1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include "pp_debug.h"
24#include <linux/module.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include "atom.h"
28#include "ppatomctrl.h"
29#include "atombios.h"
30#include "cgs_common.h"
31#include "ppevvmath.h"
32
33#define MEM_ID_MASK           0xff000000
34#define MEM_ID_SHIFT          24
35#define CLOCK_RANGE_MASK      0x00ffffff
36#define CLOCK_RANGE_SHIFT     0
37#define LOW_NIBBLE_MASK       0xf
38#define DATA_EQU_PREV         0
39#define DATA_FROM_TABLE       4
40
41union voltage_object_info {
42	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45};
46
47static int atomctrl_retrieve_ac_timing(
48		uint8_t index,
49		ATOM_INIT_REG_BLOCK *reg_block,
50		pp_atomctrl_mc_reg_table *table)
51{
52	uint32_t i, j;
53	uint8_t tmem_id;
54	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57	uint8_t num_ranges = 0;
58
59	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63		if (index == tmem_id) {
64			table->mc_reg_table_entry[num_ranges].mclk_max =
65				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66						CLOCK_RANGE_SHIFT);
67
68			for (i = 0, j = 1; i < table->last; i++) {
69				if ((table->mc_reg_address[i].uc_pre_reg_data &
70							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71					table->mc_reg_table_entry[num_ranges].mc_data[i] =
72						(uint32_t)*((uint32_t *)reg_data + j);
73					j++;
74				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
75							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76					table->mc_reg_table_entry[num_ranges].mc_data[i] =
77						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78				}
79			}
80			num_ranges++;
81		}
82
83		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85	}
86
87	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88			"Invalid VramInfo table.", return -1);
89	table->num_entries = num_ranges;
90
91	return 0;
92}
93
94/**
95 * atomctrl_set_mc_reg_address_table - Get memory clock AC timing registers index from VBIOS table
96 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97 * @reg_block: the address ATOM_INIT_REG_BLOCK
98 * @table: the address of MCRegTable
99 * Return:   0
100 */
101static int atomctrl_set_mc_reg_address_table(
102		ATOM_INIT_REG_BLOCK *reg_block,
103		pp_atomctrl_mc_reg_table *table)
104{
105	uint8_t i = 0;
106	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110	num_entries--;        /* subtract 1 data end mark entry */
111
112	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113			"Invalid VramInfo table.", return -1);
114
115	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117			(i < num_entries)) {
118		table->mc_reg_address[i].s1 =
119			(uint16_t)(le16_to_cpu(format->usRegIndex));
120		table->mc_reg_address[i].uc_pre_reg_data =
121			format->ucPreRegDataLength;
122
123		i++;
124		format = (ATOM_INIT_REG_INDEX_FORMAT *)
125			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126	}
127
128	table->last = i;
129	return 0;
130}
131
132int atomctrl_initialize_mc_reg_table(
133		struct pp_hwmgr *hwmgr,
134		uint8_t module_index,
135		pp_atomctrl_mc_reg_table *table)
136{
137	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
138	ATOM_INIT_REG_BLOCK *reg_block;
139	int result = 0;
140	u8 frev, crev;
141	u16 size;
142
143	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
144		smu_atom_get_data_table(hwmgr->adev,
145				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
146
147	if (module_index >= vram_info->ucNumOfVRAMModule) {
148		pr_err("Invalid VramInfo table.");
149		result = -1;
150	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
151		pr_err("Invalid VramInfo table.");
152		result = -1;
153	}
154
155	if (0 == result) {
156		reg_block = (ATOM_INIT_REG_BLOCK *)
157			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
158		result = atomctrl_set_mc_reg_address_table(reg_block, table);
159	}
160
161	if (0 == result) {
162		result = atomctrl_retrieve_ac_timing(module_index,
163					reg_block, table);
164	}
165
166	return result;
167}
168
169int atomctrl_initialize_mc_reg_table_v2_2(
170		struct pp_hwmgr *hwmgr,
171		uint8_t module_index,
172		pp_atomctrl_mc_reg_table *table)
173{
174	ATOM_VRAM_INFO_HEADER_V2_2 *vram_info;
175	ATOM_INIT_REG_BLOCK *reg_block;
176	int result = 0;
177	u8 frev, crev;
178	u16 size;
179
180	vram_info = (ATOM_VRAM_INFO_HEADER_V2_2 *)
181		smu_atom_get_data_table(hwmgr->adev,
182				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
183
184	if (module_index >= vram_info->ucNumOfVRAMModule) {
185		pr_err("Invalid VramInfo table.");
186		result = -1;
187	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
188		pr_err("Invalid VramInfo table.");
189		result = -1;
190	}
191
192	if (0 == result) {
193		reg_block = (ATOM_INIT_REG_BLOCK *)
194			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
195		result = atomctrl_set_mc_reg_address_table(reg_block, table);
196	}
197
198	if (0 == result) {
199		result = atomctrl_retrieve_ac_timing(module_index,
200					reg_block, table);
201	}
202
203	return result;
204}
205
206/*
207 * Set DRAM timings based on engine clock and memory clock.
