1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2014 Intel Corporation
4 */
5
6/**
7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
8 *
9 * Motivation:
10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11 * These expanded contexts enable a number of new abilities, especially
12 * "Execlists" (also implemented in this file).
13 *
14 * One of the main differences with the legacy HW contexts is that logical
15 * ring contexts incorporate many more things to the context's state, like
16 * PDPs or ringbuffer control registers:
17 *
18 * The reason why PDPs are included in the context is straightforward: as
19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21 * instead, the GPU will do it for you on the context switch.
22 *
23 * But, what about the ringbuffer control registers (head, tail, etc..)?
24 * shouldn't we just need a set of those per engine command streamer? This is
25 * where the name "Logical Rings" starts to make sense: by virtualizing the
26 * rings, the engine cs shifts to a new "ring buffer" with every context
27 * switch. When you want to submit a workload to the GPU you: A) choose your
28 * context, B) find its appropriate virtualized ring, C) write commands to it
29 * and then, finally, D) tell the GPU to switch to that context.
30 *
31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32 * to a contexts is via a context execution list, ergo "Execlists".
33 *
34 * LRC implementation:
35 * Regarding the creation of contexts, we have:
36 *
37 * - One global default context.
38 * - One local default context for each opened fd.
39 * - One local extra context for each context create ioctl call.
40 *
41 * Now that ringbuffers belong per-context (and not per-engine, like before)
42 * and that contexts are uniquely tied to a given engine (and not reusable,
43 * like before) we need:
44 *
45 * - One ringbuffer per-engine inside each context.
46 * - One backing object per-engine inside each context.
47 *
48 * The global default context starts its life with these new objects fully
49 * allocated and populated. The local default context for each opened fd is
50 * more complex, because we don't know at creation time which engine is going
51 * to use them. To handle this, we have implemented a deferred creation of LR
52 * contexts:
53 *
54 * The local context starts its life as a hollow or blank holder, that only
55 * gets populated for a given engine once we receive an execbuffer. If later
56 * on we receive another execbuffer ioctl for the same context but a different
57 * engine, we allocate/populate a new ringbuffer and context backing object and
58 * so on.
59 *
60 * Finally, regarding local contexts created using the ioctl call: as they are
61 * only allowed with the render ring, we can allocate & populate them right
62 * away (no need to defer anything, at least for now).
63 *
64 * Execlists implementation:
65 * Execlists are the new method by which, on gen8+ hardware, workloads are
66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67 * This method works as follows:
68 *
69 * When a request is committed, its commands (the BB start and any leading or
70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71 * for the appropriate context. The tail pointer in the hardware context is not
72 * updated at this time, but instead, kept by the driver in the ringbuffer
73 * structure. A structure representing this request is added to a request queue
74 * for the appropriate engine: this structure contains a copy of the context's
75 * tail after the request was written to the ring buffer and a pointer to the
76 * context itself.
77 *
78 * If the engine's request queue was empty before the request was added, the
79 * queue is processed immediately. Otherwise the queue will be processed during
80 * a context switch interrupt. In any case, elements on the queue will get sent
81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82 * globally unique 20-bits submission ID.
83 *
84 * When execution of a request completes, the GPU updates the context status
85 * buffer with a context complete event and generates a context switch interrupt.
86 * During the interrupt handling, the driver examines the events in the buffer:
87 * for each context complete event, if the announced ID matches that on the head
88 * of the request queue, then that request is retired and removed from the queue.
89 *
90 * After processing, if any requests were retired and the queue is not empty
91 * then a new execution list can be submitted. The two requests at the front of
92 * the queue are next to be submitted but since a context may not occur twice in
93 * an execution list, if subsequent requests have the same ID as the first then
94 * the two requests must be combined. This is done simply by discarding requests
95 * at the head of the queue until either only one requests is left (in which case
96 * we use a NULL second context) or the first two requests have unique IDs.
97 *
98 * By always executing the first two requests in the queue the driver ensures
99 * that the GPU is kept as busy as possible. In the case where a single context
100 * completes but a second context is still executing, the request for this second
101 * context will be at the head of the queue when we remove the first one. This
102 * request will then be resubmitted along with a new request for a different context,
103 * which will cause the hardware to continue executing the second request and queue
104 * the new request (the GPU detects the condition of a context getting preempted
105 * with the same context and optimizes the context switch flow by not doing
106 * preemption, but just sampling the new tail pointer).
107 *
108 */
109#include <linux/interrupt.h>
110#include <linux/string_helpers.h>
111
112#include "i915_drv.h"
113#include "i915_reg.h"
114#include "i915_trace.h"
115#include "i915_vgpu.h"
116#include "gen8_engine_cs.h"
117#include "intel_breadcrumbs.h"
118#include "intel_context.h"
119#include "intel_engine_heartbeat.h"
120#include "intel_engine_pm.h"
121#include "intel_engine_regs.h"
122#include "intel_engine_stats.h"
123#include "intel_execlists_submission.h"
124#include "intel_gt.h"
125#include "intel_gt_irq.h"
126#include "intel_gt_pm.h"
127#include "intel_gt_regs.h"
128#include "intel_gt_requests.h"
129#include "intel_lrc.h"
130#include "intel_lrc_reg.h"
131#include "intel_mocs.h"
132#include "intel_reset.h"
133#include "intel_ring.h"
134#include "intel_workarounds.h"
135#include "shmem_utils.h"
136
137#define RING_EXECLIST_QFULL		(1 << 0x2)
138#define RING_EXECLIST1_VALID		(1 << 0x3)
139#define RING_EXECLIST0_VALID		(1 << 0x4)
140#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
141#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
142#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
143
144#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
145#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
146#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
147#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
148#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
149#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
150
151#define GEN8_CTX_STATUS_COMPLETED_MASK \
152	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153
154#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
155#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
156#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
157#define GEN12_IDLE_CTX_ID		0x7FF
158#define GEN12_CSB_CTX_VALID(csb_dw) \
159	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160
161#define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
162#define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
163#define XEHP_IDLE_CTX_ID			0xFFFF
164#define XEHP_CSB_CTX_VALID(csb_dw) \
165	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166
167/* Typical size of the average request (2 pipecontrols and a MI_BB) */
168#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
170struct virtual_engine {
171	struct intel_engine_cs base;
172	struct intel_context context;
173	struct rcu_work rcu;
174
175	/*
176	 * We allow only a single request through the virtual engine at a time
177	 * (each request in the timeline waits for the completion fence of
178	 * the previous before being submitted). By restricting ourselves to
179	 * only submitting a single request, each request is placed on to a
180	 * physical to maximise load spreading (by virtue of the late greedy
181	 * scheduling -- each real engine takes the next available request
182	 * upon idling).
183	 */
184	struct i915_request *request;
185
186	/*
187	 * We keep a rbtree of available virtual engines inside each physical
188	 * engine, sorted by priority. Here we preallocate the nodes we need
189	 * for the virtual engine, indexed by physical_engine->id.
190	 */
191	struct ve_node {
192		struct rb_node rb;
193		int prio;
194	} nodes[I915_NUM_ENGINES];
195
196	/* And finally, which physical engines this virtual engine maps onto. */
197	unsigned int num_siblings;
198	struct intel_engine_cs *siblings[];
199};
200
201static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202{
203	GEM_BUG_ON(!intel_engine_is_virtual(engine));
204	return container_of(engine, struct virtual_engine, base);
205}
206
207static struct intel_context *
208execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209			 unsigned long flags);
210
211static struct i915_request *
212__active_request(const struct intel_timeline * const tl,
213		 struct i915_request *rq,
214		 int error)
215{
216	struct i915_request *active = rq;
217
218	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219		if (__i915_request_is_complete(rq))
220			break;
221
222		if (error) {
223			i915_request_set_error_once(rq, error);
224			__i915_request_skip(rq);
225		}
226		active = rq;
227	}
228
229	return active;
230}
231
232static struct i915_request *
233active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234{
235	return __active_request(tl, rq, 0);
236}
237
238static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239{
240	/*
241	 * We inspect HWS_PREEMPT with a semaphore inside
242	 * engine->emit_fini_breadcrumb. If the dword is true,
243	 * the ring is paused as the semaphore will busywait
244	 * until the dword is false.
245	 */
246	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247	if (state)
248		wmb();
249}
250
251static struct i915_priolist *to_priolist(struct rb_node *rb)
252{
253	return rb_entry(rb, struct i915_priolist, node);
254}
255
256static int rq_prio(const struct i915_request *rq)
257{
258	return READ_ONCE(rq->sched.attr.priority);
259}
260
261static int effective_prio(const struct i915_request *rq)
262{
263	int prio = rq_prio(rq);
264
265	/*
266	 * If this request is special and must not be interrupted at any
267	 * cost, so be it. Note we are only checking the most recent request
268	 * in the context and so may be masking an earlier vip request. It
269	 * is hoped that under the conditions where nopreempt is used, this
270	 * will not matter (i.e. all requests to that context will be
271	 * nopreempt for as long as desired).
272	 */
273	if (i915_request_has_nopreempt(rq))
274		prio = I915_PRIORITY_UNPREEMPTABLE;
275
276	return prio;
277}
278
279static int queue_prio(const struct i915_sched_engine *sched_engine)
280{
281	struct rb_node *rb;
282
283	rb = rb_first_cached(&sched_engine->queue);
284	if (!rb)
285		return INT_MIN;
286
287	return to_priolist(rb)->priority;
288}
289
290static int virtual_prio(const struct intel_engine_execlists *el)
291{
292	struct rb_node *rb = rb_first_cached(&el->virtual);
293
294	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295}
296
297static bool need_preempt(const struct intel_engine_cs *engine,
298			 const struct i915_request *rq)
299{
300	int last_prio;
301
302	if (!intel_engine_has_semaphores(engine))
303		return false;
304
305	/*
306	 * Check if the current priority hint merits a preemption attempt.
307	 *
308	 * We record the highest value priority we saw during rescheduling
309	 * prior to this dequeue, therefore we know that if it is strictly
310	 * less than the current tail of ESLP[0], we do not need to force
311	 * a preempt-to-idle cycle.
312	 *
313	 * However, the priority hint is a mere hint that we may need to
314	 * preempt. If that hint is stale or we may be trying to preempt
315	 * ourselves, ignore the request.
316	 *
317	 * More naturally we would write
318	 *      prio >= max(0, last);
319	 * except that we wish to prevent triggering preemption at the same
320	 * priority level: the task that is running should remain running
321	 * to preserve FIFO ordering of dependencies.
322	 */
323	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324	if (engine->sched_engine->queue_priority_hint <= last_prio)
325		return false;
326
327	/*
328	 * Check against the first request in ELSP[1], it will, thanks to the
329	 * power of PI, be the highest priority of that context.
330	 */
331	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333		return true;
334
335	/*
336	 * If the inflight context did not trigger the preemption, then maybe
337	 * it was the set of queued requests? Pick the highest priority in
338	 * the queue (the first active priolist) and see if it deserves to be
339	 * running instead of ELSP[0].
340	 *
341	 * The highest priority request in the queue can not be either
342	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343	 * context, it's priority would not exceed ELSP[0] aka last_prio.
344	 */
345	return max(virtual_prio(&engine->execlists),
346		   queue_prio(engine->sched_engine)) > last_prio;
347}
348
349__maybe_unused static bool
350assert_priority_queue(const struct i915_request *prev,
351		      const struct i915_request *next)
352{
353	/*
354	 * Without preemption, the prev may refer to the still active element
355	 * which we refuse to let go.
356	 *
357	 * Even with preemption, there are times when we think it is better not
358	 * to preempt and leave an ostensibly lower priority request in flight.
359	 */
360	if (i915_request_is_active(prev))
361		return true;
362
363	return rq_prio(prev) >= rq_prio(next);
364}
365
366static struct i915_request *
367__unwind_incomplete_requests(struct intel_engine_cs *engine)
368{
369	struct i915_request *rq, *rn, *active = NULL;
370	struct list_head *pl;
371	int prio = I915_PRIORITY_INVALID;
372
373	lockdep_assert_held(&engine->sched_engine->lock);
374
375	list_for_each_entry_safe_reverse(rq, rn,
376					 &engine->sched_engine->requests,
377					 sched.link) {
378		if (__i915_request_is_complete(rq)) {
379			list_del_init(&rq->sched.link);
380			continue;
381		}
382
383		__i915_request_unsubmit(rq);
384
385		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386		if (rq_prio(rq) != prio) {
387			prio = rq_prio(rq);
388			pl = i915_sched_lookup_priolist(engine->sched_engine,
389							prio);
390		}
391		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392
393		list_move(&rq->sched.link, pl);
394		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395
396		/* Check in case we rollback so far we wrap [size/2] */
397		if (intel_ring_direction(rq->ring,
398					 rq->tail,
399					 rq->ring->tail + 8) > 0)
400			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401
402		active = rq;
403	}
404
405	return active;
406}
407
408struct i915_request *
409execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
410{
411	struct intel_engine_cs *engine =
412		container_of(execlists, typeof(*engine), execlists);
413
414	return __unwind_incomplete_requests(engine);
415}
416
417static void
418execlists_context_status_change(struct i915_request *rq, unsigned long status)
419{
420	/*
421	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
422	 * The compiler should eliminate this function as dead-code.
423	 */
424	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
425		return;
426
427	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
428				   status, rq);
429}
430
431static void reset_active(struct i915_request *rq,
432			 struct intel_engine_cs *engine)
433{
434	struct intel_context * const ce = rq->context;
435	u32 head;
436
437	/*
438	 * The executing context has been cancelled. We want to prevent
439	 * further execution along this context and propagate the error on
440	 * to anything depending on its results.
441	 *
442	 * In __i915_request_submit(), we apply the -EIO and remove the
443	 * requests' payloads for any banned requests. But first, we must
444	 * rewind the context back to the start of the incomplete request so
445	 * that we do not jump back into the middle of the batch.
446	 *
447	 * We preserve the breadcrumbs and semaphores of the incomplete
448	 * requests so that inter-timeline dependencies (i.e other timelines)
449	 * remain correctly ordered. And we defer to __i915_request_submit()
450	 * so that all asynchronous waits are correctly handled.
451	 */
452	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
453		     rq->fence.context, rq->fence.seqno);
454
455	/* On resubmission of the active request, payload will be scrubbed */
456	if (__i915_request_is_complete(rq))
457		head = rq->tail;
458	else
459		head = __active_request(ce->timeline, rq, -EIO)->head;
460	head = intel_ring_wrap(ce->ring, head);
461
462	/* Scrub the context image to prevent replaying the previous batch */
463	lrc_init_regs(ce, engine, true);
464
465	/* We've switched away, so this should be a no-op, but intent matters */
466	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
467}
468
469static bool bad_request(const struct i915_request *rq)
470{
471	return rq->fence.error && i915_request_started(rq);
472}
473
474static struct intel_engine_cs *
475__execlists_schedule_in(struct i915_request *rq)
476{
477	struct intel_engine_cs * const engine = rq->engine;
478	struct intel_context * const ce = rq->context;
479
480	intel_context_get(ce);
481
482	if (unlikely(intel_context_is_closed(ce) &&
483		     !intel_engine_has_heartbeat(engine)))
484		intel_context_set_exiting(ce);
485
486	if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
487		reset_active(rq, engine);
488
489	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
490		lrc_check_regs(ce, engine, "before");
491
492	if (ce->tag) {
493		/* Use a fixed tag for OA and friends */
494		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
495		ce->lrc.ccid = ce->tag;
496	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
497		/* We don't need a strict matching tag, just different values */
498		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
499
500		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
501		clear_bit(tag - 1, &engine->context_tag);
502		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
503
504		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
505
506	} else {
507		/* We don't need a strict matching tag, just different values */
508		unsigned int tag = __ffs(engine->context_tag);
509
510		GEM_BUG_ON(tag >= BITS_PER_LONG);
511		__clear_bit(tag, &engine->context_tag);
512		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
513
514		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
515	}
516
517	ce->lrc.ccid |= engine->execlists.ccid;
518
519	__intel_gt_pm_get(engine->gt);
520	if (engine->fw_domain && !engine->fw_active++)
521		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
522	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
523	intel_engine_context_in(engine);
524
525	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
526
527	return engine;
528}
529
530static void execlists_schedule_in(struct i915_request *rq, int idx)
531{
532	struct intel_context * const ce = rq->context;
533	struct intel_engine_cs *old;
534
535	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
536	trace_i915_request_in(rq, idx);
537
538	old = ce->inflight;
539	if (!old)
540		old = __execlists_schedule_in(rq);
541	WRITE_ONCE(ce->inflight, ptr_inc(old));
542
543	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
544}
545
546static void
547resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
548{
549	struct intel_engine_cs *engine = rq->engine;
550
551	spin_lock_irq(&engine->sched_engine->lock);
552
553	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
554	WRITE_ONCE(rq->engine, &ve->base);
555	ve->base.submit_request(rq);
556
557	spin_unlock_irq(&engine->sched_engine->lock);
558}
559
560static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
561{
562	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
563	struct intel_engine_cs *engine = rq->engine;
564
565	/*
566	 * After this point, the rq may be transferred to a new sibling, so
567	 * before we clear ce->inflight make sure that the context has been
568	 * removed from the b->signalers and furthermore we need to make sure
569	 * that the concurrent iterator in signal_irq_work is no longer
570	 * following ce->signal_link.
