1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright �� 2014-2016 Intel Corporation
5 */
6
7#include <linux/pagevec.h>
8#include <linux/shmem_fs.h>
9#include <linux/swap.h>
10
11#include <drm/drm_cache.h>
12
13#include "gem/i915_gem_region.h"
14#include "i915_drv.h"
15#include "i915_gem_object.h"
16#include "i915_gem_tiling.h"
17#include "i915_gemfs.h"
18#include "i915_scatterlist.h"
19#include "i915_trace.h"
20
21/*
22 * Move folios to appropriate lru and release the batch, decrementing the
23 * ref count of those folios.
24 */
25static void check_release_folio_batch(struct folio_batch *fbatch)
26{
27	check_move_unevictable_folios(fbatch);
28	__folio_batch_release(fbatch);
29	cond_resched();
30}
31
32void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
33			 bool dirty, bool backup)
34{
35	struct sgt_iter sgt_iter;
36	struct folio_batch fbatch;
37	struct folio *last = NULL;
38	struct page *page;
39
40	mapping_clear_unevictable(mapping);
41
42	folio_batch_init(&fbatch);
43	for_each_sgt_page(page, sgt_iter, st) {
44		struct folio *folio = page_folio(page);
45
46		if (folio == last)
47			continue;
48		last = folio;
49		if (dirty)
50			folio_mark_dirty(folio);
51		if (backup)
52			folio_mark_accessed(folio);
53
54		if (!folio_batch_add(&fbatch, folio))
55			check_release_folio_batch(&fbatch);
56	}
57	if (fbatch.nr)
58		check_release_folio_batch(&fbatch);
59
60	sg_free_table(st);
61}
62
63int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
64			 size_t size, struct intel_memory_region *mr,
65			 struct address_space *mapping,
66			 unsigned int max_segment)
67{
68	unsigned int page_count; /* restricted by sg_alloc_table */
69	unsigned long i;
70	struct scatterlist *sg;
71	unsigned long next_pfn = 0;	/* suppress gcc warning */
72	gfp_t noreclaim;
73	int ret;
74
75	if (overflows_type(size / PAGE_SIZE, page_count))
76		return -E2BIG;
77
78	page_count = size / PAGE_SIZE;
79	/*
80	 * If there's no chance of allocating enough pages for the whole
81	 * object, bail early.
82	 */
83	if (size > resource_size(&mr->region))
84		return -ENOMEM;
85
86	if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
87		return -ENOMEM;
88
89	/*
90	 * Get the list of pages out of our struct file.  They'll be pinned
91	 * at this point until we release them.
92	 *
93	 * Fail silently without starting the shrinker
94	 */
95	mapping_set_unevictable(mapping);
96	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
97	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
98
99	sg = st->sgl;
100	st->nents = 0;
101	for (i = 0; i < page_count; i++) {
102		struct folio *folio;
103		unsigned long nr_pages;
104		const unsigned int shrink[] = {
105			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
106			0,
107		}, *s = shrink;
108		gfp_t gfp = noreclaim;
109
110		do {
111			cond_resched();
112			folio = shmem_read_folio_gfp(mapping, i, gfp);
113			if (!IS_ERR(folio))
114				break;
115
116			if (!*s) {
117				ret = PTR_ERR(folio);
118				goto err_sg;
119			}
120
121			i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
122
123			/*
124			 * We've tried hard to allocate the memory by reaping
125			 * our own buffer, now let the real VM do its job and
126			 * go down in flames if truly OOM.
127			 *
128			 * However, since graphics tend to be disposable,
129			 * defer the oom here by reporting the ENOMEM back
130			 * to userspace.
131			 */
132			if (!*s) {
133				/* reclaim and warn, but no oom */
134				gfp = mapping_gfp_mask(mapping);
135
136				/*
137				 * Our bo are always dirty and so we require
138				 * kswapd to reclaim our pages (direct reclaim
139				 * does not effectively begin pageout of our
140				 * buffers on its own). However, direct reclaim
141				 * only waits for kswapd when under allocation
142				 * congestion. So as a result __GFP_RECLAIM is
143				 * unreliable and fails to actually reclaim our
144				 * dirty pages -- unless you try over and over
145				 * again with !__GFP_NORETRY. However, we still
146				 * want to fail this allocation rather than
147				 * trigger the out-of-memory killer and for
148				 * this we want __GFP_RETRY_MAYFAIL.