208 */
209int atomctrl_set_engine_dram_timings_rv770(
210		struct pp_hwmgr *hwmgr,
211		uint32_t engine_clock,
212		uint32_t memory_clock)
213{
214	struct amdgpu_device *adev = hwmgr->adev;
215
216	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
217
218	/* They are both in 10KHz Units. */
219	engine_clock_parameters.ulTargetEngineClock =
220		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
221			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
222
223	/* in 10 khz units.*/
224	engine_clock_parameters.sReserved.ulClock =
225		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
226
227	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
228			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
229			(uint32_t *)&engine_clock_parameters, sizeof(engine_clock_parameters));
230}
231
232/*
233 * Private Function to get the PowerPlay Table Address.
234 * WARNING: The tabled returned by this function is in
235 * dynamically allocated memory.
236 * The caller has to release if by calling kfree.
237 */
238static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
239{
240	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
241	u8 frev, crev;
242	u16 size;
243	union voltage_object_info *voltage_info;
244
245	voltage_info = (union voltage_object_info *)
246		smu_atom_get_data_table(device, index,
247			&size, &frev, &crev);
248
249	if (voltage_info != NULL)
250		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
251	else
252		return NULL;
253}
254
255static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
256		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
257		uint8_t voltage_type, uint8_t voltage_mode)
258{
259	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
260	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
261	uint8_t *start = (uint8_t *)voltage_object_info_table;
262
263	while (offset < size) {
264		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
265			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
266
267		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
268			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
269			return voltage_object;
270
271		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
272	}
273
274	return NULL;
275}
276
277/**
278 * atomctrl_get_memory_pll_dividers_si
279 *
280 * @hwmgr:           input parameter: pointer to HwMgr
281 * @clock_value:     input parameter: memory clock
282 * @mpll_param:      output parameter: memory clock parameters
283 * @strobe_mode:     input parameter: 1 for strobe mode,  0 for performance mode
284 */
285int atomctrl_get_memory_pll_dividers_si(
286		struct pp_hwmgr *hwmgr,
287		uint32_t clock_value,
288		pp_atomctrl_memory_clock_param *mpll_param,
289		bool strobe_mode)
290{
291	struct amdgpu_device *adev = hwmgr->adev;
292	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
293	int result;
294
295	mpll_parameters.ulClock = cpu_to_le32(clock_value);
296	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
297
298	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
299		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
300		(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
301
302	if (0 == result) {
303		mpll_param->mpll_fb_divider.clk_frac =
304			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
305		mpll_param->mpll_fb_divider.cl_kf =
306			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
307		mpll_param->mpll_post_divider =
308			(uint32_t)mpll_parameters.ucPostDiv;
309		mpll_param->vco_mode =
310			(uint32_t)(mpll_parameters.ucPllCntlFlag &
311					MPLL_CNTL_FLAG_VCO_MODE_MASK);
312		mpll_param->yclk_sel =
313			(uint32_t)((mpll_parameters.ucPllCntlFlag &
314						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
315		mpll_param->qdr =
316			(uint32_t)((mpll_parameters.ucPllCntlFlag &
317						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
318		mpll_param->half_rate =
319			(uint32_t)((mpll_parameters.ucPllCntlFlag &
320						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
321		mpll_param->dll_speed =
322			(uint32_t)(mpll_parameters.ucDllSpeed);
323		mpll_param->bw_ctrl =
324			(uint32_t)(mpll_parameters.ucBWCntl);
325	}
326
327	return result;
328}
329
330/**
331 * atomctrl_get_memory_pll_dividers_vi
332 *
333 * @hwmgr:                 input parameter: pointer to HwMgr
334 * @clock_value:           input parameter: memory clock
335 * @mpll_param:            output parameter: memory clock parameters
336 */
337int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
338		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
339{
340	struct amdgpu_device *adev = hwmgr->adev;
341	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
342	int result;
343
344	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
345
346	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
347			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
348			(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
349
350	if (!result)
351		mpll_param->mpll_post_divider =
352				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
353
354	return result;
355}
356
357int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
358					uint32_t clock_value,
359					pp_atomctrl_memory_clock_param_ai *mpll_param)
360{
361	struct amdgpu_device *adev = hwmgr->adev;
362	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
363	int result;
364
365	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
366
367	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
368			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
369			(uint32_t *)&mpll_parameters, sizeof(mpll_parameters));
370
371	/* VEGAM's mpll takes sometime to finish computing */
372	udelay(10);
373
374	if (!result) {
375		mpll_param->ulMclk_fcw_int =
376			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
377		mpll_param->ulMclk_fcw_frac =
378			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
379		mpll_param->ulClock =
380			le32_to_cpu(mpll_parameters.ulClock.ulClock);
381		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
382	}
383
384	return result;
385}
386
387int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
388					  uint32_t clock_value,
389					  pp_atomctrl_clock_dividers_kong *dividers)
390{
391	struct amdgpu_device *adev = hwmgr->adev;
392	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
393	int result;
394
395	pll_parameters.ulClock = cpu_to_le32(clock_value);
396
397	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
398		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
399		(uint32_t *)&pll_parameters, sizeof(pll_parameters));
400
401	if (0 == result) {
402		dividers->pll_post_divider = pll_parameters.ucPostDiv;
403		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
404	}
405
406	return result;
407}
408
409int atomctrl_get_engine_pll_dividers_vi(
410		struct pp_hwmgr *hwmgr,
411		uint32_t clock_value,
412		pp_atomctrl_clock_dividers_vi *dividers)
413{
414	struct amdgpu_device *adev = hwmgr->adev;
415	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
416	int result;
417
418	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