571	 */
572	if (!list_empty(&ce->signals))
573		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
574
575	/*
576	 * This engine is now too busy to run this virtual request, so
577	 * see if we can find an alternative engine for it to execute on.
578	 * Once a request has become bonded to this engine, we treat it the
579	 * same as other native request.
580	 */
581	if (i915_request_in_priority_queue(rq) &&
582	    rq->execution_mask != engine->mask)
583		resubmit_virtual_request(rq, ve);
584
585	if (READ_ONCE(ve->request))
586		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
587}
588
589static void __execlists_schedule_out(struct i915_request * const rq,
590				     struct intel_context * const ce)
591{
592	struct intel_engine_cs * const engine = rq->engine;
593	unsigned int ccid;
594
595	/*
596	 * NB process_csb() is not under the engine->sched_engine->lock and hence
597	 * schedule_out can race with schedule_in meaning that we should
598	 * refrain from doing non-trivial work here.
599	 */
600
601	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
602	GEM_BUG_ON(ce->inflight != engine);
603
604	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
605		lrc_check_regs(ce, engine, "after");
606
607	/*
608	 * If we have just completed this context, the engine may now be
609	 * idle and we want to re-enter powersaving.
610	 */
611	if (intel_timeline_is_last(ce->timeline, rq) &&
612	    __i915_request_is_complete(rq))
613		intel_engine_add_retire(engine, ce->timeline);
614
615	ccid = ce->lrc.ccid;
616	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
617		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
618		ccid &= XEHP_MAX_CONTEXT_HW_ID;
619	} else {
620		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
621		ccid &= GEN12_MAX_CONTEXT_HW_ID;
622	}
623
624	if (ccid < BITS_PER_LONG) {
625		GEM_BUG_ON(ccid == 0);
626		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
627		__set_bit(ccid - 1, &engine->context_tag);
628	}
629	intel_engine_context_out(engine);
630	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
631	if (engine->fw_domain && !--engine->fw_active)
632		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
633	intel_gt_pm_put_async_untracked(engine->gt);
634
635	/*
636	 * If this is part of a virtual engine, its next request may
637	 * have been blocked waiting for access to the active context.
638	 * We have to kick all the siblings again in case we need to
639	 * switch (e.g. the next request is not runnable on this
640	 * engine). Hopefully, we will already have submitted the next
641	 * request before the tasklet runs and do not need to rebuild
642	 * each virtual tree and kick everyone again.
643	 */
644	if (ce->engine != engine)
645		kick_siblings(rq, ce);
646
647	WRITE_ONCE(ce->inflight, NULL);
648	intel_context_put(ce);
649}
650
651static inline void execlists_schedule_out(struct i915_request *rq)
652{
653	struct intel_context * const ce = rq->context;
654
655	trace_i915_request_out(rq);
656
657	GEM_BUG_ON(!ce->inflight);
658	ce->inflight = ptr_dec(ce->inflight);
659	if (!__intel_context_inflight_count(ce->inflight))
660		__execlists_schedule_out(rq, ce);
661
662	i915_request_put(rq);
663}
664
665static u32 map_i915_prio_to_lrc_desc_prio(int prio)
666{
667	if (prio > I915_PRIORITY_NORMAL)
668		return GEN12_CTX_PRIORITY_HIGH;
669	else if (prio < I915_PRIORITY_NORMAL)
670		return GEN12_CTX_PRIORITY_LOW;
671	else
672		return GEN12_CTX_PRIORITY_NORMAL;
673}
674
675static u64 execlists_update_context(struct i915_request *rq)
676{
677	struct intel_context *ce = rq->context;
678	u64 desc;
679	u32 tail, prev;
680
681	desc = ce->lrc.desc;
682	if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
683		desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
684
685	/*
686	 * WaIdleLiteRestore:bdw,skl
687	 *
688	 * We should never submit the context with the same RING_TAIL twice
689	 * just in case we submit an empty ring, which confuses the HW.
690	 *
691	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
692	 * the normal request to be able to always advance the RING_TAIL on
693	 * subsequent resubmissions (for lite restore). Should that fail us,
694	 * and we try and submit the same tail again, force the context
695	 * reload.
696	 *
697	 * If we need to return to a preempted context, we need to skip the
698	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
699	 * HW has a tendency to ignore us rewinding the TAIL to the end of
700	 * an earlier request.
701	 */
702	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
703	prev = rq->ring->tail;
704	tail = intel_ring_set_tail(rq->ring, rq->tail);
705	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
706		desc |= CTX_DESC_FORCE_RESTORE;
707	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
708	rq->tail = rq->wa_tail;
709
710	/*
711	 * Make sure the context image is complete before we submit it to HW.
712	 *
713	 * Ostensibly, writes (including the WCB) should be flushed prior to
714	 * an uncached write such as our mmio register access, the empirical
715	 * evidence (esp. on Braswell) suggests that the WC write into memory
716	 * may not be visible to the HW prior to the completion of the UC
717	 * register write and that we may begin execution from the context
718	 * before its image is complete leading to invalid PD chasing.
719	 */
720	wmb();
721
722	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
723	return desc;
724}
725
726static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
727{
728	if (execlists->ctrl_reg) {
729		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
730		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
731	} else {
732		writel(upper_32_bits(desc), execlists->submit_reg);
733		writel(lower_32_bits(desc), execlists->submit_reg);
734	}
735}
736
737static __maybe_unused char *
738dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
739{
740	if (!rq)
741		return "";
742
743	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
744		 prefix,
745		 rq->context->lrc.ccid,
746		 rq->fence.context, rq->fence.seqno,
747		 __i915_request_is_complete(rq) ? "!" :
748		 __i915_request_has_started(rq) ? "*" :
749		 "",
750		 rq_prio(rq));
751
752	return buf;
753}
754
755static __maybe_unused noinline void
756trace_ports(const struct intel_engine_execlists *execlists,
757	    const char *msg,
758	    struct i915_request * const *ports)
759{
760	const struct intel_engine_cs *engine =
761		container_of(execlists, typeof(*engine), execlists);
762	char __maybe_unused p0[40], p1[40];
763
764	if (!ports[0])
765		return;
766
767	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
768		     dump_port(p0, sizeof(p0), "", ports[0]),
769		     dump_port(p1, sizeof(p1), ", ", ports[1]));
770}
771
772static bool
773reset_in_progress(const struct intel_engine_cs *engine)
774{
775	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
776}
777
778static __maybe_unused noinline bool
779assert_pending_valid(const struct intel_engine_execlists *execlists,
780		     const char *msg)
781{
782	struct intel_engine_cs *engine =
783		container_of(execlists, typeof(*engine), execlists);
784	struct i915_request * const *port, *rq, *prev = NULL;
785	struct intel_context *ce = NULL;
786	u32 ccid = -1;
787
788	trace_ports(execlists, msg, execlists->pending);
789
790	/* We may be messing around with the lists during reset, lalala */
791	if (reset_in_progress(engine))
792		return true;
793
794	if (!execlists->pending[0]) {
795		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
796			      engine->name);
797		return false;
798	}
799
800	if (execlists->pending[execlists_num_ports(execlists)]) {
801		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
802			      engine->name, execlists_num_ports(execlists));
803		return false;
804	}
805
806	for (port = execlists->pending; (rq = *port); port++) {
807		unsigned long flags;
808		bool ok = true;
809
810		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
811		GEM_BUG_ON(!i915_request_is_active(rq));
812
813		if (ce == rq->context) {
814			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
815				      engine->name,
816				      ce->timeline->fence_context,
817				      port - execlists->pending);
818			return false;
819		}
820		ce = rq->context;
821
822		if (ccid == ce->lrc.ccid) {
823			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
824				      engine->name,
825				      ccid, ce->timeline->fence_context,
826				      port - execlists->pending);
827			return false;
828		}
829		ccid = ce->lrc.ccid;
830
831		/*
832		 * Sentinels are supposed to be the last request so they flush
833		 * the current execution off the HW. Check that they are the only
834		 * request in the pending submission.
835		 *
836		 * NB: Due to the async nature of preempt-to-busy and request
837		 * cancellation we need to handle the case where request
838		 * becomes a sentinel in parallel to CSB processing.
839		 */
840		if (prev && i915_request_has_sentinel(prev) &&
841		    !READ_ONCE(prev->fence.error)) {
842			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
843				      engine->name,
844				      ce->timeline->fence_context,
845				      port - execlists->pending);
846			return false;
847		}
848		prev = rq;
849
850		/*
851		 * We want virtual requests to only be in the first slot so
852		 * that they are never stuck behind a hog and can be immediately
853		 * transferred onto the next idle engine.
854		 */
855		if (rq->execution_mask != engine->mask &&
856		    port != execlists->pending) {
857			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
858				      engine->name,
859				      ce->timeline->fence_context,
860				      port - execlists->pending);
861			return false;
862		}
863
864		/* Hold tightly onto the lock to prevent concurrent retires! */
865		if (!spin_trylock_irqsave(&rq->lock, flags))
866			continue;
867
868		if (__i915_request_is_complete(rq))
869			goto unlock;
870
871		if (i915_active_is_idle(&ce->active) &&
872		    !intel_context_is_barrier(ce)) {
873			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
874				      engine->name,
875				      ce->timeline->fence_context,
876				      port - execlists->pending);
877			ok = false;
878			goto unlock;
879		}
880
881		if (!i915_vma_is_pinned(ce->state)) {
882			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
883				      engine->name,
884				      ce->timeline->fence_context,
885				      port - execlists->pending);
886			ok = false;
887			goto unlock;
888		}
889
890		if (!i915_vma_is_pinned(ce->ring->vma)) {
891			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
892				      engine->name,
893				      ce->timeline->fence_context,
894				      port - execlists->pending);
895			ok = false;
896			goto unlock;
897		}
898
899unlock:
900		spin_unlock_irqrestore(&rq->lock, flags);
901		if (!ok)
902			return false;
903	}
904
905	return ce;
906}
907
908static void execlists_submit_ports(struct intel_engine_cs *engine)
909{
910	struct intel_engine_execlists *execlists = &engine->execlists;
911	unsigned int n;
912
913	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
914
915	/*
916	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
917	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
918	 * not be relinquished until the device is idle (see
919	 * i915_gem_idle_work_handler()). As a precaution, we make sure
920	 * that all ELSP are drained i.e. we have processed the CSB,
921	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
922	 */
923	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
924
925	/*
926	 * ELSQ note: the submit queue is not cleared after being submitted
927	 * to the HW so we need to make sure we always clean it up. This is
928	 * currently ensured by the fact that we always write the same number
929	 * of elsq entries, keep this in mind before changing the loop below.
930	 */
931	for (n = execlists_num_ports(execlists); n--; ) {
932		struct i915_request *rq = execlists->pending[n];
933
934		write_desc(execlists,
935			   rq ? execlists_update_context(rq) : 0,
936			   n);
937	}
938
939	/* we need to manually load the submit queue */
940	if (execlists->ctrl_reg)
941		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
942}
943
944static bool ctx_single_port_submission(const struct intel_context *ce)
945{
946	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
947		intel_context_force_single_submission(ce));
948}
949
950static bool can_merge_ctx(const struct intel_context *prev,
951			  const struct intel_context *next)
952{
953	if (prev != next)
954		return false;
955
956	if (ctx_single_port_submission(prev))
957		return false;
958
959	return true;
960}
961
962static unsigned long i915_request_flags(const struct i915_request *rq)
963{
964	return READ_ONCE(rq->fence.flags);
965}
966
967static bool can_merge_rq(const struct i915_request *prev,
968			 const struct i915_request *next)
969{
970	GEM_BUG_ON(prev == next);
971	GEM_BUG_ON(!assert_priority_queue(prev, next));
972
973	/*
974	 * We do not submit known completed requests. Therefore if the next
975	 * request is already completed, we can pretend to merge it in
976	 * with the previous context (and we will skip updating the ELSP
977	 * and tracking). Thus hopefully keeping the ELSP full with active
978	 * contexts, despite the best efforts of preempt-to-busy to confuse
979	 * us.
980	 */
981	if (__i915_request_is_complete(next))
982		return true;
983
984	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
985		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
986		      BIT(I915_FENCE_FLAG_SENTINEL))))
987		return false;
988
989	if (!can_merge_ctx(prev->context, next->context))
990		return false;
991
992	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
993	return true;
994}
995
996static bool virtual_matches(const struct virtual_engine *ve,
997			    const struct i915_request *rq,
998			    const struct intel_engine_cs *engine)
999{
1000	const struct intel_engine_cs *inflight;
1001
1002	if (!rq)
1003		return false;
1004
1005	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1006		return false;
1007
1008	/*
1009	 * We track when the HW has completed saving the context image
1010	 * (i.e. when we have seen the final CS event switching out of
1011	 * the context) and must not overwrite the context image before
1012	 * then. This restricts us to only using the active engine
1013	 * while the previous virtualized request is inflight (so
1014	 * we reuse the register offsets). This is a very small
1015	 * hystersis on the greedy seelction algorithm.
1016	 */
1017	inflight = intel_context_inflight(&ve->context);
1018	if (inflight && inflight != engine)
1019		return false;
1020
1021	return true;
1022}
1023
1024static struct virtual_engine *
1025first_virtual_engine(struct intel_engine_cs *engine)
1026{
1027	struct intel_engine_execlists *el = &engine->execlists;
1028	struct rb_node *rb = rb_first_cached(&el->virtual);
1029
1030	while (rb) {
1031		struct virtual_engine *ve =
1032			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1033		struct i915_request *rq = READ_ONCE(ve->request);
1034
1035		/* lazily cleanup after another engine handled rq */
1036		if (!rq || !virtual_matches(ve, rq, engine)) {
1037			rb_erase_cached(rb, &el->virtual);
1038			RB_CLEAR_NODE(rb);
1039			rb = rb_first_cached(&el->virtual);
1040			continue;
1041		}
1042
1043		return ve;
1044	}
1045
1046	return NULL;
1047}
1048
1049static void virtual_xfer_context(struct virtual_engine *ve,
1050				 struct intel_engine_cs *engine)
1051{
1052	unsigned int n;
1053
1054	if (likely(engine == ve->siblings[0]))
1055		return;
1056
1057	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1058	if (!intel_engine_has_relative_mmio(engine))
1059		lrc_update_offsets(&ve->context, engine);
1060
1061	/*
1062	 * Move the bound engine to the top of the list for
1063	 * future execution. We then kick this tasklet first
1064	 * before checking others, so that we preferentially
1065	 * reuse this set of bound registers.
1066	 */
1067	for (n = 1; n < ve->num_siblings; n++) {
1068		if (ve->siblings[n] == engine) {
1069			swap(ve->siblings[n], ve->siblings[0]);
1070			break;
1071		}
1072	}
1073}
1074
1075static void defer_request(struct i915_request *rq, struct list_head * const pl)
1076{
1077	LIST_HEAD(list);
1078
1079	/*
1080	 * We want to move the interrupted request to the back of
1081	 * the round-robin list (i.e. its priority level), but
1082	 * in doing so, we must then move all requests that were in
1083	 * flight and were waiting for the interrupted request to
1084	 * be run after it again.
