1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2019 Intel Corporation
4 */
5
6#include <drm/drm_atomic_state_helper.h>
7
8#include "i915_drv.h"
9#include "i915_reg.h"
10#include "i915_utils.h"
11#include "intel_atomic.h"
12#include "intel_bw.h"
13#include "intel_cdclk.h"
14#include "intel_display_core.h"
15#include "intel_display_types.h"
16#include "skl_watermark.h"
17#include "intel_mchbar_regs.h"
18#include "intel_pcode.h"
19
20/* Parameters for Qclk Geyserville (QGV) */
21struct intel_qgv_point {
22	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
23};
24
25struct intel_psf_gv_point {
26	u8 clk; /* clock in multiples of 16.6666 MHz */
27};
28
29struct intel_qgv_info {
30	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
31	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
32	u8 num_points;
33	u8 num_psf_points;
34	u8 t_bl;
35	u8 max_numchannels;
36	u8 channel_width;
37	u8 deinterleave;
38};
39
40static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
41					  struct intel_qgv_point *sp,
42					  int point)
43{
44	u32 dclk_ratio, dclk_reference;
45	u32 val;
46
47	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
48	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
49	if (val & DG1_QCLK_REFERENCE)
50		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
51	else
52		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
53	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
54
55	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
56	if (val & DG1_GEAR_TYPE)
57		sp->dclk *= 2;
58
59	if (sp->dclk == 0)
60		return -EINVAL;
61
62	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
63	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
64	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
65
66	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
67	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
68	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
69
70	sp->t_rc = sp->t_rp + sp->t_ras;
71
72	return 0;
73}
74
75static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
76					 struct intel_qgv_point *sp,
77					 int point)
78{
79	u32 val = 0, val2 = 0;
80	u16 dclk;
81	int ret;
82
83	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
84			     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
85			     &val, &val2);
86	if (ret)
87		return ret;
88
89	dclk = val & 0xffff;
90	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) >= 12 ? 500 : 0),
91				1000);
92	sp->t_rp = (val & 0xff0000) >> 16;
93	sp->t_rcd = (val & 0xff000000) >> 24;
94
95	sp->t_rdpre = val2 & 0xff;
96	sp->t_ras = (val2 & 0xff00) >> 8;
97
98	sp->t_rc = sp->t_rp + sp->t_ras;
99
100	return 0;
101}
102
103static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
104					    struct intel_psf_gv_point *points)
105{
106	u32 val = 0;
107	int ret;
108	int i;
109
110	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
111			     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
112	if (ret)
113		return ret;
114
115	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
116		points[i].clk = val & 0xff;
117		val >>= 8;
118	}
119
120	return 0;
121}
122
123static u16 icl_qgv_points_mask(struct drm_i915_private *i915)
124{
125	unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
126	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
127	u16 qgv_points = 0, psf_points = 0;
128
129	/*
130	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
131	 * it with failure if we try masking any unadvertised points.
132	 * So need to operate only with those returned from PCode.
133	 */
134	if (num_qgv_points > 0)
135		qgv_points = GENMASK(num_qgv_points - 1, 0);
136
137	if (num_psf_gv_points > 0)
138		psf_points = GENMASK(num_psf_gv_points - 1, 0);
139
140	return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
141}
142
143static bool is_sagv_enabled(struct drm_i915_private *i915, u16 points_mask)
144{
145	return !is_power_of_2(~points_mask & icl_qgv_points_mask(i915) &
146			      ICL_PCODE_REQ_QGV_PT_MASK);
147}
148
149int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
150				  u32 points_mask)
151{
152	int ret;
153
154	if (DISPLAY_VER(dev_priv) >= 14)
155		return 0;
156
157	/* bspec says to keep retrying for at least 1 ms */
158	ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
159				points_mask,
160				ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
161				ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
162				1);
163
164	if (ret < 0) {
165		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
166		return ret;
167	}
168
169	dev_priv->display.sagv.status = is_sagv_enabled(dev_priv, points_mask) ?
