1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2020 Intel Corporation
4 */
5
6#include <linux/kernel.h>
7#include <linux/string_helpers.h>
8
9#include "i915_reg.h"
10#include "intel_atomic.h"
11#include "intel_crtc.h"
12#include "intel_cx0_phy.h"
13#include "intel_de.h"
14#include "intel_display.h"
15#include "intel_display_types.h"
16#include "intel_dpio_phy.h"
17#include "intel_dpll.h"
18#include "intel_lvds.h"
19#include "intel_lvds_regs.h"
20#include "intel_panel.h"
21#include "intel_pps.h"
22#include "intel_snps_phy.h"
23#include "vlv_sideband.h"
24
25struct intel_dpll_funcs {
26	int (*crtc_compute_clock)(struct intel_atomic_state *state,
27				  struct intel_crtc *crtc);
28	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
29				    struct intel_crtc *crtc);
30};
31
32struct intel_limit {
33	struct {
34		int min, max;
35	} dot, vco, n, m, m1, m2, p, p1;
36
37	struct {
38		int dot_limit;
39		int p2_slow, p2_fast;
40	} p2;
41};
42static const struct intel_limit intel_limits_i8xx_dac = {
43	.dot = { .min = 25000, .max = 350000 },
44	.vco = { .min = 908000, .max = 1512000 },
45	.n = { .min = 2, .max = 16 },
46	.m = { .min = 96, .max = 140 },
47	.m1 = { .min = 18, .max = 26 },
48	.m2 = { .min = 6, .max = 16 },
49	.p = { .min = 4, .max = 128 },
50	.p1 = { .min = 2, .max = 33 },
51	.p2 = { .dot_limit = 165000,
52		.p2_slow = 4, .p2_fast = 2 },
53};
54
55static const struct intel_limit intel_limits_i8xx_dvo = {
56	.dot = { .min = 25000, .max = 350000 },
57	.vco = { .min = 908000, .max = 1512000 },
58	.n = { .min = 2, .max = 16 },
59	.m = { .min = 96, .max = 140 },
60	.m1 = { .min = 18, .max = 26 },
61	.m2 = { .min = 6, .max = 16 },
62	.p = { .min = 4, .max = 128 },
63	.p1 = { .min = 2, .max = 33 },
64	.p2 = { .dot_limit = 165000,
65		.p2_slow = 4, .p2_fast = 4 },
66};
67
68static const struct intel_limit intel_limits_i8xx_lvds = {
69	.dot = { .min = 25000, .max = 350000 },
70	.vco = { .min = 908000, .max = 1512000 },
71	.n = { .min = 2, .max = 16 },
72	.m = { .min = 96, .max = 140 },
73	.m1 = { .min = 18, .max = 26 },
74	.m2 = { .min = 6, .max = 16 },
75	.p = { .min = 4, .max = 128 },
76	.p1 = { .min = 1, .max = 6 },
77	.p2 = { .dot_limit = 165000,
78		.p2_slow = 14, .p2_fast = 7 },
79};
80
81static const struct intel_limit intel_limits_i9xx_sdvo = {
82	.dot = { .min = 20000, .max = 400000 },
83	.vco = { .min = 1400000, .max = 2800000 },
84	.n = { .min = 1, .max = 6 },
85	.m = { .min = 70, .max = 120 },
86	.m1 = { .min = 8, .max = 18 },
87	.m2 = { .min = 3, .max = 7 },
88	.p = { .min = 5, .max = 80 },
89	.p1 = { .min = 1, .max = 8 },
90	.p2 = { .dot_limit = 200000,
91		.p2_slow = 10, .p2_fast = 5 },
92};
93
94static const struct intel_limit intel_limits_i9xx_lvds = {
95	.dot = { .min = 20000, .max = 400000 },
96	.vco = { .min = 1400000, .max = 2800000 },
97	.n = { .min = 1, .max = 6 },
98	.m = { .min = 70, .max = 120 },
99	.m1 = { .min = 8, .max = 18 },
100	.m2 = { .min = 3, .max = 7 },
101	.p = { .min = 7, .max = 98 },
102	.p1 = { .min = 1, .max = 8 },
103	.p2 = { .dot_limit = 112000,
104		.p2_slow = 14, .p2_fast = 7 },
105};
106
107
108static const struct intel_limit intel_limits_g4x_sdvo = {
109	.dot = { .min = 25000, .max = 270000 },
110	.vco = { .min = 1750000, .max = 3500000},
111	.n = { .min = 1, .max = 4 },
112	.m = { .min = 104, .max = 138 },
113	.m1 = { .min = 17, .max = 23 },
114	.m2 = { .min = 5, .max = 11 },
115	.p = { .min = 10, .max = 30 },
116	.p1 = { .min = 1, .max = 3},
117	.p2 = { .dot_limit = 270000,
118		.p2_slow = 10,
119		.p2_fast = 10
120	},
121};
122
123static const struct intel_limit intel_limits_g4x_hdmi = {
124	.dot = { .min = 22000, .max = 400000 },
125	.vco = { .min = 1750000, .max = 3500000},
126	.n = { .min = 1, .max = 4 },
127	.m = { .min = 104, .max = 138 },
128	.m1 = { .min = 16, .max = 23 },
129	.m2 = { .min = 5, .max = 11 },
130	.p = { .min = 5, .max = 80 },
131	.p1 = { .min = 1, .max = 8},
132	.p2 = { .dot_limit = 165000,
133		.p2_slow = 10, .p2_fast = 5 },
134};
135
136static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
137	.dot = { .min = 20000, .max = 115000 },
138	.vco = { .min = 1750000, .max = 3500000 },
139	.n = { .min = 1, .max = 3 },
140	.m = { .min = 104, .max = 138 },
141	.m1 = { .min = 17, .max = 23 },
142	.m2 = { .min = 5, .max = 11 },
143	.p = { .min = 28, .max = 112 },
144	.p1 = { .min = 2, .max = 8 },
145	.p2 = { .dot_limit = 0,
146		.p2_slow = 14, .p2_fast = 14
147	},
148};
149
150static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
151	.dot = { .min = 80000, .max = 224000 },
152	.vco = { .min = 1750000, .max = 3500000 },
153	.n = { .min = 1, .max = 3 },
154	.m = { .min = 104, .max = 138 },
155	.m1 = { .min = 17, .max = 23 },
156	.m2 = { .min = 5, .max = 11 },
157	.p = { .min = 14, .max = 42 },
158	.p1 = { .min = 2, .max = 6 },
159	.p2 = { .dot_limit = 0,
160		.p2_slow = 7, .p2_fast = 7
161	},
162};
163
164static const struct intel_limit pnv_limits_sdvo = {
165	.dot = { .min = 20000, .max = 400000},
166	.vco = { .min = 1700000, .max = 3500000 },
167	/* Pineview's Ncounter is a ring counter */
168	.n = { .min = 3, .max = 6 },
169	.m = { .min = 2, .max = 256 },
170	/* Pineview only has one combined m divider, which we treat as m2. */
171	.m1 = { .min = 0, .max = 0 },
172	.m2 = { .min = 0, .max = 254 },
173	.p = { .min = 5, .max = 80 },
174	.p1 = { .min = 1, .max = 8 },
175	.p2 = { .dot_limit = 200000,
176		.p2_slow = 10, .p2_fast = 5 },
177};
178
179static const struct intel_limit pnv_limits_lvds = {
180	.dot = { .min = 20000, .max = 400000 },
181	.vco = { .min = 1700000, .max = 3500000 },
182	.n = { .min = 3, .max = 6 },
183	.m = { .min = 2, .max = 256 },
184	.m1 = { .min = 0, .max = 0 },
185	.m2 = { .min = 0, .max = 254 },
186	.p = { .min = 7, .max = 112 },
187	.p1 = { .min = 1, .max = 8 },
188	.p2 = { .dot_limit = 112000,
189		.p2_slow = 14, .p2_fast = 14 },
190};
191
192/* Ironlake / Sandybridge
193 *
194 * We calculate clock using (register_value + 2) for N/M1/M2, so here
195 * the range value for them is (actual_value - 2).
