1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Texas Instruments
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7#include <linux/component.h>
8#include <linux/gpio/consumer.h>
9#include <linux/hdmi.h>
10#include <linux/i2c.h>
11#include <linux/module.h>
12#include <linux/platform_data/tda9950.h>
13#include <linux/irq.h>
14#include <sound/asoundef.h>
15#include <sound/hdmi-codec.h>
16
17#include <drm/drm_atomic_helper.h>
18#include <drm/drm_bridge.h>
19#include <drm/drm_edid.h>
20#include <drm/drm_of.h>
21#include <drm/drm_print.h>
22#include <drm/drm_probe_helper.h>
23#include <drm/drm_simple_kms_helper.h>
24#include <drm/i2c/tda998x.h>
25
26#include <media/cec-notifier.h>
27
28#define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
29
30enum {
31	AUDIO_ROUTE_I2S,
32	AUDIO_ROUTE_SPDIF,
33	AUDIO_ROUTE_NUM
34};
35
36struct tda998x_audio_route {
37	u8 ena_aclk;
38	u8 mux_ap;
39	u8 aip_clksel;
40};
41
42struct tda998x_audio_settings {
43	const struct tda998x_audio_route *route;
44	struct hdmi_audio_infoframe cea;
45	unsigned int sample_rate;
46	u8 status[5];
47	u8 ena_ap;
48	u8 i2s_format;
49	u8 cts_n;
50};
51
52struct tda998x_priv {
53	struct i2c_client *cec;
54	struct i2c_client *hdmi;
55	struct mutex mutex;
56	u16 rev;
57	u8 cec_addr;
58	u8 current_page;
59	bool is_on;
60	bool supports_infoframes;
61	bool sink_has_audio;
62	enum hdmi_quantization_range rgb_quant_range;
63	u8 vip_cntrl_0;
64	u8 vip_cntrl_1;
65	u8 vip_cntrl_2;
66	unsigned long tmds_clock;
67	struct tda998x_audio_settings audio;
68
69	struct platform_device *audio_pdev;
70	struct mutex audio_mutex;
71
72	struct mutex edid_mutex;
73	wait_queue_head_t wq_edid;
74	volatile int wq_edid_wait;
75
76	struct work_struct detect_work;
77	struct timer_list edid_delay_timer;
78	wait_queue_head_t edid_delay_waitq;
79	bool edid_delay_active;
80
81	struct drm_encoder encoder;
82	struct drm_bridge bridge;
83	struct drm_connector connector;
84
85	u8 audio_port_enable[AUDIO_ROUTE_NUM];
86	struct tda9950_glue cec_glue;
87	struct gpio_desc *calib;
88	struct cec_notifier *cec_notify;
89};
90
91#define conn_to_tda998x_priv(x) \
92	container_of(x, struct tda998x_priv, connector)
93#define enc_to_tda998x_priv(x) \
94	container_of(x, struct tda998x_priv, encoder)
95#define bridge_to_tda998x_priv(x) \
96	container_of(x, struct tda998x_priv, bridge)
97
98/* The TDA9988 series of devices use a paged register scheme.. to simplify
99 * things we encode the page # in upper bits of the register #.  To read/
100 * write a given register, we need to make sure CURPAGE register is set
101 * appropriately.  Which implies reads/writes are not atomic.  Fun!
102 */
103
104#define REG(page, addr) (((page) << 8) | (addr))
105#define REG2ADDR(reg)   ((reg) & 0xff)
106#define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
107
108#define REG_CURPAGE               0xff                /* write */
109
110
111/* Page 00h: General Control */
112#define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
113#define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
114# define MAIN_CNTRL0_SR           (1 << 0)
115# define MAIN_CNTRL0_DECS         (1 << 1)
116# define MAIN_CNTRL0_DEHS         (1 << 2)
117# define MAIN_CNTRL0_CECS         (1 << 3)
118# define MAIN_CNTRL0_CEHS         (1 << 4)
119# define MAIN_CNTRL0_SCALER       (1 << 7)
120#define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
121#define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
122# define SOFTRESET_AUDIO          (1 << 0)
123# define SOFTRESET_I2C_MASTER     (1 << 1)
124#define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
125#define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
126#define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
127# define I2C_MASTER_DIS_MM        (1 << 0)
128# define I2C_MASTER_DIS_FILT      (1 << 1)
129# define I2C_MASTER_APP_STRT_LAT  (1 << 2)
130#define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
131# define FEAT_POWERDOWN_PREFILT   BIT(0)
132# define FEAT_POWERDOWN_CSC       BIT(1)
133# define FEAT_POWERDOWN_SPDIF     (1 << 3)
134#define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
135#define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
136#define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
137# define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
138#define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
139#define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
140#define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
141#define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
142#define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
143#define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
144# define VIP_CNTRL_0_MIRR_A       (1 << 7)
145# define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
146# define VIP_CNTRL_0_MIRR_B       (1 << 3)
147# define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
148#define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
149# define VIP_CNTRL_1_MIRR_C       (1 << 7)
150# define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
151# define VIP_CNTRL_1_MIRR_D       (1 << 3)
152# define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
153#define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
154# define VIP_CNTRL_2_MIRR_E       (1 << 7)
155# define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
156# define VIP_CNTRL_2_MIRR_F       (1 << 3)
157# define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
158#define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
159# define VIP_CNTRL_3_X_TGL        (1 << 0)
160# define VIP_CNTRL_3_H_TGL        (1 << 1)
161# define VIP_CNTRL_3_V_TGL        (1 << 2)
162# define VIP_CNTRL_3_EMB          (1 << 3)
163# define VIP_CNTRL_3_SYNC_DE      (1 << 4)
164# define VIP_CNTRL_3_SYNC_HS      (1 << 5)
165# define VIP_CNTRL_3_DE_INT       (1 << 6)
166# define VIP_CNTRL_3_EDGE         (1 << 7)
167#define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
168# define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
169# define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
170# define VIP_CNTRL_4_CCIR656      (1 << 4)
171# define VIP_CNTRL_4_656_ALT      (1 << 5)
172# define VIP_CNTRL_4_TST_656      (1 << 6)
173# define VIP_CNTRL_4_TST_PAT      (1 << 7)
174#define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
175# define VIP_CNTRL_5_CKCASE       (1 << 0)
176# define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
177#define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
178# define MUX_AP_SELECT_I2S	  0x64
179# define MUX_AP_SELECT_SPDIF	  0x40
180#define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
181#define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
182# define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
183# define MAT_CONTRL_MAT_BP        (1 << 2)
184#define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
185#define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
186#define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
187#define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
188#define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
189#define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
190#define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
191#define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
192#define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
193#define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
194#define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
195#define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
196#define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
197#define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
198#define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
199#define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
200#define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
201#define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
202#define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
203#define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
204#define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
205#define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
206#define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
207#define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
208#define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
209#define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
210#define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
211#define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
212#define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
213#define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
214#define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
215#define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
216#define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
217#define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
218#define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
219#define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
220#define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
221#define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
222#define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
223#define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
224#define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
225#define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
226# define TBG_CNTRL_0_TOP_TGL      (1 << 0)
227# define TBG_CNTRL_0_TOP_SEL      (1 << 1)
228# define TBG_CNTRL_0_DE_EXT       (1 << 2)
229# define TBG_CNTRL_0_TOP_EXT      (1 << 3)
230# define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
231# define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
232# define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
233#define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
234# define TBG_CNTRL_1_H_TGL        (1 << 0)
235# define TBG_CNTRL_1_V_TGL        (1 << 1)
236# define TBG_CNTRL_1_TGL_EN       (1 << 2)
237# define TBG_CNTRL_1_X_EXT        (1 << 3)
238# define TBG_CNTRL_1_H_EXT        (1 << 4)