170		I915_SAGV_ENABLED : I915_SAGV_DISABLED;
171
172	return 0;
173}
174
175static int mtl_read_qgv_point_info(struct drm_i915_private *dev_priv,
176				   struct intel_qgv_point *sp, int point)
177{
178	u32 val, val2;
179	u16 dclk;
180
181	val = intel_uncore_read(&dev_priv->uncore,
182				MTL_MEM_SS_INFO_QGV_POINT_LOW(point));
183	val2 = intel_uncore_read(&dev_priv->uncore,
184				 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point));
185	dclk = REG_FIELD_GET(MTL_DCLK_MASK, val);
186	sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000);
187	sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val);
188	sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val);
189
190	sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2);
191	sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2);
192
193	sp->t_rc = sp->t_rp + sp->t_ras;
194
195	return 0;
196}
197
198static int
199intel_read_qgv_point_info(struct drm_i915_private *dev_priv,
200			  struct intel_qgv_point *sp,
201			  int point)
202{
203	if (DISPLAY_VER(dev_priv) >= 14)
204		return mtl_read_qgv_point_info(dev_priv, sp, point);
205	else if (IS_DG1(dev_priv))
206		return dg1_mchbar_read_qgv_point_info(dev_priv, sp, point);
207	else
208		return icl_pcode_read_qgv_point_info(dev_priv, sp, point);
209}
210
211static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
212			      struct intel_qgv_info *qi,
213			      bool is_y_tile)
214{
215	const struct dram_info *dram_info = &dev_priv->dram_info;
216	int i, ret;
217
218	qi->num_points = dram_info->num_qgv_points;
219	qi->num_psf_points = dram_info->num_psf_gv_points;
220
221	if (DISPLAY_VER(dev_priv) >= 14) {
222		switch (dram_info->type) {
223		case INTEL_DRAM_DDR4:
224			qi->t_bl = 4;
225			qi->max_numchannels = 2;
226			qi->channel_width = 64;
227			qi->deinterleave = 2;
228			break;
229		case INTEL_DRAM_DDR5:
230			qi->t_bl = 8;
231			qi->max_numchannels = 4;
232			qi->channel_width = 32;
233			qi->deinterleave = 2;
234			break;
235		case INTEL_DRAM_LPDDR4:
236		case INTEL_DRAM_LPDDR5:
237			qi->t_bl = 16;
238			qi->max_numchannels = 8;
239			qi->channel_width = 16;
240			qi->deinterleave = 4;
241			break;
242		default:
243			MISSING_CASE(dram_info->type);
244			return -EINVAL;
245		}
246	} else if (DISPLAY_VER(dev_priv) >= 12) {
247		switch (dram_info->type) {
248		case INTEL_DRAM_DDR4:
249			qi->t_bl = is_y_tile ? 8 : 4;
250			qi->max_numchannels = 2;
251			qi->channel_width = 64;
252			qi->deinterleave = is_y_tile ? 1 : 2;
253			break;
254		case INTEL_DRAM_DDR5:
255			qi->t_bl = is_y_tile ? 16 : 8;
256			qi->max_numchannels = 4;
257			qi->channel_width = 32;
258			qi->deinterleave = is_y_tile ? 1 : 2;
259			break;
260		case INTEL_DRAM_LPDDR4:
261			if (IS_ROCKETLAKE(dev_priv)) {
262				qi->t_bl = 8;
263				qi->max_numchannels = 4;
264				qi->channel_width = 32;
265				qi->deinterleave = 2;
266				break;
267			}
268			fallthrough;
269		case INTEL_DRAM_LPDDR5:
270			qi->t_bl = 16;
271			qi->max_numchannels = 8;
272			qi->channel_width = 16;
273			qi->deinterleave = is_y_tile ? 2 : 4;
274			break;
275		default:
276			qi->t_bl = 16;
277			qi->max_numchannels = 1;
278			break;
279		}
280	} else if (DISPLAY_VER(dev_priv) == 11) {
281		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
282		qi->max_numchannels = 1;
283	}
284
285	if (drm_WARN_ON(&dev_priv->drm,
286			qi->num_points > ARRAY_SIZE(qi->points)))
287		qi->num_points = ARRAY_SIZE(qi->points);
288
289	for (i = 0; i < qi->num_points; i++) {
290		struct intel_qgv_point *sp = &qi->points[i];
291
292		ret = intel_read_qgv_point_info(dev_priv, sp, i);
293		if (ret)
294			return ret;
295
296		drm_dbg_kms(&dev_priv->drm,
297			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
298			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
299			    sp->t_rcd, sp->t_rc);
300	}
301
302	if (qi->num_psf_points > 0) {
303		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
304		if (ret) {
305			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
306			qi->num_psf_points = 0;
307		}
308
309		for (i = 0; i < qi->num_psf_points; i++)
310			drm_dbg_kms(&dev_priv->drm,
311				    "PSF GV %d: CLK=%d \n",
312				    i, qi->psf_points[i].clk);
313	}
314
315	return 0;
316}
317
318static int adl_calc_psf_bw(int clk)
319{
320	/*
321	 * clk is multiples of 16.666MHz (100/6)
322	 * According to BSpec PSF GV bandwidth is
323	 * calculated as BW = 64 * clk * 16.666Mhz
324	 */
325	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
326}
327
328static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
329{
330	u16 dclk = 0;
331	int i;
332
333	for (i = 0; i < qi->num_points; i++)
334		dclk = max(dclk, qi->points[i].dclk);
335
336	return dclk;
337}
338
339struct intel_sa_info {
340	u16 displayrtids;
341	u8 deburst, deprogbwlimit, derating;
342};
343
344static const struct intel_sa_info icl_sa_info = {
345	.deburst = 8,
346	.deprogbwlimit = 25, /* GB/s */
347	.displayrtids = 128,
348	.derating = 10,
349};
350
351static const struct intel_sa_info tgl_sa_info = {
352	.deburst = 16,
353	.deprogbwlimit = 34, /* GB/s */
354	.displayrtids = 256,
355	.derating = 10,
356};
357
358static const struct intel_sa_info rkl_sa_info = {
359	.deburst = 8,
360	.deprogbwlimit = 20, /* GB/s */