196 */
197static const struct intel_limit ilk_limits_dac = {
198	.dot = { .min = 25000, .max = 350000 },
199	.vco = { .min = 1760000, .max = 3510000 },
200	.n = { .min = 1, .max = 5 },
201	.m = { .min = 79, .max = 127 },
202	.m1 = { .min = 12, .max = 22 },
203	.m2 = { .min = 5, .max = 9 },
204	.p = { .min = 5, .max = 80 },
205	.p1 = { .min = 1, .max = 8 },
206	.p2 = { .dot_limit = 225000,
207		.p2_slow = 10, .p2_fast = 5 },
208};
209
210static const struct intel_limit ilk_limits_single_lvds = {
211	.dot = { .min = 25000, .max = 350000 },
212	.vco = { .min = 1760000, .max = 3510000 },
213	.n = { .min = 1, .max = 3 },
214	.m = { .min = 79, .max = 118 },
215	.m1 = { .min = 12, .max = 22 },
216	.m2 = { .min = 5, .max = 9 },
217	.p = { .min = 28, .max = 112 },
218	.p1 = { .min = 2, .max = 8 },
219	.p2 = { .dot_limit = 225000,
220		.p2_slow = 14, .p2_fast = 14 },
221};
222
223static const struct intel_limit ilk_limits_dual_lvds = {
224	.dot = { .min = 25000, .max = 350000 },
225	.vco = { .min = 1760000, .max = 3510000 },
226	.n = { .min = 1, .max = 3 },
227	.m = { .min = 79, .max = 127 },
228	.m1 = { .min = 12, .max = 22 },
229	.m2 = { .min = 5, .max = 9 },
230	.p = { .min = 14, .max = 56 },
231	.p1 = { .min = 2, .max = 8 },
232	.p2 = { .dot_limit = 225000,
233		.p2_slow = 7, .p2_fast = 7 },
234};
235
236/* LVDS 100mhz refclk limits. */
237static const struct intel_limit ilk_limits_single_lvds_100m = {
238	.dot = { .min = 25000, .max = 350000 },
239	.vco = { .min = 1760000, .max = 3510000 },
240	.n = { .min = 1, .max = 2 },
241	.m = { .min = 79, .max = 126 },
242	.m1 = { .min = 12, .max = 22 },
243	.m2 = { .min = 5, .max = 9 },
244	.p = { .min = 28, .max = 112 },
245	.p1 = { .min = 2, .max = 8 },
246	.p2 = { .dot_limit = 225000,
247		.p2_slow = 14, .p2_fast = 14 },
248};
249
250static const struct intel_limit ilk_limits_dual_lvds_100m = {
251	.dot = { .min = 25000, .max = 350000 },
252	.vco = { .min = 1760000, .max = 3510000 },
253	.n = { .min = 1, .max = 3 },
254	.m = { .min = 79, .max = 126 },
255	.m1 = { .min = 12, .max = 22 },
256	.m2 = { .min = 5, .max = 9 },
257	.p = { .min = 14, .max = 42 },
258	.p1 = { .min = 2, .max = 6 },
259	.p2 = { .dot_limit = 225000,
260		.p2_slow = 7, .p2_fast = 7 },
261};
262
263static const struct intel_limit intel_limits_vlv = {
264	 /*
265	  * These are based on the data rate limits (measured in fast clocks)
266	  * since those are the strictest limits we have. The fast
267	  * clock and actual rate limits are more relaxed, so checking
268	  * them would make no difference.
269	  */
270	.dot = { .min = 25000, .max = 270000 },
271	.vco = { .min = 4000000, .max = 6000000 },
272	.n = { .min = 1, .max = 7 },
273	.m1 = { .min = 2, .max = 3 },
274	.m2 = { .min = 11, .max = 156 },
275	.p1 = { .min = 2, .max = 3 },
276	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
277};
278
279static const struct intel_limit intel_limits_chv = {
280	/*
281	 * These are based on the data rate limits (measured in fast clocks)
282	 * since those are the strictest limits we have.  The fast
283	 * clock and actual rate limits are more relaxed, so checking
284	 * them would make no difference.
285	 */
286	.dot = { .min = 25000, .max = 540000 },
287	.vco = { .min = 4800000, .max = 6480000 },
288	.n = { .min = 1, .max = 1 },
289	.m1 = { .min = 2, .max = 2 },
290	.m2 = { .min = 24 << 22, .max = 175 << 22 },
291	.p1 = { .min = 2, .max = 4 },
292	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
293};
294
295static const struct intel_limit intel_limits_bxt = {
296	.dot = { .min = 25000, .max = 594000 },
297	.vco = { .min = 4800000, .max = 6700000 },
298	.n = { .min = 1, .max = 1 },
299	.m1 = { .min = 2, .max = 2 },
300	/* FIXME: find real m2 limits */
301	.m2 = { .min = 2 << 22, .max = 255 << 22 },
302	.p1 = { .min = 2, .max = 4 },
303	.p2 = { .p2_slow = 1, .p2_fast = 20 },
304};
305
306/*
307 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
308 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
309 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
310 * The helpers' return value is the rate of the clock that is fed to the
311 * display engine's pipe which can be the above fast dot clock rate or a
312 * divided-down version of it.
313 */
314/* m1 is reserved as 0 in Pineview, n is a ring counter */
315static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
316{
317	clock->m = clock->m2 + 2;
318	clock->p = clock->p1 * clock->p2;
319
320	clock->vco = clock->n == 0 ? 0 :
321		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
322	clock->dot = clock->p == 0 ? 0 :
323		DIV_ROUND_CLOSEST(clock->vco, clock->p);
324
325	return clock->dot;
326}
327
328static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
329{
330	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
331}
332
333int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
334{
335	clock->m = i9xx_dpll_compute_m(clock);
336	clock->p = clock->p1 * clock->p2;
337
338	clock->vco = clock->n + 2 == 0 ? 0 :
339		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
340	clock->dot = clock->p == 0 ? 0 :
341		DIV_ROUND_CLOSEST(clock->vco, clock->p);
342
343	return clock->dot;
344}
345
346static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
347{
348	clock->m = clock->m1 * clock->m2;
349	clock->p = clock->p1 * clock->p2 * 5;
350
351	clock->vco = clock->n == 0 ? 0 :
352		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
353	clock->dot = clock->p == 0 ? 0 :
354		DIV_ROUND_CLOSEST(clock->vco, clock->p);
355
356	return clock->dot;
357}
358
359int chv_calc_dpll_params(int refclk, struct dpll *clock)
360{
361	clock->m = clock->m1 * clock->m2;
362	clock->p = clock->p1 * clock->p2 * 5;
363
364	clock->vco = clock->n == 0 ? 0 :
365		DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
366	clock->dot = clock->p == 0 ? 0 :
367		DIV_ROUND_CLOSEST(clock->vco, clock->p);
368
369	return clock->dot;
370}
371
372static int i9xx_pll_refclk(struct drm_device *dev,
373			   const struct intel_crtc_state *pipe_config)
374{
375	struct drm_i915_private *dev_priv = to_i915(dev);
376	u32 dpll = pipe_config->dpll_hw_state.dpll;
377
378	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379		return dev_priv->display.vbt.lvds_ssc_freq;
380	else if (HAS_PCH_SPLIT(dev_priv))
381		return 120000;
382	else if (DISPLAY_VER(dev_priv) != 2)
383		return 96000;
384	else
385		return 48000;
386}
387
388/* Returns the clock of the currently programmed mode of the given pipe. */
389void i9xx_crtc_clock_get(struct intel_crtc *crtc,
390			 struct intel_crtc_state *pipe_config)
391{
392	struct drm_device *dev = crtc->base.dev;
393	struct drm_i915_private *dev_priv = to_i915(dev);
394	u32 dpll = pipe_config->dpll_hw_state.dpll;
395	u32 fp;
396	struct dpll clock;
397	int port_clock;
398	int refclk = i9xx_pll_refclk(dev, pipe_config);
399
400	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
401		fp = pipe_config->dpll_hw_state.fp0;
402	else
403		fp = pipe_config->dpll_hw_state.fp1;
404
405	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
406	if (IS_PINEVIEW(dev_priv)) {
407		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
408		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
409	} else {
410		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
411		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
412	}
413
414	if (DISPLAY_VER(dev_priv) != 2) {
415		if (IS_PINEVIEW(dev_priv))
416			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
417				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
418		else
419			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
420			       DPLL_FPA01_P1_POST_DIV_SHIFT);
421
422		switch (dpll & DPLL_MODE_MASK) {
423		case DPLLB_MODE_DAC_SERIAL:
424			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
425				5 : 10;
426			break;
427		case DPLLB_MODE_LVDS:
428			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
429				7 : 14;
430			break;
431		default:
432			drm_dbg_kms(&dev_priv->drm,
433				    "Unknown DPLL mode %08x in programmed "
434				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
435			return;
436		}
437
438		if (IS_PINEVIEW(dev_priv))
439			port_clock = pnv_calc_dpll_params(refclk, &clock);
440		else
441			port_clock = i9xx_calc_dpll_params(refclk, &clock);
442	} else {
443		enum pipe lvds_pipe;
444
445		if (IS_I85X(dev_priv) &&
446		    intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
447		    lvds_pipe == crtc->pipe) {
448			u32 lvds = intel_de_read(dev_priv, LVDS);
449
450			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
451				       DPLL_FPA01_P1_POST_DIV_SHIFT);
452
453			if (lvds & LVDS_CLKB_POWER_UP)
454				clock.p2 = 7;
455			else
456				clock.p2 = 14;
457		} else {
458			if (dpll & PLL_P1_DIVIDE_BY_TWO)
459				clock.p1 = 2;
460			else {
461				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
462					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
463			}
464			if (dpll & PLL_P2_DIVIDE_BY_4)
465				clock.p2 = 4;
466			else
467				clock.p2 = 2;
468		}
469
470		port_clock = i9xx_calc_dpll_params(refclk, &clock);
471	}
472
473	/*
474	 * This value includes pixel_multiplier. We will use
475	 * port_clock to compute adjusted_mode.crtc_clock in the
476	 * encoder's get_config() function.