419	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
420
421	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
422		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
423		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
424
425	if (0 == result) {
426		dividers->pll_post_divider =
427			pll_patameters.ulClock.ucPostDiv;
428		dividers->real_clock =
429			le32_to_cpu(pll_patameters.ulClock.ulClock);
430
431		dividers->ul_fb_div.ul_fb_div_frac =
432			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
433		dividers->ul_fb_div.ul_fb_div =
434			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
435
436		dividers->uc_pll_ref_div =
437			pll_patameters.ucPllRefDiv;
438		dividers->uc_pll_post_div =
439			pll_patameters.ucPllPostDiv;
440		dividers->uc_pll_cntl_flag =
441			pll_patameters.ucPllCntlFlag;
442	}
443
444	return result;
445}
446
447int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
448		uint32_t clock_value,
449		pp_atomctrl_clock_dividers_ai *dividers)
450{
451	struct amdgpu_device *adev = hwmgr->adev;
452	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
453	int result;
454
455	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
456	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
457
458	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
459		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
460		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
461
462	if (0 == result) {
463		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
464		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
465		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
466		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
467		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
468		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
469		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
470		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
471		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
472		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
473		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
474	}
475	return result;
476}
477
478int atomctrl_get_dfs_pll_dividers_vi(
479		struct pp_hwmgr *hwmgr,
480		uint32_t clock_value,
481		pp_atomctrl_clock_dividers_vi *dividers)
482{
483	struct amdgpu_device *adev = hwmgr->adev;
484	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
485	int result;
486
487	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
488	pll_patameters.ulClock.ucPostDiv =
489		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
490
491	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
492		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
493		(uint32_t *)&pll_patameters, sizeof(pll_patameters));
494
495	if (0 == result) {
496		dividers->pll_post_divider =
497			pll_patameters.ulClock.ucPostDiv;
498		dividers->real_clock =
499			le32_to_cpu(pll_patameters.ulClock.ulClock);
500
501		dividers->ul_fb_div.ul_fb_div_frac =
502			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
503		dividers->ul_fb_div.ul_fb_div =
504			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
505
506		dividers->uc_pll_ref_div =
507			pll_patameters.ucPllRefDiv;
508		dividers->uc_pll_post_div =
509			pll_patameters.ucPllPostDiv;
510		dividers->uc_pll_cntl_flag =
511			pll_patameters.ucPllCntlFlag;
512	}
513
514	return result;
515}
516
517/*
518 * Get the reference clock in 10KHz
519 */
520uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
521{
522	ATOM_FIRMWARE_INFO *fw_info;
523	u8 frev, crev;
524	u16 size;
525	uint32_t clock;
526
527	fw_info = (ATOM_FIRMWARE_INFO *)
528		smu_atom_get_data_table(hwmgr->adev,
529			GetIndexIntoMasterTable(DATA, FirmwareInfo),
530			&size, &frev, &crev);
531
532	if (fw_info == NULL)
533		clock = 2700;
534	else
535		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
536
537	return clock;
538}
539
540/*
541 * Returns true if the given voltage type is controlled by GPIO pins.
542 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
543 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
544 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
545 */
546bool atomctrl_is_voltage_controlled_by_gpio_v3(
547		struct pp_hwmgr *hwmgr,
548		uint8_t voltage_type,
549		uint8_t voltage_mode)
550{
551	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
552		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
553	bool ret;
554
555	PP_ASSERT_WITH_CODE((NULL != voltage_info),
556			"Could not find Voltage Table in BIOS.", return false;);
557
558	ret = (NULL != atomctrl_lookup_voltage_type_v3
559			(voltage_info, voltage_type, voltage_mode)) ? true : false;
560
561	return ret;
562}
563
564int atomctrl_get_voltage_table_v3(
565		struct pp_hwmgr *hwmgr,
566		uint8_t voltage_type,
567		uint8_t voltage_mode,
568		pp_atomctrl_voltage_table *voltage_table)
569{
570	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
571		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
572	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
573	unsigned int i;
574
575	PP_ASSERT_WITH_CODE((NULL != voltage_info),
576			"Could not find Voltage Table in BIOS.", return -1;);
577
578	voltage_object = atomctrl_lookup_voltage_type_v3
579		(voltage_info, voltage_type, voltage_mode);
580
581	if (voltage_object == NULL)
582		return -1;
583
584	PP_ASSERT_WITH_CODE(
585			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
586			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
587			"Too many voltage entries!",
588			return -1;
589			);
590
591	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
592		voltage_table->entries[i].value =
593			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
594		voltage_table->entries[i].smio_low =
595			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
596	}
597
598	voltage_table->mask_low    =
599		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
600	voltage_table->count      =
601		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
602	voltage_table->phase_delay =
603		voltage_object->asGpioVoltageObj.ucPhaseDelay;
604
605	return 0;
606}
607
608static bool atomctrl_lookup_gpio_pin(
609		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
610		const uint32_t pinId,
611		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
612{
613	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
614	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
615	uint8_t *start = (uint8_t *)gpio_lookup_table;
616
617	while (offset < size) {
618		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
619			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
620
621		if (pinId == pin_assignment->ucGPIO_ID) {
622			gpio_pin_assignment->uc_gpio_pin_bit_shift =
623				pin_assignment->ucGpioPinBitShift;
624			gpio_pin_assignment->us_gpio_pin_aindex =
625				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
626			return true;
627		}
628
629		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
630	}
631
632	return false;
633}
634
635/*
636 * Private Function to get the PowerPlay Table Address.