361	.displayrtids = 128,
362	.derating = 10,
363};
364
365static const struct intel_sa_info adls_sa_info = {
366	.deburst = 16,
367	.deprogbwlimit = 38, /* GB/s */
368	.displayrtids = 256,
369	.derating = 10,
370};
371
372static const struct intel_sa_info adlp_sa_info = {
373	.deburst = 16,
374	.deprogbwlimit = 38, /* GB/s */
375	.displayrtids = 256,
376	.derating = 20,
377};
378
379static const struct intel_sa_info mtl_sa_info = {
380	.deburst = 32,
381	.deprogbwlimit = 38, /* GB/s */
382	.displayrtids = 256,
383	.derating = 10,
384};
385
386static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
387{
388	struct intel_qgv_info qi = {};
389	bool is_y_tile = true; /* assume y tile may be used */
390	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
391	int ipqdepth, ipqdepthpch = 16;
392	int dclk_max;
393	int maxdebw;
394	int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
395	int i, ret;
396
397	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
398	if (ret) {
399		drm_dbg_kms(&dev_priv->drm,
400			    "Failed to get memory subsystem information, ignoring bandwidth limits");
401		return ret;
402	}
403
404	dclk_max = icl_sagv_max_dclk(&qi);
405	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
406	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
407	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
408
409	for (i = 0; i < num_groups; i++) {
410		struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
411		int clpchgroup;
412		int j;
413
414		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
415		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
416
417		bi->num_qgv_points = qi.num_points;
418		bi->num_psf_gv_points = qi.num_psf_points;
419
420		for (j = 0; j < qi.num_points; j++) {
421			const struct intel_qgv_point *sp = &qi.points[j];
422			int ct, bw;
423
424			/*
425			 * Max row cycle time
426			 *
427			 * FIXME what is the logic behind the
428			 * assumed burst length?
429			 */
430			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
431				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
432			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
433
434			bi->deratedbw[j] = min(maxdebw,
435					       bw * (100 - sa->derating) / 100);
436
437			drm_dbg_kms(&dev_priv->drm,
438				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
439				    i, j, bi->num_planes, bi->deratedbw[j]);
440		}
441	}
442	/*
443	 * In case if SAGV is disabled in BIOS, we always get 1
444	 * SAGV point, but we can't send PCode commands to restrict it
445	 * as it will fail and pointless anyway.
446	 */
447	if (qi.num_points == 1)
448		dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
449	else
450		dev_priv->display.sagv.status = I915_SAGV_ENABLED;
451
452	return 0;
453}
454
455static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
456{
457	struct intel_qgv_info qi = {};
458	const struct dram_info *dram_info = &dev_priv->dram_info;
459	bool is_y_tile = true; /* assume y tile may be used */
460	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
461	int ipqdepth, ipqdepthpch = 16;
462	int dclk_max;
463	int maxdebw, peakbw;
464	int clperchgroup;
465	int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
466	int i, ret;
467
468	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
469	if (ret) {
470		drm_dbg_kms(&dev_priv->drm,
471			    "Failed to get memory subsystem information, ignoring bandwidth limits");
472		return ret;
473	}
474
475	if (DISPLAY_VER(dev_priv) < 14 &&
476	    (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5))
477		num_channels *= 2;
478
479	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
480
481	if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
482		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);
483
484	if (DISPLAY_VER(dev_priv) >= 12 && num_channels > qi.max_numchannels)
485		drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
486	if (qi.max_numchannels != 0)
487		num_channels = min_t(u8, num_channels, qi.max_numchannels);
488
489	dclk_max = icl_sagv_max_dclk(&qi);
490
491	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
492	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
493
494	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
495	/*
496	 * clperchgroup = 4kpagespermempage * clperchperblock,
497	 * clperchperblock = 8 / num_channels * interleave
498	 */
499	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
500
501	for (i = 0; i < num_groups; i++) {
502		struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
503		struct intel_bw_info *bi_next;
504		int clpchgroup;
505		int j;
506
507		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
508
509		if (i < num_groups - 1) {
510			bi_next = &dev_priv->display.bw.max[i + 1];
511
512			if (clpchgroup < clperchgroup)
513				bi_next->num_planes = (ipqdepth - clpchgroup) /
514						       clpchgroup + 1;
515			else
516				bi_next->num_planes = 0;
517		}
518
519		bi->num_qgv_points = qi.num_points;
520		bi->num_psf_gv_points = qi.num_psf_points;
521
522		for (j = 0; j < qi.num_points; j++) {
523			const struct intel_qgv_point *sp = &qi.points[j];
524			int ct, bw;
525
526			/*
527			 * Max row cycle time
528			 *
529			 * FIXME what is the logic behind the
530			 * assumed burst length?