1085	 */
1086	do {
1087		struct i915_dependency *p;
1088
1089		GEM_BUG_ON(i915_request_is_active(rq));
1090		list_move_tail(&rq->sched.link, pl);
1091
1092		for_each_waiter(p, rq) {
1093			struct i915_request *w =
1094				container_of(p->waiter, typeof(*w), sched);
1095
1096			if (p->flags & I915_DEPENDENCY_WEAK)
1097				continue;
1098
1099			/* Leave semaphores spinning on the other engines */
1100			if (w->engine != rq->engine)
1101				continue;
1102
1103			/* No waiter should start before its signaler */
1104			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1105				   __i915_request_has_started(w) &&
1106				   !__i915_request_is_complete(rq));
1107
1108			if (!i915_request_is_ready(w))
1109				continue;
1110
1111			if (rq_prio(w) < rq_prio(rq))
1112				continue;
1113
1114			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1115			GEM_BUG_ON(i915_request_is_active(w));
1116			list_move_tail(&w->sched.link, &list);
1117		}
1118
1119		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1120	} while (rq);
1121}
1122
1123static void defer_active(struct intel_engine_cs *engine)
1124{
1125	struct i915_request *rq;
1126
1127	rq = __unwind_incomplete_requests(engine);
1128	if (!rq)
1129		return;
1130
1131	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1132						     rq_prio(rq)));
1133}
1134
1135static bool
1136timeslice_yield(const struct intel_engine_execlists *el,
1137		const struct i915_request *rq)
1138{
1139	/*
1140	 * Once bitten, forever smitten!
1141	 *
1142	 * If the active context ever busy-waited on a semaphore,
1143	 * it will be treated as a hog until the end of its timeslice (i.e.
1144	 * until it is scheduled out and replaced by a new submission,
1145	 * possibly even its own lite-restore). The HW only sends an interrupt
1146	 * on the first miss, and we do know if that semaphore has been
1147	 * signaled, or even if it is now stuck on another semaphore. Play
1148	 * safe, yield if it might be stuck -- it will be given a fresh
1149	 * timeslice in the near future.
1150	 */
1151	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1152}
1153
1154static bool needs_timeslice(const struct intel_engine_cs *engine,
1155			    const struct i915_request *rq)
1156{
1157	if (!intel_engine_has_timeslices(engine))
1158		return false;
1159
1160	/* If not currently active, or about to switch, wait for next event */
1161	if (!rq || __i915_request_is_complete(rq))
1162		return false;
1163
1164	/* We do not need to start the timeslice until after the ACK */
1165	if (READ_ONCE(engine->execlists.pending[0]))
1166		return false;
1167
1168	/* If ELSP[1] is occupied, always check to see if worth slicing */
1169	if (!list_is_last_rcu(&rq->sched.link,
1170			      &engine->sched_engine->requests)) {
1171		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1172		return true;
1173	}
1174
1175	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1176	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1177		ENGINE_TRACE(engine, "timeslice required for queue\n");
1178		return true;
1179	}
1180
1181	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1182		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1183		return true;
1184	}
1185
1186	return false;
1187}
1188
1189static bool
1190timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1191{
1192	const struct intel_engine_execlists *el = &engine->execlists;
1193
1194	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1195		return false;
1196
1197	if (!needs_timeslice(engine, rq))
1198		return false;
1199
1200	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1201}
1202
1203static unsigned long timeslice(const struct intel_engine_cs *engine)
1204{
1205	return READ_ONCE(engine->props.timeslice_duration_ms);
1206}
1207
1208static void start_timeslice(struct intel_engine_cs *engine)
1209{
1210	struct intel_engine_execlists *el = &engine->execlists;
1211	unsigned long duration;
1212
1213	/* Disable the timer if there is nothing to switch to */
1214	duration = 0;
1215	if (needs_timeslice(engine, *el->active)) {
1216		/* Avoid continually prolonging an active timeslice */
1217		if (timer_active(&el->timer)) {
1218			/*
1219			 * If we just submitted a new ELSP after an old
1220			 * context, that context may have already consumed
1221			 * its timeslice, so recheck.
1222			 */
1223			if (!timer_pending(&el->timer))
1224				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1225			return;
1226		}
1227
1228		duration = timeslice(engine);
1229	}
1230
1231	set_timer_ms(&el->timer, duration);
1232}
1233
1234static void record_preemption(struct intel_engine_execlists *execlists)
1235{
1236	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1237}
1238
1239static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1240					    const struct i915_request *rq)
1241{
1242	if (!rq)
1243		return 0;
1244
1245	/* Only allow ourselves to force reset the currently active context */
1246	engine->execlists.preempt_target = rq;
1247
1248	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1249	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1250		return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1251
1252	return READ_ONCE(engine->props.preempt_timeout_ms);
1253}
1254
1255static void set_preempt_timeout(struct intel_engine_cs *engine,
1256				const struct i915_request *rq)
1257{
1258	if (!intel_engine_has_preempt_reset(engine))
1259		return;
1260
1261	set_timer_ms(&engine->execlists.preempt,
1262		     active_preempt_timeout(engine, rq));
1263}
1264
1265static bool completed(const struct i915_request *rq)
1266{
1267	if (i915_request_has_sentinel(rq))
1268		return false;
1269
1270	return __i915_request_is_complete(rq);
1271}
1272
1273static void execlists_dequeue(struct intel_engine_cs *engine)
1274{
1275	struct intel_engine_execlists * const execlists = &engine->execlists;
1276	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1277	struct i915_request **port = execlists->pending;
1278	struct i915_request ** const last_port = port + execlists->port_mask;
1279	struct i915_request *last, * const *active;
1280	struct virtual_engine *ve;
1281	struct rb_node *rb;
1282	bool submit = false;
1283
1284	/*
1285	 * Hardware submission is through 2 ports. Conceptually each port
1286	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1287	 * static for a context, and unique to each, so we only execute
1288	 * requests belonging to a single context from each ring. RING_HEAD
1289	 * is maintained by the CS in the context image, it marks the place
1290	 * where it got up to last time, and through RING_TAIL we tell the CS
1291	 * where we want to execute up to this time.
1292	 *
1293	 * In this list the requests are in order of execution. Consecutive
1294	 * requests from the same context are adjacent in the ringbuffer. We
1295	 * can combine these requests into a single RING_TAIL update:
1296	 *
1297	 *              RING_HEAD...req1...req2
1298	 *                                    ^- RING_TAIL
1299	 * since to execute req2 the CS must first execute req1.
1300	 *
1301	 * Our goal then is to point each port to the end of a consecutive
1302	 * sequence of requests as being the most optimal (fewest wake ups
1303	 * and context switches) submission.
1304	 */
1305
1306	spin_lock(&sched_engine->lock);
1307
1308	/*
1309	 * If the queue is higher priority than the last
1310	 * request in the currently active context, submit afresh.
1311	 * We will resubmit again afterwards in case we need to split
1312	 * the active context to interject the preemption request,
1313	 * i.e. we will retrigger preemption following the ack in case
1314	 * of trouble.
1315	 *
1316	 */
1317	active = execlists->active;
1318	while ((last = *active) && completed(last))
1319		active++;
1320
1321	if (last) {
1322		if (need_preempt(engine, last)) {
1323			ENGINE_TRACE(engine,
1324				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1325				     last->fence.context,
1326				     last->fence.seqno,
1327				     last->sched.attr.priority,
1328				     sched_engine->queue_priority_hint);
1329			record_preemption(execlists);
1330
1331			/*
1332			 * Don't let the RING_HEAD advance past the breadcrumb
1333			 * as we unwind (and until we resubmit) so that we do
1334			 * not accidentally tell it to go backwards.
1335			 */
1336			ring_set_paused(engine, 1);
1337
1338			/*
1339			 * Note that we have not stopped the GPU at this point,
1340			 * so we are unwinding the incomplete requests as they
1341			 * remain inflight and so by the time we do complete
1342			 * the preemption, some of the unwound requests may
1343			 * complete!
1344			 */
1345			__unwind_incomplete_requests(engine);
1346
1347			last = NULL;
1348		} else if (timeslice_expired(engine, last)) {
1349			ENGINE_TRACE(engine,
1350				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1351				     str_yes_no(timer_expired(&execlists->timer)),
1352				     last->fence.context, last->fence.seqno,
1353				     rq_prio(last),
1354				     sched_engine->queue_priority_hint,
1355				     str_yes_no(timeslice_yield(execlists, last)));
1356
1357			/*
1358			 * Consume this timeslice; ensure we start a new one.
1359			 *
1360			 * The timeslice expired, and we will unwind the
1361			 * running contexts and recompute the next ELSP.
1362			 * If that submit will be the same pair of contexts
1363			 * (due to dependency ordering), we will skip the
1364			 * submission. If we don't cancel the timer now,
1365			 * we will see that the timer has expired and
1366			 * reschedule the tasklet; continually until the
1367			 * next context switch or other preemption event.
1368			 *
1369			 * Since we have decided to reschedule based on
1370			 * consumption of this timeslice, if we submit the
1371			 * same context again, grant it a full timeslice.
1372			 */
1373			cancel_timer(&execlists->timer);
1374			ring_set_paused(engine, 1);
1375			defer_active(engine);
1376
1377			/*
1378			 * Unlike for preemption, if we rewind and continue
1379			 * executing the same context as previously active,
1380			 * the order of execution will remain the same and
1381			 * the tail will only advance. We do not need to
1382			 * force a full context restore, as a lite-restore
1383			 * is sufficient to resample the monotonic TAIL.
1384			 *
1385			 * If we switch to any other context, similarly we
1386			 * will not rewind TAIL of current context, and
1387			 * normal save/restore will preserve state and allow
1388			 * us to later continue executing the same request.
1389			 */
1390			last = NULL;
1391		} else {
1392			/*
1393			 * Otherwise if we already have a request pending
1394			 * for execution after the current one, we can
1395			 * just wait until the next CS event before
1396			 * queuing more. In either case we will force a
1397			 * lite-restore preemption event, but if we wait
1398			 * we hopefully coalesce several updates into a single
1399			 * submission.
1400			 */
1401			if (active[1]) {
1402				/*
1403				 * Even if ELSP[1] is occupied and not worthy
1404				 * of timeslices, our queue might be.
1405				 */
1406				spin_unlock(&sched_engine->lock);
1407				return;
1408			}
1409		}
1410	}
1411
1412	/* XXX virtual is always taking precedence */
1413	while ((ve = first_virtual_engine(engine))) {
1414		struct i915_request *rq;
1415
1416		spin_lock(&ve->base.sched_engine->lock);
1417
1418		rq = ve->request;
1419		if (unlikely(!virtual_matches(ve, rq, engine)))
1420			goto unlock; /* lost the race to a sibling */
1421
1422		GEM_BUG_ON(rq->engine != &ve->base);
1423		GEM_BUG_ON(rq->context != &ve->context);
1424
1425		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1426			spin_unlock(&ve->base.sched_engine->lock);
1427			break;
1428		}
1429
1430		if (last && !can_merge_rq(last, rq)) {
1431			spin_unlock(&ve->base.sched_engine->lock);
1432			spin_unlock(&engine->sched_engine->lock);
1433			return; /* leave this for another sibling */
1434		}
1435
1436		ENGINE_TRACE(engine,
1437			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1438			     rq->fence.context,
1439			     rq->fence.seqno,
1440			     __i915_request_is_complete(rq) ? "!" :
1441			     __i915_request_has_started(rq) ? "*" :
1442			     "",
1443			     str_yes_no(engine != ve->siblings[0]));
1444
1445		WRITE_ONCE(ve->request, NULL);
1446		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1447
1448		rb = &ve->nodes[engine->id].rb;
1449		rb_erase_cached(rb, &execlists->virtual);
1450		RB_CLEAR_NODE(rb);
1451
1452		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1453		WRITE_ONCE(rq->engine, engine);
1454
1455		if (__i915_request_submit(rq)) {
1456			/*
1457			 * Only after we confirm that we will submit
1458			 * this request (i.e. it has not already
1459			 * completed), do we want to update the context.
1460			 *
1461			 * This serves two purposes. It avoids
1462			 * unnecessary work if we are resubmitting an
1463			 * already completed request after timeslicing.
1464			 * But more importantly, it prevents us altering
1465			 * ve->siblings[] on an idle context, where
1466			 * we may be using ve->siblings[] in
1467			 * virtual_context_enter / virtual_context_exit.
1468			 */
1469			virtual_xfer_context(ve, engine);
1470			GEM_BUG_ON(ve->siblings[0] != engine);
1471
1472			submit = true;
1473			last = rq;
1474		}
1475
1476		i915_request_put(rq);
1477unlock:
1478		spin_unlock(&ve->base.sched_engine->lock);
1479
1480		/*
1481		 * Hmm, we have a bunch of virtual engine requests,
1482		 * but the first one was already completed (thanks
1483		 * preempt-to-busy!). Keep looking at the veng queue
1484		 * until we have no more relevant requests (i.e.
1485		 * the normal submit queue has higher priority).
1486		 */
1487		if (submit)
1488			break;
1489	}
1490
1491	while ((rb = rb_first_cached(&sched_engine->queue))) {
1492		struct i915_priolist *p = to_priolist(rb);
1493		struct i915_request *rq, *rn;
1494
1495		priolist_for_each_request_consume(rq, rn, p) {
1496			bool merge = true;
1497
1498			/*
1499			 * Can we combine this request with the current port?
1500			 * It has to be the same context/ringbuffer and not
1501			 * have any exceptions (e.g. GVT saying never to
1502			 * combine contexts).
1503			 *
1504			 * If we can combine the requests, we can execute both
1505			 * by updating the RING_TAIL to point to the end of the
1506			 * second request, and so we never need to tell the
1507			 * hardware about the first.
1508			 */
1509			if (last && !can_merge_rq(last, rq)) {
1510				/*
1511				 * If we are on the second port and cannot
1512				 * combine this request with the last, then we
1513				 * are done.
1514				 */
1515				if (port == last_port)
1516					goto done;
1517
1518				/*
1519				 * We must not populate both ELSP[] with the
1520				 * same LRCA, i.e. we must submit 2 different
1521				 * contexts if we submit 2 ELSP.
1522				 */
1523				if (last->context == rq->context)
1524					goto done;
1525
1526				if (i915_request_has_sentinel(last))
1527					goto done;
1528
1529				/*
1530				 * We avoid submitting virtual requests into
1531				 * the secondary ports so that we can migrate
1532				 * the request immediately to another engine
1533				 * rather than wait for the primary request.
1534				 */
1535				if (rq->execution_mask != engine->mask)
1536					goto done;
1537
1538				/*
1539				 * If GVT overrides us we only ever submit
1540				 * port[0], leaving port[1] empty. Note that we
1541				 * also have to be careful that we don't queue
1542				 * the same context (even though a different
1543				 * request) to the second port.
1544				 */
1545				if (ctx_single_port_submission(last->context) ||
1546				    ctx_single_port_submission(rq->context))
1547					goto done;
1548
1549				merge = false;
1550			}
1551
1552			if (__i915_request_submit(rq)) {
1553				if (!merge) {
1554					*port++ = i915_request_get(last);
1555					last = NULL;
1556				}
1557
1558				GEM_BUG_ON(last &&
1559					   !can_merge_ctx(last->context,
1560							  rq->context));
1561				GEM_BUG_ON(last &&
1562					   i915_seqno_passed(last->fence.seqno,
1563							     rq->fence.seqno));
1564
1565				submit = true;
1566				last = rq;
1567			}
1568		}
1569
1570		rb_erase_cached(&p->node, &sched_engine->queue);
1571		i915_priolist_free(p);
1572	}
1573done:
1574	*port++ = i915_request_get(last);
1575
1576	/*
1577	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1578	 *
1579	 * We choose the priority hint such that if we add a request of greater
1580	 * priority than this, we kick the submission tasklet to decide on
1581	 * the right order of submitting the requests to hardware. We must
1582	 * also be prepared to reorder requests as they are in-flight on the
1583	 * HW. We derive the priority hint then as the first "hole" in
1584	 * the HW submission ports and if there are no available slots,
1585	 * the priority of the lowest executing request, i.e. last.
1586	 *
1587	 * When we do receive a higher priority request ready to run from the
1588	 * user, see queue_request(), the priority hint is bumped to that
1589	 * request triggering preemption on the next dequeue (or subsequent
1590	 * interrupt for secondary ports).