637 * WARNING: The tabled returned by this function is in
638 * dynamically allocated memory.
639 * The caller has to release if by calling kfree.
640 */
641static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
642{
643	u8 frev, crev;
644	u16 size;
645	void *table_address;
646
647	table_address = (ATOM_GPIO_PIN_LUT *)
648		smu_atom_get_data_table(device,
649				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
650				&size, &frev, &crev);
651
652	PP_ASSERT_WITH_CODE((NULL != table_address),
653			"Error retrieving BIOS Table Address!", return NULL;);
654
655	return (ATOM_GPIO_PIN_LUT *)table_address;
656}
657
658/*
659 * Returns 1 if the given pin id find in lookup table.
660 */
661bool atomctrl_get_pp_assign_pin(
662		struct pp_hwmgr *hwmgr,
663		const uint32_t pinId,
664		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
665{
666	bool bRet = false;
667	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
668		get_gpio_lookup_table(hwmgr->adev);
669
670	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
671			"Could not find GPIO lookup Table in BIOS.", return false);
672
673	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
674		gpio_pin_assignment);
675
676	return bRet;
677}
678
679int atomctrl_calculate_voltage_evv_on_sclk(
680		struct pp_hwmgr *hwmgr,
681		uint8_t voltage_type,
682		uint32_t sclk,
683		uint16_t virtual_voltage_Id,
684		uint16_t *voltage,
685		uint16_t dpm_level,
686		bool debug)
687{
688	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
689	struct amdgpu_device *adev = hwmgr->adev;
690	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
691	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
692	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
693	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
694	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
695	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
696	EFUSE_INPUT_PARAMETER sInput_FuseValues;
697	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
698
699	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
700	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
701	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
702	fInt fLkg_FT, repeat;
703	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
704	fInt fRLL_LoadLine, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
705	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
706	fInt fSclk_margin, fSclk, fEVV_V;
707	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
708	uint32_t ul_FT_Lkg_V0NORM;
709	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
710	fInt fRoots[2];
711	fInt fStepSize = GetScaledFraction(625, 100000);
712
713	int result;
714
715	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
716			smu_atom_get_data_table(hwmgr->adev,
717					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
718					NULL, NULL, NULL);
719
720	if (!getASICProfilingInfo)
721		return -1;
722
723	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
724	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
725	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
726		return -1;
727
728	/*-----------------------------------------------------------
729	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
730	 *-----------------------------------------------------------
731	 */
732	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
733
734	switch (dpm_level) {
735	case 1:
736		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
737		break;
738	case 2:
739		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
740		break;
741	case 3:
742		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
743		break;
744	case 4:
745		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
746		break;
747	case 5:
748		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
749		break;
750	case 6:
751		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
752		break;
753	case 7:
754		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
755		break;
756	default:
757		pr_err("DPM Level not supported\n");
758		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
759	}
760
761	/*-------------------------
762	 * DECODING FUSE VALUES
763	 * ------------------------
764	 */
765	/*Decode RO_Fused*/
766	sRO_fuse = getASICProfilingInfo->sRoFuse;
767
768	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
769	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
770	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
771
772	sOutput_FuseValues.sEfuse = sInput_FuseValues;
773
774	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
775			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
776			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
777
778	if (result)
779		return result;
780
781	/* Finally, the actual fuse value */
782	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
783	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
784	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
785	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
786
787	sCACm_fuse = getASICProfilingInfo->sCACm;
788
789	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
790	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
791	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
792
793	sOutput_FuseValues.sEfuse = sInput_FuseValues;
794
795	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
796			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
797			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
798
799	if (result)
800		return result;
801
802	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
803	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
804	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
805
806	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
807
808	sCACb_fuse = getASICProfilingInfo->sCACb;
809
810	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
811	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
812	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
813	sOutput_FuseValues.sEfuse = sInput_FuseValues;
814
815	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
816			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
817			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
818
819	if (result)
820		return result;
821
822	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
823	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
824	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
825
826	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
827
828	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
829
830	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
831	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
832	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
833
834	sOutput_FuseValues.sEfuse = sInput_FuseValues;
835
836	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
837			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
838			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
839
840	if (result)
841		return result;
842
843	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
844	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
845	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
846
847	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
848			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
849
850	sKv_m_fuse = getASICProfilingInfo->sKv_m;
851
852	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
853	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
854	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
855
856	sOutput_FuseValues.sEfuse = sInput_FuseValues;
857
858	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
859			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
860			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
861	if (result)
862		return result;
863
864	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
865	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
866	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
867	fRange = fMultiply(fRange, ConvertToFraction(-1));
868
869	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
870			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
871
872	sKv_b_fuse = getASICProfilingInfo->sKv_b;
873
874	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
875	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
876	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
877	sOutput_FuseValues.sEfuse = sInput_FuseValues;
878
879	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