531			 */
532			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
533				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
534			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
535
536			bi->deratedbw[j] = min(maxdebw,
537					       bw * (100 - sa->derating) / 100);
538			bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk *
539							  num_channels *
540							  qi.channel_width, 8);
541
542			drm_dbg_kms(&dev_priv->drm,
543				    "BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n",
544				    i, j, bi->num_planes, bi->deratedbw[j],
545				    bi->peakbw[j]);
546		}
547
548		for (j = 0; j < qi.num_psf_points; j++) {
549			const struct intel_psf_gv_point *sp = &qi.psf_points[j];
550
551			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
552
553			drm_dbg_kms(&dev_priv->drm,
554				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
555				    i, j, bi->num_planes, bi->psf_bw[j]);
556		}
557	}
558
559	/*
560	 * In case if SAGV is disabled in BIOS, we always get 1
561	 * SAGV point, but we can't send PCode commands to restrict it
562	 * as it will fail and pointless anyway.
563	 */
564	if (qi.num_points == 1)
565		dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
566	else
567		dev_priv->display.sagv.status = I915_SAGV_ENABLED;
568
569	return 0;
570}
571
572static void dg2_get_bw_info(struct drm_i915_private *i915)
573{
574	unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000;
575	int num_groups = ARRAY_SIZE(i915->display.bw.max);
576	int i;
577
578	/*
579	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
580	 * that doesn't depend on the number of planes enabled. So fill all the
581	 * plane group with constant bw information for uniformity with other
582	 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
583	 * whereas DG2-G11 platforms have 38 GB/s.
584	 */
585	for (i = 0; i < num_groups; i++) {
586		struct intel_bw_info *bi = &i915->display.bw.max[i];
587
588		bi->num_planes = 1;
589		/* Need only one dummy QGV point per group */
590		bi->num_qgv_points = 1;
591		bi->deratedbw[0] = deratedbw;
592	}
593
594	i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
595}
596
597static unsigned int icl_max_bw_index(struct drm_i915_private *dev_priv,
598				     int num_planes, int qgv_point)
599{
600	int i;
601
602	/*
603	 * Let's return max bw for 0 planes
604	 */
605	num_planes = max(1, num_planes);
606
607	for (i = 0; i < ARRAY_SIZE(dev_priv->display.bw.max); i++) {
608		const struct intel_bw_info *bi =
609			&dev_priv->display.bw.max[i];
610
611		/*
612		 * Pcode will not expose all QGV points when
613		 * SAGV is forced to off/min/med/max.
614		 */
615		if (qgv_point >= bi->num_qgv_points)
616			return UINT_MAX;
617
618		if (num_planes >= bi->num_planes)
619			return i;
620	}
621
622	return UINT_MAX;
623}
624
625static unsigned int tgl_max_bw_index(struct drm_i915_private *dev_priv,
626				     int num_planes, int qgv_point)
627{
628	int i;
629
630	/*
631	 * Let's return max bw for 0 planes
632	 */
633	num_planes = max(1, num_planes);
634
635	for (i = ARRAY_SIZE(dev_priv->display.bw.max) - 1; i >= 0; i--) {
636		const struct intel_bw_info *bi =
637			&dev_priv->display.bw.max[i];
638
639		/*
640		 * Pcode will not expose all QGV points when
641		 * SAGV is forced to off/min/med/max.
642		 */
643		if (qgv_point >= bi->num_qgv_points)
644			return UINT_MAX;
645
646		if (num_planes <= bi->num_planes)
647			return i;
648	}
649
650	return 0;
651}
652
653static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
654			       int psf_gv_point)
655{
656	const struct intel_bw_info *bi =
657			&dev_priv->display.bw.max[0];
658
659	return bi->psf_bw[psf_gv_point];
660}
661
662void intel_bw_init_hw(struct drm_i915_private *dev_priv)
663{
664	if (!HAS_DISPLAY(dev_priv))
665		return;
666
667	if (DISPLAY_VER(dev_priv) >= 14)
668		tgl_get_bw_info(dev_priv, &mtl_sa_info);
669	else if (IS_DG2(dev_priv))
670		dg2_get_bw_info(dev_priv);
671	else if (IS_ALDERLAKE_P(dev_priv))
672		tgl_get_bw_info(dev_priv, &adlp_sa_info);
673	else if (IS_ALDERLAKE_S(dev_priv))
674		tgl_get_bw_info(dev_priv, &adls_sa_info);
675	else if (IS_ROCKETLAKE(dev_priv))
676		tgl_get_bw_info(dev_priv, &rkl_sa_info);
677	else if (DISPLAY_VER(dev_priv) == 12)
678		tgl_get_bw_info(dev_priv, &tgl_sa_info);
679	else if (DISPLAY_VER(dev_priv) == 11)
680		icl_get_bw_info(dev_priv, &icl_sa_info);
681}
682
683static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
684{
685	/*
686	 * We assume cursors are small enough
687	 * to not not cause bandwidth problems.