477	 */
478	pipe_config->port_clock = port_clock;
479}
480
481void vlv_crtc_clock_get(struct intel_crtc *crtc,
482			struct intel_crtc_state *pipe_config)
483{
484	struct drm_device *dev = crtc->base.dev;
485	struct drm_i915_private *dev_priv = to_i915(dev);
486	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
487	struct dpll clock;
488	u32 mdiv;
489	int refclk = 100000;
490
491	/* In case of DSI, DPLL will not be used */
492	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
493		return;
494
495	vlv_dpio_get(dev_priv);
496	mdiv = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(crtc->pipe));
497	vlv_dpio_put(dev_priv);
498
499	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
500	clock.m2 = mdiv & DPIO_M2DIV_MASK;
501	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
502	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
503	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
504
505	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
506}
507
508void chv_crtc_clock_get(struct intel_crtc *crtc,
509			struct intel_crtc_state *pipe_config)
510{
511	struct drm_device *dev = crtc->base.dev;
512	struct drm_i915_private *dev_priv = to_i915(dev);
513	enum dpio_channel port = vlv_pipe_to_channel(crtc->pipe);
514	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
515	struct dpll clock;
516	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
517	int refclk = 100000;
518
519	/* In case of DSI, DPLL will not be used */
520	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
521		return;
522
523	vlv_dpio_get(dev_priv);
524	cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(port));
525	pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(port));
526	pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(port));
527	pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(port));
528	pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(port));
529	vlv_dpio_put(dev_priv);
530
531	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
532	clock.m2 = (pll_dw0 & 0xff) << 22;
533	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
534		clock.m2 |= pll_dw2 & 0x3fffff;
535	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
536	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
537	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
538
539	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
540}
541
542/*
543 * Returns whether the given set of divisors are valid for a given refclk with
544 * the given connectors.
545 */
546static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
547			       const struct intel_limit *limit,
548			       const struct dpll *clock)
549{
550	if (clock->n < limit->n.min || limit->n.max < clock->n)
551		return false;
552	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
553		return false;
554	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
555		return false;
556	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
557		return false;
558
559	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
560		if (clock->m1 <= clock->m2)
561			return false;
562
563	if (!IS_LP(dev_priv)) {
564		if (clock->p < limit->p.min || limit->p.max < clock->p)
565			return false;
566		if (clock->m < limit->m.min || limit->m.max < clock->m)
567			return false;
568	}
569
570	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
571		return false;
572	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
573	 * connector, etc., rather than just a single range.
574	 */
575	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
576		return false;
577
578	return true;
579}
580
581static int
582i9xx_select_p2_div(const struct intel_limit *limit,
583		   const struct intel_crtc_state *crtc_state,
584		   int target)
585{
586	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
587
588	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589		/*
590		 * For LVDS just rely on its current settings for dual-channel.
591		 * We haven't figured out how to reliably set up different
592		 * single/dual channel state, if we even can.
593		 */
594		if (intel_is_dual_link_lvds(dev_priv))
595			return limit->p2.p2_fast;
596		else
597			return limit->p2.p2_slow;
598	} else {
599		if (target < limit->p2.dot_limit)
600			return limit->p2.p2_slow;
601		else
602			return limit->p2.p2_fast;
603	}
604}
605
606/*
607 * Returns a set of divisors for the desired target clock with the given
608 * refclk, or FALSE.
609 *
610 * Target and reference clocks are specified in kHz.
611 *
612 * If match_clock is provided, then best_clock P divider must match the P
613 * divider from @match_clock used for LVDS downclocking.
614 */
615static bool
616i9xx_find_best_dpll(const struct intel_limit *limit,
617		    struct intel_crtc_state *crtc_state,
618		    int target, int refclk,
619		    const struct dpll *match_clock,
620		    struct dpll *best_clock)
621{
622	struct drm_device *dev = crtc_state->uapi.crtc->dev;
623	struct dpll clock;
624	int err = target;
625
626	memset(best_clock, 0, sizeof(*best_clock));
627
628	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629
630	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631	     clock.m1++) {
632		for (clock.m2 = limit->m2.min;
633		     clock.m2 <= limit->m2.max; clock.m2++) {
634			if (clock.m2 >= clock.m1)
635				break;
636			for (clock.n = limit->n.min;
637			     clock.n <= limit->n.max; clock.n++) {
638				for (clock.p1 = limit->p1.min;
639					clock.p1 <= limit->p1.max; clock.p1++) {
640					int this_err;
641
642					i9xx_calc_dpll_params(refclk, &clock);
643					if (!intel_pll_is_valid(to_i915(dev),
644								limit,
645								&clock))
646						continue;
647					if (match_clock &&
648					    clock.p != match_clock->p)
649						continue;
650
651					this_err = abs(clock.dot - target);
652					if (this_err < err) {
653						*best_clock = clock;
654						err = this_err;
655					}
656				}
657			}
658		}
659	}
660
661	return (err != target);
662}
663
664/*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE.
667 *
668 * Target and reference clocks are specified in kHz.
669 *
670 * If match_clock is provided, then best_clock P divider must match the P
671 * divider from @match_clock used for LVDS downclocking.
672 */
673static bool
674pnv_find_best_dpll(const struct intel_limit *limit,
675		   struct intel_crtc_state *crtc_state,
676		   int target, int refclk,
677		   const struct dpll *match_clock,
678		   struct dpll *best_clock)
679{
680	struct drm_device *dev = crtc_state->uapi.crtc->dev;
681	struct dpll clock;
682	int err = target;
683
684	memset(best_clock, 0, sizeof(*best_clock));
685
686	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689	     clock.m1++) {
690		for (clock.m2 = limit->m2.min;
691		     clock.m2 <= limit->m2.max; clock.m2++) {
692			for (clock.n = limit->n.min;
693			     clock.n <= limit->n.max; clock.n++) {
694				for (clock.p1 = limit->p1.min;
695					clock.p1 <= limit->p1.max; clock.p1++) {
696					int this_err;
697
698					pnv_calc_dpll_params(refclk, &clock);
699					if (!intel_pll_is_valid(to_i915(dev),
700								limit,
701								&clock))
702						continue;
703					if (match_clock &&
704					    clock.p != match_clock->p)
705						continue;
706
707					this_err = abs(clock.dot - target);
708					if (this_err < err) {
709						*best_clock = clock;
710						err = this_err;
711					}
712				}
713			}
714		}
715	}
716
717	return (err != target);
718}
719
720/*
721 * Returns a set of divisors for the desired target clock with the given
722 * refclk, or FALSE.
723 *
724 * Target and reference clocks are specified in kHz.
725 *
726 * If match_clock is provided, then best_clock P divider must match the P
727 * divider from @match_clock used for LVDS downclocking.
728 */
729static bool
730g4x_find_best_dpll(const struct intel_limit *limit,
731		   struct intel_crtc_state *crtc_state,
732		   int target, int refclk,
733		   const struct dpll *match_clock,
734		   struct dpll *best_clock)
735{
736	struct drm_device *dev = crtc_state->uapi.crtc->dev;
737	struct dpll clock;
738	int max_n;
739	bool found = false;
740	/* approximately equals target * 0.00585 */
741	int err_most = (target >> 8) + (target >> 9);
742
743	memset(best_clock, 0, sizeof(*best_clock));
744
745	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747	max_n = limit->n.max;
748	/* based on hardware requirement, prefer smaller n to precision */
749	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750		/* based on hardware requirement, prefere larger m1,m2 */
751		for (clock.m1 = limit->m1.max;
752		     clock.m1 >= limit->m1.min; clock.m1--) {
753			for (clock.m2 = limit->m2.max;
754			     clock.m2 >= limit->m2.min; clock.m2--) {
755				for (clock.p1 = limit->p1.max;
756				     clock.p1 >= limit->p1.min; clock.p1--) {
757					int this_err;
758
759					i9xx_calc_dpll_params(refclk, &clock);
760					if (!intel_pll_is_valid(to_i915(dev),
761								limit,
762								&clock))
763						continue;
764
765					this_err = abs(clock.dot - target);
766					if (this_err < err_most) {
767						*best_clock = clock;
768						err_most = this_err;
769						max_n = clock.n;
770						found = true;
771					}
772				}
773			}
774		}
775	}
776	return found;
777}
778
779/*
780 * Check if the calculated PLL configuration is more optimal compared to the
781 * best configuration and error found so far. Return the calculated error.