880			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
881			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
882
883	if (result)
884		return result;
885
886	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
887	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
888	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
889
890	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
891			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
892
893	/* Decoding the Leakage - No special struct container */
894	/*
895	 * usLkgEuseIndex=56
896	 * ucLkgEfuseBitLSB=6
897	 * ucLkgEfuseLength=10
898	 * ulLkgEncodeLn_MaxDivMin=69077
899	 * ulLkgEncodeMax=1000000
900	 * ulLkgEncodeMin=1000
901	 * ulEfuseLogisticAlpha=13
902	 */
903
904	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
905	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
906	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
907
908	sOutput_FuseValues.sEfuse = sInput_FuseValues;
909
910	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
911			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
912			(uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
913
914	if (result)
915		return result;
916
917	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
918	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
919	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
920
921	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
922			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
923	fLkg_FT = fFT_Lkg_V0NORM;
924
925	/*-------------------------------------------
926	 * PART 2 - Grabbing all required values
927	 *-------------------------------------------
928	 */
929	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
930			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
931	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
932			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
933	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
934			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
935	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
936			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
937	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
938			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
939	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
940			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
941	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
942			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
943	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
944			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
945
946	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
947	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
948	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
949
950	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
951
952	fMargin_FMAX_mean = GetScaledFraction(
953		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
954	fMargin_Plat_mean = GetScaledFraction(
955		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
956	fMargin_FMAX_sigma = GetScaledFraction(
957		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
958	fMargin_Plat_sigma = GetScaledFraction(
959		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
960
961	fMargin_DC_sigma = GetScaledFraction(
962		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
963	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
964
965	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
966	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
967	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
968	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
969	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
970
971	fSclk = GetScaledFraction(sclk, 100);
972
973	fV_max = fDivide(GetScaledFraction(
974				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
975	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
976	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
977	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
978	fV_FT = fDivide(GetScaledFraction(
979				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
980	fV_min = fDivide(GetScaledFraction(
981				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
982
983	/*-----------------------
984	 * PART 3
985	 *-----------------------
986	 */
987
988	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
989	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
990	fC_Term = fAdd(fMargin_RO_c,
991			fAdd(fMultiply(fSM_A0, fLkg_FT),
992			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
993			fAdd(fMultiply(fSM_A3, fSclk),
994			fSubtract(fSM_A7, fRO_fused)))));
995
996	fVDDC_base = fSubtract(fRO_fused,
997			fSubtract(fMargin_RO_c,
998					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
999	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
1000
1001	repeat = fSubtract(fVDDC_base,
1002			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
1003
1004	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
1005			fGetSquare(repeat)),
1006			fAdd(fMultiply(fMargin_RO_b, repeat),
1007			fMargin_RO_c));
1008
1009	fDC_SCLK = fSubtract(fRO_fused,
1010			fSubtract(fRO_DC_margin,
1011			fSubtract(fSM_A3,
1012			fMultiply(fSM_A2, repeat))));
1013	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
1014
1015	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
1016
1017	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
1018	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
1019	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
1020	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
1021
1022	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
1023	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
1024	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
1025
1026	fSclk_margin = fAdd(fMicro_FMAX,
1027			fAdd(fMicro_CR,
1028			fAdd(fMargin_fixed,
1029			fSqrt(fAdd(fSquared_Sigma_FMAX,
1030			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1031	/*
1032	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1033	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1034	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1035	 */
1036
1037	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1038	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1039	fC_Term = fAdd(fRO_DC_margin,
1040			fAdd(fMultiply(fSM_A0, fLkg_FT),
1041			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1042			fAdd(fSclk, fSclk_margin)),
1043			fAdd(fMultiply(fSM_A3,
1044			fAdd(fSclk, fSclk_margin)),
1045			fSubtract(fSM_A7, fRO_fused)))));
1046
1047	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1048
1049	if (GreaterThan(fRoots[0], fRoots[1]))
1050		fEVV_V = fRoots[1];
1051	else
1052		fEVV_V = fRoots[0];
1053
1054	if (GreaterThan(fV_min, fEVV_V))
1055		fEVV_V = fV_min;
1056	else if (GreaterThan(fEVV_V, fV_max))
1057		fEVV_V = fSubtract(fV_max, fStepSize);
1058
1059	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1060
1061	/*-----------------
1062	 * PART 4
1063	 *-----------------
1064	 */
1065
1066	fV_x = fV_min;
1067
1068	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1069		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1070				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1071				fGetSquare(fV_x)), fDerateTDP);
1072
1073		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1074				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1075				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1076		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1077				fKt_Beta_fused, fT_prod)));
1078		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1079				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1080		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1081				fKt_Beta_fused, fT_FT)));
1082
1083		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1084
1085		fTDP_Current = fDivide(fTDP_Power, fV_x);
1086
1087		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1088				ConvertToFraction(10)));
1089
1090		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1091
1092		if (GreaterThan(fV_max, fV_NL) &&
1093			(GreaterThan(fV_NL, fEVV_V) ||
1094			Equal(fV_NL, fEVV_V))) {
1095			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1096
1097			*voltage = (uint16_t)fV_NL.partial.real;
1098			break;
1099		} else
1100			fV_x = fAdd(fV_x, fStepSize);
1101	}
1102
1103	return result;
1104}
1105
1106/**
1107 * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND table.