1591	 */
1592	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1593	i915_sched_engine_reset_on_empty(sched_engine);
1594	spin_unlock(&sched_engine->lock);
1595
1596	/*
1597	 * We can skip poking the HW if we ended up with exactly the same set
1598	 * of requests as currently running, e.g. trying to timeslice a pair
1599	 * of ordered contexts.
1600	 */
1601	if (submit &&
1602	    memcmp(active,
1603		   execlists->pending,
1604		   (port - execlists->pending) * sizeof(*port))) {
1605		*port = NULL;
1606		while (port-- != execlists->pending)
1607			execlists_schedule_in(*port, port - execlists->pending);
1608
1609		WRITE_ONCE(execlists->yield, -1);
1610		set_preempt_timeout(engine, *active);
1611		execlists_submit_ports(engine);
1612	} else {
1613		ring_set_paused(engine, 0);
1614		while (port-- != execlists->pending)
1615			i915_request_put(*port);
1616		*execlists->pending = NULL;
1617	}
1618}
1619
1620static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1621{
1622	local_irq_disable(); /* Suspend interrupts across request submission */
1623	execlists_dequeue(engine);
1624	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1625}
1626
1627static void clear_ports(struct i915_request **ports, int count)
1628{
1629	memset_p((void **)ports, NULL, count);
1630}
1631
1632static void
1633copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1634{
1635	/* A memcpy_p() would be very useful here! */
1636	while (count--)
1637		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1638}
1639
1640static struct i915_request **
1641cancel_port_requests(struct intel_engine_execlists * const execlists,
1642		     struct i915_request **inactive)
1643{
1644	struct i915_request * const *port;
1645
1646	for (port = execlists->pending; *port; port++)
1647		*inactive++ = *port;
1648	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1649
1650	/* Mark the end of active before we overwrite *active */
1651	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1652		*inactive++ = *port;
1653	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1654
1655	smp_wmb(); /* complete the seqlock for execlists_active() */
1656	WRITE_ONCE(execlists->active, execlists->inflight);
1657
1658	/* Having cancelled all outstanding process_csb(), stop their timers */
1659	GEM_BUG_ON(execlists->pending[0]);
1660	cancel_timer(&execlists->timer);
1661	cancel_timer(&execlists->preempt);
1662
1663	return inactive;
1664}
1665
1666/*
1667 * Starting with Gen12, the status has a new format:
1668 *
1669 *     bit  0:     switched to new queue
1670 *     bit  1:     reserved
1671 *     bit  2:     semaphore wait mode (poll or signal), only valid when
1672 *                 switch detail is set to "wait on semaphore"
1673 *     bits 3-5:   engine class
1674 *     bits 6-11:  engine instance
1675 *     bits 12-14: reserved
1676 *     bits 15-25: sw context id of the lrc the GT switched to
1677 *     bits 26-31: sw counter of the lrc the GT switched to
1678 *     bits 32-35: context switch detail
1679 *                  - 0: ctx complete
1680 *                  - 1: wait on sync flip
1681 *                  - 2: wait on vblank
1682 *                  - 3: wait on scanline
1683 *                  - 4: wait on semaphore
1684 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1685 *                       WAIT_FOR_EVENT)
1686 *     bit  36:    reserved
1687 *     bits 37-43: wait detail (for switch detail 1 to 4)
1688 *     bits 44-46: reserved
1689 *     bits 47-57: sw context id of the lrc the GT switched away from
1690 *     bits 58-63: sw counter of the lrc the GT switched away from
1691 *
1692 * Xe_HP csb shuffles things around compared to TGL:
1693 *
1694 *     bits 0-3:   context switch detail (same possible values as TGL)
1695 *     bits 4-9:   engine instance
1696 *     bits 10-25: sw context id of the lrc the GT switched to
1697 *     bits 26-31: sw counter of the lrc the GT switched to
1698 *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1699 *                 switch detail is set to "wait on semaphore"
1700 *     bit  33:    switched to new queue
1701 *     bits 34-41: wait detail (for switch detail 1 to 4)
1702 *     bits 42-57: sw context id of the lrc the GT switched away from
1703 *     bits 58-63: sw counter of the lrc the GT switched away from
1704 */
1705static inline bool
1706__gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1707		  u8 switch_detail)
1708{
1709	/*
1710	 * The context switch detail is not guaranteed to be 5 when a preemption
1711	 * occurs, so we can't just check for that. The check below works for
1712	 * all the cases we care about, including preemptions of WAIT
1713	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1714	 * would require some extra handling, but we don't support that.
1715	 */
1716	if (!ctx_away_valid || new_queue) {
1717		GEM_BUG_ON(!ctx_to_valid);
1718		return true;
1719	}
1720
1721	/*
1722	 * switch detail = 5 is covered by the case above and we do not expect a
1723	 * context switch on an unsuccessful wait instruction since we always
1724	 * use polling mode.
1725	 */
1726	GEM_BUG_ON(switch_detail);
1727	return false;
1728}
1729
1730static bool xehp_csb_parse(const u64 csb)
1731{
1732	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1733				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1734				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1735				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1736}
1737
1738static bool gen12_csb_parse(const u64 csb)
1739{
1740	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1741				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1742				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1743				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1744}
1745
1746static bool gen8_csb_parse(const u64 csb)
1747{
1748	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1749}
1750
1751static noinline u64
1752wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1753{
1754	u64 entry;
1755
1756	/*
1757	 * Reading from the HWSP has one particular advantage: we can detect
1758	 * a stale entry. Since the write into HWSP is broken, we have no reason
1759	 * to trust the HW at all, the mmio entry may equally be unordered, so
1760	 * we prefer the path that is self-checking and as a last resort,
1761	 * return the mmio value.
1762	 *
1763	 * tgl,dg1:HSDES#22011327657
1764	 */
1765	preempt_disable();
1766	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1767		int idx = csb - engine->execlists.csb_status;
1768		int status;
1769
1770		status = GEN8_EXECLISTS_STATUS_BUF;
1771		if (idx >= 6) {
1772			status = GEN11_EXECLISTS_STATUS_BUF2;
1773			idx -= 6;
1774		}
1775		status += sizeof(u64) * idx;
1776
1777		entry = intel_uncore_read64(engine->uncore,
1778					    _MMIO(engine->mmio_base + status));
1779	}
1780	preempt_enable();
1781
1782	return entry;
1783}
1784
1785static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1786{
1787	u64 entry = READ_ONCE(*csb);
1788
1789	/*
1790	 * Unfortunately, the GPU does not always serialise its write
1791	 * of the CSB entries before its write of the CSB pointer, at least
1792	 * from the perspective of the CPU, using what is known as a Global
1793	 * Observation Point. We may read a new CSB tail pointer, but then
1794	 * read the stale CSB entries, causing us to misinterpret the
1795	 * context-switch events, and eventually declare the GPU hung.
1796	 *
1797	 * icl:HSDES#1806554093
1798	 * tgl:HSDES#22011248461
1799	 */
1800	if (unlikely(entry == -1))
1801		entry = wa_csb_read(engine, csb);
1802
1803	/* Consume this entry so that we can spot its future reuse. */
1804	WRITE_ONCE(*csb, -1);
1805
1806	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1807	return entry;
1808}
1809
1810static void new_timeslice(struct intel_engine_execlists *el)
1811{
1812	/* By cancelling, we will start afresh in start_timeslice() */
1813	cancel_timer(&el->timer);
1814}
1815
1816static struct i915_request **
1817process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1818{
1819	struct intel_engine_execlists * const execlists = &engine->execlists;
1820	u64 * const buf = execlists->csb_status;
1821	const u8 num_entries = execlists->csb_size;
1822	struct i915_request **prev;
1823	u8 head, tail;
1824
1825	/*
1826	 * As we modify our execlists state tracking we require exclusive
1827	 * access. Either we are inside the tasklet, or the tasklet is disabled
1828	 * and we assume that is only inside the reset paths and so serialised.
1829	 */
1830	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1831		   !reset_in_progress(engine));
1832
1833	/*
1834	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1835	 * When reading from the csb_write mmio register, we have to be
1836	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1837	 * the low 4bits. As it happens we know the next 4bits are always
1838	 * zero and so we can simply masked off the low u8 of the register
1839	 * and treat it identically to reading from the HWSP (without having
1840	 * to use explicit shifting and masking, and probably bifurcating
1841	 * the code to handle the legacy mmio read).
1842	 */
1843	head = execlists->csb_head;
1844	tail = READ_ONCE(*execlists->csb_write);
1845	if (unlikely(head == tail))
1846		return inactive;
1847
1848	/*
1849	 * We will consume all events from HW, or at least pretend to.
1850	 *
1851	 * The sequence of events from the HW is deterministic, and derived
1852	 * from our writes to the ELSP, with a smidgen of variability for
1853	 * the arrival of the asynchronous requests wrt to the inflight
1854	 * execution. If the HW sends an event that does not correspond with
1855	 * the one we are expecting, we have to abandon all hope as we lose
1856	 * all tracking of what the engine is actually executing. We will
1857	 * only detect we are out of sequence with the HW when we get an
1858	 * 'impossible' event because we have already drained our own
1859	 * preemption/promotion queue. If this occurs, we know that we likely
1860	 * lost track of execution earlier and must unwind and restart, the
1861	 * simplest way is by stop processing the event queue and force the
1862	 * engine to reset.
1863	 */
1864	execlists->csb_head = tail;
1865	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1866
1867	/*
1868	 * Hopefully paired with a wmb() in HW!
1869	 *
1870	 * We must complete the read of the write pointer before any reads
1871	 * from the CSB, so that we do not see stale values. Without an rmb
1872	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1873	 * we perform the READ_ONCE(*csb_write).
1874	 */
1875	rmb();
1876
1877	/* Remember who was last running under the timer */
1878	prev = inactive;
1879	*prev = NULL;
1880
1881	do {
1882		bool promote;
1883		u64 csb;
1884
1885		if (++head == num_entries)
1886			head = 0;
1887
1888		/*
1889		 * We are flying near dragons again.
1890		 *
1891		 * We hold a reference to the request in execlist_port[]
1892		 * but no more than that. We are operating in softirq
1893		 * context and so cannot hold any mutex or sleep. That
1894		 * prevents us stopping the requests we are processing
1895		 * in port[] from being retired simultaneously (the
1896		 * breadcrumb will be complete before we see the
1897		 * context-switch). As we only hold the reference to the
1898		 * request, any pointer chasing underneath the request
1899		 * is subject to a potential use-after-free. Thus we
1900		 * store all of the bookkeeping within port[] as
1901		 * required, and avoid using unguarded pointers beneath
1902		 * request itself. The same applies to the atomic
1903		 * status notifier.
1904		 */
1905
1906		csb = csb_read(engine, buf + head);
1907		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1908			     head, upper_32_bits(csb), lower_32_bits(csb));
1909
1910		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1911			promote = xehp_csb_parse(csb);
1912		else if (GRAPHICS_VER(engine->i915) >= 12)
1913			promote = gen12_csb_parse(csb);
1914		else
1915			promote = gen8_csb_parse(csb);
1916		if (promote) {
1917			struct i915_request * const *old = execlists->active;
1918
1919			if (GEM_WARN_ON(!*execlists->pending)) {
1920				execlists->error_interrupt |= ERROR_CSB;
1921				break;
1922			}
1923
1924			ring_set_paused(engine, 0);
1925
1926			/* Point active to the new ELSP; prevent overwriting */
1927			WRITE_ONCE(execlists->active, execlists->pending);
1928			smp_wmb(); /* notify execlists_active() */
1929
1930			/* cancel old inflight, prepare for switch */
1931			trace_ports(execlists, "preempted", old);
1932			while (*old)
1933				*inactive++ = *old++;
1934
1935			/* switch pending to inflight */
1936			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1937			copy_ports(execlists->inflight,
1938				   execlists->pending,
1939				   execlists_num_ports(execlists));
1940			smp_wmb(); /* complete the seqlock */
1941			WRITE_ONCE(execlists->active, execlists->inflight);
1942
1943			/* XXX Magic delay for tgl */
1944			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1945
1946			WRITE_ONCE(execlists->pending[0], NULL);
1947		} else {
1948			if (GEM_WARN_ON(!*execlists->active)) {
1949				execlists->error_interrupt |= ERROR_CSB;
1950				break;
1951			}
1952
1953			/* port0 completed, advanced to port1 */
1954			trace_ports(execlists, "completed", execlists->active);
1955
1956			/*
1957			 * We rely on the hardware being strongly
1958			 * ordered, that the breadcrumb write is
1959			 * coherent (visible from the CPU) before the
1960			 * user interrupt is processed. One might assume
1961			 * that the breadcrumb write being before the
1962			 * user interrupt and the CS event for the context
1963			 * switch would therefore be before the CS event
1964			 * itself...
1965			 */
1966			if (GEM_SHOW_DEBUG() &&
1967			    !__i915_request_is_complete(*execlists->active)) {
1968				struct i915_request *rq = *execlists->active;
1969				const u32 *regs __maybe_unused =
1970					rq->context->lrc_reg_state;
1971
1972				ENGINE_TRACE(engine,
1973					     "context completed before request!\n");
1974				ENGINE_TRACE(engine,
1975					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1976					     ENGINE_READ(engine, RING_START),
1977					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1978					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1979					     ENGINE_READ(engine, RING_CTL),
1980					     ENGINE_READ(engine, RING_MI_MODE));
1981				ENGINE_TRACE(engine,
1982					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1983					     i915_ggtt_offset(rq->ring->vma),
1984					     rq->head, rq->tail,
1985					     rq->fence.context,
1986					     lower_32_bits(rq->fence.seqno),
1987					     hwsp_seqno(rq));
1988				ENGINE_TRACE(engine,
1989					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1990					     regs[CTX_RING_START],
1991					     regs[CTX_RING_HEAD],
1992					     regs[CTX_RING_TAIL]);
1993			}
1994
1995			*inactive++ = *execlists->active++;
1996
1997			GEM_BUG_ON(execlists->active - execlists->inflight >
1998				   execlists_num_ports(execlists));
1999		}
2000	} while (head != tail);
2001
2002	/*
2003	 * Gen11 has proven to fail wrt global observation point between
2004	 * entry and tail update, failing on the ordering and thus
2005	 * we see an old entry in the context status buffer.
2006	 *
2007	 * Forcibly evict out entries for the next gpu csb update,
2008	 * to increase the odds that we get a fresh entries with non
2009	 * working hardware. The cost for doing so comes out mostly with
2010	 * the wash as hardware, working or not, will need to do the
2011	 * invalidation before.
2012	 */
2013	drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2014
2015	/*
2016	 * We assume that any event reflects a change in context flow
2017	 * and merits a fresh timeslice. We reinstall the timer after
2018	 * inspecting the queue to see if we need to resumbit.
2019	 */
2020	if (*prev != *execlists->active) { /* elide lite-restores */
2021		struct intel_context *prev_ce = NULL, *active_ce = NULL;
2022
2023		/*
2024		 * Note the inherent discrepancy between the HW runtime,
2025		 * recorded as part of the context switch, and the CPU
2026		 * adjustment for active contexts. We have to hope that
2027		 * the delay in processing the CS event is very small
2028		 * and consistent. It works to our advantage to have
2029		 * the CPU adjustment _undershoot_ (i.e. start later than)
2030		 * the CS timestamp so we never overreport the runtime
2031		 * and correct overselves later when updating from HW.