782 */
783static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784			       const struct dpll *calculated_clock,
785			       const struct dpll *best_clock,
786			       unsigned int best_error_ppm,
787			       unsigned int *error_ppm)
788{
789	/*
790	 * For CHV ignore the error and consider only the P value.
791	 * Prefer a bigger P value based on HW requirements.
792	 */
793	if (IS_CHERRYVIEW(to_i915(dev))) {
794		*error_ppm = 0;
795
796		return calculated_clock->p > best_clock->p;
797	}
798
799	if (drm_WARN_ON_ONCE(dev, !target_freq))
800		return false;
801
802	*error_ppm = div_u64(1000000ULL *
803				abs(target_freq - calculated_clock->dot),
804			     target_freq);
805	/*
806	 * Prefer a better P value over a better (smaller) error if the error
807	 * is small. Ensure this preference for future configurations too by
808	 * setting the error to 0.
809	 */
810	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811		*error_ppm = 0;
812
813		return true;
814	}
815
816	return *error_ppm + 10 < best_error_ppm;
817}
818
819/*
820 * Returns a set of divisors for the desired target clock with the given
821 * refclk, or FALSE.
822 */
823static bool
824vlv_find_best_dpll(const struct intel_limit *limit,
825		   struct intel_crtc_state *crtc_state,
826		   int target, int refclk,
827		   const struct dpll *match_clock,
828		   struct dpll *best_clock)
829{
830	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
831	struct drm_device *dev = crtc->base.dev;
832	struct dpll clock;
833	unsigned int bestppm = 1000000;
834	/* min update 19.2 MHz */
835	int max_n = min(limit->n.max, refclk / 19200);
836	bool found = false;
837
838	memset(best_clock, 0, sizeof(*best_clock));
839
840	/* based on hardware requirement, prefer smaller n to precision */
841	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
843			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
844			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
845				clock.p = clock.p1 * clock.p2 * 5;
846				/* based on hardware requirement, prefer bigger m1,m2 values */
847				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
848					unsigned int ppm;
849
850					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
851								     refclk * clock.m1);
852
853					vlv_calc_dpll_params(refclk, &clock);
854
855					if (!intel_pll_is_valid(to_i915(dev),
856								limit,
857								&clock))
858						continue;
859
860					if (!vlv_PLL_is_optimal(dev, target,
861								&clock,
862								best_clock,
863								bestppm, &ppm))
864						continue;
865
866					*best_clock = clock;
867					bestppm = ppm;
868					found = true;
869				}
870			}
871		}
872	}
873
874	return found;
875}
876
877/*
878 * Returns a set of divisors for the desired target clock with the given
879 * refclk, or FALSE.
880 */
881static bool
882chv_find_best_dpll(const struct intel_limit *limit,
883		   struct intel_crtc_state *crtc_state,
884		   int target, int refclk,
885		   const struct dpll *match_clock,
886		   struct dpll *best_clock)
887{
888	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
889	struct drm_device *dev = crtc->base.dev;
890	unsigned int best_error_ppm;
891	struct dpll clock;
892	u64 m2;
893	int found = false;
894
895	memset(best_clock, 0, sizeof(*best_clock));
896	best_error_ppm = 1000000;
897
898	/*
899	 * Based on hardware doc, the n always set to 1, and m1 always
900	 * set to 2.  If requires to support 200Mhz refclk, we need to
901	 * revisit this because n may not 1 anymore.
902	 */
903	clock.n = 1;
904	clock.m1 = 2;
905
906	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
907		for (clock.p2 = limit->p2.p2_fast;
908				clock.p2 >= limit->p2.p2_slow;
909				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
910			unsigned int error_ppm;
911
912			clock.p = clock.p1 * clock.p2 * 5;
913
914			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
915						   refclk * clock.m1);
916
917			if (m2 > INT_MAX/clock.m1)
918				continue;
919
920			clock.m2 = m2;
921
922			chv_calc_dpll_params(refclk, &clock);
923
924			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
925				continue;
926
927			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
928						best_error_ppm, &error_ppm))
929				continue;
930
931			*best_clock = clock;
932			best_error_ppm = error_ppm;
933			found = true;
934		}
935	}
936
937	return found;
938}
939
940bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
941			struct dpll *best_clock)
942{
943	const struct intel_limit *limit = &intel_limits_bxt;
944	int refclk = 100000;
945
946	return chv_find_best_dpll(limit, crtc_state,
947				  crtc_state->port_clock, refclk,
948				  NULL, best_clock);
949}
950
951u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
952{
953	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
954}
955
956static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
957{
958	return (1 << dpll->n) << 16 | dpll->m2;
959}
960
961static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
962				     const struct dpll *clock,
963				     const struct dpll *reduced_clock)
964{
965	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
966	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
967	u32 fp, fp2;
968
969	if (IS_PINEVIEW(dev_priv)) {
970		fp = pnv_dpll_compute_fp(clock);
971		fp2 = pnv_dpll_compute_fp(reduced_clock);
972	} else {
973		fp = i9xx_dpll_compute_fp(clock);
974		fp2 = i9xx_dpll_compute_fp(reduced_clock);
975	}
976
977	crtc_state->dpll_hw_state.fp0 = fp;
978	crtc_state->dpll_hw_state.fp1 = fp2;
979}
980
981static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
982			      const struct dpll *clock,
983			      const struct dpll *reduced_clock)
984{
985	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
986	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
987	u32 dpll;
988
989	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
990
991	dpll = DPLL_VGA_MODE_DIS;
992
993	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
994		dpll |= DPLLB_MODE_LVDS;
995	else
996		dpll |= DPLLB_MODE_DAC_SERIAL;
997
998	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
999	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1000		dpll |= (crtc_state->pixel_multiplier - 1)
1001			<< SDVO_MULTIPLIER_SHIFT_HIRES;
1002	}
1003
1004	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1005	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1006		dpll |= DPLL_SDVO_HIGH_SPEED;
1007
1008	if (intel_crtc_has_dp_encoder(crtc_state))
1009		dpll |= DPLL_SDVO_HIGH_SPEED;
1010
1011	/* compute bitmask from p1 value */
1012	if (IS_G4X(dev_priv)) {
1013		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1014		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1015	} else if (IS_PINEVIEW(dev_priv)) {
1016		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1017		WARN_ON(reduced_clock->p1 != clock->p1);
1018	} else {
1019		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1020		WARN_ON(reduced_clock->p1 != clock->p1);
1021	}
1022
1023	switch (clock->p2) {
1024	case 5:
1025		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1026		break;
1027	case 7:
1028		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1029		break;
1030	case 10:
1031		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1032		break;
1033	case 14:
1034		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1035		break;
1036	}
1037	WARN_ON(reduced_clock->p2 != clock->p2);
1038
1039	if (DISPLAY_VER(dev_priv) >= 4)
1040		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1041
1042	if (crtc_state->sdvo_tv_clock)
1043		dpll |= PLL_REF_INPUT_TVCLKINBC;
1044	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1045		 intel_panel_use_ssc(dev_priv))
1046		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1047	else
1048		dpll |= PLL_REF_INPUT_DREFCLK;
1049
1050	dpll |= DPLL_VCO_ENABLE;
1051	crtc_state->dpll_hw_state.dpll = dpll;
1052
1053	if (DISPLAY_VER(dev_priv) >= 4) {
1054		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
1055			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
1056		crtc_state->dpll_hw_state.dpll_md = dpll_md;
1057	}
1058}
1059
1060static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1061			      const struct dpll *clock,
1062			      const struct dpll *reduced_clock)
1063{
1064	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1065	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1066	u32 dpll;
1067
1068	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
1069
1070	dpll = DPLL_VGA_MODE_DIS;
1071
1072	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1073		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1074	} else {
1075		if (clock->p1 == 2)
1076			dpll |= PLL_P1_DIVIDE_BY_TWO;
1077		else
1078			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1079		if (clock->p2 == 4)
1080			dpll |= PLL_P2_DIVIDE_BY_4;
1081	}
1082	WARN_ON(reduced_clock->p1 != clock->p1);
1083	WARN_ON(reduced_clock->p2 != clock->p2);
1084
1085	/*
1086	 * Bspec:
1087	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1088	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1089	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1090	 *  Enable) must be set to ���1��� in both the DPLL A Control Register
1091	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1092	 *
1093	 * For simplicity We simply keep both bits always enabled in
1094	 * both DPLLS. The spec says we should disable the DVO 2X clock
1095	 * when not needed, but this seems to work fine in practice.