239# define TBG_CNTRL_1_V_EXT        (1 << 5)
240# define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
241#define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
242#define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
243# define HVF_CNTRL_0_SM           (1 << 7)
244# define HVF_CNTRL_0_RWB          (1 << 6)
245# define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
246# define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
247#define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
248# define HVF_CNTRL_1_FOR          (1 << 0)
249# define HVF_CNTRL_1_YUVBLK       (1 << 1)
250# define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
251# define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
252# define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
253#define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
254# define RPT_CNTRL_REPEAT(x)      ((x) & 15)
255#define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
256# define I2S_FORMAT_PHILIPS       (0 << 0)
257# define I2S_FORMAT_LEFT_J        (2 << 0)
258# define I2S_FORMAT_RIGHT_J       (3 << 0)
259#define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
260# define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
261# define AIP_CLKSEL_AIP_I2S	  (1 << 3)
262# define AIP_CLKSEL_FS_ACLK	  (0 << 0)
263# define AIP_CLKSEL_FS_MCLK	  (1 << 0)
264# define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
265
266/* Page 02h: PLL settings */
267#define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
268# define PLL_SERIAL_1_SRL_FDN     (1 << 0)
269# define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
270# define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
271#define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
272# define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
273# define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
274#define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
275# define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
276# define PLL_SERIAL_3_SRL_DE      (1 << 2)
277# define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
278#define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
279#define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
280#define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
281#define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
282#define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
283#define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
284#define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
285#define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
286#define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
287# define AUDIO_DIV_SERCLK_1       0
288# define AUDIO_DIV_SERCLK_2       1
289# define AUDIO_DIV_SERCLK_4       2
290# define AUDIO_DIV_SERCLK_8       3
291# define AUDIO_DIV_SERCLK_16      4
292# define AUDIO_DIV_SERCLK_32      5
293#define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
294# define SEL_CLK_SEL_CLK1         (1 << 0)
295# define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
296# define SEL_CLK_ENA_SC_CLK       (1 << 3)
297#define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
298
299
300/* Page 09h: EDID Control */
301#define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
302/* next 127 successive registers are the EDID block */
303#define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
304#define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
305#define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
306#define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
307#define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
308
309
310/* Page 10h: information frames and packets */
311#define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
312#define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
313#define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
314#define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
315#define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
316
317
318/* Page 11h: audio settings and content info packets */
319#define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
320# define AIP_CNTRL_0_RST_FIFO     (1 << 0)
321# define AIP_CNTRL_0_SWAP         (1 << 1)
322# define AIP_CNTRL_0_LAYOUT       (1 << 2)
323# define AIP_CNTRL_0_ACR_MAN      (1 << 5)
324# define AIP_CNTRL_0_RST_CTS      (1 << 6)
325#define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
326# define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
327# define CA_I2S_HBR_CHSTAT        (1 << 6)
328#define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
329#define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
330#define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
331#define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
332#define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
333#define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
334#define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
335#define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
336# define CTS_N_K(x)               (((x) & 7) << 0)
337# define CTS_N_M(x)               (((x) & 3) << 4)
338#define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
339# define ENC_CNTRL_RST_ENC        (1 << 0)
340# define ENC_CNTRL_RST_SEL        (1 << 1)
341# define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
342#define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
343# define DIP_FLAGS_ACR            (1 << 0)
344# define DIP_FLAGS_GC             (1 << 1)
345#define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
346# define DIP_IF_FLAGS_IF1         (1 << 1)
347# define DIP_IF_FLAGS_IF2         (1 << 2)
348# define DIP_IF_FLAGS_IF3         (1 << 3)
349# define DIP_IF_FLAGS_IF4         (1 << 4)
350# define DIP_IF_FLAGS_IF5         (1 << 5)
351#define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
352
353
354/* Page 12h: HDCP and OTP */
355#define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
356#define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
357# define TX4_PD_RAM               (1 << 1)
358#define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
359# define TX33_HDMI                (1 << 1)
360
361
362/* Page 13h: Gamut related metadata packets */
363
364
365
366/* CEC registers: (not paged)
367 */
368#define REG_CEC_INTSTATUS	  0xee		      /* read */
369# define CEC_INTSTATUS_CEC	  (1 << 0)
370# define CEC_INTSTATUS_HDMI	  (1 << 1)
371#define REG_CEC_CAL_XOSC_CTRL1    0xf2
372# define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
373#define REG_CEC_DES_FREQ2         0xf5
374# define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
375#define REG_CEC_CLK               0xf6
376# define CEC_CLK_FRO              0x11
377#define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
378# define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
379# define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
380# define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
381# define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
382#define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
383#define REG_CEC_RXSHPDINT	  0xfd		      /* read */
384# define CEC_RXSHPDINT_RXSENS     BIT(0)
385# define CEC_RXSHPDINT_HPD        BIT(1)
386#define REG_CEC_RXSHPDLEV         0xfe                /* read */
387# define CEC_RXSHPDLEV_RXSENS     (1 << 0)
388# define CEC_RXSHPDLEV_HPD        (1 << 1)
389
390#define REG_CEC_ENAMODS           0xff                /* read/write */
391# define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
392# define CEC_ENAMODS_DIS_FRO      (1 << 6)
393# define CEC_ENAMODS_DIS_CCLK     (1 << 5)
394# define CEC_ENAMODS_EN_RXSENS    (1 << 2)
395# define CEC_ENAMODS_EN_HDMI      (1 << 1)
396# define CEC_ENAMODS_EN_CEC       (1 << 0)
397
398
399/* Device versions: */
400#define TDA9989N2                 0x0101
401#define TDA19989                  0x0201
402#define TDA19989N2                0x0202
403#define TDA19988                  0x0301
404
405static void
406cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
407{
408	u8 buf[] = {addr, val};
409	struct i2c_msg msg = {
410		.addr = priv->cec_addr,
411		.len = 2,
412		.buf = buf,
413	};
414	int ret;
415
416	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
417	if (ret < 0)
418		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
419			ret, addr);
420}
421
422static u8
423cec_read(struct tda998x_priv *priv, u8 addr)
424{
425	u8 val;
426	struct i2c_msg msg[2] = {
427		{
428			.addr = priv->cec_addr,
429			.len = 1,
430			.buf = &addr,
431		}, {
432			.addr = priv->cec_addr,
433			.flags = I2C_M_RD,
434			.len = 1,
435			.buf = &val,
436		},
437	};
438	int ret;
439
440	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
441	if (ret < 0) {
442		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
443			ret, addr);
444		val = 0;
445	}
446
447	return val;
448}
449
450static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
451{
452	int val = cec_read(priv, REG_CEC_ENAMODS);
453
454	if (val < 0)
455		return;
456
457	if (enable)
458		val |= mods;
459	else
460		val &= ~mods;
461
462	cec_write(priv, REG_CEC_ENAMODS, val);
463}
464
465static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
466{
467	if (enable) {
468		u8 val;
469
470		cec_write(priv, 0xf3, 0xc0);
471		cec_write(priv, 0xf4, 0xd4);
472
473		/* Enable automatic calibration mode */
474		val = cec_read(priv, REG_CEC_DES_FREQ2);
475		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
476		cec_write(priv, REG_CEC_DES_FREQ2, val);
477
478		/* Enable free running oscillator */
479		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
480		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
481
482		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
483			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
484	} else {
485		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
486	}
487}
488
489/*
490 * Calibration for the internal oscillator: we need to set calibration mode,
491 * and then pulse the IRQ line low for a 10ms �� 1% period.