2032		 */
2033		if (*prev)
2034			prev_ce = (*prev)->context;
2035		if (*execlists->active)
2036			active_ce = (*execlists->active)->context;
2037		if (prev_ce != active_ce) {
2038			if (prev_ce)
2039				lrc_runtime_stop(prev_ce);
2040			if (active_ce)
2041				lrc_runtime_start(active_ce);
2042		}
2043		new_timeslice(execlists);
2044	}
2045
2046	return inactive;
2047}
2048
2049static void post_process_csb(struct i915_request **port,
2050			     struct i915_request **last)
2051{
2052	while (port != last)
2053		execlists_schedule_out(*port++);
2054}
2055
2056static void __execlists_hold(struct i915_request *rq)
2057{
2058	LIST_HEAD(list);
2059
2060	do {
2061		struct i915_dependency *p;
2062
2063		if (i915_request_is_active(rq))
2064			__i915_request_unsubmit(rq);
2065
2066		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2067		list_move_tail(&rq->sched.link,
2068			       &rq->engine->sched_engine->hold);
2069		i915_request_set_hold(rq);
2070		RQ_TRACE(rq, "on hold\n");
2071
2072		for_each_waiter(p, rq) {
2073			struct i915_request *w =
2074				container_of(p->waiter, typeof(*w), sched);
2075
2076			if (p->flags & I915_DEPENDENCY_WEAK)
2077				continue;
2078
2079			/* Leave semaphores spinning on the other engines */
2080			if (w->engine != rq->engine)
2081				continue;
2082
2083			if (!i915_request_is_ready(w))
2084				continue;
2085
2086			if (__i915_request_is_complete(w))
2087				continue;
2088
2089			if (i915_request_on_hold(w))
2090				continue;
2091
2092			list_move_tail(&w->sched.link, &list);
2093		}
2094
2095		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2096	} while (rq);
2097}
2098
2099static bool execlists_hold(struct intel_engine_cs *engine,
2100			   struct i915_request *rq)
2101{
2102	if (i915_request_on_hold(rq))
2103		return false;
2104
2105	spin_lock_irq(&engine->sched_engine->lock);
2106
2107	if (__i915_request_is_complete(rq)) { /* too late! */
2108		rq = NULL;
2109		goto unlock;
2110	}
2111
2112	/*
2113	 * Transfer this request onto the hold queue to prevent it
2114	 * being resumbitted to HW (and potentially completed) before we have
2115	 * released it. Since we may have already submitted following
2116	 * requests, we need to remove those as well.
2117	 */
2118	GEM_BUG_ON(i915_request_on_hold(rq));
2119	GEM_BUG_ON(rq->engine != engine);
2120	__execlists_hold(rq);
2121	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2122
2123unlock:
2124	spin_unlock_irq(&engine->sched_engine->lock);
2125	return rq;
2126}
2127
2128static bool hold_request(const struct i915_request *rq)
2129{
2130	struct i915_dependency *p;
2131	bool result = false;
2132
2133	/*
2134	 * If one of our ancestors is on hold, we must also be on hold,
2135	 * otherwise we will bypass it and execute before it.
2136	 */
2137	rcu_read_lock();
2138	for_each_signaler(p, rq) {
2139		const struct i915_request *s =
2140			container_of(p->signaler, typeof(*s), sched);
2141
2142		if (s->engine != rq->engine)
2143			continue;
2144
2145		result = i915_request_on_hold(s);
2146		if (result)
2147			break;
2148	}
2149	rcu_read_unlock();
2150
2151	return result;
2152}
2153
2154static void __execlists_unhold(struct i915_request *rq)
2155{
2156	LIST_HEAD(list);
2157
2158	do {
2159		struct i915_dependency *p;
2160
2161		RQ_TRACE(rq, "hold release\n");
2162
2163		GEM_BUG_ON(!i915_request_on_hold(rq));
2164		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2165
2166		i915_request_clear_hold(rq);
2167		list_move_tail(&rq->sched.link,
2168			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2169							  rq_prio(rq)));
2170		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2171
2172		/* Also release any children on this engine that are ready */
2173		for_each_waiter(p, rq) {
2174			struct i915_request *w =
2175				container_of(p->waiter, typeof(*w), sched);
2176
2177			if (p->flags & I915_DEPENDENCY_WEAK)
2178				continue;
2179
2180			if (w->engine != rq->engine)
2181				continue;
2182
2183			if (!i915_request_on_hold(w))
2184				continue;
2185
2186			/* Check that no other parents are also on hold */
2187			if (hold_request(w))
2188				continue;
2189
2190			list_move_tail(&w->sched.link, &list);
2191		}
2192
2193		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2194	} while (rq);
2195}
2196
2197static void execlists_unhold(struct intel_engine_cs *engine,
2198			     struct i915_request *rq)
2199{
2200	spin_lock_irq(&engine->sched_engine->lock);
2201
2202	/*
2203	 * Move this request back to the priority queue, and all of its
2204	 * children and grandchildren that were suspended along with it.
2205	 */
2206	__execlists_unhold(rq);
2207
2208	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2209		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2210		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2211	}
2212
2213	spin_unlock_irq(&engine->sched_engine->lock);
2214}
2215
2216struct execlists_capture {
2217	struct work_struct work;
2218	struct i915_request *rq;
2219	struct i915_gpu_coredump *error;
2220};
2221
2222static void execlists_capture_work(struct work_struct *work)
2223{
2224	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2225	const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2226		__GFP_NOWARN;
2227	struct intel_engine_cs *engine = cap->rq->engine;
2228	struct intel_gt_coredump *gt = cap->error->gt;
2229	struct intel_engine_capture_vma *vma;
2230
2231	/* Compress all the objects attached to the request, slow! */
2232	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2233	if (vma) {
2234		struct i915_vma_compress *compress =
2235			i915_vma_capture_prepare(gt);
2236
2237		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2238		i915_vma_capture_finish(gt, compress);
2239	}
2240
2241	gt->simulated = gt->engine->simulated;
2242	cap->error->simulated = gt->simulated;
2243
2244	/* Publish the error state, and announce it to the world */
2245	i915_error_state_store(cap->error);
2246	i915_gpu_coredump_put(cap->error);
2247
2248	/* Return this request and all that depend upon it for signaling */
2249	execlists_unhold(engine, cap->rq);
2250	i915_request_put(cap->rq);
2251
2252	kfree(cap);
2253}
2254
2255static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2256{
2257	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2258	struct execlists_capture *cap;
2259
2260	cap = kmalloc(sizeof(*cap), gfp);
2261	if (!cap)
2262		return NULL;
2263
2264	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2265	if (!cap->error)
2266		goto err_cap;
2267
2268	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2269	if (!cap->error->gt)
2270		goto err_gpu;
2271
2272	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2273	if (!cap->error->gt->engine)
2274		goto err_gt;
2275
2276	cap->error->gt->engine->hung = true;
2277
2278	return cap;
2279
2280err_gt:
2281	kfree(cap->error->gt);
2282err_gpu:
2283	kfree(cap->error);
2284err_cap:
2285	kfree(cap);
2286	return NULL;
2287}
2288
2289static struct i915_request *
2290active_context(struct intel_engine_cs *engine, u32 ccid)
2291{
2292	const struct intel_engine_execlists * const el = &engine->execlists;
2293	struct i915_request * const *port, *rq;
2294
2295	/*
2296	 * Use the most recent result from process_csb(), but just in case
2297	 * we trigger an error (via interrupt) before the first CS event has
2298	 * been written, peek at the next submission.
2299	 */
2300
2301	for (port = el->active; (rq = *port); port++) {
2302		if (rq->context->lrc.ccid == ccid) {
2303			ENGINE_TRACE(engine,
2304				     "ccid:%x found at active:%zd\n",
2305				     ccid, port - el->active);
2306			return rq;
2307		}
2308	}
2309
2310	for (port = el->pending; (rq = *port); port++) {
2311		if (rq->context->lrc.ccid == ccid) {
2312			ENGINE_TRACE(engine,
2313				     "ccid:%x found at pending:%zd\n",
2314				     ccid, port - el->pending);
2315			return rq;
2316		}
2317	}
2318
2319	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2320	return NULL;
2321}
2322
2323static u32 active_ccid(struct intel_engine_cs *engine)
2324{
2325	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2326}
2327
2328static void execlists_capture(struct intel_engine_cs *engine)
2329{
2330	struct drm_i915_private *i915 = engine->i915;
2331	struct execlists_capture *cap;
2332
2333	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2334		return;
2335
2336	/*
2337	 * We need to _quickly_ capture the engine state before we reset.
2338	 * We are inside an atomic section (softirq) here and we are delaying
2339	 * the forced preemption event.
2340	 */
2341	cap = capture_regs(engine);
2342	if (!cap)
2343		return;
2344
2345	spin_lock_irq(&engine->sched_engine->lock);
2346	cap->rq = active_context(engine, active_ccid(engine));
2347	if (cap->rq) {
2348		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2349		cap->rq = i915_request_get_rcu(cap->rq);
2350	}
2351	spin_unlock_irq(&engine->sched_engine->lock);
2352	if (!cap->rq)
2353		goto err_free;
2354
2355	/*
2356	 * Remove the request from the execlists queue, and take ownership
2357	 * of the request. We pass it to our worker who will _slowly_ compress
2358	 * all the pages the _user_ requested for debugging their batch, after
2359	 * which we return it to the queue for signaling.
2360	 *
2361	 * By removing them from the execlists queue, we also remove the
2362	 * requests from being processed by __unwind_incomplete_requests()
2363	 * during the intel_engine_reset(), and so they will *not* be replayed
2364	 * afterwards.
2365	 *
2366	 * Note that because we have not yet reset the engine at this point,
2367	 * it is possible for the request that we have identified as being
2368	 * guilty, did in fact complete and we will then hit an arbitration
2369	 * point allowing the outstanding preemption to succeed. The likelihood
2370	 * of that is very low (as capturing of the engine registers should be
2371	 * fast enough to run inside an irq-off atomic section!), so we will
2372	 * simply hold that request accountable for being non-preemptible
2373	 * long enough to force the reset.
2374	 */
2375	if (!execlists_hold(engine, cap->rq))
2376		goto err_rq;
2377
2378	INIT_WORK(&cap->work, execlists_capture_work);
2379	queue_work(i915->unordered_wq, &cap->work);
2380	return;
2381
2382err_rq:
2383	i915_request_put(cap->rq);
2384err_free:
2385	i915_gpu_coredump_put(cap->error);
2386	kfree(cap);
2387}
2388
2389static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2390{
2391	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2392	unsigned long *lock = &engine->gt->reset.flags;
2393
2394	if (!intel_has_reset_engine(engine->gt))
2395		return;
2396
2397	if (test_and_set_bit(bit, lock))
2398		return;
2399
2400	ENGINE_TRACE(engine, "reset for %s\n", msg);
2401
2402	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2403	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2404
2405	ring_set_paused(engine, 1); /* Freeze the current request in place */
2406	execlists_capture(engine);
2407	intel_engine_reset(engine, msg);
2408
2409	tasklet_enable(&engine->sched_engine->tasklet);
2410	clear_and_wake_up_bit(bit, lock);
2411}
2412
2413static bool preempt_timeout(const struct intel_engine_cs *const engine)
2414{
2415	const struct timer_list *t = &engine->execlists.preempt;
2416
2417	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2418		return false;
2419
2420	if (!timer_expired(t))
2421		return false;
2422
2423	return engine->execlists.pending[0];
2424}
2425
2426/*
2427 * Check the unread Context Status Buffers and manage the submission of new
2428 * contexts to the ELSP accordingly.
2429 */
2430static void execlists_submission_tasklet(struct tasklet_struct *t)
2431{
2432	struct i915_sched_engine *sched_engine =
2433		from_tasklet(sched_engine, t, tasklet);
2434	struct intel_engine_cs * const engine = sched_engine->private_data;
2435	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2436	struct i915_request **inactive;
2437
2438	rcu_read_lock();
2439	inactive = process_csb(engine, post);
2440	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2441
2442	if (unlikely(preempt_timeout(engine))) {
2443		const struct i915_request *rq = *engine->execlists.active;
2444
2445		/*
2446		 * If after the preempt-timeout expired, we are still on the
2447		 * same active request/context as before we initiated the
2448		 * preemption, reset the engine.
2449		 *
2450		 * However, if we have processed a CS event to switch contexts,
2451		 * but not yet processed the CS event for the pending
2452		 * preemption, reset the timer allowing the new context to
2453		 * gracefully exit.
2454		 */
2455		cancel_timer(&engine->execlists.preempt);
2456		if (rq == engine->execlists.preempt_target)
2457			engine->execlists.error_interrupt |= ERROR_PREEMPT;
2458		else
2459			set_timer_ms(&engine->execlists.preempt,
2460				     active_preempt_timeout(engine, rq));
2461	}
2462
2463	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2464		const char *msg;
2465
2466		/* Generate the error message in priority wrt to the user! */
2467		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2468			msg = "CS error"; /* thrown by a user payload */
2469		else if (engine->execlists.error_interrupt & ERROR_CSB)
2470			msg = "invalid CSB event";
2471		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2472			msg = "preemption time out";
2473		else
2474			msg = "internal error";
2475
2476		engine->execlists.error_interrupt = 0;
2477		execlists_reset(engine, msg);
2478	}
2479
2480	if (!engine->execlists.pending[0]) {
2481		execlists_dequeue_irq(engine);
2482		start_timeslice(engine);
2483	}
2484
2485	post_process_csb(post, inactive);
2486	rcu_read_unlock();
2487}
2488
2489static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2490{
2491	bool tasklet = false;
2492
2493	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2494		u32 eir;
2495
2496		/* Upper 16b are the enabling mask, rsvd for internal errors */
2497		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2498		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2499
2500		/* Disable the error interrupt until after the reset */
2501		if (likely(eir)) {
2502			ENGINE_WRITE(engine, RING_EMR, ~0u);
2503			ENGINE_WRITE(engine, RING_EIR, eir);
2504			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2505			tasklet = true;
2506		}
2507	}
2508
2509	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2510		WRITE_ONCE(engine->execlists.yield,
2511			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2512		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2513			     engine->execlists.yield);
2514		if (del_timer(&engine->execlists.timer))
2515			tasklet = true;
2516	}
2517
2518	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2519		tasklet = true;
2520
2521	if (iir & GT_RENDER_USER_INTERRUPT)
2522		intel_engine_signal_breadcrumbs(engine);
2523
2524	if (tasklet)
2525		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2526}
2527
2528static void __execlists_kick(struct intel_engine_execlists *execlists)
2529{
2530	struct intel_engine_cs *engine =
2531		container_of(execlists, typeof(*engine), execlists);
2532
2533	/* Kick the tasklet for some interrupt coalescing and reset handling */
2534	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2535}
2536
2537#define execlists_kick(t, member) \
2538	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2539
2540static void execlists_timeslice(struct timer_list *timer)
2541{
2542	execlists_kick(timer, timer);
2543}
2544
2545static void execlists_preempt(struct timer_list *timer)
2546{
2547	execlists_kick(timer, preempt);
2548}
2549
2550static void queue_request(struct intel_engine_cs *engine,
2551			  struct i915_request *rq)
2552{
2553	GEM_BUG_ON(!list_empty(&rq->sched.link));
2554	list_add_tail(&rq->sched.link,
2555		      i915_sched_lookup_priolist(engine->sched_engine,
2556						 rq_prio(rq)));
2557	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2558}
2559
2560static bool submit_queue(struct intel_engine_cs *engine,
2561			 const struct i915_request *rq)
2562{
2563	struct i915_sched_engine *sched_engine = engine->sched_engine;
2564
2565	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2566		return false;
2567
2568	sched_engine->queue_priority_hint = rq_prio(rq);
2569	return true;
2570}
2571
2572static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2573			     const struct i915_request *rq)
2574{
2575	GEM_BUG_ON(i915_request_on_hold(rq));
2576	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2577}
2578
2579static void execlists_submit_request(struct i915_request *request)
2580{
2581	struct intel_engine_cs *engine = request->engine;
2582	unsigned long flags;
2583
2584	/* Will be called from irq-context when using foreign fences. */
2585	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2586
2587	if (unlikely(ancestor_on_hold(engine, request))) {
2588		RQ_TRACE(request, "ancestor on hold\n");
2589		list_add_tail(&request->sched.link,
2590			      &engine->sched_engine->hold);
2591		i915_request_set_hold(request);
2592	} else {
2593		queue_request(engine, request);
2594
2595		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2596		GEM_BUG_ON(list_empty(&request->sched.link));
2597
2598		if (submit_queue(engine, request))
2599			__execlists_kick(&engine->execlists);
2600	}
2601
2602	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2603}
2604
2605static int
2606__execlists_context_pre_pin(struct intel_context *ce,
2607			    struct intel_engine_cs *engine,
2608			    struct i915_gem_ww_ctx *ww, void **vaddr)
2609{
2610	int err;
2611
2612	err = lrc_pre_pin(ce, engine, ww, vaddr);
2613	if (err)
2614		return err;
2615
2616	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2617		lrc_init_state(ce, engine, *vaddr);
2618
2619		__i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2620	}
2621
2622	return 0;
2623}
2624
2625static int execlists_context_pre_pin(struct intel_context *ce,
2626				     struct i915_gem_ww_ctx *ww,
2627				     void **vaddr)
2628{
2629	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2630}
2631
2632static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2633{
2634	return lrc_pin(ce, ce->engine, vaddr);
2635}
2636
2637static int execlists_context_alloc(struct intel_context *ce)
2638{
2639	return lrc_alloc(ce, ce->engine);
2640}
2641
2642static void execlists_context_cancel_request(struct intel_context *ce,
2643					     struct i915_request *rq)
2644{
2645	struct intel_engine_cs *engine = NULL;
2646
2647	i915_request_active_engine(rq, &engine);
2648
2649	if (engine && intel_engine_pulse(engine))
2650		intel_gt_handle_error(engine->gt, engine->mask, 0,
2651				      "request cancellation by %s",
2652				      current->comm);
2653}
2654
2655static struct intel_context *
2656execlists_create_parallel(struct intel_engine_cs **engines,
2657			  unsigned int num_siblings,
2658			  unsigned int width)
2659{
2660	struct intel_context *parent = NULL, *ce, *err;
2661	int i;
2662
2663	GEM_BUG_ON(num_siblings != 1);
2664
2665	for (i = 0; i < width; ++i) {
2666		ce = intel_context_create(engines[i]);
2667		if (IS_ERR(ce)) {
2668			err = ce;
2669			goto unwind;
2670		}
2671
2672		if (i == 0)
2673			parent = ce;
2674		else
2675			intel_context_bind_parent_child(parent, ce);
2676	}
2677
2678	parent->parallel.fence_context = dma_fence_context_alloc(1);
2679
2680	intel_context_set_nopreempt(parent);
2681	for_each_child(parent, ce)
2682		intel_context_set_nopreempt(ce);
2683
2684	return parent;
2685
2686unwind:
2687	if (parent)
2688		intel_context_put(parent);
2689	return err;
2690}
2691
2692static const struct intel_context_ops execlists_context_ops = {
2693	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2694
2695	.alloc = execlists_context_alloc,
2696
2697	.cancel_request = execlists_context_cancel_request,
2698
2699	.pre_pin = execlists_context_pre_pin,
2700	.pin = execlists_context_pin,
2701	.unpin = lrc_unpin,
2702	.post_unpin = lrc_post_unpin,
2703
2704	.enter = intel_context_enter_engine,
2705	.exit = intel_context_exit_engine,
2706
2707	.reset = lrc_reset,
2708	.destroy = lrc_destroy,
2709
2710	.create_parallel = execlists_create_parallel,
2711	.create_virtual = execlists_create_virtual,
2712};
2713
2714static int emit_pdps(struct i915_request *rq)
2715{
2716	const struct intel_engine_cs * const engine = rq->engine;
2717	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2718	int err, i;
2719	u32 *cs;
2720
2721	GEM_BUG_ON(intel_vgpu_active(rq->i915));
2722
2723	/*
2724	 * Beware ye of the dragons, this sequence is magic!