149				 */
150				gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
151			}
152		} while (1);
153
154		nr_pages = min_t(unsigned long,
155				folio_nr_pages(folio), page_count - i);
156		if (!i ||
157		    sg->length >= max_segment ||
158		    folio_pfn(folio) != next_pfn) {
159			if (i)
160				sg = sg_next(sg);
161
162			st->nents++;
163			sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0);
164		} else {
165			/* XXX: could overflow? */
166			sg->length += nr_pages * PAGE_SIZE;
167		}
168		next_pfn = folio_pfn(folio) + nr_pages;
169		i += nr_pages - 1;
170
171		/* Check that the i965g/gm workaround works. */
172		GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL);
173	}
174	if (sg) /* loop terminated early; short sg table */
175		sg_mark_end(sg);
176
177	/* Trim unused sg entries to avoid wasting memory. */
178	i915_sg_trim(st);
179
180	return 0;
181err_sg:
182	sg_mark_end(sg);
183	if (sg != st->sgl) {
184		shmem_sg_free_table(st, mapping, false, false);
185	} else {
186		mapping_clear_unevictable(mapping);
187		sg_free_table(st);
188	}
189
190	/*
191	 * shmemfs first checks if there is enough memory to allocate the page
192	 * and reports ENOSPC should there be insufficient, along with the usual
193	 * ENOMEM for a genuine allocation failure.
194	 *
195	 * We use ENOSPC in our driver to mean that we have run out of aperture
196	 * space and so want to translate the error from shmemfs back to our
197	 * usual understanding of ENOMEM.
198	 */
199	if (ret == -ENOSPC)
200		ret = -ENOMEM;
201
202	return ret;
203}
204
205static int shmem_get_pages(struct drm_i915_gem_object *obj)
206{
207	struct drm_i915_private *i915 = to_i915(obj->base.dev);
208	struct intel_memory_region *mem = obj->mm.region;
209	struct address_space *mapping = obj->base.filp->f_mapping;
210	unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
211	struct sg_table *st;
212	struct sgt_iter sgt_iter;
213	struct page *page;
214	int ret;
215
216	/*
217	 * Assert that the object is not currently in any GPU domain. As it
218	 * wasn't in the GTT, there shouldn't be any way it could have been in
219	 * a GPU cache
220	 */
221	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
222	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
223
224rebuild_st:
225	st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
226	if (!st)
227		return -ENOMEM;
228
229	ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
230				   max_segment);
231	if (ret)
232		goto err_st;
233
234	ret = i915_gem_gtt_prepare_pages(obj, st);
235	if (ret) {
236		/*
237		 * DMA remapping failed? One possible cause is that
238		 * it could not reserve enough large entries, asking
239		 * for PAGE_SIZE chunks instead may be helpful.
240		 */
241		if (max_segment > PAGE_SIZE) {
242			for_each_sgt_page(page, sgt_iter, st)
243				put_page(page);
244			sg_free_table(st);
245			kfree(st);
246
247			max_segment = PAGE_SIZE;
248			goto rebuild_st;
249		} else {
250			dev_warn(i915->drm.dev,
251				 "Failed to DMA remap %zu pages\n",
252				 obj->base.size >> PAGE_SHIFT);
253			goto err_pages;
254		}
255	}
256
257	if (i915_gem_object_needs_bit17_swizzle(obj))
258		i915_gem_object_do_bit_17_swizzle(obj, st);
259
260	if (i915_gem_object_can_bypass_llc(obj))
261		obj->cache_dirty = true;
262
263	__i915_gem_object_set_pages(obj, st);
264
265	return 0;
266
267err_pages:
268	shmem_sg_free_table(st, mapping, false, false);
269	/*
270	 * shmemfs first checks if there is enough memory to allocate the page
271	 * and reports ENOSPC should there be insufficient, along with the usual
272	 * ENOMEM for a genuine allocation failure.
273	 *
274	 * We use ENOSPC in our driver to mean that we have run out of aperture
275	 * space and so want to translate the error from shmemfs back to our
276	 * usual understanding of ENOMEM.
277	 */
278err_st:
279	if (ret == -ENOSPC)
280		ret = -ENOMEM;
281
282	kfree(st);
283
284	return ret;
285}
286
287static int
288shmem_truncate(struct drm_i915_gem_object *obj)
289{
290	/*
291	 * Our goal here is to return as much of the memory as
292	 * is possible back to the system as we are called from OOM.
293	 * To do this we must instruct the shmfs to drop all of its
294	 * backing pages, *now*.