492 */
493static void tda998x_cec_calibration(struct tda998x_priv *priv)
494{
495	struct gpio_desc *calib = priv->calib;
496
497	mutex_lock(&priv->edid_mutex);
498	if (priv->hdmi->irq > 0)
499		disable_irq(priv->hdmi->irq);
500	gpiod_direction_output(calib, 1);
501	tda998x_cec_set_calibration(priv, true);
502
503	local_irq_disable();
504	gpiod_set_value(calib, 0);
505	mdelay(10);
506	gpiod_set_value(calib, 1);
507	local_irq_enable();
508
509	tda998x_cec_set_calibration(priv, false);
510	gpiod_direction_input(calib);
511	if (priv->hdmi->irq > 0)
512		enable_irq(priv->hdmi->irq);
513	mutex_unlock(&priv->edid_mutex);
514}
515
516static int tda998x_cec_hook_init(void *data)
517{
518	struct tda998x_priv *priv = data;
519	struct gpio_desc *calib;
520
521	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
522	if (IS_ERR(calib)) {
523		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
524			 PTR_ERR(calib));
525		return PTR_ERR(calib);
526	}
527
528	priv->calib = calib;
529
530	return 0;
531}
532
533static void tda998x_cec_hook_exit(void *data)
534{
535	struct tda998x_priv *priv = data;
536
537	gpiod_put(priv->calib);
538	priv->calib = NULL;
539}
540
541static int tda998x_cec_hook_open(void *data)
542{
543	struct tda998x_priv *priv = data;
544
545	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
546	tda998x_cec_calibration(priv);
547
548	return 0;
549}
550
551static void tda998x_cec_hook_release(void *data)
552{
553	struct tda998x_priv *priv = data;
554
555	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
556}
557
558static int
559set_page(struct tda998x_priv *priv, u16 reg)
560{
561	if (REG2PAGE(reg) != priv->current_page) {
562		struct i2c_client *client = priv->hdmi;
563		u8 buf[] = {
564				REG_CURPAGE, REG2PAGE(reg)
565		};
566		int ret = i2c_master_send(client, buf, sizeof(buf));
567		if (ret < 0) {
568			dev_err(&client->dev, "%s %04x err %d\n", __func__,
569					reg, ret);
570			return ret;
571		}
572
573		priv->current_page = REG2PAGE(reg);
574	}
575	return 0;
576}
577
578static int
579reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
580{
581	struct i2c_client *client = priv->hdmi;
582	u8 addr = REG2ADDR(reg);
583	int ret;
584
585	mutex_lock(&priv->mutex);
586	ret = set_page(priv, reg);
587	if (ret < 0)
588		goto out;
589
590	ret = i2c_master_send(client, &addr, sizeof(addr));
591	if (ret < 0)
592		goto fail;
593
594	ret = i2c_master_recv(client, buf, cnt);
595	if (ret < 0)
596		goto fail;
597
598	goto out;
599
600fail:
601	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
602out:
603	mutex_unlock(&priv->mutex);
604	return ret;
605}
606
607#define MAX_WRITE_RANGE_BUF 32
608
609static void
610reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
611{
612	struct i2c_client *client = priv->hdmi;
613	/* This is the maximum size of the buffer passed in */
614	u8 buf[MAX_WRITE_RANGE_BUF + 1];
615	int ret;
616
617	if (cnt > MAX_WRITE_RANGE_BUF) {
618		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
619				MAX_WRITE_RANGE_BUF);
620		return;
621	}
622
623	buf[0] = REG2ADDR(reg);
624	memcpy(&buf[1], p, cnt);
625
626	mutex_lock(&priv->mutex);
627	ret = set_page(priv, reg);
628	if (ret < 0)
629		goto out;
630
631	ret = i2c_master_send(client, buf, cnt + 1);
632	if (ret < 0)
633		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
634out:
635	mutex_unlock(&priv->mutex);
636}
637
638static int
639reg_read(struct tda998x_priv *priv, u16 reg)
640{
641	u8 val = 0;
642	int ret;
643
644	ret = reg_read_range(priv, reg, &val, sizeof(val));
645	if (ret < 0)
646		return ret;
647	return val;
648}
649
650static void
651reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
652{
653	struct i2c_client *client = priv->hdmi;
654	u8 buf[] = {REG2ADDR(reg), val};
655	int ret;
656
657	mutex_lock(&priv->mutex);
658	ret = set_page(priv, reg);
659	if (ret < 0)
660		goto out;
661
662	ret = i2c_master_send(client, buf, sizeof(buf));
663	if (ret < 0)
664		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
665out:
666	mutex_unlock(&priv->mutex);
667}
668
669static void
670reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
671{
672	struct i2c_client *client = priv->hdmi;
673	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
674	int ret;
675
676	mutex_lock(&priv->mutex);
677	ret = set_page(priv, reg);
678	if (ret < 0)
679		goto out;
680
681	ret = i2c_master_send(client, buf, sizeof(buf));
682	if (ret < 0)
683		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
684out:
685	mutex_unlock(&priv->mutex);
686}
687
688static void
689reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
690{
691	int old_val;
692
693	old_val = reg_read(priv, reg);
694	if (old_val >= 0)
695		reg_write(priv, reg, old_val | val);
696}
697
698static void
699reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
700{
701	int old_val;
702
703	old_val = reg_read(priv, reg);
704	if (old_val >= 0)
705		reg_write(priv, reg, old_val & ~val);
706}
707
708static void
709tda998x_reset(struct tda998x_priv *priv)
710{
711	/* reset audio and i2c master: */
712	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
713	msleep(50);
714	reg_write(priv, REG_SOFTRESET, 0);
715	msleep(50);
716
717	/* reset transmitter: */
718	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
719	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
720
721	/* PLL registers common configuration */
722	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
723	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
724	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
725	reg_write(priv, REG_SERIALIZER,   0x00);
726	reg_write(priv, REG_BUFFER_OUT,   0x00);
727	reg_write(priv, REG_PLL_SCG1,     0x00);
728	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
729	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
730	reg_write(priv, REG_PLL_SCGN1,    0xfa);
731	reg_write(priv, REG_PLL_SCGN2,    0x00);
732	reg_write(priv, REG_PLL_SCGR1,    0x5b);
733	reg_write(priv, REG_PLL_SCGR2,    0x00);
734	reg_write(priv, REG_PLL_SCG2,     0x10);
735
736	/* Write the default value MUX register */
737	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
738}
739
740/*
741 * The TDA998x has a problem when trying to read the EDID close to a
742 * HPD assertion: it needs a delay of 100ms to avoid timing out while
743 * trying to read EDID data.
744 *
745 * However, tda998x_connector_get_modes() may be called at any moment
746 * after tda998x_connector_detect() indicates that we are connected, so
747 * we need to delay probing modes in tda998x_connector_get_modes() after
748 * we have seen a HPD inactive->active transition.  This code implements
749 * that delay.
750 */
751static void tda998x_edid_delay_done(struct timer_list *t)
752{
753	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
754
755	priv->edid_delay_active = false;
756	wake_up(&priv->edid_delay_waitq);
757	schedule_work(&priv->detect_work);
758}
759
760static void tda998x_edid_delay_start(struct tda998x_priv *priv)
761{
762	priv->edid_delay_active = true;
763	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
764}
765
766static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
767{
768	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
769}
770
771/*
772 * We need to run the KMS hotplug event helper outside of our threaded
773 * interrupt routine as this can call back into our get_modes method,
774 * which will want to make use of interrupts.
