
797	}
798}
799
800/**
801 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
802 * @obj: i915 GEM buffer object
803 * @pages: the scattergather list of physical pages
804 *
805 * This function saves the bit 17 of each page frame number so that swizzling
806 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
807 * be called before the backing storage can be unpinned.
808 */
809void
810i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
811				    struct sg_table *pages)
812{
813	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
814	struct sgt_iter sgt_iter;
815	struct page *page;
816	int i;
817
818	if (obj->bit_17 == NULL) {
819		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
820		if (obj->bit_17 == NULL) {
821			drm_err(obj->base.dev,
822				"Failed to allocate memory for bit 17 record\n");
823			return;
824		}
825	}
826
827	i = 0;
828
829	for_each_sgt_page(page, sgt_iter, pages) {
830		if (page_to_phys(page) & (1 << 17))
831			__set_bit(i, obj->bit_17);
832		else
833			__clear_bit(i, obj->bit_17);
834		i++;
835	}
836}
837
838void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
839{
840	struct drm_i915_private *i915 = ggtt->vm.i915;
841	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
842	int num_fences;
843	int i;
844
845	INIT_LIST_HEAD(&ggtt->fence_list);
846	INIT_LIST_HEAD(&ggtt->userfault_list);
847
848	detect_bit_6_swizzle(ggtt);
849
850	if (!i915_ggtt_has_aperture(ggtt))
851		num_fences = 0;
852	else if (GRAPHICS_VER(i915) >= 7 &&
853		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
854		num_fences = 32;
855	else if (GRAPHICS_VER(i915) >= 4 ||
856		 IS_I945G(i915) || IS_I945GM(i915) ||
857		 IS_G33(i915) || IS_PINEVIEW(i915))
858		num_fences = 16;
859	else
860		num_fences = 8;
861
862	if (intel_vgpu_active(i915))
863		num_fences = intel_uncore_read(uncore,
864					       vgtif_reg(avail_rs.fence_num));
865	ggtt->fence_regs = kcalloc(num_fences,
866				   sizeof(*ggtt->fence_regs),
867				   GFP_KERNEL);
868	if (!ggtt->fence_regs)
869		num_fences = 0;
870
871	/* Initialize fence registers to zero */
872	for (i = 0; i < num_fences; i++) {
873		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
874
875		i915_active_init(&fence->active, NULL, NULL, 0);
876		fence->ggtt = ggtt;
877		fence->id = i;
878		list_add_tail(&fence->link, &ggtt->fence_list);
879	}
880	ggtt->num_fences = num_fences;
881
882	intel_ggtt_restore_fences(ggtt);
883}
884
885void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
886{
887	int i;
888
889	for (i = 0; i < ggtt->num_fences; i++) {
890		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
891
892		i915_active_fini(&fence->active);
893	}
894
895	kfree(ggtt->fence_regs);
896}
897
898void intel_gt_init_swizzling(struct intel_gt *gt)
899{
900	struct drm_i915_private *i915 = gt->i915;
901	struct intel_uncore *uncore = gt->uncore;
902
903	if (GRAPHICS_VER(i915) < 5 ||
904	    to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
905		return;
906
907	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
908
909	if (GRAPHICS_VER(i915) == 5)
910		return;
911
912	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
913
914	if (GRAPHICS_VER(i915) == 6)
915		intel_uncore_write(uncore,
916				   ARB_MODE,
917				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
918	else if (GRAPHICS_VER(i915) == 7)
919		intel_uncore_write(uncore,
920				   ARB_MODE,
921				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
922	else if (GRAPHICS_VER(i915) == 8)
923		intel_uncore_write(uncore,
924				   GAMTARBMODE,
925				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
926	else
927		MISSING_CASE(GRAPHICS_VER(i915));
928}
929