1108 * @hwmgr:              input: pointer to hwManager
1109 * @voltage_type:       input: type of EVV voltage VDDC or VDDGFX
1110 * @sclk:               input: in 10Khz unit. DPM state SCLK frequency
1111 *		         which is define in PPTable SCLK/VDDC dependence
1112 *			 table associated with this virtual_voltage_Id
1113 * @virtual_voltage_Id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1114 * @voltage: 	        output: real voltage level in unit of mv
1115 */
1116int atomctrl_get_voltage_evv_on_sclk(
1117		struct pp_hwmgr *hwmgr,
1118		uint8_t voltage_type,
1119		uint32_t sclk, uint16_t virtual_voltage_Id,
1120		uint16_t *voltage)
1121{
1122	struct amdgpu_device *adev = hwmgr->adev;
1123	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1124	int result;
1125
1126	get_voltage_info_param_space.ucVoltageType   =
1127		voltage_type;
1128	get_voltage_info_param_space.ucVoltageMode   =
1129		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1130	get_voltage_info_param_space.usVoltageLevel  =
1131		cpu_to_le16(virtual_voltage_Id);
1132	get_voltage_info_param_space.ulSCLKFreq      =
1133		cpu_to_le32(sclk);
1134
1135	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1136			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1137			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
1138
1139	*voltage = result ? 0 :
1140			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1141				(&get_voltage_info_param_space))->usVoltageLevel);
1142
1143	return result;
1144}
1145
1146/**
1147 * atomctrl_get_voltage_evv: gets voltage via call to ATOM COMMAND table.
1148 * @hwmgr:              input: pointer to hwManager
1149 * @virtual_voltage_id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1150 * @voltage: 	       output: real voltage level in unit of mv
1151 */
1152int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1153			     uint16_t virtual_voltage_id,
1154			     uint16_t *voltage)
1155{
1156	struct amdgpu_device *adev = hwmgr->adev;
1157	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1158	int result;
1159	int entry_id;
1160
1161	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1162	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1163		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1164			/* found */
1165			break;
1166		}
1167	}
1168
1169	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1170	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1171	        return -EINVAL;
1172	}
1173
1174	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1175	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1176	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1177	get_voltage_info_param_space.ulSCLKFreq =
1178		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1179
1180	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1181			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1182			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
1183
1184	if (0 != result)
1185		return result;
1186
1187	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1188				(&get_voltage_info_param_space))->usVoltageLevel);
1189
1190	return result;
1191}
1192
1193/*
1194 * Get the mpll reference clock in 10KHz
1195 */
1196uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1197{
1198	ATOM_COMMON_TABLE_HEADER *fw_info;
1199	uint32_t clock;
1200	u8 frev, crev;
1201	u16 size;
1202
1203	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1204		smu_atom_get_data_table(hwmgr->adev,
1205				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1206				&size, &frev, &crev);
1207
1208	if (fw_info == NULL)
1209		clock = 2700;
1210	else {
1211		if ((fw_info->ucTableFormatRevision == 2) &&
1212			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1213			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1214				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1215			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1216		} else {
1217			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1218				(ATOM_FIRMWARE_INFO *)fw_info;
1219			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1220		}
1221	}
1222
1223	return clock;
1224}
1225
1226/*
1227 * Get the asic internal spread spectrum table
1228 */
1229static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1230{
1231	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1232	u8 frev, crev;
1233	u16 size;
1234
1235	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1236		smu_atom_get_data_table(device,
1237			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1238			&size, &frev, &crev);
1239
1240	return table;
1241}
1242
1243bool atomctrl_is_asic_internal_ss_supported(struct pp_hwmgr *hwmgr)
1244{
1245	ATOM_ASIC_INTERNAL_SS_INFO *table =
1246		asic_internal_ss_get_ss_table(hwmgr->adev);
1247
1248	if (table)
1249		return true;
1250	else
1251		return false;
1252}
1253
1254/*
1255 * Get the asic internal spread spectrum assignment
1256 */
1257static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1258		const uint8_t clockSource,
1259		const uint32_t clockSpeed,
1260		pp_atomctrl_internal_ss_info *ssEntry)
1261{
1262	ATOM_ASIC_INTERNAL_SS_INFO *table;
1263	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1264	int entry_found = 0;
1265
1266	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1267
1268	table = asic_internal_ss_get_ss_table(hwmgr->adev);
1269
1270	if (NULL == table)
1271		return -1;
1272
1273	ssInfo = &table->asSpreadSpectrum[0];
1274
1275	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1276		le16_to_cpu(table->sHeader.usStructureSize)) {
1277		if ((clockSource == ssInfo->ucClockIndication) &&
1278			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1279			entry_found = 1;
1280			break;
1281		}
1282
1283		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1284				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1285	}
1286
1287	if (entry_found) {
1288		ssEntry->speed_spectrum_percentage =
1289			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1290		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1291
1292		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1293			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1294			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1295			ssEntry->speed_spectrum_rate /= 100;
1296		}
1297