775 */
776static void tda998x_detect_work(struct work_struct *work)
777{
778	struct tda998x_priv *priv =
779		container_of(work, struct tda998x_priv, detect_work);
780	struct drm_device *dev = priv->connector.dev;
781
782	if (dev)
783		drm_kms_helper_hotplug_event(dev);
784}
785
786/*
787 * only 2 interrupts may occur: screen plug/unplug and EDID read
788 */
789static irqreturn_t tda998x_irq_thread(int irq, void *data)
790{
791	struct tda998x_priv *priv = data;
792	u8 sta, cec, lvl, flag0, flag1, flag2;
793	bool handled = false;
794
795	sta = cec_read(priv, REG_CEC_INTSTATUS);
796	if (sta & CEC_INTSTATUS_HDMI) {
797		cec = cec_read(priv, REG_CEC_RXSHPDINT);
798		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
799		flag0 = reg_read(priv, REG_INT_FLAGS_0);
800		flag1 = reg_read(priv, REG_INT_FLAGS_1);
801		flag2 = reg_read(priv, REG_INT_FLAGS_2);
802		DRM_DEBUG_DRIVER(
803			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
804			sta, cec, lvl, flag0, flag1, flag2);
805
806		if (cec & CEC_RXSHPDINT_HPD) {
807			if (lvl & CEC_RXSHPDLEV_HPD) {
808				tda998x_edid_delay_start(priv);
809			} else {
810				schedule_work(&priv->detect_work);
811				cec_notifier_phys_addr_invalidate(
812						priv->cec_notify);
813			}
814
815			handled = true;
816		}
817
818		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
819			priv->wq_edid_wait = 0;
820			wake_up(&priv->wq_edid);
821			handled = true;
822		}
823	}
824
825	return IRQ_RETVAL(handled);
826}
827
828static void
829tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
830		 union hdmi_infoframe *frame)
831{
832	u8 buf[MAX_WRITE_RANGE_BUF];
833	ssize_t len;
834
835	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
836	if (len < 0) {
837		dev_err(&priv->hdmi->dev,
838			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
839			frame->any.type, len);
840		return;
841	}
842
843	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
844	reg_write_range(priv, addr, buf, len);
845	reg_set(priv, REG_DIP_IF_FLAGS, bit);
846}
847
848static void tda998x_write_aif(struct tda998x_priv *priv,
849			      const struct hdmi_audio_infoframe *cea)
850{
851	union hdmi_infoframe frame;
852
853	frame.audio = *cea;
854
855	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
856}
857
858static void
859tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
860{
861	union hdmi_infoframe frame;
862
863	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
864						 &priv->connector, mode);
865	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
866	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
867					   priv->rgb_quant_range);
868
869	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
870}
871
872static void tda998x_write_vsi(struct tda998x_priv *priv,
873			      const struct drm_display_mode *mode)
874{
875	union hdmi_infoframe frame;
876
877	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
878							&priv->connector,
879							mode))
880		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
881	else
882		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
883}
884
885/* Audio support */
886
887static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
888	[AUDIO_ROUTE_I2S] = {
889		.ena_aclk = 1,
890		.mux_ap = MUX_AP_SELECT_I2S,
891		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
892	},
893	[AUDIO_ROUTE_SPDIF] = {
894		.ena_aclk = 0,
895		.mux_ap = MUX_AP_SELECT_SPDIF,
896		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
897	},
898};
899
900/* Configure the TDA998x audio data and clock routing. */
901static int tda998x_derive_routing(struct tda998x_priv *priv,
902				  struct tda998x_audio_settings *s,
903				  unsigned int route)
904{
905	s->route = &tda998x_audio_route[route];
906	s->ena_ap = priv->audio_port_enable[route];
907	if (s->ena_ap == 0) {
908		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
909		return -EINVAL;
910	}
911
912	return 0;
913}
914
915/*
916 * The audio clock divisor register controls a divider producing Audio_Clk_Out
917 * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
918 * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
919 *
920 * It seems that Audio_Clk_Out must be the smallest value that is greater
921 * than 128*fs, otherwise audio does not function. There is some suggestion
922 * that 126*fs is a better value.
923 */
924static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
925{
926	unsigned long min_audio_clk = fs * 128;
927	unsigned long ser_clk = priv->tmds_clock * 1000;
928	u8 adiv;
929
930	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
931		if (ser_clk > min_audio_clk << adiv)
932			break;
933
934	dev_dbg(&priv->hdmi->dev,
935		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
936		ser_clk, fs, min_audio_clk, adiv);
937
938	return adiv;
939}
940
941/*
942 * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
943 * generate the CTS value.  It appears that the "measured time stamp" is
944 * the number of TDMS clock cycles within a number of audio input clock
945 * cycles defined by the k and N parameters defined below, in a similar
946 * way to that which is set out in the CTS generation in the HDMI spec.
947 *
948 *  tmdsclk ----> mts -> /m ---> CTS
949 *                 ^
950 *  sclk -> /k -> /N
951 *
952 * CTS = mts / m, where m is 2^M.
953 * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
954 * /N is a divider based on the HDMI specified N value.
955 *
956 * This produces the following equation:
957 *  CTS = tmds_clock * k * N / (sclk * m)
958 *
959 * When combined with the sink-side equation, and realising that sclk is
960 * bclk_ratio * fs, we end up with:
961 *  k = m * bclk_ratio / 128.
962 *
963 * Note: S/PDIF always uses a bclk_ratio of 64.
964 */
965static int tda998x_derive_cts_n(struct tda998x_priv *priv,
966				struct tda998x_audio_settings *settings,
967				unsigned int ratio)
968{
969	switch (ratio) {
970	case 16:
971		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
972		break;
973	case 32:
974		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
975		break;
976	case 48:
977		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
978		break;
979	case 64:
980		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
981		break;
982	case 128:
983		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
984		break;
985	default:
986		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
987			ratio);
988		return -EINVAL;
989	}
990	return 0;
991}
992
993static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
994{
995	if (on) {
996		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
997		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
998		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
999	} else {
1000		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1001	}
1002}
1003
1004static void tda998x_configure_audio(struct tda998x_priv *priv)
1005{
1006	const struct tda998x_audio_settings *settings = &priv->audio;
1007	u8 buf[6], adiv;
1008	u32 n;
1009
1010	/* If audio is not configured, there is nothing to do. */
1011	if (settings->ena_ap == 0)
1012		return;
1013
1014	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1015
1016	/* Enable audio ports */
1017	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1018	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1019	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1020	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1021	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1022	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1023					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1024	reg_write(priv, REG_CTS_N, settings->cts_n);
1025	reg_write(priv, REG_AUDIO_DIV, adiv);
1026
1027	/*
1028	 * This is the approximate value of N, which happens to be
1029	 * the recommended values for non-coherent clocks.
1030	 */
1031	n = 128 * settings->sample_rate / 1000;
1032
1033	/* Write the CTS and N values */
1034	buf[0] = 0x44;
1035	buf[1] = 0x42;
1036	buf[2] = 0x01;
1037	buf[3] = n;
1038	buf[4] = n >> 8;
1039	buf[5] = n >> 16;
1040	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1041
1042	/* Reset CTS generator */
1043	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1044	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1045
1046	/* Write the channel status
1047	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1048	 * there is a separate register for each I2S wire.