1096	 */
1097	if (IS_I830(dev_priv) ||
1098	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1099		dpll |= DPLL_DVO_2X_MODE;
1100
1101	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1102	    intel_panel_use_ssc(dev_priv))
1103		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1104	else
1105		dpll |= PLL_REF_INPUT_DREFCLK;
1106
1107	dpll |= DPLL_VCO_ENABLE;
1108	crtc_state->dpll_hw_state.dpll = dpll;
1109}
1110
1111static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1112				  struct intel_crtc *crtc)
1113{
1114	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1115	struct intel_crtc_state *crtc_state =
1116		intel_atomic_get_new_crtc_state(state, crtc);
1117	struct intel_encoder *encoder =
1118		intel_get_crtc_new_encoder(state, crtc_state);
1119	int ret;
1120
1121	if (DISPLAY_VER(dev_priv) < 11 &&
1122	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1123		return 0;
1124
1125	ret = intel_compute_shared_dplls(state, crtc, encoder);
1126	if (ret)
1127		return ret;
1128
1129	/* FIXME this is a mess */
1130	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1131		return 0;
1132
1133	/* CRT dotclock is determined via other means */
1134	if (!crtc_state->has_pch_encoder)
1135		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1136
1137	return 0;
1138}
1139
1140static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1141				    struct intel_crtc *crtc)
1142{
1143	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1144	struct intel_crtc_state *crtc_state =
1145		intel_atomic_get_new_crtc_state(state, crtc);
1146	struct intel_encoder *encoder =
1147		intel_get_crtc_new_encoder(state, crtc_state);
1148
1149	if (DISPLAY_VER(dev_priv) < 11 &&
1150	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1151		return 0;
1152
1153	return intel_reserve_shared_dplls(state, crtc, encoder);
1154}
1155
1156static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1157				  struct intel_crtc *crtc)
1158{
1159	struct intel_crtc_state *crtc_state =
1160		intel_atomic_get_new_crtc_state(state, crtc);
1161	struct intel_encoder *encoder =
1162		intel_get_crtc_new_encoder(state, crtc_state);
1163	int ret;
1164
1165	ret = intel_mpllb_calc_state(crtc_state, encoder);
1166	if (ret)
1167		return ret;
1168
1169	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1170
1171	return 0;
1172}
1173
1174static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1175				  struct intel_crtc *crtc)
1176{
1177	struct intel_crtc_state *crtc_state =
1178		intel_atomic_get_new_crtc_state(state, crtc);
1179	struct intel_encoder *encoder =
1180		intel_get_crtc_new_encoder(state, crtc_state);
1181	int ret;
1182
1183	ret = intel_cx0pll_calc_state(crtc_state, encoder);
1184	if (ret)
1185		return ret;
1186
1187	/* TODO: Do the readback via intel_compute_shared_dplls() */
1188	crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->cx0pll_state);
1189
1190	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1191
1192	return 0;
1193}
1194
1195static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1196{
1197	return dpll->m < factor * dpll->n;
1198}
1199
1200static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
1201				    const struct dpll *clock,
1202				    const struct dpll *reduced_clock)
1203{
1204	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1205	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1206	u32 fp, fp2;
1207	int factor;
1208
1209	/* Enable autotuning of the PLL clock (if permissible) */
1210	factor = 21;
1211	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1212		if ((intel_panel_use_ssc(dev_priv) &&
1213		     dev_priv->display.vbt.lvds_ssc_freq == 100000) ||
1214		    (HAS_PCH_IBX(dev_priv) &&
1215		     intel_is_dual_link_lvds(dev_priv)))
1216			factor = 25;
1217	} else if (crtc_state->sdvo_tv_clock) {
1218		factor = 20;
1219	}
1220
1221	fp = i9xx_dpll_compute_fp(clock);
1222	if (ilk_needs_fb_cb_tune(clock, factor))
1223		fp |= FP_CB_TUNE;
1224
1225	fp2 = i9xx_dpll_compute_fp(reduced_clock);
1226	if (ilk_needs_fb_cb_tune(reduced_clock, factor))
1227		fp2 |= FP_CB_TUNE;
1228
1229	crtc_state->dpll_hw_state.fp0 = fp;
1230	crtc_state->dpll_hw_state.fp1 = fp2;
1231}
1232
1233static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1234			     const struct dpll *clock,
1235			     const struct dpll *reduced_clock)
1236{
1237	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1238	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1239	u32 dpll;
1240
1241	ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
1242
1243	dpll = 0;
1244
1245	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1246		dpll |= DPLLB_MODE_LVDS;
1247	else
1248		dpll |= DPLLB_MODE_DAC_SERIAL;
1249
1250	dpll |= (crtc_state->pixel_multiplier - 1)
1251		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1252
1253	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1254	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1255		dpll |= DPLL_SDVO_HIGH_SPEED;
1256
1257	if (intel_crtc_has_dp_encoder(crtc_state))
1258		dpll |= DPLL_SDVO_HIGH_SPEED;
1259
1260	/*
1261	 * The high speed IO clock is only really required for
1262	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1263	 * possible to share the DPLL between CRT and HDMI. Enabling
1264	 * the clock needlessly does no real harm, except use up a
1265	 * bit of power potentially.
1266	 *
1267	 * We'll limit this to IVB with 3 pipes, since it has only two
1268	 * DPLLs and so DPLL sharing is the only way to get three pipes
1269	 * driving PCH ports at the same time. On SNB we could do this,
1270	 * and potentially avoid enabling the second DPLL, but it's not
1271	 * clear if it''s a win or loss power wise. No point in doing
1272	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1273	 */
1274	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1275	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1276		dpll |= DPLL_SDVO_HIGH_SPEED;
1277
1278	/* compute bitmask from p1 value */
1279	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1280	/* also FPA1 */
1281	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1282
1283	switch (clock->p2) {
1284	case 5:
1285		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1286		break;
1287	case 7:
1288		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1289		break;
1290	case 10:
1291		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1292		break;
1293	case 14:
1294		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1295		break;
1296	}
1297	WARN_ON(reduced_clock->p2 != clock->p2);
1298
1299	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1300	    intel_panel_use_ssc(dev_priv))
1301		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1302	else
1303		dpll |= PLL_REF_INPUT_DREFCLK;
1304
1305	dpll |= DPLL_VCO_ENABLE;
1306
1307	crtc_state->dpll_hw_state.dpll = dpll;
1308}
1309
1310static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1311				  struct intel_crtc *crtc)
1312{
1313	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1314	struct intel_crtc_state *crtc_state =
1315		intel_atomic_get_new_crtc_state(state, crtc);
1316	const struct intel_limit *limit;
1317	int refclk = 120000;
1318	int ret;
1319
1320	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1321	if (!crtc_state->has_pch_encoder)
1322		return 0;
1323
1324	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1325		if (intel_panel_use_ssc(dev_priv)) {
1326			drm_dbg_kms(&dev_priv->drm,
1327				    "using SSC reference clock of %d kHz\n",
1328				    dev_priv->display.vbt.lvds_ssc_freq);
1329			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1330		}
1331
1332		if (intel_is_dual_link_lvds(dev_priv)) {
1333			if (refclk == 100000)
1334				limit = &ilk_limits_dual_lvds_100m;
1335			else
1336				limit = &ilk_limits_dual_lvds;
1337		} else {
1338			if (refclk == 100000)
1339				limit = &ilk_limits_single_lvds_100m;
1340			else
1341				limit = &ilk_limits_single_lvds;
1342		}
1343	} else {
1344		limit = &ilk_limits_dac;
1345	}
1346
1347	if (!crtc_state->clock_set &&
1348	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1349				refclk, NULL, &crtc_state->dpll))
1350		return -EINVAL;
1351
1352	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1353
1354	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1355			 &crtc_state->dpll);
1356
1357	ret = intel_compute_shared_dplls(state, crtc, NULL);
1358	if (ret)
1359		return ret;
1360
1361	crtc_state->port_clock = crtc_state->dpll.dot;
1362	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1363
1364	return ret;
1365}
1366