1298		switch (ssInfo->ucSpreadSpectrumMode) {
1299		case 0:
1300			ssEntry->speed_spectrum_mode =
1301				pp_atomctrl_spread_spectrum_mode_down;
1302			break;
1303		case 1:
1304			ssEntry->speed_spectrum_mode =
1305				pp_atomctrl_spread_spectrum_mode_center;
1306			break;
1307		default:
1308			ssEntry->speed_spectrum_mode =
1309				pp_atomctrl_spread_spectrum_mode_down;
1310			break;
1311		}
1312	}
1313
1314	return entry_found ? 0 : 1;
1315}
1316
1317/*
1318 * Get the memory clock spread spectrum info
1319 */
1320int atomctrl_get_memory_clock_spread_spectrum(
1321		struct pp_hwmgr *hwmgr,
1322		const uint32_t memory_clock,
1323		pp_atomctrl_internal_ss_info *ssInfo)
1324{
1325	return asic_internal_ss_get_ss_asignment(hwmgr,
1326			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1327}
1328
1329/*
1330 * Get the engine clock spread spectrum info
1331 */
1332int atomctrl_get_engine_clock_spread_spectrum(
1333		struct pp_hwmgr *hwmgr,
1334		const uint32_t engine_clock,
1335		pp_atomctrl_internal_ss_info *ssInfo)
1336{
1337	return asic_internal_ss_get_ss_asignment(hwmgr,
1338			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1339}
1340
1341int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1342		uint16_t end_index, uint32_t *efuse)
1343{
1344	struct amdgpu_device *adev = hwmgr->adev;
1345	uint32_t mask;
1346	int result;
1347	READ_EFUSE_VALUE_PARAMETER efuse_param;
1348
1349	if ((end_index - start_index)  == 31)
1350		mask = 0xFFFFFFFF;
1351	else
1352		mask = (1 << ((end_index - start_index) + 1)) - 1;
1353
1354	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1355	efuse_param.sEfuse.ucBitShift = (uint8_t)
1356			(start_index - ((start_index / 32) * 32));
1357	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1358			((end_index - start_index) + 1);
1359
1360	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1361			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1362			(uint32_t *)&efuse_param, sizeof(efuse_param));
1363	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1364
1365	return result;
1366}
1367
1368int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1369			      uint8_t level)
1370{
1371	struct amdgpu_device *adev = hwmgr->adev;
1372	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1373	int result;
1374
1375	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1376		memory_clock & SET_CLOCK_FREQ_MASK;
1377	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1378		ADJUST_MC_SETTING_PARAM;
1379	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1380
1381	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1382		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1383		(uint32_t *)&memory_clock_parameters, sizeof(memory_clock_parameters));
1384
1385	return result;
1386}
1387
1388int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1389				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1390{
1391	struct amdgpu_device *adev = hwmgr->adev;
1392	int result;
1393	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1394
1395	get_voltage_info_param_space.ucVoltageType = voltage_type;
1396	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1397	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1398	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1399
1400	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1401			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1402			(uint32_t *)&get_voltage_info_param_space, sizeof(get_voltage_info_param_space));
1403
1404	*voltage = result ? 0 :
1405		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1406
1407	return result;
1408}
1409
1410int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1411{
1412
1413	int i;
1414	u8 frev, crev;
1415	u16 size;
1416
1417	ATOM_SMU_INFO_V2_1 *psmu_info =
1418		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1419			GetIndexIntoMasterTable(DATA, SMU_Info),
1420			&size, &frev, &crev);
1421
1422
1423	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1424		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1425		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1426		table->entry[i].usFcw_pcc =
1427			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1428		table->entry[i].usFcw_trans_upper =
1429			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1430		table->entry[i].usRcw_trans_lower =
1431			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1432	}
1433
1434	return 0;
1435}
1436
1437int atomctrl_get_vddc_shared_railinfo(struct pp_hwmgr *hwmgr, uint8_t *shared_rail)
1438{
1439	ATOM_SMU_INFO_V2_1 *psmu_info =
1440		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1441			GetIndexIntoMasterTable(DATA, SMU_Info),
1442			NULL, NULL, NULL);
1443	if (!psmu_info)
1444		return -1;
1445
1446	*shared_rail = psmu_info->ucSharePowerSource;
1447
1448	return 0;
1449}
1450
1451int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1452				  struct pp_atom_ctrl__avfs_parameters *param)
1453{
1454	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1455
1456	if (param == NULL)
1457		return -EINVAL;
1458
1459	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1460			smu_atom_get_data_table(hwmgr->adev,
1461					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1462					NULL, NULL, NULL);
1463	if (!profile)
1464		return -1;
1465
1466	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1467	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1468	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1469	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1470	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1471	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1472	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1473	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1474	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1475	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1476	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1477	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1478	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1479	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1480	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1481	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1482	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1483	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1484	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1485	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1486	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1487	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1488	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1489	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1490	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1491