295	 */
296	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
297	obj->mm.madv = __I915_MADV_PURGED;
298	obj->mm.pages = ERR_PTR(-EFAULT);
299
300	return 0;
301}
302
303void __shmem_writeback(size_t size, struct address_space *mapping)
304{
305	struct writeback_control wbc = {
306		.sync_mode = WB_SYNC_NONE,
307		.nr_to_write = SWAP_CLUSTER_MAX,
308		.range_start = 0,
309		.range_end = LLONG_MAX,
310		.for_reclaim = 1,
311	};
312	unsigned long i;
313
314	/*
315	 * Leave mmapings intact (GTT will have been revoked on unbinding,
316	 * leaving only CPU mmapings around) and add those pages to the LRU
317	 * instead of invoking writeback so they are aged and paged out
318	 * as normal.
319	 */
320
321	/* Begin writeback on each dirty page */
322	for (i = 0; i < size >> PAGE_SHIFT; i++) {
323		struct page *page;
324
325		page = find_lock_page(mapping, i);
326		if (!page)
327			continue;
328
329		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
330			int ret;
331
332			SetPageReclaim(page);
333			ret = mapping->a_ops->writepage(page, &wbc);
334			if (!PageWriteback(page))
335				ClearPageReclaim(page);
336			if (!ret)
337				goto put;
338		}
339		unlock_page(page);
340put:
341		put_page(page);
342	}
343}
344
345static void
346shmem_writeback(struct drm_i915_gem_object *obj)
347{
348	__shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
349}
350
351static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
352{
353	switch (obj->mm.madv) {
354	case I915_MADV_DONTNEED:
355		return i915_gem_object_truncate(obj);
356	case __I915_MADV_PURGED:
357		return 0;
358	}
359
360	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
361		shmem_writeback(obj);
362
363	return 0;
364}
365
366void
367__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
368				struct sg_table *pages,
369				bool needs_clflush)
370{
371	struct drm_i915_private *i915 = to_i915(obj->base.dev);
372
373	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
374
375	if (obj->mm.madv == I915_MADV_DONTNEED)
376		obj->mm.dirty = false;
377
378	if (needs_clflush &&
379	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
380	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
381		drm_clflush_sg(pages);
382
383	__start_cpu_write(obj);
384	/*
385	 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever
386	 * swapped-in. Our async flush path is not trust worthy enough yet(and
387	 * happens in the wrong order), and with some tricks it's conceivable
388	 * for userspace to change the cache-level to I915_CACHE_NONE after the
389	 * pages are swapped-in, and since execbuf binds the object before doing
390	 * the async flush, we have a race window.
391	 */
392	if (!HAS_LLC(i915) && !IS_DGFX(i915))
393		obj->cache_dirty = true;
394}
395
396void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
397{
398	__i915_gem_object_release_shmem(obj, pages, true);
399
400	i915_gem_gtt_finish_pages(obj, pages);
401
402	if (i915_gem_object_needs_bit17_swizzle(obj))
403		i915_gem_object_save_bit_17_swizzle(obj, pages);
404
405	shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
406			    obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
407	kfree(pages);
408	obj->mm.dirty = false;
409}
410
411static void
412shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
413{
414	if (likely(i915_gem_object_has_struct_page(obj)))
415		i915_gem_object_put_pages_shmem(obj, pages);
416	else
417		i915_gem_object_put_pages_phys(obj, pages);
418}
419
420static int
421shmem_pwrite(struct drm_i915_gem_object *obj,
422	     const struct drm_i915_gem_pwrite *arg)
423{
424	struct address_space *mapping = obj->base.filp->f_mapping;
425	const struct address_space_operations *aops = mapping->a_ops;
426	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
427	u64 remain, offset;
428	unsigned int pg;
429
430	/* Caller already validated user args */
431	GEM_BUG_ON(!access_ok(user_data, arg->size));
432
433	if (!i915_gem_object_has_struct_page(obj))
434		return i915_gem_object_pwrite_phys(obj, arg);
435
436	/*
437	 * Before we instantiate/pin the backing store for our use, we
438	 * can prepopulate the shmemfs filp efficiently using a write into
439	 * the pagecache. We avoid the penalty of instantiating all the
440	 * pages, important if the user is just writing to a few and never
441	 * uses the object on the GPU, and using a direct write into shmemfs
442	 * allows it to avoid the cost of retrieving a page (either swapin
443	 * or clearing-before-use) before it is overwritten.