688	 */
689	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
690}
691
692static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
693{
694	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
695	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
696	unsigned int data_rate = 0;
697	enum plane_id plane_id;
698
699	for_each_plane_id_on_crtc(crtc, plane_id) {
700		/*
701		 * We assume cursors are small enough
702		 * to not not cause bandwidth problems.
703		 */
704		if (plane_id == PLANE_CURSOR)
705			continue;
706
707		data_rate += crtc_state->data_rate[plane_id];
708
709		if (DISPLAY_VER(i915) < 11)
710			data_rate += crtc_state->data_rate_y[plane_id];
711	}
712
713	return data_rate;
714}
715
716/* "Maximum Pipe Read Bandwidth" */
717static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
718{
719	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
720	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
721
722	if (DISPLAY_VER(i915) < 12)
723		return 0;
724
725	return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512);
726}
727
728void intel_bw_crtc_update(struct intel_bw_state *bw_state,
729			  const struct intel_crtc_state *crtc_state)
730{
731	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
732	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
733
734	bw_state->data_rate[crtc->pipe] =
735		intel_bw_crtc_data_rate(crtc_state);
736	bw_state->num_active_planes[crtc->pipe] =
737		intel_bw_crtc_num_active_planes(crtc_state);
738
739	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
740		    pipe_name(crtc->pipe),
741		    bw_state->data_rate[crtc->pipe],
742		    bw_state->num_active_planes[crtc->pipe]);
743}
744
745static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
746					       const struct intel_bw_state *bw_state)
747{
748	unsigned int num_active_planes = 0;
749	enum pipe pipe;
750
751	for_each_pipe(dev_priv, pipe)
752		num_active_planes += bw_state->num_active_planes[pipe];
753
754	return num_active_planes;
755}
756
757static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
758				       const struct intel_bw_state *bw_state)
759{
760	unsigned int data_rate = 0;
761	enum pipe pipe;
762
763	for_each_pipe(dev_priv, pipe)
764		data_rate += bw_state->data_rate[pipe];
765
766	if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv))
767		data_rate = DIV_ROUND_UP(data_rate * 105, 100);
768
769	return data_rate;
770}
771
772struct intel_bw_state *
773intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
774{
775	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
776	struct intel_global_state *bw_state;
777
778	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->display.bw.obj);
779
780	return to_intel_bw_state(bw_state);
781}
782
783struct intel_bw_state *
784intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
785{
786	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
787	struct intel_global_state *bw_state;
788
789	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->display.bw.obj);
790
791	return to_intel_bw_state(bw_state);
792}
793
794struct intel_bw_state *
795intel_atomic_get_bw_state(struct intel_atomic_state *state)
796{
797	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
798	struct intel_global_state *bw_state;
799
800	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.bw.obj);
801	if (IS_ERR(bw_state))
802		return ERR_CAST(bw_state);
803
804	return to_intel_bw_state(bw_state);
805}
806
807static int mtl_find_qgv_points(struct drm_i915_private *i915,
808			       unsigned int data_rate,
809			       unsigned int num_active_planes,
810			       struct intel_bw_state *new_bw_state)
811{
812	unsigned int best_rate = UINT_MAX;
813	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
814	unsigned int qgv_peak_bw  = 0;
815	int i;
816	int ret;
817
818	ret = intel_atomic_lock_global_state(&new_bw_state->base);
819	if (ret)
820		return ret;
821
822	/*
823	 * If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's
824	 * for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is
825	 * not enabled. PM Demand code will clamp the value for the register
826	 */
827	if (!intel_can_enable_sagv(i915, new_bw_state)) {
828		new_bw_state->qgv_point_peakbw = U16_MAX;
829		drm_dbg_kms(&i915->drm, "No SAGV, use UINT_MAX as peak bw.");
830		return 0;
831	}
832
833	/*
834	 * Find the best QGV point by comparing the data_rate with max data rate
835	 * offered per plane group
836	 */
837	for (i = 0; i < num_qgv_points; i++) {
838		unsigned int bw_index =
839			tgl_max_bw_index(i915, num_active_planes, i);
840		unsigned int max_data_rate;
841
842		if (bw_index >= ARRAY_SIZE(i915->display.bw.max))
843			continue;
844
845		max_data_rate = i915->display.bw.max[bw_index].deratedbw[i];
846
847		if (max_data_rate < data_rate)
848			continue;
849
850		if (max_data_rate - data_rate < best_rate) {
851			best_rate = max_data_rate - data_rate;
852			qgv_peak_bw = i915->display.bw.max[bw_index].peakbw[i];
853		}
854
855		drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n",
856			    i, max_data_rate, data_rate, qgv_peak_bw);
857	}
858
859	drm_dbg_kms(&i915->drm, "Matching peaks QGV bw: %d for required data rate: %d\n",
860		    qgv_peak_bw, data_rate);
861
862	/*
863	 * The display configuration cannot be supported if no QGV point
864	 * satisfying the required data rate is found
865	 */
866	if (qgv_peak_bw == 0) {
867		drm_dbg_kms(&i915->drm, "No QGV points for bw %d for display configuration(%d active planes).\n",
868			    data_rate, num_active_planes);
869		return -EINVAL;
870	}
871
872	/* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */
873	new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100);