1049	 */
1050	buf[0] = settings->status[0];
1051	buf[1] = settings->status[1];
1052	buf[2] = settings->status[3];
1053	buf[3] = settings->status[4];
1054	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1055
1056	tda998x_audio_mute(priv, true);
1057	msleep(20);
1058	tda998x_audio_mute(priv, false);
1059
1060	tda998x_write_aif(priv, &settings->cea);
1061}
1062
1063static int tda998x_audio_hw_params(struct device *dev, void *data,
1064				   struct hdmi_codec_daifmt *daifmt,
1065				   struct hdmi_codec_params *params)
1066{
1067	struct tda998x_priv *priv = dev_get_drvdata(dev);
1068	unsigned int bclk_ratio;
1069	bool spdif = daifmt->fmt == HDMI_SPDIF;
1070	int ret;
1071	struct tda998x_audio_settings audio = {
1072		.sample_rate = params->sample_rate,
1073		.cea = params->cea,
1074	};
1075
1076	memcpy(audio.status, params->iec.status,
1077	       min(sizeof(audio.status), sizeof(params->iec.status)));
1078
1079	switch (daifmt->fmt) {
1080	case HDMI_I2S:
1081		audio.i2s_format = I2S_FORMAT_PHILIPS;
1082		break;
1083	case HDMI_LEFT_J:
1084		audio.i2s_format = I2S_FORMAT_LEFT_J;
1085		break;
1086	case HDMI_RIGHT_J:
1087		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1088		break;
1089	case HDMI_SPDIF:
1090		audio.i2s_format = 0;
1091		break;
1092	default:
1093		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1094		return -EINVAL;
1095	}
1096
1097	if (!spdif &&
1098	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1099	     daifmt->bit_clk_provider || daifmt->frame_clk_provider)) {
1100		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1101			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1102			daifmt->bit_clk_provider,
1103			daifmt->frame_clk_provider);
1104		return -EINVAL;
1105	}
1106
1107	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1108	if (ret < 0)
1109		return ret;
1110
1111	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1112	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1113	if (ret < 0)
1114		return ret;
1115
1116	mutex_lock(&priv->audio_mutex);
1117	priv->audio = audio;
1118	if (priv->supports_infoframes && priv->sink_has_audio)
1119		tda998x_configure_audio(priv);
1120	mutex_unlock(&priv->audio_mutex);
1121
1122	return 0;
1123}
1124
1125static void tda998x_audio_shutdown(struct device *dev, void *data)
1126{
1127	struct tda998x_priv *priv = dev_get_drvdata(dev);
1128
1129	mutex_lock(&priv->audio_mutex);
1130
1131	reg_write(priv, REG_ENA_AP, 0);
1132	priv->audio.ena_ap = 0;
1133
1134	mutex_unlock(&priv->audio_mutex);
1135}
1136
1137static int tda998x_audio_mute_stream(struct device *dev, void *data,
1138				     bool enable, int direction)
1139{
1140	struct tda998x_priv *priv = dev_get_drvdata(dev);
1141
1142	mutex_lock(&priv->audio_mutex);
1143
1144	tda998x_audio_mute(priv, enable);
1145
1146	mutex_unlock(&priv->audio_mutex);
1147	return 0;
1148}
1149
1150static int tda998x_audio_get_eld(struct device *dev, void *data,
1151				 uint8_t *buf, size_t len)
1152{
1153	struct tda998x_priv *priv = dev_get_drvdata(dev);
1154
1155	mutex_lock(&priv->audio_mutex);
1156	memcpy(buf, priv->connector.eld,
1157	       min(sizeof(priv->connector.eld), len));
1158	mutex_unlock(&priv->audio_mutex);
1159
1160	return 0;
1161}
1162
1163static const struct hdmi_codec_ops audio_codec_ops = {
1164	.hw_params = tda998x_audio_hw_params,
1165	.audio_shutdown = tda998x_audio_shutdown,
1166	.mute_stream = tda998x_audio_mute_stream,
1167	.get_eld = tda998x_audio_get_eld,
1168	.no_capture_mute = 1,
1169};
1170
1171static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1172				    struct device *dev)
1173{
1174	struct hdmi_codec_pdata codec_data = {
1175		.ops = &audio_codec_ops,
1176		.max_i2s_channels = 2,
1177		.no_i2s_capture = 1,
1178		.no_spdif_capture = 1,
1179	};
1180
1181	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1182		codec_data.i2s = 1;
1183	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1184		codec_data.spdif = 1;
1185
1186	priv->audio_pdev = platform_device_register_data(
1187		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1188		&codec_data, sizeof(codec_data));
1189
1190	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1191}
1192
1193/* DRM connector functions */
1194
1195static enum drm_connector_status
1196tda998x_connector_detect(struct drm_connector *connector, bool force)
1197{
1198	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1199	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1200
1201	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1202			connector_status_disconnected;
1203}
1204
1205static void tda998x_connector_destroy(struct drm_connector *connector)
1206{
1207	drm_connector_cleanup(connector);
1208}
1209
1210static const struct drm_connector_funcs tda998x_connector_funcs = {
1211	.reset = drm_atomic_helper_connector_reset,
1212	.fill_modes = drm_helper_probe_single_connector_modes,
1213	.detect = tda998x_connector_detect,
1214	.destroy = tda998x_connector_destroy,
1215	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1216	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1217};
1218
1219static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1220{
1221	struct tda998x_priv *priv = data;
1222	u8 offset, segptr;
1223	int ret, i;
1224
1225	offset = (blk & 1) ? 128 : 0;
1226	segptr = blk / 2;
1227
1228	mutex_lock(&priv->edid_mutex);
1229
1230	reg_write(priv, REG_DDC_ADDR, 0xa0);
1231	reg_write(priv, REG_DDC_OFFS, offset);
1232	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1233	reg_write(priv, REG_DDC_SEGM, segptr);
1234
1235	/* enable reading EDID: */
1236	priv->wq_edid_wait = 1;
1237	reg_write(priv, REG_EDID_CTRL, 0x1);
1238
1239	/* flag must be cleared by sw: */
1240	reg_write(priv, REG_EDID_CTRL, 0x0);
1241
1242	/* wait for block read to complete: */
1243	if (priv->hdmi->irq) {
1244		i = wait_event_timeout(priv->wq_edid,
1245					!priv->wq_edid_wait,
1246					msecs_to_jiffies(100));
1247		if (i < 0) {
1248			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1249			ret = i;
1250			goto failed;
1251		}
1252	} else {
1253		for (i = 100; i > 0; i--) {
1254			msleep(1);
1255			ret = reg_read(priv, REG_INT_FLAGS_2);
1256			if (ret < 0)
1257				goto failed;
1258			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1259				break;
1260		}
1261	}
1262
1263	if (i == 0) {
1264		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1265		ret = -ETIMEDOUT;
1266		goto failed;
1267	}
1268
1269	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1270	if (ret != length) {
1271		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1272			blk, ret);
1273		goto failed;
1274	}
1275
1276	ret = 0;
1277
1278 failed:
1279	mutex_unlock(&priv->edid_mutex);
1280	return ret;
1281}
1282
1283static int tda998x_connector_get_modes(struct drm_connector *connector)
1284{
1285	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1286	struct edid *edid;
1287	int n;
1288
1289	/*
1290	 * If we get killed while waiting for the HPD timeout, return
1291	 * no modes found: we are not in a restartable path, so we
1292	 * can't handle signals gracefully.