1367static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1368				    struct intel_crtc *crtc)
1369{
1370	struct intel_crtc_state *crtc_state =
1371		intel_atomic_get_new_crtc_state(state, crtc);
1372
1373	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1374	if (!crtc_state->has_pch_encoder)
1375		return 0;
1376
1377	return intel_reserve_shared_dplls(state, crtc, NULL);
1378}
1379
1380void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1381{
1382	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1383
1384	crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1385		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1386	if (crtc->pipe != PIPE_A)
1387		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1388
1389	/* DPLL not used with DSI, but still need the rest set up */
1390	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1391		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1392			DPLL_EXT_BUFFER_ENABLE_VLV;
1393
1394	crtc_state->dpll_hw_state.dpll_md =
1395		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1396}
1397
1398void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1399{
1400	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1401
1402	crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1403		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1404	if (crtc->pipe != PIPE_A)
1405		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1406
1407	/* DPLL not used with DSI, but still need the rest set up */
1408	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1409		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1410
1411	crtc_state->dpll_hw_state.dpll_md =
1412		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1413}
1414
1415static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1416				  struct intel_crtc *crtc)
1417{
1418	struct intel_crtc_state *crtc_state =
1419		intel_atomic_get_new_crtc_state(state, crtc);
1420	const struct intel_limit *limit = &intel_limits_chv;
1421	int refclk = 100000;
1422
1423	if (!crtc_state->clock_set &&
1424	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1425				refclk, NULL, &crtc_state->dpll))
1426		return -EINVAL;
1427
1428	chv_calc_dpll_params(refclk, &crtc_state->dpll);
1429
1430	chv_compute_dpll(crtc_state);
1431
1432	/* FIXME this is a mess */
1433	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1434		return 0;
1435
1436	crtc_state->port_clock = crtc_state->dpll.dot;
1437	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1438
1439	return 0;
1440}
1441
1442static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1443				  struct intel_crtc *crtc)
1444{
1445	struct intel_crtc_state *crtc_state =
1446		intel_atomic_get_new_crtc_state(state, crtc);
1447	const struct intel_limit *limit = &intel_limits_vlv;
1448	int refclk = 100000;
1449
1450	if (!crtc_state->clock_set &&
1451	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1452				refclk, NULL, &crtc_state->dpll))
1453		return -EINVAL;
1454
1455	vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1456
1457	vlv_compute_dpll(crtc_state);
1458
1459	/* FIXME this is a mess */
1460	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1461		return 0;
1462
1463	crtc_state->port_clock = crtc_state->dpll.dot;
1464	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1465
1466	return 0;
1467}
1468
1469static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1470				  struct intel_crtc *crtc)
1471{
1472	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1473	struct intel_crtc_state *crtc_state =
1474		intel_atomic_get_new_crtc_state(state, crtc);
1475	const struct intel_limit *limit;
1476	int refclk = 96000;
1477
1478	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1479		if (intel_panel_use_ssc(dev_priv)) {
1480			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1481			drm_dbg_kms(&dev_priv->drm,
1482				    "using SSC reference clock of %d kHz\n",
1483				    refclk);
1484		}
1485
1486		if (intel_is_dual_link_lvds(dev_priv))
1487			limit = &intel_limits_g4x_dual_channel_lvds;
1488		else
1489			limit = &intel_limits_g4x_single_channel_lvds;
1490	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1491		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1492		limit = &intel_limits_g4x_hdmi;
1493	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1494		limit = &intel_limits_g4x_sdvo;
1495	} else {
1496		/* The option is for other outputs */
1497		limit = &intel_limits_i9xx_sdvo;
1498	}
1499
1500	if (!crtc_state->clock_set &&
1501	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1502				refclk, NULL, &crtc_state->dpll))
1503		return -EINVAL;
1504
1505	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1506
1507	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1508			  &crtc_state->dpll);
1509
1510	crtc_state->port_clock = crtc_state->dpll.dot;
1511	/* FIXME this is a mess */
1512	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1513		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1514
1515	return 0;
1516}
1517
1518static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1519				  struct intel_crtc *crtc)
1520{
1521	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1522	struct intel_crtc_state *crtc_state =
1523		intel_atomic_get_new_crtc_state(state, crtc);
1524	const struct intel_limit *limit;
1525	int refclk = 96000;
1526
1527	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1528		if (intel_panel_use_ssc(dev_priv)) {
1529			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1530			drm_dbg_kms(&dev_priv->drm,
1531				    "using SSC reference clock of %d kHz\n",
1532				    refclk);
1533		}
1534
1535		limit = &pnv_limits_lvds;
1536	} else {
1537		limit = &pnv_limits_sdvo;
1538	}
1539
1540	if (!crtc_state->clock_set &&
1541	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1542				refclk, NULL, &crtc_state->dpll))
1543		return -EINVAL;
1544
1545	pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1546
1547	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1548			  &crtc_state->dpll);
1549
1550	crtc_state->port_clock = crtc_state->dpll.dot;
1551	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1552
1553	return 0;
1554}
1555
1556static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1557				   struct intel_crtc *crtc)
1558{
1559	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1560	struct intel_crtc_state *crtc_state =
1561		intel_atomic_get_new_crtc_state(state, crtc);
1562	const struct intel_limit *limit;
1563	int refclk = 96000;
1564
1565	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1566		if (intel_panel_use_ssc(dev_priv)) {
1567			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1568			drm_dbg_kms(&dev_priv->drm,
1569				    "using SSC reference clock of %d kHz\n",
1570				    refclk);
1571		}
1572
1573		limit = &intel_limits_i9xx_lvds;
1574	} else {
1575		limit = &intel_limits_i9xx_sdvo;
1576	}
1577
1578	if (!crtc_state->clock_set &&
1579	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1580				 refclk, NULL, &crtc_state->dpll))
1581		return -EINVAL;
1582
1583	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1584
1585	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1586			  &crtc_state->dpll);
1587
1588	crtc_state->port_clock = crtc_state->dpll.dot;
1589	/* FIXME this is a mess */
1590	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1591		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1592
1593	return 0;
1594}
1595
1596static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1597				   struct intel_crtc *crtc)
1598{
1599	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1600	struct intel_crtc_state *crtc_state =
1601		intel_atomic_get_new_crtc_state(state, crtc);
1602	const struct intel_limit *limit;
1603	int refclk = 48000;
1604
1605	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1606		if (intel_panel_use_ssc(dev_priv)) {
1607			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1608			drm_dbg_kms(&dev_priv->drm,
1609				    "using SSC reference clock of %d kHz\n",
1610				    refclk);
1611		}
1612
1613		limit = &intel_limits_i8xx_lvds;
1614	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1615		limit = &intel_limits_i8xx_dvo;
1616	} else {
1617		limit = &intel_limits_i8xx_dac;
1618	}
1619
1620	if (!crtc_state->clock_set &&
1621	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1622				 refclk, NULL, &crtc_state->dpll))
1623		return -EINVAL;
1624
1625	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1626
1627	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1628			  &crtc_state->dpll);
1629