2725	 *
2726	 * Small changes to this sequence can cause anything from
2727	 * GPU hangs to forcewake errors and machine lockups!
2728	 */
2729
2730	cs = intel_ring_begin(rq, 2);
2731	if (IS_ERR(cs))
2732		return PTR_ERR(cs);
2733
2734	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2735	*cs++ = MI_NOOP;
2736	intel_ring_advance(rq, cs);
2737
2738	/* Flush any residual operations from the context load */
2739	err = engine->emit_flush(rq, EMIT_FLUSH);
2740	if (err)
2741		return err;
2742
2743	/* Magic required to prevent forcewake errors! */
2744	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2745	if (err)
2746		return err;
2747
2748	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2749	if (IS_ERR(cs))
2750		return PTR_ERR(cs);
2751
2752	/* Ensure the LRI have landed before we invalidate & continue */
2753	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2754	for (i = GEN8_3LVL_PDPES; i--; ) {
2755		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2756		u32 base = engine->mmio_base;
2757
2758		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2759		*cs++ = upper_32_bits(pd_daddr);
2760		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2761		*cs++ = lower_32_bits(pd_daddr);
2762	}
2763	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2764	intel_ring_advance(rq, cs);
2765
2766	intel_ring_advance(rq, cs);
2767
2768	return 0;
2769}
2770
2771static int execlists_request_alloc(struct i915_request *request)
2772{
2773	int ret;
2774
2775	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2776
2777	/*
2778	 * Flush enough space to reduce the likelihood of waiting after
2779	 * we start building the request - in which case we will just
2780	 * have to repeat work.
2781	 */
2782	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2783
2784	/*
2785	 * Note that after this point, we have committed to using
2786	 * this request as it is being used to both track the
2787	 * state of engine initialisation and liveness of the
2788	 * golden renderstate above. Think twice before you try
2789	 * to cancel/unwind this request now.
2790	 */
2791
2792	if (!i915_vm_is_4lvl(request->context->vm)) {
2793		ret = emit_pdps(request);
2794		if (ret)
2795			return ret;
2796	}
2797
2798	/* Unconditionally invalidate GPU caches and TLBs. */
2799	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2800	if (ret)
2801		return ret;
2802
2803	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2804	return 0;
2805}
2806
2807static void reset_csb_pointers(struct intel_engine_cs *engine)
2808{
2809	struct intel_engine_execlists * const execlists = &engine->execlists;
2810	const unsigned int reset_value = execlists->csb_size - 1;
2811
2812	ring_set_paused(engine, 0);
2813
2814	/*
2815	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2816	 * Bludgeon them with a mmio update to be sure.
2817	 */
2818	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2819		     0xffff << 16 | reset_value << 8 | reset_value);
2820	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2821
2822	/*
2823	 * After a reset, the HW starts writing into CSB entry [0]. We
2824	 * therefore have to set our HEAD pointer back one entry so that
2825	 * the *first* entry we check is entry 0. To complicate this further,
2826	 * as we don't wait for the first interrupt after reset, we have to
2827	 * fake the HW write to point back to the last entry so that our
2828	 * inline comparison of our cached head position against the last HW
2829	 * write works even before the first interrupt.
2830	 */
2831	execlists->csb_head = reset_value;
2832	WRITE_ONCE(*execlists->csb_write, reset_value);
2833	wmb(); /* Make sure this is visible to HW (paranoia?) */
2834
2835	/* Check that the GPU does indeed update the CSB entries! */
2836	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2837	drm_clflush_virt_range(execlists->csb_status,
2838			       execlists->csb_size *
2839			       sizeof(execlists->csb_status));
2840
2841	/* Once more for luck and our trusty paranoia */
2842	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2843		     0xffff << 16 | reset_value << 8 | reset_value);
2844	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2845
2846	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2847}
2848
2849static void sanitize_hwsp(struct intel_engine_cs *engine)
2850{
2851	struct intel_timeline *tl;
2852
2853	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2854		intel_timeline_reset_seqno(tl);
2855}
2856
2857static void execlists_sanitize(struct intel_engine_cs *engine)
2858{
2859	GEM_BUG_ON(execlists_active(&engine->execlists));
2860
2861	/*
2862	 * Poison residual state on resume, in case the suspend didn't!
2863	 *
2864	 * We have to assume that across suspend/resume (or other loss
2865	 * of control) that the contents of our pinned buffers has been
2866	 * lost, replaced by garbage. Since this doesn't always happen,
2867	 * let's poison such state so that we more quickly spot when
2868	 * we falsely assume it has been preserved.
2869	 */
2870	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2871		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2872
2873	reset_csb_pointers(engine);
2874
2875	/*
2876	 * The kernel_context HWSP is stored in the status_page. As above,
2877	 * that may be lost on resume/initialisation, and so we need to
2878	 * reset the value in the HWSP.
2879	 */
2880	sanitize_hwsp(engine);
2881
2882	/* And scrub the dirty cachelines for the HWSP */
2883	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2884
2885	intel_engine_reset_pinned_contexts(engine);
2886}
2887
2888static void enable_error_interrupt(struct intel_engine_cs *engine)
2889{
2890	u32 status;
2891
2892	engine->execlists.error_interrupt = 0;
2893	ENGINE_WRITE(engine, RING_EMR, ~0u);
2894	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2895
2896	status = ENGINE_READ(engine, RING_ESR);
2897	if (unlikely(status)) {
2898		drm_err(&engine->i915->drm,
2899			"engine '%s' resumed still in error: %08x\n",
2900			engine->name, status);
2901		__intel_gt_reset(engine->gt, engine->mask);
2902	}
2903
2904	/*
2905	 * On current gen8+, we have 2 signals to play with
2906	 *
2907	 * - I915_ERROR_INSTUCTION (bit 0)
2908	 *
2909	 *    Generate an error if the command parser encounters an invalid
2910	 *    instruction
2911	 *
2912	 *    This is a fatal error.
2913	 *
2914	 * - CP_PRIV (bit 2)
2915	 *
2916	 *    Generate an error on privilege violation (where the CP replaces
2917	 *    the instruction with a no-op). This also fires for writes into
2918	 *    read-only scratch pages.
2919	 *
2920	 *    This is a non-fatal error, parsing continues.
2921	 *
2922	 * * there are a few others defined for odd HW that we do not use
2923	 *
2924	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2925	 * error (as the HW is validating and suppressing the mistakes), we
2926	 * only unmask the instruction error bit.
2927	 */
2928	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2929}
2930
2931static void enable_execlists(struct intel_engine_cs *engine)
2932{
2933	u32 mode;
2934
2935	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2936
2937	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2938
2939	if (GRAPHICS_VER(engine->i915) >= 11)
2940		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2941	else
2942		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2943	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2944
2945	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2946
2947	ENGINE_WRITE_FW(engine,
2948			RING_HWS_PGA,
2949			i915_ggtt_offset(engine->status_page.vma));
2950	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2951
2952	enable_error_interrupt(engine);
2953}
2954
2955static int execlists_resume(struct intel_engine_cs *engine)
2956{
2957	intel_mocs_init_engine(engine);
2958	intel_breadcrumbs_reset(engine->breadcrumbs);
2959
2960	enable_execlists(engine);
2961
2962	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2963		xehp_enable_ccs_engines(engine);
2964
2965	return 0;
2966}
2967
2968static void execlists_reset_prepare(struct intel_engine_cs *engine)
2969{
2970	ENGINE_TRACE(engine, "depth<-%d\n",
2971		     atomic_read(&engine->sched_engine->tasklet.count));
2972
2973	/*
2974	 * Prevent request submission to the hardware until we have
2975	 * completed the reset in i915_gem_reset_finish(). If a request
2976	 * is completed by one engine, it may then queue a request
2977	 * to a second via its execlists->tasklet *just* as we are
2978	 * calling engine->resume() and also writing the ELSP.
2979	 * Turning off the execlists->tasklet until the reset is over
2980	 * prevents the race.
2981	 */
2982	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2983	GEM_BUG_ON(!reset_in_progress(engine));
2984
2985	/*
2986	 * We stop engines, otherwise we might get failed reset and a
2987	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2988	 * from system hang if batchbuffer is progressing when
2989	 * the reset is issued, regardless of READY_TO_RESET ack.
2990	 * Thus assume it is best to stop engines on all gens
2991	 * where we have a gpu reset.
2992	 *
2993	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2994	 *
2995	 * FIXME: Wa for more modern gens needs to be validated
2996	 */
2997	ring_set_paused(engine, 1);
2998	intel_engine_stop_cs(engine);
2999
3000	/*
3001	 * Wa_22011802037: In addition to stopping the cs, we need
3002	 * to wait for any pending mi force wakeups
3003	 */
3004	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
3005		intel_engine_wait_for_pending_mi_fw(engine);
3006
3007	engine->execlists.reset_ccid = active_ccid(engine);
3008}
3009
3010static struct i915_request **
3011reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3012{
3013	struct intel_engine_execlists * const execlists = &engine->execlists;
3014
3015	drm_clflush_virt_range(execlists->csb_write,
3016			       sizeof(execlists->csb_write[0]));
3017
3018	inactive = process_csb(engine, inactive); /* drain preemption events */
3019
3020	/* Following the reset, we need to reload the CSB read/write pointers */
3021	reset_csb_pointers(engine);
3022
3023	return inactive;
3024}
3025
3026static void
3027execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3028{
3029	struct intel_context *ce;
3030	struct i915_request *rq;
3031	u32 head;
3032
3033	/*
3034	 * Save the currently executing context, even if we completed
3035	 * its request, it was still running at the time of the
3036	 * reset and will have been clobbered.
3037	 */
3038	rq = active_context(engine, engine->execlists.reset_ccid);
3039	if (!rq)
3040		return;
3041
3042	ce = rq->context;
3043	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3044
3045	if (__i915_request_is_complete(rq)) {
3046		/* Idle context; tidy up the ring so we can restart afresh */
3047		head = intel_ring_wrap(ce->ring, rq->tail);
3048		goto out_replay;
3049	}
3050
3051	/* We still have requests in-flight; the engine should be active */
3052	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3053
3054	/* Context has requests still in-flight; it should not be idle! */
3055	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3056
3057	rq = active_request(ce->timeline, rq);
3058	head = intel_ring_wrap(ce->ring, rq->head);
3059	GEM_BUG_ON(head == ce->ring->tail);
3060
3061	/*
3062	 * If this request hasn't started yet, e.g. it is waiting on a
3063	 * semaphore, we need to avoid skipping the request or else we
3064	 * break the signaling chain. However, if the context is corrupt
3065	 * the request will not restart and we will be stuck with a wedged
3066	 * device. It is quite often the case that if we issue a reset
3067	 * while the GPU is loading the context image, that the context
3068	 * image becomes corrupt.
3069	 *
3070	 * Otherwise, if we have not started yet, the request should replay
3071	 * perfectly and we do not need to flag the result as being erroneous.
3072	 */
3073	if (!__i915_request_has_started(rq))
3074		goto out_replay;
3075
3076	/*
3077	 * If the request was innocent, we leave the request in the ELSP
3078	 * and will try to replay it on restarting. The context image may
3079	 * have been corrupted by the reset, in which case we may have
3080	 * to service a new GPU hang, but more likely we can continue on
3081	 * without impact.
3082	 *
3083	 * If the request was guilty, we presume the context is corrupt
3084	 * and have to at least restore the RING register in the context
3085	 * image back to the expected values to skip over the guilty request.
3086	 */
3087	__i915_request_reset(rq, stalled);
3088
3089	/*
3090	 * We want a simple context + ring to execute the breadcrumb update.
3091	 * We cannot rely on the context being intact across the GPU hang,
3092	 * so clear it and rebuild just what we need for the breadcrumb.
3093	 * All pending requests for this context will be zapped, and any
3094	 * future request will be after userspace has had the opportunity
3095	 * to recreate its own state.
3096	 */
3097out_replay:
3098	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3099		     head, ce->ring->tail);
3100	lrc_reset_regs(ce, engine);
3101	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3102}
3103
3104static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3105{
3106	struct intel_engine_execlists * const execlists = &engine->execlists;
3107	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3108	struct i915_request **inactive;
3109
3110	rcu_read_lock();
3111	inactive = reset_csb(engine, post);
3112
3113	execlists_reset_active(engine, true);
3114
3115	inactive = cancel_port_requests(execlists, inactive);
3116	post_process_csb(post, inactive);
3117	rcu_read_unlock();
3118}
3119
3120static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3121{
3122	unsigned long flags;
3123
3124	ENGINE_TRACE(engine, "\n");
3125
3126	/* Process the csb, find the guilty context and throw away */
3127	execlists_reset_csb(engine, stalled);
3128
3129	/* Push back any incomplete requests for replay after the reset. */
3130	rcu_read_lock();
3131	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3132	__unwind_incomplete_requests(engine);
3133	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3134	rcu_read_unlock();
3135}
3136
3137static void nop_submission_tasklet(struct tasklet_struct *t)
3138{
3139	struct i915_sched_engine *sched_engine =
3140		from_tasklet(sched_engine, t, tasklet);
3141	struct intel_engine_cs * const engine = sched_engine->private_data;
3142
3143	/* The driver is wedged; don't process any more events. */
3144	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3145}
3146
3147static void execlists_reset_cancel(struct intel_engine_cs *engine)
3148{
3149	struct intel_engine_execlists * const execlists = &engine->execlists;
3150	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3151	struct i915_request *rq, *rn;
3152	struct rb_node *rb;
3153	unsigned long flags;
3154
3155	ENGINE_TRACE(engine, "\n");
3156
3157	/*
3158	 * Before we call engine->cancel_requests(), we should have exclusive
3159	 * access to the submission state. This is arranged for us by the
3160	 * caller disabling the interrupt generation, the tasklet and other
3161	 * threads that may then access the same state, giving us a free hand
3162	 * to reset state. However, we still need to let lockdep be aware that
3163	 * we know this state may be accessed in hardirq context, so we
3164	 * disable the irq around this manipulation and we want to keep
3165	 * the spinlock focused on its duties and not accidentally conflate
3166	 * coverage to the submission's irq state. (Similarly, although we
3167	 * shouldn't need to disable irq around the manipulation of the
3168	 * submission's irq state, we also wish to remind ourselves that
3169	 * it is irq state.)