444	 */
445	if (i915_gem_object_has_pages(obj))
446		return -ENODEV;
447
448	if (obj->mm.madv != I915_MADV_WILLNEED)
449		return -EFAULT;
450
451	/*
452	 * Before the pages are instantiated the object is treated as being
453	 * in the CPU domain. The pages will be clflushed as required before
454	 * use, and we can freely write into the pages directly. If userspace
455	 * races pwrite with any other operation; corruption will ensue -
456	 * that is userspace's prerogative!
457	 */
458
459	remain = arg->size;
460	offset = arg->offset;
461	pg = offset_in_page(offset);
462
463	do {
464		unsigned int len, unwritten;
465		struct page *page;
466		void *data, *vaddr;
467		int err;
468		char __maybe_unused c;
469
470		len = PAGE_SIZE - pg;
471		if (len > remain)
472			len = remain;
473
474		/* Prefault the user page to reduce potential recursion */
475		err = __get_user(c, user_data);
476		if (err)
477			return err;
478
479		err = __get_user(c, user_data + len - 1);
480		if (err)
481			return err;
482
483		err = aops->write_begin(obj->base.filp, mapping, offset, len,
484					&page, &data);
485		if (err < 0)
486			return err;
487
488		vaddr = kmap_local_page(page);
489		pagefault_disable();
490		unwritten = __copy_from_user_inatomic(vaddr + pg,
491						      user_data,
492						      len);
493		pagefault_enable();
494		kunmap_local(vaddr);
495
496		err = aops->write_end(obj->base.filp, mapping, offset, len,
497				      len - unwritten, page, data);
498		if (err < 0)
499			return err;
500
501		/* We don't handle -EFAULT, leave it to the caller to check */
502		if (unwritten)
503			return -ENODEV;
504
505		remain -= len;
506		user_data += len;
507		offset += len;
508		pg = 0;
509	} while (remain);
510
511	return 0;
512}
513
514static int
515shmem_pread(struct drm_i915_gem_object *obj,
516	    const struct drm_i915_gem_pread *arg)
517{
518	if (!i915_gem_object_has_struct_page(obj))
519		return i915_gem_object_pread_phys(obj, arg);
520
521	return -ENODEV;
522}
523
524static void shmem_release(struct drm_i915_gem_object *obj)
525{
526	if (i915_gem_object_has_struct_page(obj))
527		i915_gem_object_release_memory_region(obj);
528
529	fput(obj->base.filp);
530}
531
532const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
533	.name = "i915_gem_object_shmem",
534	.flags = I915_GEM_OBJECT_IS_SHRINKABLE,
535
536	.get_pages = shmem_get_pages,
537	.put_pages = shmem_put_pages,
538	.truncate = shmem_truncate,
539	.shrink = shmem_shrink,
540
541	.pwrite = shmem_pwrite,
542	.pread = shmem_pread,
543
544	.release = shmem_release,
545};
546
547static int __create_shmem(struct drm_i915_private *i915,
548			  struct drm_gem_object *obj,
549			  resource_size_t size)
550{
551	unsigned long flags = VM_NORESERVE;
552	struct file *filp;
553
554	drm_gem_private_object_init(&i915->drm, obj, size);
555
556	/* XXX: The __shmem_file_setup() function returns -EINVAL if size is
557	 * greater than MAX_LFS_FILESIZE.
558	 * To handle the same error as other code that returns -E2BIG when
559	 * the size is too large, we add a code that returns -E2BIG when the
560	 * size is larger than the size that can be handled.
561	 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false,
562	 * so we only needs to check when BITS_PER_LONG is 64.
563	 * If BITS_PER_LONG is 32, E2BIG checks are processed when
564	 * i915_gem_object_size_2big() is called before init_object() callback
565	 * is called.