1492	return 0;
1493}
1494
1495int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1496				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1497				uint16_t *load_line)
1498{
1499	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1500		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1501
1502	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1503
1504	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1505			"Could not find Voltage Table in BIOS.", return -EINVAL);
1506
1507	voltage_object = atomctrl_lookup_voltage_type_v3
1508		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1509
1510	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1511	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1512	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1513
1514	return 0;
1515}
1516
1517int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1518{
1519	struct amdgpu_device *adev = hwmgr->adev;
1520	SET_VOLTAGE_PS_ALLOCATION allocation;
1521	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1522			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1523	int result;
1524
1525	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1526
1527	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1528			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1529			(uint32_t *)voltage_parameters, sizeof(*voltage_parameters));
1530
1531	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1532
1533	return result;
1534}
1535
1536int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1537					uint16_t *vddc, uint16_t *vddci,
1538					uint16_t virtual_voltage_id,
1539					uint16_t efuse_voltage_id)
1540{
1541	int i, j;
1542	int ix;
1543	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1544	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1545
1546	*vddc = 0;
1547	*vddci = 0;
1548
1549	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1550
1551	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1552			smu_atom_get_data_table(hwmgr->adev,
1553					ix,
1554					NULL, NULL, NULL);
1555	if (!profile)
1556		return -EINVAL;
1557
1558	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1559		(profile->asHeader.ucTableContentRevision >= 1) &&
1560		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1561		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1562		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1563		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1564		if (profile->ucElbVDDC_Num > 0) {
1565			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1566				if (vddc_id_buf[i] == virtual_voltage_id) {
1567					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1568						if (efuse_voltage_id <= leakage_bin[j]) {
1569							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1570							break;
1571						}
1572					}
1573					break;
1574				}
1575			}
1576		}
1577
1578		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1579		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1580		if (profile->ucElbVDDCI_Num > 0) {
1581			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1582				if (vddci_id_buf[i] == virtual_voltage_id) {
1583					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1584						if (efuse_voltage_id <= leakage_bin[j]) {
1585							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1586							break;
1587						}
1588					}
1589					break;
1590				}
1591			}
1592		}
1593	}
1594
1595	return 0;
1596}
1597
1598void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1599							uint32_t *min_vddc)
1600{
1601	void *profile;
1602
1603	profile = smu_atom_get_data_table(hwmgr->adev,
1604					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1605					NULL, NULL, NULL);
1606
1607	if (profile) {
1608		switch (hwmgr->chip_id) {
1609		case CHIP_TONGA:
1610		case CHIP_FIJI:
1611			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1612			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1613			return;
1614		case CHIP_POLARIS11:
1615		case CHIP_POLARIS10:
1616		case CHIP_POLARIS12:
1617			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1618			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1619			return;
1620		default:
1621			break;
1622		}
1623	}
1624	*max_vddc = 0;
1625	*min_vddc = 0;
1626}
1627
1628int atomctrl_get_edc_hilo_leakage_offset_table(struct pp_hwmgr *hwmgr,
1629					       AtomCtrl_HiLoLeakageOffsetTable *table)
1630{
1631	ATOM_GFX_INFO_V2_3 *gfxinfo = smu_atom_get_data_table(hwmgr->adev,
1632					GetIndexIntoMasterTable(DATA, GFX_Info),
1633					NULL, NULL, NULL);
1634	if (!gfxinfo)
1635		return -ENOENT;
1636
1637	table->usHiLoLeakageThreshold = gfxinfo->usHiLoLeakageThreshold;
1638	table->usEdcDidtLoDpm7TableOffset = gfxinfo->usEdcDidtLoDpm7TableOffset;
1639	table->usEdcDidtHiDpm7TableOffset = gfxinfo->usEdcDidtHiDpm7TableOffset;
1640
1641	return 0;
1642}
1643
1644static AtomCtrl_EDCLeakgeTable *get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1645						      uint16_t offset)
1646{
1647	void *table_address;
1648	char *temp;
1649
1650	table_address = smu_atom_get_data_table(hwmgr->adev,
1651			GetIndexIntoMasterTable(DATA, GFX_Info),
1652			NULL, NULL, NULL);
1653	if (!table_address)
1654		return NULL;
1655
1656	temp = (char *)table_address;
1657	table_address += offset;
1658
1659	return (AtomCtrl_EDCLeakgeTable *)temp;
1660}
1661
1662int atomctrl_get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1663				   AtomCtrl_EDCLeakgeTable *table,
1664				   uint16_t offset)
1665{
1666	uint32_t length, i;
1667	AtomCtrl_EDCLeakgeTable *leakage_table =
1668		get_edc_leakage_table(hwmgr, offset);
1669
1670	if (!leakage_table)
1671		return -ENOENT;
1672
1673	length = sizeof(leakage_table->DIDT_REG) /
1674		 sizeof(leakage_table->DIDT_REG[0]);
1675	for (i = 0; i < length; i++)
1676		table->DIDT_REG[i] = leakage_table->DIDT_REG[i];
1677
1678	return 0;
1679}
1680