874
875	return 0;
876}
877
878static int icl_find_qgv_points(struct drm_i915_private *i915,
879			       unsigned int data_rate,
880			       unsigned int num_active_planes,
881			       const struct intel_bw_state *old_bw_state,
882			       struct intel_bw_state *new_bw_state)
883{
884	unsigned int max_bw_point = 0;
885	unsigned int max_bw = 0;
886	unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
887	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
888	u16 psf_points = 0;
889	u16 qgv_points = 0;
890	int i;
891	int ret;
892
893	ret = intel_atomic_lock_global_state(&new_bw_state->base);
894	if (ret)
895		return ret;
896
897	for (i = 0; i < num_qgv_points; i++) {
898		unsigned int idx;
899		unsigned int max_data_rate;
900
901		if (DISPLAY_VER(i915) >= 12)
902			idx = tgl_max_bw_index(i915, num_active_planes, i);
903		else
904			idx = icl_max_bw_index(i915, num_active_planes, i);
905
906		if (idx >= ARRAY_SIZE(i915->display.bw.max))
907			continue;
908
909		max_data_rate = i915->display.bw.max[idx].deratedbw[i];
910
911		/*
912		 * We need to know which qgv point gives us
913		 * maximum bandwidth in order to disable SAGV
914		 * if we find that we exceed SAGV block time
915		 * with watermarks. By that moment we already
916		 * have those, as it is calculated earlier in
917		 * intel_atomic_check,
918		 */
919		if (max_data_rate > max_bw) {
920			max_bw_point = i;
921			max_bw = max_data_rate;
922		}
923		if (max_data_rate >= data_rate)
924			qgv_points |= BIT(i);
925
926		drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d\n",
927			    i, max_data_rate, data_rate);
928	}
929
930	for (i = 0; i < num_psf_gv_points; i++) {
931		unsigned int max_data_rate = adl_psf_bw(i915, i);
932
933		if (max_data_rate >= data_rate)
934			psf_points |= BIT(i);
935
936		drm_dbg_kms(&i915->drm, "PSF GV point %d: max bw %d"
937			    " required %d\n",
938			    i, max_data_rate, data_rate);
939	}
940
941	/*
942	 * BSpec states that we always should have at least one allowed point
943	 * left, so if we couldn't - simply reject the configuration for obvious
944	 * reasons.
945	 */
946	if (qgv_points == 0) {
947		drm_dbg_kms(&i915->drm, "No QGV points provide sufficient memory"
948			    " bandwidth %d for display configuration(%d active planes).\n",
949			    data_rate, num_active_planes);
950		return -EINVAL;
951	}
952
953	if (num_psf_gv_points > 0 && psf_points == 0) {
954		drm_dbg_kms(&i915->drm, "No PSF GV points provide sufficient memory"
955			    " bandwidth %d for display configuration(%d active planes).\n",
956			    data_rate, num_active_planes);
957		return -EINVAL;
958	}
959
960	/*
961	 * Leave only single point with highest bandwidth, if
962	 * we can't enable SAGV due to the increased memory latency it may
963	 * cause.
964	 */
965	if (!intel_can_enable_sagv(i915, new_bw_state)) {
966		qgv_points = BIT(max_bw_point);
967		drm_dbg_kms(&i915->drm, "No SAGV, using single QGV point %d\n",
968			    max_bw_point);
969	}
970
971	/*
972	 * We store the ones which need to be masked as that is what PCode
973	 * actually accepts as a parameter.
974	 */
975	new_bw_state->qgv_points_mask =
976		~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
977		  ADLS_PCODE_REQ_PSF_PT(psf_points)) &
978		icl_qgv_points_mask(i915);
979
980	/*
981	 * If the actual mask had changed we need to make sure that
982	 * the commits are serialized(in case this is a nomodeset, nonblocking)
983	 */
984	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
985		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
986		if (ret)
987			return ret;
988	}
989
990	return 0;
991}
992
993static int intel_bw_check_qgv_points(struct drm_i915_private *i915,
994				     const struct intel_bw_state *old_bw_state,
995				     struct intel_bw_state *new_bw_state)
996{
997	unsigned int data_rate = intel_bw_data_rate(i915, new_bw_state);
998	unsigned int num_active_planes =
999			intel_bw_num_active_planes(i915, new_bw_state);
1000
1001	data_rate = DIV_ROUND_UP(data_rate, 1000);
1002
1003	if (DISPLAY_VER(i915) >= 14)
1004		return mtl_find_qgv_points(i915, data_rate, num_active_planes,
1005					   new_bw_state);
1006	else
1007		return icl_find_qgv_points(i915, data_rate, num_active_planes,
1008					   old_bw_state, new_bw_state);
1009}
1010
1011static bool intel_bw_state_changed(struct drm_i915_private *i915,
1012				   const struct intel_bw_state *old_bw_state,
1013				   const struct intel_bw_state *new_bw_state)
1014{
1015	enum pipe pipe;
1016
1017	for_each_pipe(i915, pipe) {
1018		const struct intel_dbuf_bw *old_crtc_bw =
1019			&old_bw_state->dbuf_bw[pipe];
1020		const struct intel_dbuf_bw *new_crtc_bw =
1021			&new_bw_state->dbuf_bw[pipe];
1022		enum dbuf_slice slice;
1023
1024		for_each_dbuf_slice(i915, slice) {
1025			if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] ||
1026			    old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice])
1027				return true;
1028		}
1029
1030		if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe])
1031			return true;
1032	}
1033
1034	return false;
1035}
1036
1037static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state,
1038				   struct intel_crtc *crtc,
1039				   enum plane_id plane_id,
1040				   const struct skl_ddb_entry *ddb,
1041				   unsigned int data_rate)
1042{
1043	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1044	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
1045	unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb);
1046	enum dbuf_slice slice;
1047
1048	/*
1049	 * The arbiter can only really guarantee an
1050	 * equal share of the total bw to each plane.