566	 */
567	if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE)
568		return -E2BIG;
569
570	if (i915->mm.gemfs)
571		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
572						 flags);
573	else
574		filp = shmem_file_setup("i915", size, flags);
575	if (IS_ERR(filp))
576		return PTR_ERR(filp);
577
578	obj->filp = filp;
579	return 0;
580}
581
582static int shmem_object_init(struct intel_memory_region *mem,
583			     struct drm_i915_gem_object *obj,
584			     resource_size_t offset,
585			     resource_size_t size,
586			     resource_size_t page_size,
587			     unsigned int flags)
588{
589	static struct lock_class_key lock_class;
590	struct drm_i915_private *i915 = mem->i915;
591	struct address_space *mapping;
592	unsigned int cache_level;
593	gfp_t mask;
594	int ret;
595
596	ret = __create_shmem(i915, &obj->base, size);
597	if (ret)
598		return ret;
599
600	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
601	if (IS_I965GM(i915) || IS_I965G(i915)) {
602		/* 965gm cannot relocate objects above 4GiB. */
603		mask &= ~__GFP_HIGHMEM;
604		mask |= __GFP_DMA32;
605	}
606
607	mapping = obj->base.filp->f_mapping;
608	mapping_set_gfp_mask(mapping, mask);
609	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
610
611	i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
612	obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
613	obj->write_domain = I915_GEM_DOMAIN_CPU;
614	obj->read_domains = I915_GEM_DOMAIN_CPU;
615
616	/*
617	 * MTL doesn't snoop CPU cache by default for GPU access (namely
618	 * 1-way coherency). However some UMD's are currently depending on
619	 * that. Make 1-way coherent the default setting for MTL. A follow
620	 * up patch will extend the GEM_CREATE uAPI to allow UMD's specify
621	 * caching mode at BO creation time
622	 */
623	if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)))
624		/* On some devices, we can have the GPU use the LLC (the CPU
625		 * cache) for about a 10% performance improvement
626		 * compared to uncached.  Graphics requests other than
627		 * display scanout are coherent with the CPU in
628		 * accessing this cache.  This means in this mode we
629		 * don't need to clflush on the CPU side, and on the
630		 * GPU side we only need to flush internal caches to
631		 * get data visible to the CPU.
632		 *
633		 * However, we maintain the display planes as UC, and so
634		 * need to rebind when first used as such.
635		 */
636		cache_level = I915_CACHE_LLC;
637	else
638		cache_level = I915_CACHE_NONE;
639
640	i915_gem_object_set_cache_coherency(obj, cache_level);
641
642	i915_gem_object_init_memory_region(obj, mem);
643
644	return 0;
645}
646
647struct drm_i915_gem_object *
648i915_gem_object_create_shmem(struct drm_i915_private *i915,
649			     resource_size_t size)
650{
651	return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
652					     size, 0, 0);
653}
654
655/* Allocate a new GEM object and fill it with the supplied data */
656struct drm_i915_gem_object *
657i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
658				       const void *data, resource_size_t size)
659{
660	struct drm_i915_gem_object *obj;
661	struct file *file;
662	const struct address_space_operations *aops;
663	resource_size_t offset;
664	int err;
665
666	GEM_WARN_ON(IS_DGFX(dev_priv));
667	obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
668	if (IS_ERR(obj))
669		return obj;
670
671	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
672
673	file = obj->base.filp;
674	aops = file->f_mapping->a_ops;
675	offset = 0;
676	do {
677		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
678		struct page *page;
679		void *pgdata, *vaddr;
680
681		err = aops->write_begin(file, file->f_mapping, offset, len,
682					&page, &pgdata);
683		if (err < 0)
684			goto fail;
685
686		vaddr = kmap(page);
687		memcpy(vaddr, data, len);
688		kunmap(page);
689
690		err = aops->write_end(file, file->f_mapping, offset, len, len,
691				      page, pgdata);
692		if (err < 0)
693			goto fail;
694
695		size -= len;
696		data += len;
697		offset += len;
698	} while (size);
699
700	return obj;
701
702fail:
703	i915_gem_object_put(obj);
704	return ERR_PTR(err);
705}
706
707static int init_shmem(struct intel_memory_region *mem)
708{
709	i915_gemfs_init(mem->i915);
710	intel_memory_region_set_name(mem, "system");
711
712	return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
713}
714
715static int release_shmem(struct intel_memory_region *mem)
716{
717	i915_gemfs_fini(mem->i915);
718	return 0;
719}
720
721static const struct intel_memory_region_ops shmem_region_ops = {
722	.init = init_shmem,
723	.release = release_shmem,
724	.init_object = shmem_object_init,
725};
726
727struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
728						 u16 type, u16 instance)
729{
730	return intel_memory_region_create(i915, 0,
731					  totalram_pages() << PAGE_SHIFT,
732					  PAGE_SIZE, 0, 0,
733					  type, instance,
734					  &shmem_region_ops);
735}
736
737bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
738{
739	return obj->ops == &i915_gem_shmem_ops;
740}
741