1630	crtc_state->port_clock = crtc_state->dpll.dot;
1631	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1632
1633	return 0;
1634}
1635
1636static const struct intel_dpll_funcs mtl_dpll_funcs = {
1637	.crtc_compute_clock = mtl_crtc_compute_clock,
1638};
1639
1640static const struct intel_dpll_funcs dg2_dpll_funcs = {
1641	.crtc_compute_clock = dg2_crtc_compute_clock,
1642};
1643
1644static const struct intel_dpll_funcs hsw_dpll_funcs = {
1645	.crtc_compute_clock = hsw_crtc_compute_clock,
1646	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1647};
1648
1649static const struct intel_dpll_funcs ilk_dpll_funcs = {
1650	.crtc_compute_clock = ilk_crtc_compute_clock,
1651	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1652};
1653
1654static const struct intel_dpll_funcs chv_dpll_funcs = {
1655	.crtc_compute_clock = chv_crtc_compute_clock,
1656};
1657
1658static const struct intel_dpll_funcs vlv_dpll_funcs = {
1659	.crtc_compute_clock = vlv_crtc_compute_clock,
1660};
1661
1662static const struct intel_dpll_funcs g4x_dpll_funcs = {
1663	.crtc_compute_clock = g4x_crtc_compute_clock,
1664};
1665
1666static const struct intel_dpll_funcs pnv_dpll_funcs = {
1667	.crtc_compute_clock = pnv_crtc_compute_clock,
1668};
1669
1670static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1671	.crtc_compute_clock = i9xx_crtc_compute_clock,
1672};
1673
1674static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1675	.crtc_compute_clock = i8xx_crtc_compute_clock,
1676};
1677
1678int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1679				  struct intel_crtc *crtc)
1680{
1681	struct drm_i915_private *i915 = to_i915(state->base.dev);
1682	struct intel_crtc_state *crtc_state =
1683		intel_atomic_get_new_crtc_state(state, crtc);
1684	int ret;
1685
1686	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1687
1688	memset(&crtc_state->dpll_hw_state, 0,
1689	       sizeof(crtc_state->dpll_hw_state));
1690
1691	if (!crtc_state->hw.enable)
1692		return 0;
1693
1694	ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1695	if (ret) {
1696		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1697			    crtc->base.base.id, crtc->base.name);
1698		return ret;
1699	}
1700
1701	return 0;
1702}
1703
1704int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1705				    struct intel_crtc *crtc)
1706{
1707	struct drm_i915_private *i915 = to_i915(state->base.dev);
1708	struct intel_crtc_state *crtc_state =
1709		intel_atomic_get_new_crtc_state(state, crtc);
1710	int ret;
1711
1712	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1713	drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1714
1715	if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1716		return 0;
1717
1718	if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1719		return 0;
1720
1721	ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1722	if (ret) {
1723		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1724			    crtc->base.base.id, crtc->base.name);
1725		return ret;
1726	}
1727
1728	return 0;
1729}
1730
1731void
1732intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1733{
1734	if (DISPLAY_VER(dev_priv) >= 14)
1735		dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1736	else if (IS_DG2(dev_priv))
1737		dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1738	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1739		dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1740	else if (HAS_PCH_SPLIT(dev_priv))
1741		dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1742	else if (IS_CHERRYVIEW(dev_priv))
1743		dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1744	else if (IS_VALLEYVIEW(dev_priv))
1745		dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1746	else if (IS_G4X(dev_priv))
1747		dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1748	else if (IS_PINEVIEW(dev_priv))
1749		dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1750	else if (DISPLAY_VER(dev_priv) != 2)
1751		dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1752	else
1753		dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1754}
1755
1756static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1757{
1758	if (IS_I830(dev_priv))
1759		return false;
1760
1761	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1762}
1763
1764void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1765{
1766	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1767	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1768	u32 dpll = crtc_state->dpll_hw_state.dpll;
1769	enum pipe pipe = crtc->pipe;
1770	int i;
1771
1772	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1773
1774	/* PLL is protected by panel, make sure we can write it */
1775	if (i9xx_has_pps(dev_priv))
1776		assert_pps_unlocked(dev_priv, pipe);
1777
1778	intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
1779	intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
1780
1781	/*
1782	 * Apparently we need to have VGA mode enabled prior to changing
1783	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1784	 * dividers, even though the register value does change.
1785	 */
1786	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
1787	intel_de_write(dev_priv, DPLL(pipe), dpll);
1788
1789	/* Wait for the clocks to stabilize. */
1790	intel_de_posting_read(dev_priv, DPLL(pipe));
1791	udelay(150);
1792
1793	if (DISPLAY_VER(dev_priv) >= 4) {
1794		intel_de_write(dev_priv, DPLL_MD(pipe),
1795			       crtc_state->dpll_hw_state.dpll_md);
1796	} else {
1797		/* The pixel multiplier can only be updated once the
1798		 * DPLL is enabled and the clocks are stable.
1799		 *
1800		 * So write it again.
1801		 */
1802		intel_de_write(dev_priv, DPLL(pipe), dpll);
1803	}
1804
1805	/* We do this three times for luck */
1806	for (i = 0; i < 3; i++) {
1807		intel_de_write(dev_priv, DPLL(pipe), dpll);
1808		intel_de_posting_read(dev_priv, DPLL(pipe));
1809		udelay(150); /* wait for warmup */
1810	}
1811}
1812
1813static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1814				 enum dpio_phy phy)
1815{
1816	u32 reg_val;
1817
1818	/*
1819	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1820	 * and set it to a reasonable value instead.
1821	 */
1822	reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW9(1));
1823	reg_val &= 0xffffff00;
1824	reg_val |= 0x00000030;
1825	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9(1), reg_val);
1826
1827	reg_val = vlv_dpio_read(dev_priv, phy, VLV_REF_DW13);
1828	reg_val &= 0x00ffffff;
1829	reg_val |= 0x8c000000;
1830	vlv_dpio_write(dev_priv, phy, VLV_REF_DW13, reg_val);
1831
1832	reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW9(1));
1833	reg_val &= 0xffffff00;
1834	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9(1), reg_val);
1835
1836	reg_val = vlv_dpio_read(dev_priv, phy, VLV_REF_DW13);
1837	reg_val &= 0x00ffffff;
1838	reg_val |= 0xb0000000;
1839	vlv_dpio_write(dev_priv, phy, VLV_REF_DW13, reg_val);
1840}
1841
1842static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1843{
1844	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1845	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1846	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1847	enum pipe pipe = crtc->pipe;
1848	u32 mdiv;
1849	u32 bestn, bestm1, bestm2, bestp1, bestp2;
1850	u32 coreclk, reg_val;
1851
1852	vlv_dpio_get(dev_priv);
1853
1854	bestn = crtc_state->dpll.n;
1855	bestm1 = crtc_state->dpll.m1;
1856	bestm2 = crtc_state->dpll.m2;
1857	bestp1 = crtc_state->dpll.p1;
1858	bestp2 = crtc_state->dpll.p2;
1859
1860	/* See eDP HDMI DPIO driver vbios notes doc */
1861
1862	/* PLL B needs special handling */
1863	if (pipe == PIPE_B)
1864		vlv_pllb_recal_opamp(dev_priv, phy);
1865
1866	/* Set up Tx target for periodic Rcomp update */
1867	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9_BCAST, 0x0100000f);
1868
1869	/* Disable target IRef on PLL */
1870	reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW8(pipe));
1871	reg_val &= 0x00ffffff;
1872	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW8(pipe), reg_val);
1873
1874	/* Disable fast lock */
1875	vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1876
1877	/* Set idtafcrecal before PLL is enabled */
1878	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1879	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1880	mdiv |= ((bestn << DPIO_N_SHIFT));
1881	mdiv |= (1 << DPIO_K_SHIFT);
1882
1883	/*
1884	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1885	 * but we don't support that).
1886	 * Note: don't use the DAC post divider as it seems unstable.