1051	 */
1052	for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) {
1053		crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate);
1054		crtc_bw->active_planes[slice] |= BIT(plane_id);
1055	}
1056}
1057
1058static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
1059				  const struct intel_crtc_state *crtc_state)
1060{
1061	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1062	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1063	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
1064	enum plane_id plane_id;
1065
1066	memset(crtc_bw, 0, sizeof(*crtc_bw));
1067
1068	if (!crtc_state->hw.active)
1069		return;
1070
1071	for_each_plane_id_on_crtc(crtc, plane_id) {
1072		/*
1073		 * We assume cursors are small enough
1074		 * to not cause bandwidth problems.
1075		 */
1076		if (plane_id == PLANE_CURSOR)
1077			continue;
1078
1079		skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
1080				       &crtc_state->wm.skl.plane_ddb[plane_id],
1081				       crtc_state->data_rate[plane_id]);
1082
1083		if (DISPLAY_VER(i915) < 11)
1084			skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
1085					       &crtc_state->wm.skl.plane_ddb_y[plane_id],
1086					       crtc_state->data_rate[plane_id]);
1087	}
1088}
1089
1090/* "Maximum Data Buffer Bandwidth" */
1091static int
1092intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915,
1093			const struct intel_bw_state *bw_state)
1094{
1095	unsigned int total_max_bw = 0;
1096	enum dbuf_slice slice;
1097
1098	for_each_dbuf_slice(i915, slice) {
1099		int num_active_planes = 0;
1100		unsigned int max_bw = 0;
1101		enum pipe pipe;
1102
1103		/*
1104		 * The arbiter can only really guarantee an
1105		 * equal share of the total bw to each plane.
1106		 */
1107		for_each_pipe(i915, pipe) {
1108			const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe];
1109
1110			max_bw = max(crtc_bw->max_bw[slice], max_bw);
1111			num_active_planes += hweight8(crtc_bw->active_planes[slice]);
1112		}
1113		max_bw *= num_active_planes;
1114
1115		total_max_bw = max(total_max_bw, max_bw);
1116	}
1117
1118	return DIV_ROUND_UP(total_max_bw, 64);
1119}
1120
1121int intel_bw_min_cdclk(struct drm_i915_private *i915,
1122		       const struct intel_bw_state *bw_state)
1123{
1124	enum pipe pipe;
1125	int min_cdclk;
1126
1127	min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state);
1128
1129	for_each_pipe(i915, pipe)
1130		min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk);
1131
1132	return min_cdclk;
1133}
1134
1135int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
1136			    bool *need_cdclk_calc)
1137{
1138	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1139	struct intel_bw_state *new_bw_state = NULL;
1140	const struct intel_bw_state *old_bw_state = NULL;
1141	const struct intel_cdclk_state *cdclk_state;
1142	const struct intel_crtc_state *crtc_state;
1143	int old_min_cdclk, new_min_cdclk;
1144	struct intel_crtc *crtc;
1145	int i;
1146
1147	if (DISPLAY_VER(dev_priv) < 9)
1148		return 0;
1149
1150	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
1151		new_bw_state = intel_atomic_get_bw_state(state);
1152		if (IS_ERR(new_bw_state))
1153			return PTR_ERR(new_bw_state);
1154
1155		old_bw_state = intel_atomic_get_old_bw_state(state);
1156
1157		skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
1158
1159		new_bw_state->min_cdclk[crtc->pipe] =
1160			intel_bw_crtc_min_cdclk(crtc_state);
1161	}
1162
1163	if (!old_bw_state)
1164		return 0;
1165
1166	if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) {
1167		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
1168		if (ret)
1169			return ret;
1170	}
1171
1172	old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state);
1173	new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state);
1174
1175	/*
1176	 * No need to check against the cdclk state if
1177	 * the min cdclk doesn't increase.
1178	 *
1179	 * Ie. we only ever increase the cdclk due to bandwidth
1180	 * requirements. This can reduce back and forth
1181	 * display blinking due to constant cdclk changes.