1293	 */
1294	if (tda998x_edid_delay_wait(priv))
1295		return 0;
1296
1297	if (priv->rev == TDA19988)
1298		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1299
1300	edid = drm_do_get_edid(connector, read_edid_block, priv);
1301
1302	if (priv->rev == TDA19988)
1303		reg_set(priv, REG_TX4, TX4_PD_RAM);
1304
1305	if (!edid) {
1306		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1307		return 0;
1308	}
1309
1310	drm_connector_update_edid_property(connector, edid);
1311	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1312
1313	mutex_lock(&priv->audio_mutex);
1314	n = drm_add_edid_modes(connector, edid);
1315	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1316	mutex_unlock(&priv->audio_mutex);
1317
1318	kfree(edid);
1319
1320	return n;
1321}
1322
1323static struct drm_encoder *
1324tda998x_connector_best_encoder(struct drm_connector *connector)
1325{
1326	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1327
1328	return priv->bridge.encoder;
1329}
1330
1331static
1332const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1333	.get_modes = tda998x_connector_get_modes,
1334	.best_encoder = tda998x_connector_best_encoder,
1335};
1336
1337static int tda998x_connector_init(struct tda998x_priv *priv,
1338				  struct drm_device *drm)
1339{
1340	struct drm_connector *connector = &priv->connector;
1341	int ret;
1342
1343	connector->interlace_allowed = 1;
1344
1345	if (priv->hdmi->irq)
1346		connector->polled = DRM_CONNECTOR_POLL_HPD;
1347	else
1348		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1349			DRM_CONNECTOR_POLL_DISCONNECT;
1350
1351	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1352	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1353				 DRM_MODE_CONNECTOR_HDMIA);
1354	if (ret)
1355		return ret;
1356
1357	drm_connector_attach_encoder(&priv->connector,
1358				     priv->bridge.encoder);
1359
1360	return 0;
1361}
1362
1363/* DRM bridge functions */
1364
1365static int tda998x_bridge_attach(struct drm_bridge *bridge,
1366				 enum drm_bridge_attach_flags flags)
1367{
1368	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1369
1370	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1371		DRM_ERROR("Fix bridge driver to make connector optional!");
1372		return -EINVAL;
1373	}
1374
1375	return tda998x_connector_init(priv, bridge->dev);
1376}
1377
1378static void tda998x_bridge_detach(struct drm_bridge *bridge)
1379{
1380	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1381
1382	drm_connector_cleanup(&priv->connector);
1383}
1384
1385static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1386				     const struct drm_display_info *info,
1387				     const struct drm_display_mode *mode)
1388{
1389	/* TDA19988 dotclock can go up to 165MHz */
1390	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1391
1392	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1393		return MODE_CLOCK_HIGH;
1394	if (mode->htotal >= BIT(13))
1395		return MODE_BAD_HVALUE;
1396	if (mode->vtotal >= BIT(11))
1397		return MODE_BAD_VVALUE;
1398	return MODE_OK;
1399}
1400
1401static void tda998x_bridge_enable(struct drm_bridge *bridge)
1402{
1403	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1404
1405	if (!priv->is_on) {
1406		/* enable video ports, audio will be enabled later */
1407		reg_write(priv, REG_ENA_VP_0, 0xff);
1408		reg_write(priv, REG_ENA_VP_1, 0xff);
1409		reg_write(priv, REG_ENA_VP_2, 0xff);
1410		/* set muxing after enabling ports: */
1411		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1412		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1413		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1414
1415		priv->is_on = true;
1416	}
1417}
1418
1419static void tda998x_bridge_disable(struct drm_bridge *bridge)
1420{
1421	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1422
1423	if (priv->is_on) {
1424		/* disable video ports */
1425		reg_write(priv, REG_ENA_VP_0, 0x00);
1426		reg_write(priv, REG_ENA_VP_1, 0x00);
1427		reg_write(priv, REG_ENA_VP_2, 0x00);
1428
1429		priv->is_on = false;
1430	}
1431}
1432
1433static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1434				    const struct drm_display_mode *mode,
1435				    const struct drm_display_mode *adjusted_mode)
1436{
1437	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1438	unsigned long tmds_clock;
1439	u16 ref_pix, ref_line, n_pix, n_line;
1440	u16 hs_pix_s, hs_pix_e;
1441	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1442	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1443	u16 vwin1_line_s, vwin1_line_e;
1444	u16 vwin2_line_s, vwin2_line_e;
1445	u16 de_pix_s, de_pix_e;
1446	u8 reg, div, rep, sel_clk;
1447
1448	/*
1449	 * Since we are "computer" like, our source invariably produces
1450	 * full-range RGB.  If the monitor supports full-range, then use
1451	 * it, otherwise reduce to limited-range.
1452	 */
1453	priv->rgb_quant_range =
1454		priv->connector.display_info.rgb_quant_range_selectable ?
1455		HDMI_QUANTIZATION_RANGE_FULL :
1456		drm_default_rgb_quant_range(adjusted_mode);
1457
1458	/*
1459	 * Internally TDA998x is using ITU-R BT.656 style sync but
1460	 * we get VESA style sync. TDA998x is using a reference pixel
1461	 * relative to ITU to sync to the input frame and for output
1462	 * sync generation. Currently, we are using reference detection
1463	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1464	 * which is position of rising VS with coincident rising HS.
1465	 *
1466	 * Now there is some issues to take care of:
1467	 * - HDMI data islands require sync-before-active
1468	 * - TDA998x register values must be > 0 to be enabled
1469	 * - REFLINE needs an additional offset of +1
1470	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1471	 *
1472	 * So we add +1 to all horizontal and vertical register values,
1473	 * plus an additional +3 for REFPIX as we are using RGB input only.
1474	 */
1475	n_pix        = mode->htotal;
1476	n_line       = mode->vtotal;
1477
1478	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1479	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1480	de_pix_e     = mode->htotal;
1481	de_pix_s     = mode->htotal - mode->hdisplay;
1482	ref_pix      = 3 + hs_pix_s;
1483
1484	/*
1485	 * Attached LCD controllers may generate broken sync. Allow
1486	 * those to adjust the position of the rising VS edge by adding
1487	 * HSKEW to ref_pix.
1488	 */
1489	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1490		ref_pix += adjusted_mode->hskew;
1491
1492	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1493		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1494		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1495		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1496		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1497		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1498		vs1_line_e   = vs1_line_s +
1499			       mode->vsync_end - mode->vsync_start;
1500		vwin2_line_s = vwin2_line_e = 0;
1501		vs2_pix_s    = vs2_pix_e  = 0;
1502		vs2_line_s   = vs2_line_e = 0;
1503	} else {
1504		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1505		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1506		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1507		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1508		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1509		vs1_line_e   = vs1_line_s +
1510			       (mode->vsync_end - mode->vsync_start)/2;
1511		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1512		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1513		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1514		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1515		vs2_line_e   = vs2_line_s +
1516			       (mode->vsync_end - mode->vsync_start)/2;
1517	}
1518
1519	/*
1520	 * Select pixel repeat depending on the double-clock flag
1521	 * (which means we have to repeat each pixel once.)
1522	 */
1523	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1524	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1525		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1526
1527	/* the TMDS clock is scaled up by the pixel repeat */
1528	tmds_clock = mode->clock * (1 + rep);
1529
1530	/*
1531	 * The divisor is power-of-2. The TDA9983B datasheet gives
1532	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1533	 *   0 - 800 to 1500 Msample/s
1534	 *   1 - 400 to 800 Msample/s
1535	 *   2 - 200 to 400 Msample/s
1536	 *   3 - as 2 above
1537	 */
1538	for (div = 0; div < 3; div++)
1539		if (80000 >> div <= tmds_clock)
1540			break;
1541
1542	mutex_lock(&priv->audio_mutex);
1543
1544	priv->tmds_clock = tmds_clock;
1545
1546	/* mute the audio FIFO: */
1547	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1548
1549	/* set HDMI HDCP mode off: */
1550	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1551	reg_clear(priv, REG_TX33, TX33_HDMI);
1552	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1553
1554	/* no pre-filter or interpolator: */
1555	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1556			HVF_CNTRL_0_INTPOL(0));
1557	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1558	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1559	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1560			VIP_CNTRL_4_BLC(0));
1561
1562	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1563	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1564					  PLL_SERIAL_3_SRL_DE);
1565	reg_write(priv, REG_SERIALIZER, 0);
1566	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1567
1568	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1569	reg_write(priv, REG_SEL_CLK, sel_clk);
1570	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1571			PLL_SERIAL_2_SRL_PR(rep));
1572
1573	/* set color matrix according to output rgb quant range */
1574	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1575		static u8 tda998x_full_to_limited_range[] = {
1576			MAT_CONTRL_MAT_SC(2),
1577			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1578			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1579			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1580			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1581			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1582		};
1583		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1584		reg_write_range(priv, REG_MAT_CONTRL,
1585				tda998x_full_to_limited_range,
1586				sizeof(tda998x_full_to_limited_range));
1587	} else {
1588		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1589					MAT_CONTRL_MAT_SC(1));
1590		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1591	}
1592
1593	/* set BIAS tmds value: */
1594	reg_write(priv, REG_ANA_GENERAL, 0x09);
1595
1596	/*
1597	 * Sync on rising HSYNC/VSYNC
1598	 */
1599	reg = VIP_CNTRL_3_SYNC_HS;
1600
1601	/*
1602	 * TDA19988 requires high-active sync at input stage,
1603	 * so invert low-active sync provided by master encoder here
1604	 */
1605	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1606		reg |= VIP_CNTRL_3_H_TGL;
1607	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1608		reg |= VIP_CNTRL_3_V_TGL;
1609	reg_write(priv, REG_VIP_CNTRL_3, reg);
1610
1611	reg_write(priv, REG_VIDFORMAT, 0x00);
1612	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1613	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1614	reg_write16(priv, REG_NPIX_MSB, n_pix);
1615	reg_write16(priv, REG_NLINE_MSB, n_line);
1616	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1617	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1618	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1619	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1620	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1621	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1622	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1623	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1624	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1625	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1626	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1627	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1628	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1629	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1630	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1631	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1632
1633	if (priv->rev == TDA19988) {
1634		/* let incoming pixels fill the active space (if any) */
1635		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1636	}
1637
1638	/*
1639	 * Always generate sync polarity relative to input sync and
1640	 * revert input stage toggled sync at output stage
1641	 */
1642	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1643	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1644		reg |= TBG_CNTRL_1_H_TGL;
1645	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1646		reg |= TBG_CNTRL_1_V_TGL;
1647	reg_write(priv, REG_TBG_CNTRL_1, reg);
1648
1649	/* must be last register set: */
1650	reg_write(priv, REG_TBG_CNTRL_0, 0);
1651
1652	/* CEA-861B section 6 says that:
1653	 * CEA version 1 (CEA-861) has no support for infoframes.