1887	 */
1888	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1889	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(pipe), mdiv);
1890
1891	mdiv |= DPIO_ENABLE_CALIBRATION;
1892	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(pipe), mdiv);
1893
1894	/* Set HBR and RBR LPF coefficients */
1895	if (crtc_state->port_clock == 162000 ||
1896	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1897	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1898		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW10(pipe),
1899				 0x009f0003);
1900	else
1901		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW10(pipe),
1902				 0x00d0000f);
1903
1904	if (intel_crtc_has_dp_encoder(crtc_state)) {
1905		/* Use SSC source */
1906		if (pipe == PIPE_A)
1907			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1908					 0x0df40000);
1909		else
1910			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1911					 0x0df70000);
1912	} else { /* HDMI or VGA */
1913		/* Use bend source */
1914		if (pipe == PIPE_A)
1915			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1916					 0x0df70000);
1917		else
1918			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1919					 0x0df40000);
1920	}
1921
1922	coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(pipe));
1923	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1924	if (intel_crtc_has_dp_encoder(crtc_state))
1925		coreclk |= 0x01000000;
1926	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(pipe), coreclk);
1927
1928	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW11(pipe), 0x87871000);
1929
1930	vlv_dpio_put(dev_priv);
1931}
1932
1933static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1934{
1935	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1936	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1937	enum pipe pipe = crtc->pipe;
1938
1939	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1940	intel_de_posting_read(dev_priv, DPLL(pipe));
1941	udelay(150);
1942
1943	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1944		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1945}
1946
1947void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1948{
1949	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1950	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1951	enum pipe pipe = crtc->pipe;
1952
1953	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1954
1955	/* PLL is protected by panel, make sure we can write it */
1956	assert_pps_unlocked(dev_priv, pipe);
1957
1958	/* Enable Refclk */
1959	intel_de_write(dev_priv, DPLL(pipe),
1960		       crtc_state->dpll_hw_state.dpll &
1961		       ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1962
1963	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1964		vlv_prepare_pll(crtc_state);
1965		_vlv_enable_pll(crtc_state);
1966	}
1967
1968	intel_de_write(dev_priv, DPLL_MD(pipe),
1969		       crtc_state->dpll_hw_state.dpll_md);
1970	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1971}
1972
1973static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
1974{
1975	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1976	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1977	enum pipe pipe = crtc->pipe;
1978	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1979	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1980	u32 loopfilter, tribuf_calcntr;
1981	u32 bestm2, bestp1, bestp2, bestm2_frac;
1982	u32 dpio_val;
1983	int vco;
1984
1985	bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
1986	bestm2 = crtc_state->dpll.m2 >> 22;
1987	bestp1 = crtc_state->dpll.p1;
1988	bestp2 = crtc_state->dpll.p2;
1989	vco = crtc_state->dpll.vco;
1990	dpio_val = 0;
1991	loopfilter = 0;
1992
1993	vlv_dpio_get(dev_priv);
1994
1995	/* p1 and p2 divider */
1996	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(port),
1997			5 << DPIO_CHV_S1_DIV_SHIFT |
1998			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1999			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
2000			1 << DPIO_CHV_K_DIV_SHIFT);
2001
2002	/* Feedback post-divider - m2 */
2003	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(port), bestm2);
2004
2005	/* Feedback refclk divider - n and m1 */
2006	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(port),
2007			DPIO_CHV_M1_DIV_BY_2 |
2008			1 << DPIO_CHV_N_DIV_SHIFT);
2009
2010	/* M2 fraction division */
2011	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(port), bestm2_frac);
2012
2013	/* M2 fraction division enable */
2014	dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(port));
2015	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2016	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
2017	if (bestm2_frac)
2018		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
2019	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(port), dpio_val);
2020
2021	/* Program digital lock detect threshold */
2022	dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(port));
2023	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2024					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2025	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
2026	if (!bestm2_frac)
2027		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2028	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(port), dpio_val);
2029
2030	/* Loop filter */
2031	if (vco == 5400000) {
2032		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
2033		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
2034		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
2035		tribuf_calcntr = 0x9;
2036	} else if (vco <= 6200000) {
2037		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
2038		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
2039		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
2040		tribuf_calcntr = 0x9;
2041	} else if (vco <= 6480000) {
2042		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
2043		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
2044		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
2045		tribuf_calcntr = 0x8;
2046	} else {
2047		/* Not supported. Apply the same limits as in the max case */
2048		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
2049		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
2050		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
2051		tribuf_calcntr = 0;
2052	}
2053	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(port), loopfilter);
2054
2055	dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(port));
2056	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2057	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
2058	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(port), dpio_val);
2059
2060	/* AFC Recal */
2061	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port),
2062			vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port)) |
2063			DPIO_AFC_RECAL);
2064
2065	vlv_dpio_put(dev_priv);
2066}
2067
2068static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2069{
2070	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2071	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2072	enum pipe pipe = crtc->pipe;
2073	enum dpio_channel port = vlv_pipe_to_channel(pipe);
2074	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2075	u32 tmp;
2076
2077	vlv_dpio_get(dev_priv);
2078
2079	/* Enable back the 10bit clock to display controller */
2080	tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port));
2081	tmp |= DPIO_DCLKP_EN;
2082	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port), tmp);
2083
2084	vlv_dpio_put(dev_priv);
2085
2086	/*
2087	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2088	 */
2089	udelay(1);
2090
2091	/* Enable PLL */
2092	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
2093
2094	/* Check PLL is locked */
2095	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
2096		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2097}
2098
2099void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2100{
2101	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2102	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2103	enum pipe pipe = crtc->pipe;
2104
2105	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2106
2107	/* PLL is protected by panel, make sure we can write it */
2108	assert_pps_unlocked(dev_priv, pipe);
2109
2110	/* Enable Refclk and SSC */
2111	intel_de_write(dev_priv, DPLL(pipe),
2112		       crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
2113
2114	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
2115		chv_prepare_pll(crtc_state);
2116		_chv_enable_pll(crtc_state);
2117	}
2118
2119	if (pipe != PIPE_A) {
2120		/*
2121		 * WaPixelRepeatModeFixForC0:chv
2122		 *
2123		 * DPLLCMD is AWOL. Use chicken bits to propagate
2124		 * the value from DPLLBMD to either pipe B or C.
2125		 */
2126		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2127		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
2128			       crtc_state->dpll_hw_state.dpll_md);
2129		intel_de_write(dev_priv, CBR4_VLV, 0);
2130		dev_priv->display.state.chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
2131
2132		/*
2133		 * DPLLB VGA mode also seems to cause problems.
2134		 * We should always have it disabled.
2135		 */
2136		drm_WARN_ON(&dev_priv->drm,
2137			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
2138			     DPLL_VGA_MODE_DIS) == 0);
2139	} else {
2140		intel_de_write(dev_priv, DPLL_MD(pipe),
2141			       crtc_state->dpll_hw_state.dpll_md);
2142		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2143	}
2144}
2145
2146/**
2147 * vlv_force_pll_on - forcibly enable just the PLL
2148 * @dev_priv: i915 private structure
2149 * @pipe: pipe PLL to enable
2150 * @dpll: PLL configuration
2151 *
2152 * Enable the PLL for @pipe using the supplied @dpll config. To be used
2153 * in cases where we need the PLL enabled even when @pipe is not going to
2154 * be enabled.
2155 */
2156int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2157		     const struct dpll *dpll)
2158{
2159	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
2160	struct intel_crtc_state *crtc_state;
2161
2162	crtc_state = intel_crtc_state_alloc(crtc);
2163	if (!crtc_state)
2164		return -ENOMEM;
2165
2166	crtc_state->cpu_transcoder = (enum transcoder)pipe;
2167	crtc_state->pixel_multiplier = 1;
2168	crtc_state->dpll = *dpll;
2169	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2170
2171	if (IS_CHERRYVIEW(dev_priv)) {
2172		chv_compute_dpll(crtc_state);
2173		chv_enable_pll(crtc_state);
2174	} else {
2175		vlv_compute_dpll(crtc_state);
2176		vlv_enable_pll(crtc_state);
2177	}
2178
2179	intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2180
2181	return 0;
2182}
2183
2184void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2185{
2186	u32 val;
2187
2188	/* Make sure the pipe isn't still relying on us */
2189	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2190
2191	val = DPLL_INTEGRATED_REF_CLK_VLV |
2192		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2193	if (pipe != PIPE_A)
2194		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2195
2196	intel_de_write(dev_priv, DPLL(pipe), val);
2197	intel_de_posting_read(dev_priv, DPLL(pipe));
2198}
2199
2200void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2201{
2202	enum dpio_channel port = vlv_pipe_to_channel(pipe);
2203	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2204	u32 val;
2205
2206	/* Make sure the pipe isn't still relying on us */
2207	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2208
2209	val = DPLL_SSC_REF_CLK_CHV |
2210		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2211	if (pipe != PIPE_A)
2212		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2213
2214	intel_de_write(dev_priv, DPLL(pipe), val);
2215	intel_de_posting_read(dev_priv, DPLL(pipe));
2216
2217	vlv_dpio_get(dev_priv);
2218
2219	/* Disable 10bit clock to display controller */
2220	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port));
2221	val &= ~DPIO_DCLKP_EN;
2222	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port), val);
2223
2224	vlv_dpio_put(dev_priv);
2225}
2226
2227void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2228{
2229	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2230	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2231	enum pipe pipe = crtc->pipe;
2232
2233	/* Don't disable pipe or pipe PLLs if needed */
2234	if (IS_I830(dev_priv))
2235		return;
2236
2237	/* Make sure the pipe isn't still relying on us */
2238	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2239
2240	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2241	intel_de_posting_read(dev_priv, DPLL(pipe));
2242}
2243
2244
2245/**
2246 * vlv_force_pll_off - forcibly disable just the PLL
2247 * @dev_priv: i915 private structure
2248 * @pipe: pipe PLL to disable
2249 *
2250 * Disable the PLL for @pipe. To be used in cases where we need
2251 * the PLL enabled even when @pipe is not going to be enabled.
2252 */
2253void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2254{
2255	if (IS_CHERRYVIEW(dev_priv))
2256		chv_disable_pll(dev_priv, pipe);
2257	else
2258		vlv_disable_pll(dev_priv, pipe);
2259}
2260
2261/* Only for pre-ILK configs */
2262static void assert_pll(struct drm_i915_private *dev_priv,
2263		       enum pipe pipe, bool state)
2264{
2265	bool cur_state;
2266
2267	cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2268	I915_STATE_WARN(dev_priv, cur_state != state,
2269			"PLL state assertion failure (expected %s, current %s)\n",
2270			str_on_off(state), str_on_off(cur_state));
2271}
2272
2273void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2274{
2275	assert_pll(i915, pipe, true);
2276}
2277
2278void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2279{
2280	assert_pll(i915, pipe, false);
2281}
2282