3170	 */
3171	execlists_reset_csb(engine, true);
3172
3173	rcu_read_lock();
3174	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3175
3176	/* Mark all executing requests as skipped. */
3177	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3178		i915_request_put(i915_request_mark_eio(rq));
3179	intel_engine_signal_breadcrumbs(engine);
3180
3181	/* Flush the queued requests to the timeline list (for retiring). */
3182	while ((rb = rb_first_cached(&sched_engine->queue))) {
3183		struct i915_priolist *p = to_priolist(rb);
3184
3185		priolist_for_each_request_consume(rq, rn, p) {
3186			if (i915_request_mark_eio(rq)) {
3187				__i915_request_submit(rq);
3188				i915_request_put(rq);
3189			}
3190		}
3191
3192		rb_erase_cached(&p->node, &sched_engine->queue);
3193		i915_priolist_free(p);
3194	}
3195
3196	/* On-hold requests will be flushed to timeline upon their release */
3197	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3198		i915_request_put(i915_request_mark_eio(rq));
3199
3200	/* Cancel all attached virtual engines */
3201	while ((rb = rb_first_cached(&execlists->virtual))) {
3202		struct virtual_engine *ve =
3203			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3204
3205		rb_erase_cached(rb, &execlists->virtual);
3206		RB_CLEAR_NODE(rb);
3207
3208		spin_lock(&ve->base.sched_engine->lock);
3209		rq = fetch_and_zero(&ve->request);
3210		if (rq) {
3211			if (i915_request_mark_eio(rq)) {
3212				rq->engine = engine;
3213				__i915_request_submit(rq);
3214				i915_request_put(rq);
3215			}
3216			i915_request_put(rq);
3217
3218			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3219		}
3220		spin_unlock(&ve->base.sched_engine->lock);
3221	}
3222
3223	/* Remaining _unready_ requests will be nop'ed when submitted */
3224
3225	sched_engine->queue_priority_hint = INT_MIN;
3226	sched_engine->queue = RB_ROOT_CACHED;
3227
3228	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3229	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3230
3231	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3232	rcu_read_unlock();
3233}
3234
3235static void execlists_reset_finish(struct intel_engine_cs *engine)
3236{
3237	struct intel_engine_execlists * const execlists = &engine->execlists;
3238
3239	/*
3240	 * After a GPU reset, we may have requests to replay. Do so now while
3241	 * we still have the forcewake to be sure that the GPU is not allowed
3242	 * to sleep before we restart and reload a context.
3243	 *
3244	 * If the GPU reset fails, the engine may still be alive with requests
3245	 * inflight. We expect those to complete, or for the device to be
3246	 * reset as the next level of recovery, and as a final resort we
3247	 * will declare the device wedged.
3248	 */
3249	GEM_BUG_ON(!reset_in_progress(engine));
3250
3251	/* And kick in case we missed a new request submission. */
3252	if (__tasklet_enable(&engine->sched_engine->tasklet))
3253		__execlists_kick(execlists);
3254
3255	ENGINE_TRACE(engine, "depth->%d\n",
3256		     atomic_read(&engine->sched_engine->tasklet.count));
3257}
3258
3259static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3260{
3261	ENGINE_WRITE(engine, RING_IMR,
3262		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3263	ENGINE_POSTING_READ(engine, RING_IMR);
3264}
3265
3266static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3267{
3268	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3269}
3270
3271static void execlists_park(struct intel_engine_cs *engine)
3272{
3273	cancel_timer(&engine->execlists.timer);
3274	cancel_timer(&engine->execlists.preempt);
3275
3276	/* Reset upon idling, or we may delay the busy wakeup. */
3277	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3278}
3279
3280static void add_to_engine(struct i915_request *rq)
3281{
3282	lockdep_assert_held(&rq->engine->sched_engine->lock);
3283	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3284}
3285
3286static void remove_from_engine(struct i915_request *rq)
3287{
3288	struct intel_engine_cs *engine, *locked;
3289
3290	/*
3291	 * Virtual engines complicate acquiring the engine timeline lock,
3292	 * as their rq->engine pointer is not stable until under that
3293	 * engine lock. The simple ploy we use is to take the lock then
3294	 * check that the rq still belongs to the newly locked engine.
3295	 */
3296	locked = READ_ONCE(rq->engine);
3297	spin_lock_irq(&locked->sched_engine->lock);
3298	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3299		spin_unlock(&locked->sched_engine->lock);
3300		spin_lock(&engine->sched_engine->lock);
3301		locked = engine;
3302	}
3303	list_del_init(&rq->sched.link);
3304
3305	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3306	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3307
3308	/* Prevent further __await_execution() registering a cb, then flush */
3309	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3310
3311	spin_unlock_irq(&locked->sched_engine->lock);
3312
3313	i915_request_notify_execute_cb_imm(rq);
3314}
3315
3316static bool can_preempt(struct intel_engine_cs *engine)
3317{
3318	if (GRAPHICS_VER(engine->i915) > 8)
3319		return true;
3320
3321	/* GPGPU on bdw requires extra w/a; not implemented */
3322	return engine->class != RENDER_CLASS;
3323}
3324
3325static void kick_execlists(const struct i915_request *rq, int prio)
3326{
3327	struct intel_engine_cs *engine = rq->engine;
3328	struct i915_sched_engine *sched_engine = engine->sched_engine;
3329	const struct i915_request *inflight;
3330
3331	/*
3332	 * We only need to kick the tasklet once for the high priority
3333	 * new context we add into the queue.
3334	 */
3335	if (prio <= sched_engine->queue_priority_hint)
3336		return;
3337
3338	rcu_read_lock();
3339
3340	/* Nothing currently active? We're overdue for a submission! */
3341	inflight = execlists_active(&engine->execlists);
3342	if (!inflight)
3343		goto unlock;
3344
3345	/*
3346	 * If we are already the currently executing context, don't
3347	 * bother evaluating if we should preempt ourselves.
3348	 */
3349	if (inflight->context == rq->context)
3350		goto unlock;
3351
3352	ENGINE_TRACE(engine,
3353		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3354		     prio,
3355		     rq->fence.context, rq->fence.seqno,
3356		     inflight->fence.context, inflight->fence.seqno,
3357		     inflight->sched.attr.priority);
3358
3359	sched_engine->queue_priority_hint = prio;
3360
3361	/*
3362	 * Allow preemption of low -> normal -> high, but we do
3363	 * not allow low priority tasks to preempt other low priority
3364	 * tasks under the impression that latency for low priority
3365	 * tasks does not matter (as much as background throughput),
3366	 * so kiss.
3367	 */
3368	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3369		tasklet_hi_schedule(&sched_engine->tasklet);
3370
3371unlock:
3372	rcu_read_unlock();
3373}
3374
3375static void execlists_set_default_submission(struct intel_engine_cs *engine)
3376{
3377	engine->submit_request = execlists_submit_request;
3378	engine->sched_engine->schedule = i915_schedule;
3379	engine->sched_engine->kick_backend = kick_execlists;
3380	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3381}
3382
3383static void execlists_shutdown(struct intel_engine_cs *engine)
3384{
3385	/* Synchronise with residual timers and any softirq they raise */
3386	del_timer_sync(&engine->execlists.timer);
3387	del_timer_sync(&engine->execlists.preempt);
3388	tasklet_kill(&engine->sched_engine->tasklet);
3389}
3390
3391static void execlists_release(struct intel_engine_cs *engine)
3392{
3393	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3394
3395	execlists_shutdown(engine);
3396
3397	intel_engine_cleanup_common(engine);
3398	lrc_fini_wa_ctx(engine);
3399}
3400
3401static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3402					   ktime_t *now)
3403{
3404	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3405	ktime_t total = stats->total;
3406
3407	/*
3408	 * If the engine is executing something at the moment
3409	 * add it to the total.
3410	 */
3411	*now = ktime_get();
3412	if (READ_ONCE(stats->active))
3413		total = ktime_add(total, ktime_sub(*now, stats->start));
3414
3415	return total;
3416}
3417
3418static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3419					 ktime_t *now)
3420{
3421	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3422	unsigned int seq;
3423	ktime_t total;
3424
3425	do {
3426		seq = read_seqcount_begin(&stats->lock);
3427		total = __execlists_engine_busyness(engine, now);
3428	} while (read_seqcount_retry(&stats->lock, seq));
3429
3430	return total;
3431}
3432
3433static void
3434logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3435{
3436	/* Default vfuncs which can be overridden by each engine. */
3437
3438	engine->resume = execlists_resume;
3439
3440	engine->cops = &execlists_context_ops;
3441	engine->request_alloc = execlists_request_alloc;
3442	engine->add_active_request = add_to_engine;
3443	engine->remove_active_request = remove_from_engine;
3444
3445	engine->reset.prepare = execlists_reset_prepare;
3446	engine->reset.rewind = execlists_reset_rewind;
3447	engine->reset.cancel = execlists_reset_cancel;
3448	engine->reset.finish = execlists_reset_finish;
3449
3450	engine->park = execlists_park;
3451	engine->unpark = NULL;
3452
3453	engine->emit_flush = gen8_emit_flush_xcs;
3454	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3455	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3456	if (GRAPHICS_VER(engine->i915) >= 12) {
3457		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3458		engine->emit_flush = gen12_emit_flush_xcs;
3459	}
3460	engine->set_default_submission = execlists_set_default_submission;
3461
3462	if (GRAPHICS_VER(engine->i915) < 11) {
3463		engine->irq_enable = gen8_logical_ring_enable_irq;
3464		engine->irq_disable = gen8_logical_ring_disable_irq;
3465	} else {
3466		/*
3467		 * TODO: On Gen11 interrupt masks need to be clear
3468		 * to allow C6 entry. Keep interrupts enabled at
3469		 * and take the hit of generating extra interrupts
3470		 * until a more refined solution exists.
3471		 */
3472	}
3473	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3474
3475	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3476	if (!intel_vgpu_active(engine->i915)) {
3477		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3478		if (can_preempt(engine)) {
3479			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3480			if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3481				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3482		}
3483	}
3484
3485	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3486		if (intel_engine_has_preemption(engine))
3487			engine->emit_bb_start = xehp_emit_bb_start;
3488		else
3489			engine->emit_bb_start = xehp_emit_bb_start_noarb;
3490	} else {
3491		if (intel_engine_has_preemption(engine))
3492			engine->emit_bb_start = gen8_emit_bb_start;
3493		else
3494			engine->emit_bb_start = gen8_emit_bb_start_noarb;
3495	}
3496
3497	engine->busyness = execlists_engine_busyness;
3498}
3499
3500static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3501{
3502	unsigned int shift = 0;
3503
3504	if (GRAPHICS_VER(engine->i915) < 11) {
3505		const u8 irq_shifts[] = {
3506			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3507			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3508			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3509			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3510			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3511		};
3512
3513		shift = irq_shifts[engine->id];
3514	}
3515
3516	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3517	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3518	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3519	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3520}
3521
3522static void rcs_submission_override(struct intel_engine_cs *engine)
3523{
3524	switch (GRAPHICS_VER(engine->i915)) {
3525	case 12:
3526		engine->emit_flush = gen12_emit_flush_rcs;
3527		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3528		break;
3529	case 11:
3530		engine->emit_flush = gen11_emit_flush_rcs;
3531		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3532		break;
3533	default:
3534		engine->emit_flush = gen8_emit_flush_rcs;
3535		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3536		break;
3537	}
3538}
3539
3540int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3541{
3542	struct intel_engine_execlists * const execlists = &engine->execlists;
3543	struct drm_i915_private *i915 = engine->i915;
3544	struct intel_uncore *uncore = engine->uncore;
3545	u32 base = engine->mmio_base;
3546
3547	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3548	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3549	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3550
3551	logical_ring_default_vfuncs(engine);
3552	logical_ring_default_irqs(engine);
3553
3554	seqcount_init(&engine->stats.execlists.lock);
3555
3556	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3557		rcs_submission_override(engine);
3558
3559	lrc_init_wa_ctx(engine);
3560
3561	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3562		execlists->submit_reg = intel_uncore_regs(uncore) +
3563			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3564		execlists->ctrl_reg = intel_uncore_regs(uncore) +
3565			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3566
3567		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3568				    RING_EXECLIST_CONTROL(engine->mmio_base),
3569				    FW_REG_WRITE);
3570	} else {
3571		execlists->submit_reg = intel_uncore_regs(uncore) +
3572			i915_mmio_reg_offset(RING_ELSP(base));
3573	}
3574
3575	execlists->csb_status =
3576		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3577
3578	execlists->csb_write =
3579		&engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3580
3581	if (GRAPHICS_VER(i915) < 11)
3582		execlists->csb_size = GEN8_CSB_ENTRIES;
3583	else
3584		execlists->csb_size = GEN11_CSB_ENTRIES;
3585
3586	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3587	if (GRAPHICS_VER(engine->i915) >= 11 &&
3588	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3589		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3590		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3591	}
3592
3593	/* Finally, take ownership and responsibility for cleanup! */
3594	engine->sanitize = execlists_sanitize;
3595	engine->release = execlists_release;
3596
3597	return 0;
3598}
3599
3600static struct list_head *virtual_queue(struct virtual_engine *ve)
3601{
3602	return &ve->base.sched_engine->default_priolist.requests;
3603}
3604
3605static void rcu_virtual_context_destroy(struct work_struct *wrk)
3606{
3607	struct virtual_engine *ve =
3608		container_of(wrk, typeof(*ve), rcu.work);
3609	unsigned int n;
3610
3611	GEM_BUG_ON(ve->context.inflight);
3612
3613	/* Preempt-to-busy may leave a stale request behind. */
3614	if (unlikely(ve->request)) {
3615		struct i915_request *old;
3616
3617		spin_lock_irq(&ve->base.sched_engine->lock);
3618
3619		old = fetch_and_zero(&ve->request);
3620		if (old) {
3621			GEM_BUG_ON(!__i915_request_is_complete(old));
3622			__i915_request_submit(old);
3623			i915_request_put(old);
3624		}
3625
3626		spin_unlock_irq(&ve->base.sched_engine->lock);
3627	}
3628
3629	/*
3630	 * Flush the tasklet in case it is still running on another core.
3631	 *
3632	 * This needs to be done before we remove ourselves from the siblings'
3633	 * rbtrees as in the case it is running in parallel, it may reinsert
3634	 * the rb_node into a sibling.