1654	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1655	 * and optional basic audio.
1656	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1657	 * and optional digital audio, with audio infoframes.
1658	 *
1659	 * Since we only support generation of version 2 AVI infoframes,
1660	 * ignore CEA version 2 and below (iow, behave as if we're a
1661	 * CEA-861 source.)
1662	 */
1663	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1664
1665	if (priv->supports_infoframes) {
1666		/* We need to turn HDMI HDCP stuff on to get audio through */
1667		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1668		reg_write(priv, REG_TBG_CNTRL_1, reg);
1669		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1670		reg_set(priv, REG_TX33, TX33_HDMI);
1671
1672		tda998x_write_avi(priv, adjusted_mode);
1673		tda998x_write_vsi(priv, adjusted_mode);
1674
1675		if (priv->sink_has_audio)
1676			tda998x_configure_audio(priv);
1677	}
1678
1679	mutex_unlock(&priv->audio_mutex);
1680}
1681
1682static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1683	.attach = tda998x_bridge_attach,
1684	.detach = tda998x_bridge_detach,
1685	.mode_valid = tda998x_bridge_mode_valid,
1686	.disable = tda998x_bridge_disable,
1687	.mode_set = tda998x_bridge_mode_set,
1688	.enable = tda998x_bridge_enable,
1689};
1690
1691/* I2C driver functions */
1692
1693static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1694				   struct device_node *np)
1695{
1696	const u32 *port_data;
1697	u32 size;
1698	int i;
1699
1700	port_data = of_get_property(np, "audio-ports", &size);
1701	if (!port_data)
1702		return 0;
1703
1704	size /= sizeof(u32);
1705	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1706		dev_err(&priv->hdmi->dev,
1707			"Bad number of elements in audio-ports dt-property\n");
1708		return -EINVAL;
1709	}
1710
1711	size /= 2;
1712
1713	for (i = 0; i < size; i++) {
1714		unsigned int route;
1715		u8 afmt = be32_to_cpup(&port_data[2*i]);
1716		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1717
1718		switch (afmt) {
1719		case AFMT_I2S:
1720			route = AUDIO_ROUTE_I2S;
1721			break;
1722		case AFMT_SPDIF:
1723			route = AUDIO_ROUTE_SPDIF;
1724			break;
1725		default:
1726			dev_err(&priv->hdmi->dev,
1727				"Bad audio format %u\n", afmt);
1728			return -EINVAL;
1729		}
1730
1731		if (!ena_ap) {
1732			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1733			continue;
1734		}
1735
1736		if (priv->audio_port_enable[route]) {
1737			dev_err(&priv->hdmi->dev,
1738				"%s format already configured\n",
1739				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1740			return -EINVAL;
1741		}
1742
1743		priv->audio_port_enable[route] = ena_ap;
1744	}
1745	return 0;
1746}
1747
1748static int tda998x_set_config(struct tda998x_priv *priv,
1749			      const struct tda998x_encoder_params *p)
1750{
1751	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1752			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1753			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1754			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1755	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1756			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1757			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1758			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1759	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1760			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1761			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1762			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1763
1764	if (p->audio_params.format != AFMT_UNUSED) {
1765		unsigned int ratio, route;
1766		bool spdif = p->audio_params.format == AFMT_SPDIF;
1767
1768		route = AUDIO_ROUTE_I2S + spdif;
1769
1770		priv->audio.route = &tda998x_audio_route[route];
1771		priv->audio.cea = p->audio_params.cea;
1772		priv->audio.sample_rate = p->audio_params.sample_rate;
1773		memcpy(priv->audio.status, p->audio_params.status,
1774		       min(sizeof(priv->audio.status),
1775			   sizeof(p->audio_params.status)));
1776		priv->audio.ena_ap = p->audio_params.config;
1777		priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1778
1779		ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1780		return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1781	}
1782
1783	return 0;
1784}
1785
1786static void tda998x_destroy(struct device *dev)
1787{
1788	struct tda998x_priv *priv = dev_get_drvdata(dev);
1789
1790	drm_bridge_remove(&priv->bridge);
1791
1792	/* disable all IRQs and free the IRQ handler */
1793	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1794	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1795
1796	if (priv->audio_pdev)
1797		platform_device_unregister(priv->audio_pdev);
1798
1799	if (priv->hdmi->irq)
1800		free_irq(priv->hdmi->irq, priv);
1801
1802	del_timer_sync(&priv->edid_delay_timer);
1803	cancel_work_sync(&priv->detect_work);
1804
1805	i2c_unregister_device(priv->cec);
1806
1807	cec_notifier_conn_unregister(priv->cec_notify);
1808}
1809
1810static int tda998x_create(struct device *dev)
1811{
1812	struct i2c_client *client = to_i2c_client(dev);
1813	struct device_node *np = client->dev.of_node;
1814	struct i2c_board_info cec_info;
1815	struct tda998x_priv *priv;
1816	u32 video;
1817	int rev_lo, rev_hi, ret;
1818
1819	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1820	if (!priv)
1821		return -ENOMEM;
1822
1823	dev_set_drvdata(dev, priv);
1824
1825	mutex_init(&priv->mutex);	/* protect the page access */
1826	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1827	mutex_init(&priv->edid_mutex);
1828	INIT_LIST_HEAD(&priv->bridge.list);
1829	init_waitqueue_head(&priv->edid_delay_waitq);
1830	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1831	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1832
1833	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1834	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1835	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1836
1837	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1838	priv->cec_addr = 0x34 + (client->addr & 0x03);
1839	priv->current_page = 0xff;
1840	priv->hdmi = client;
1841
1842	/* wake up the device: */
1843	cec_write(priv, REG_CEC_ENAMODS,
1844			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1845
1846	tda998x_reset(priv);
1847
1848	/* read version: */
1849	rev_lo = reg_read(priv, REG_VERSION_LSB);
1850	if (rev_lo < 0) {
1851		dev_err(dev, "failed to read version: %d\n", rev_lo);
1852		return rev_lo;
1853	}
1854
1855	rev_hi = reg_read(priv, REG_VERSION_MSB);
1856	if (rev_hi < 0) {
1857		dev_err(dev, "failed to read version: %d\n", rev_hi);
1858		return rev_hi;
1859	}
1860
1861	priv->rev = rev_lo | rev_hi << 8;
1862
1863	/* mask off feature bits: */
1864	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1865
1866	switch (priv->rev) {
1867	case TDA9989N2:
1868		dev_info(dev, "found TDA9989 n2");
1869		break;
1870	case TDA19989:
1871		dev_info(dev, "found TDA19989");
1872		break;
1873	case TDA19989N2:
1874		dev_info(dev, "found TDA19989 n2");
1875		break;
1876	case TDA19988:
1877		dev_info(dev, "found TDA19988");
1878		break;
1879	default:
1880		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1881		return -ENXIO;
1882	}
1883
1884	/* after reset, enable DDC: */
1885	reg_write(priv, REG_DDC_DISABLE, 0x00);
1886
1887	/* set clock on DDC channel: */
1888	reg_write(priv, REG_TX3, 39);
1889
1890	/* if necessary, disable multi-master: */
1891	if (priv->rev == TDA19989)
1892		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1893
1894	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1895			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1896
1897	/* ensure interrupts are disabled */
1898	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1899
1900	/* clear pending interrupts */
1901	cec_read(priv, REG_CEC_RXSHPDINT);
1902	reg_read(priv, REG_INT_FLAGS_0);
1903	reg_read(priv, REG_INT_FLAGS_1);
1904	reg_read(priv, REG_INT_FLAGS_2);
1905
1906	/* initialize the optional IRQ */
1907	if (client->irq) {
1908		unsigned long irq_flags;
1909
1910		/* init read EDID waitqueue and HDP work */
1911		init_waitqueue_head(&priv->wq_edid);
1912
1913		irq_flags =
1914			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1915
1916		priv->cec_glue.irq_flags = irq_flags;
1917
1918		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1919		ret = request_threaded_irq(client->irq, NULL,
1920					   tda998x_irq_thread, irq_flags,
1921					   "tda998x", priv);
1922		if (ret) {
1923			dev_err(dev, "failed to request IRQ#%u: %d\n",
1924				client->irq, ret);
1925			goto err_irq;
1926		}
1927
1928		/* enable HPD irq */
1929		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1930	}
1931
1932	priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1933	if (!priv->cec_notify) {
1934		ret = -ENOMEM;
1935		goto fail;
1936	}
1937
1938	priv->cec_glue.parent = dev;
1939	priv->cec_glue.data = priv;
1940	priv->cec_glue.init = tda998x_cec_hook_init;
1941	priv->cec_glue.exit = tda998x_cec_hook_exit;
1942	priv->cec_glue.open = tda998x_cec_hook_open;
1943	priv->cec_glue.release = tda998x_cec_hook_release;
1944
1945	/*
1946	 * Some TDA998x are actually two I2C devices merged onto one piece
1947	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1948	 * with a slightly modified TDA9950 CEC device.  The CEC device
1949	 * is at the TDA9950 address, with the address pins strapped across
1950	 * to the TDA998x address pins.  Hence, it always has the same
1951	 * offset.
1952	 */
1953	memset(&cec_info, 0, sizeof(cec_info));
1954	strscpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1955	cec_info.addr = priv->cec_addr;
1956	cec_info.platform_data = &priv->cec_glue;
1957	cec_info.irq = client->irq;
1958
1959	priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1960	if (IS_ERR(priv->cec)) {
1961		ret = PTR_ERR(priv->cec);
1962		goto fail;
1963	}
1964
1965	/* enable EDID read irq: */
1966	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1967
1968	if (np) {
1969		/* get the device tree parameters */
1970		ret = of_property_read_u32(np, "video-ports", &video);
1971		if (ret == 0) {
1972			priv->vip_cntrl_0 = video >> 16;
1973			priv->vip_cntrl_1 = video >> 8;
1974			priv->vip_cntrl_2 = video;
1975		}
1976
1977		ret = tda998x_get_audio_ports(priv, np);
1978		if (ret)
1979			goto fail;
1980
1981		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1982		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1983			tda998x_audio_codec_init(priv, &client->dev);
1984	} else if (dev->platform_data) {
1985		ret = tda998x_set_config(priv, dev->platform_data);
1986		if (ret)
1987			goto fail;
1988	}
1989
1990	priv->bridge.funcs = &tda998x_bridge_funcs;
1991#ifdef CONFIG_OF
1992	priv->bridge.of_node = dev->of_node;
1993#endif
1994
1995	drm_bridge_add(&priv->bridge);
1996
1997	return 0;
1998
1999fail:
2000	tda998x_destroy(dev);
2001err_irq:
2002	return ret;
2003}
2004
2005/* DRM encoder functions */
2006
2007static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2008{
2009	struct tda998x_priv *priv = dev_get_drvdata(dev);
2010	u32 crtcs = 0;
2011	int ret;
2012
2013	if (dev->of_node)
2014		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2015
2016	/* If no CRTCs were found, fall back to our old behaviour */
2017	if (crtcs == 0) {
2018		dev_warn(dev, "Falling back to first CRTC\n");
2019		crtcs = 1 << 0;
2020	}
2021
2022	priv->encoder.possible_crtcs = crtcs;
2023
2024	ret = drm_simple_encoder_init(drm, &priv->encoder,
2025				      DRM_MODE_ENCODER_TMDS);
2026	if (ret)
2027		goto err_encoder;
2028
2029	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2030	if (ret)
2031		goto err_bridge;
2032
2033	return 0;
2034
2035err_bridge:
2036	drm_encoder_cleanup(&priv->encoder);
2037err_encoder:
2038	return ret;
2039}
2040
2041static int tda998x_bind(struct device *dev, struct device *master, void *data)
2042{
2043	struct drm_device *drm = data;
2044
2045	return tda998x_encoder_init(dev, drm);
2046}
2047
2048static void tda998x_unbind(struct device *dev, struct device *master,
2049			   void *data)
2050{
2051	struct tda998x_priv *priv = dev_get_drvdata(dev);
2052
2053	drm_encoder_cleanup(&priv->encoder);
2054}
2055
2056static const struct component_ops tda998x_ops = {
2057	.bind = tda998x_bind,
2058	.unbind = tda998x_unbind,
2059};
2060
2061static int
2062tda998x_probe(struct i2c_client *client)
2063{
2064	int ret;
2065
2066	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2067		dev_warn(&client->dev, "adapter does not support I2C\n");
2068		return -EIO;
2069	}
2070
2071	ret = tda998x_create(&client->dev);
2072	if (ret)
2073		return ret;
2074
2075	ret = component_add(&client->dev, &tda998x_ops);
2076	if (ret)
2077		tda998x_destroy(&client->dev);
2078	return ret;
2079}
2080
2081static void tda998x_remove(struct i2c_client *client)
2082{
2083	component_del(&client->dev, &tda998x_ops);
2084	tda998x_destroy(&client->dev);
2085}
2086
2087#ifdef CONFIG_OF
2088static const struct of_device_id tda998x_dt_ids[] = {
2089	{ .compatible = "nxp,tda998x", },
2090	{ }
2091};
2092MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2093#endif
2094
2095static const struct i2c_device_id tda998x_ids[] = {
2096	{ "tda998x", 0 },
2097	{ }
2098};
2099MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2100
2101static struct i2c_driver tda998x_driver = {
2102	.probe = tda998x_probe,
2103	.remove = tda998x_remove,
2104	.driver = {
2105		.name = "tda998x",
2106		.of_match_table = of_match_ptr(tda998x_dt_ids),
2107	},
2108	.id_table = tda998x_ids,
2109};
2110
2111module_i2c_driver(tda998x_driver);
2112
2113MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2114MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2115MODULE_LICENSE("GPL");
2116