1182	 */
1183	if (new_min_cdclk <= old_min_cdclk)
1184		return 0;
1185
1186	cdclk_state = intel_atomic_get_cdclk_state(state);
1187	if (IS_ERR(cdclk_state))
1188		return PTR_ERR(cdclk_state);
1189
1190	/*
1191	 * No need to recalculate the cdclk state if
1192	 * the min cdclk doesn't increase.
1193	 *
1194	 * Ie. we only ever increase the cdclk due to bandwidth
1195	 * requirements. This can reduce back and forth
1196	 * display blinking due to constant cdclk changes.
1197	 */
1198	if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
1199		return 0;
1200
1201	drm_dbg_kms(&dev_priv->drm,
1202		    "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
1203		    new_min_cdclk, cdclk_state->bw_min_cdclk);
1204	*need_cdclk_calc = true;
1205
1206	return 0;
1207}
1208
1209static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
1210{
1211	struct drm_i915_private *i915 = to_i915(state->base.dev);
1212	const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
1213	struct intel_crtc *crtc;
1214	int i;
1215
1216	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
1217					    new_crtc_state, i) {
1218		unsigned int old_data_rate =
1219			intel_bw_crtc_data_rate(old_crtc_state);
1220		unsigned int new_data_rate =
1221			intel_bw_crtc_data_rate(new_crtc_state);
1222		unsigned int old_active_planes =
1223			intel_bw_crtc_num_active_planes(old_crtc_state);
1224		unsigned int new_active_planes =
1225			intel_bw_crtc_num_active_planes(new_crtc_state);
1226		struct intel_bw_state *new_bw_state;
1227
1228		/*
1229		 * Avoid locking the bw state when
1230		 * nothing significant has changed.
1231		 */
1232		if (old_data_rate == new_data_rate &&
1233		    old_active_planes == new_active_planes)
1234			continue;
1235
1236		new_bw_state = intel_atomic_get_bw_state(state);
1237		if (IS_ERR(new_bw_state))
1238			return PTR_ERR(new_bw_state);
1239
1240		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
1241		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
1242
1243		*changed = true;
1244
1245		drm_dbg_kms(&i915->drm,
1246			    "[CRTC:%d:%s] data rate %u num active planes %u\n",
1247			    crtc->base.base.id, crtc->base.name,
1248			    new_bw_state->data_rate[crtc->pipe],
1249			    new_bw_state->num_active_planes[crtc->pipe]);
1250	}
1251
1252	return 0;
1253}
1254
1255int intel_bw_atomic_check(struct intel_atomic_state *state)
1256{
1257	bool changed = false;
1258	struct drm_i915_private *i915 = to_i915(state->base.dev);
1259	struct intel_bw_state *new_bw_state;
1260	const struct intel_bw_state *old_bw_state;
1261	int ret;
1262
1263	/* FIXME earlier gens need some checks too */
1264	if (DISPLAY_VER(i915) < 11)
1265		return 0;
1266
1267	ret = intel_bw_check_data_rate(state, &changed);
1268	if (ret)
1269		return ret;
1270
1271	old_bw_state = intel_atomic_get_old_bw_state(state);
1272	new_bw_state = intel_atomic_get_new_bw_state(state);
1273
1274	if (new_bw_state &&
1275	    intel_can_enable_sagv(i915, old_bw_state) !=
1276	    intel_can_enable_sagv(i915, new_bw_state))
1277		changed = true;
1278
1279	/*
1280	 * If none of our inputs (data rates, number of active
1281	 * planes, SAGV yes/no) changed then nothing to do here.
1282	 */
1283	if (!changed)
1284		return 0;
1285
1286	ret = intel_bw_check_qgv_points(i915, old_bw_state, new_bw_state);
1287	if (ret)
1288		return ret;
1289
1290	return 0;
1291}
1292
1293static struct intel_global_state *
1294intel_bw_duplicate_state(struct intel_global_obj *obj)
1295{
1296	struct intel_bw_state *state;
1297
1298	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
1299	if (!state)
1300		return NULL;
1301
1302	return &state->base;
1303}
1304
1305static void intel_bw_destroy_state(struct intel_global_obj *obj,
1306				   struct intel_global_state *state)
1307{
1308	kfree(state);
1309}
1310
1311static const struct intel_global_state_funcs intel_bw_funcs = {
1312	.atomic_duplicate_state = intel_bw_duplicate_state,
1313	.atomic_destroy_state = intel_bw_destroy_state,
1314};
1315
1316int intel_bw_init(struct drm_i915_private *dev_priv)
1317{
1318	struct intel_bw_state *state;
1319
1320	state = kzalloc(sizeof(*state), GFP_KERNEL);
1321	if (!state)
1322		return -ENOMEM;
1323
1324	intel_atomic_global_obj_init(dev_priv, &dev_priv->display.bw.obj,
1325				     &state->base, &intel_bw_funcs);
1326
1327	return 0;
1328}
1329