3635	 */
3636	tasklet_kill(&ve->base.sched_engine->tasklet);
3637
3638	/* Decouple ourselves from the siblings, no more access allowed. */
3639	for (n = 0; n < ve->num_siblings; n++) {
3640		struct intel_engine_cs *sibling = ve->siblings[n];
3641		struct rb_node *node = &ve->nodes[sibling->id].rb;
3642
3643		if (RB_EMPTY_NODE(node))
3644			continue;
3645
3646		spin_lock_irq(&sibling->sched_engine->lock);
3647
3648		/* Detachment is lazily performed in the sched_engine->tasklet */
3649		if (!RB_EMPTY_NODE(node))
3650			rb_erase_cached(node, &sibling->execlists.virtual);
3651
3652		spin_unlock_irq(&sibling->sched_engine->lock);
3653	}
3654	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3655	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3656
3657	lrc_fini(&ve->context);
3658	intel_context_fini(&ve->context);
3659
3660	if (ve->base.breadcrumbs)
3661		intel_breadcrumbs_put(ve->base.breadcrumbs);
3662	if (ve->base.sched_engine)
3663		i915_sched_engine_put(ve->base.sched_engine);
3664	intel_engine_free_request_pool(&ve->base);
3665
3666	kfree(ve);
3667}
3668
3669static void virtual_context_destroy(struct kref *kref)
3670{
3671	struct virtual_engine *ve =
3672		container_of(kref, typeof(*ve), context.ref);
3673
3674	GEM_BUG_ON(!list_empty(&ve->context.signals));
3675
3676	/*
3677	 * When destroying the virtual engine, we have to be aware that
3678	 * it may still be in use from an hardirq/softirq context causing
3679	 * the resubmission of a completed request (background completion
3680	 * due to preempt-to-busy). Before we can free the engine, we need
3681	 * to flush the submission code and tasklets that are still potentially
3682	 * accessing the engine. Flushing the tasklets requires process context,
3683	 * and since we can guard the resubmit onto the engine with an RCU read
3684	 * lock, we can delegate the free of the engine to an RCU worker.
3685	 */
3686	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3687	queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3688}
3689
3690static void virtual_engine_initial_hint(struct virtual_engine *ve)
3691{
3692	int swp;
3693
3694	/*
3695	 * Pick a random sibling on starting to help spread the load around.
3696	 *
3697	 * New contexts are typically created with exactly the same order
3698	 * of siblings, and often started in batches. Due to the way we iterate
3699	 * the array of sibling when submitting requests, sibling[0] is
3700	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3701	 * randomised across the system, we also help spread the load by the
3702	 * first engine we inspect being different each time.
3703	 *
3704	 * NB This does not force us to execute on this engine, it will just
3705	 * typically be the first we inspect for submission.
3706	 */
3707	swp = get_random_u32_below(ve->num_siblings);
3708	if (swp)
3709		swap(ve->siblings[swp], ve->siblings[0]);
3710}
3711
3712static int virtual_context_alloc(struct intel_context *ce)
3713{
3714	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3715
3716	return lrc_alloc(ce, ve->siblings[0]);
3717}
3718
3719static int virtual_context_pre_pin(struct intel_context *ce,
3720				   struct i915_gem_ww_ctx *ww,
3721				   void **vaddr)
3722{
3723	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3724
3725	 /* Note: we must use a real engine class for setting up reg state */
3726	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3727}
3728
3729static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3730{
3731	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3732
3733	return lrc_pin(ce, ve->siblings[0], vaddr);
3734}
3735
3736static void virtual_context_enter(struct intel_context *ce)
3737{
3738	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3739	unsigned int n;
3740
3741	for (n = 0; n < ve->num_siblings; n++)
3742		intel_engine_pm_get(ve->siblings[n]);
3743
3744	intel_timeline_enter(ce->timeline);
3745}
3746
3747static void virtual_context_exit(struct intel_context *ce)
3748{
3749	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3750	unsigned int n;
3751
3752	intel_timeline_exit(ce->timeline);
3753
3754	for (n = 0; n < ve->num_siblings; n++)
3755		intel_engine_pm_put(ve->siblings[n]);
3756}
3757
3758static struct intel_engine_cs *
3759virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3760{
3761	struct virtual_engine *ve = to_virtual_engine(engine);
3762
3763	if (sibling >= ve->num_siblings)
3764		return NULL;
3765
3766	return ve->siblings[sibling];
3767}
3768
3769static const struct intel_context_ops virtual_context_ops = {
3770	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3771
3772	.alloc = virtual_context_alloc,
3773
3774	.cancel_request = execlists_context_cancel_request,
3775
3776	.pre_pin = virtual_context_pre_pin,
3777	.pin = virtual_context_pin,
3778	.unpin = lrc_unpin,
3779	.post_unpin = lrc_post_unpin,
3780
3781	.enter = virtual_context_enter,
3782	.exit = virtual_context_exit,
3783
3784	.destroy = virtual_context_destroy,
3785
3786	.get_sibling = virtual_get_sibling,
3787};
3788
3789static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3790{
3791	struct i915_request *rq;
3792	intel_engine_mask_t mask;
3793
3794	rq = READ_ONCE(ve->request);
3795	if (!rq)
3796		return 0;
3797
3798	/* The rq is ready for submission; rq->execution_mask is now stable. */
3799	mask = rq->execution_mask;
3800	if (unlikely(!mask)) {
3801		/* Invalid selection, submit to a random engine in error */
3802		i915_request_set_error_once(rq, -ENODEV);
3803		mask = ve->siblings[0]->mask;
3804	}
3805
3806	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3807		     rq->fence.context, rq->fence.seqno,
3808		     mask, ve->base.sched_engine->queue_priority_hint);
3809
3810	return mask;
3811}
3812
3813static void virtual_submission_tasklet(struct tasklet_struct *t)
3814{
3815	struct i915_sched_engine *sched_engine =
3816		from_tasklet(sched_engine, t, tasklet);
3817	struct virtual_engine * const ve =
3818		(struct virtual_engine *)sched_engine->private_data;
3819	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3820	intel_engine_mask_t mask;
3821	unsigned int n;
3822
3823	rcu_read_lock();
3824	mask = virtual_submission_mask(ve);
3825	rcu_read_unlock();
3826	if (unlikely(!mask))
3827		return;
3828
3829	for (n = 0; n < ve->num_siblings; n++) {
3830		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3831		struct ve_node * const node = &ve->nodes[sibling->id];
3832		struct rb_node **parent, *rb;
3833		bool first;
3834
3835		if (!READ_ONCE(ve->request))
3836			break; /* already handled by a sibling's tasklet */
3837
3838		spin_lock_irq(&sibling->sched_engine->lock);
3839
3840		if (unlikely(!(mask & sibling->mask))) {
3841			if (!RB_EMPTY_NODE(&node->rb)) {
3842				rb_erase_cached(&node->rb,
3843						&sibling->execlists.virtual);
3844				RB_CLEAR_NODE(&node->rb);
3845			}
3846
3847			goto unlock_engine;
3848		}
3849
3850		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3851			/*
3852			 * Cheat and avoid rebalancing the tree if we can
3853			 * reuse this node in situ.
3854			 */
3855			first = rb_first_cached(&sibling->execlists.virtual) ==
3856				&node->rb;
3857			if (prio == node->prio || (prio > node->prio && first))
3858				goto submit_engine;
3859
3860			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3861		}
3862
3863		rb = NULL;
3864		first = true;
3865		parent = &sibling->execlists.virtual.rb_root.rb_node;
3866		while (*parent) {
3867			struct ve_node *other;
3868
3869			rb = *parent;
3870			other = rb_entry(rb, typeof(*other), rb);
3871			if (prio > other->prio) {
3872				parent = &rb->rb_left;
3873			} else {
3874				parent = &rb->rb_right;
3875				first = false;
3876			}
3877		}
3878
3879		rb_link_node(&node->rb, rb, parent);
3880		rb_insert_color_cached(&node->rb,
3881				       &sibling->execlists.virtual,
3882				       first);
3883
3884submit_engine:
3885		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3886		node->prio = prio;
3887		if (first && prio > sibling->sched_engine->queue_priority_hint)
3888			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3889
3890unlock_engine:
3891		spin_unlock_irq(&sibling->sched_engine->lock);
3892
3893		if (intel_context_inflight(&ve->context))
3894			break;
3895	}
3896}
3897
3898static void virtual_submit_request(struct i915_request *rq)
3899{
3900	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3901	unsigned long flags;
3902
3903	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3904		     rq->fence.context,
3905		     rq->fence.seqno);
3906
3907	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3908
3909	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3910
3911	/* By the time we resubmit a request, it may be completed */
3912	if (__i915_request_is_complete(rq)) {
3913		__i915_request_submit(rq);
3914		goto unlock;
3915	}
3916
3917	if (ve->request) { /* background completion from preempt-to-busy */
3918		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3919		__i915_request_submit(ve->request);
3920		i915_request_put(ve->request);
3921	}
3922
3923	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3924	ve->request = i915_request_get(rq);
3925
3926	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3927	list_move_tail(&rq->sched.link, virtual_queue(ve));
3928
3929	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3930
3931unlock:
3932	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3933}
3934
3935static struct intel_context *
3936execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3937			 unsigned long flags)
3938{
3939	struct drm_i915_private *i915 = siblings[0]->i915;
3940	struct virtual_engine *ve;
3941	unsigned int n;
3942	int err;
3943
3944	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3945	if (!ve)
3946		return ERR_PTR(-ENOMEM);
3947
3948	ve->base.i915 = i915;
3949	ve->base.gt = siblings[0]->gt;
3950	ve->base.uncore = siblings[0]->uncore;
3951	ve->base.id = -1;
3952
3953	ve->base.class = OTHER_CLASS;
3954	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3955	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3956	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3957
3958	/*
3959	 * The decision on whether to submit a request using semaphores
3960	 * depends on the saturated state of the engine. We only compute
3961	 * this during HW submission of the request, and we need for this
3962	 * state to be globally applied to all requests being submitted
3963	 * to this engine. Virtual engines encompass more than one physical
3964	 * engine and so we cannot accurately tell in advance if one of those
3965	 * engines is already saturated and so cannot afford to use a semaphore
3966	 * and be pessimized in priority for doing so -- if we are the only
3967	 * context using semaphores after all other clients have stopped, we
3968	 * will be starved on the saturated system. Such a global switch for
3969	 * semaphores is less than ideal, but alas is the current compromise.
3970	 */
3971	ve->base.saturated = ALL_ENGINES;
3972
3973	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3974
3975	intel_engine_init_execlists(&ve->base);
3976
3977	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3978	if (!ve->base.sched_engine) {
3979		err = -ENOMEM;
3980		goto err_put;
3981	}
3982	ve->base.sched_engine->private_data = &ve->base;
3983
3984	ve->base.cops = &virtual_context_ops;
3985	ve->base.request_alloc = execlists_request_alloc;
3986
3987	ve->base.sched_engine->schedule = i915_schedule;
3988	ve->base.sched_engine->kick_backend = kick_execlists;
3989	ve->base.submit_request = virtual_submit_request;
3990
3991	INIT_LIST_HEAD(virtual_queue(ve));
3992	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3993
3994	intel_context_init(&ve->context, &ve->base);
3995
3996	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3997	if (!ve->base.breadcrumbs) {
3998		err = -ENOMEM;
3999		goto err_put;
4000	}
4001
4002	for (n = 0; n < count; n++) {
4003		struct intel_engine_cs *sibling = siblings[n];
4004
4005		GEM_BUG_ON(!is_power_of_2(sibling->mask));
4006		if (sibling->mask & ve->base.mask) {
4007			drm_dbg(&i915->drm,
4008				"duplicate %s entry in load balancer\n",
4009				sibling->name);
4010			err = -EINVAL;
4011			goto err_put;
4012		}
4013
4014		/*
4015		 * The virtual engine implementation is tightly coupled to
4016		 * the execlists backend -- we push out request directly
4017		 * into a tree inside each physical engine. We could support
4018		 * layering if we handle cloning of the requests and
4019		 * submitting a copy into each backend.
4020		 */
4021		if (sibling->sched_engine->tasklet.callback !=
4022		    execlists_submission_tasklet) {
4023			err = -ENODEV;
4024			goto err_put;
4025		}
4026
4027		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4028		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4029
4030		ve->siblings[ve->num_siblings++] = sibling;
4031		ve->base.mask |= sibling->mask;
4032		ve->base.logical_mask |= sibling->logical_mask;
4033
4034		/*
4035		 * All physical engines must be compatible for their emission
4036		 * functions (as we build the instructions during request
4037		 * construction and do not alter them before submission
4038		 * on the physical engine). We use the engine class as a guide
4039		 * here, although that could be refined.
4040		 */
4041		if (ve->base.class != OTHER_CLASS) {
4042			if (ve->base.class != sibling->class) {
4043				drm_dbg(&i915->drm,
4044					"invalid mixing of engine class, sibling %d, already %d\n",
4045					sibling->class, ve->base.class);
4046				err = -EINVAL;
4047				goto err_put;
4048			}
4049			continue;
4050		}
4051
4052		ve->base.class = sibling->class;
4053		ve->base.uabi_class = sibling->uabi_class;
4054		snprintf(ve->base.name, sizeof(ve->base.name),
4055			 "v%dx%d", ve->base.class, count);
4056		ve->base.context_size = sibling->context_size;
4057
4058		ve->base.add_active_request = sibling->add_active_request;
4059		ve->base.remove_active_request = sibling->remove_active_request;
4060		ve->base.emit_bb_start = sibling->emit_bb_start;
4061		ve->base.emit_flush = sibling->emit_flush;
4062		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4063		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4064		ve->base.emit_fini_breadcrumb_dw =
4065			sibling->emit_fini_breadcrumb_dw;
4066
4067		ve->base.flags = sibling->flags;
4068	}
4069
4070	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4071
4072	virtual_engine_initial_hint(ve);
4073	return &ve->context;
4074
4075err_put:
4076	intel_context_put(&ve->context);
4077	return ERR_PTR(err);
4078}
4079
4080void intel_execlists_show_requests(struct intel_engine_cs *engine,
4081				   struct drm_printer *m,
4082				   void (*show_request)(struct drm_printer *m,
4083							const struct i915_request *rq,
4084							const char *prefix,
4085							int indent),
4086				   unsigned int max)
4087{
4088	const struct intel_engine_execlists *execlists = &engine->execlists;
4089	struct i915_sched_engine *sched_engine = engine->sched_engine;
4090	struct i915_request *rq, *last;
4091	unsigned long flags;
4092	unsigned int count;
4093	struct rb_node *rb;
4094
4095	spin_lock_irqsave(&sched_engine->lock, flags);
4096
4097	last = NULL;
4098	count = 0;
4099	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4100		if (count++ < max - 1)
4101			show_request(m, rq, "\t\t", 0);
4102		else
4103			last = rq;
4104	}
4105	if (last) {
4106		if (count > max) {
4107			drm_printf(m,
4108				   "\t\t...skipping %d executing requests...\n",
4109				   count - max);
4110		}
4111		show_request(m, last, "\t\t", 0);
4112	}
4113
4114	if (sched_engine->queue_priority_hint != INT_MIN)
4115		drm_printf(m, "\t\tQueue priority hint: %d\n",
4116			   READ_ONCE(sched_engine->queue_priority_hint));
4117
4118	last = NULL;
4119	count = 0;
4120	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4121		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4122
4123		priolist_for_each_request(rq, p) {
4124			if (count++ < max - 1)
4125				show_request(m, rq, "\t\t", 0);
4126			else
4127				last = rq;
4128		}
4129	}
4130	if (last) {
4131		if (count > max) {
4132			drm_printf(m,
4133				   "\t\t...skipping %d queued requests...\n",
4134				   count - max);
4135		}
4136		show_request(m, last, "\t\t", 0);
4137	}
4138
4139	last = NULL;
4140	count = 0;
4141	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4142		struct virtual_engine *ve =
4143			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4144		struct i915_request *rq = READ_ONCE(ve->request);
4145
4146		if (rq) {
4147			if (count++ < max - 1)
4148				show_request(m, rq, "\t\t", 0);
4149			else
4150				last = rq;
4151		}
4152	}
4153	if (last) {
4154		if (count > max) {
4155			drm_printf(m,
4156				   "\t\t...skipping %d virtual requests...\n",
4157				   count - max);
4158		}
4159		show_request(m, last, "\t\t", 0);
4160	}
4161
4162	spin_unlock_irqrestore(&sched_engine->lock, flags);
4163}
4164
4165void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4166					  struct i915_request *hung_rq,
4167					  struct drm_printer *m)
4168{
4169	unsigned long flags;
4170
4171	spin_lock_irqsave(&engine->sched_engine->lock, flags);
4172
4173	intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4174
4175	drm_printf(m, "\tOn hold?: %zu\n",
4176		   list_count_nodes(&engine->sched_engine->hold));
4177
4178	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4179}
4180
4181#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4182#include "selftest_execlists.c"
4183#endif
4184