1/*
2 * Copyright 2020 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26#include "dccg.h"
27#include "clk_mgr_internal.h"
28
29// For dce12_get_dp_ref_freq_khz
30#include "dce100/dce_clk_mgr.h"
31
32// For dcn20_update_clocks_update_dpp_dto
33#include "dcn20/dcn20_clk_mgr.h"
34
35// For DML FPU code
36#include "dml/dcn20/dcn20_fpu.h"
37
38#include "vg_clk_mgr.h"
39#include "dcn301_smu.h"
40#include "reg_helper.h"
41#include "core_types.h"
42#include "dm_helpers.h"
43
44#include "atomfirmware.h"
45#include "vangogh_ip_offset.h"
46#include "clk/clk_11_5_0_offset.h"
47#include "clk/clk_11_5_0_sh_mask.h"
48
49/* Constants */
50
51#define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
52
53/* Macros */
54
55#define TO_CLK_MGR_VGH(clk_mgr)\
56	container_of(clk_mgr, struct clk_mgr_vgh, base)
57
58#define REG(reg_name) \
59	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
60
61/* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
62static int vg_get_active_display_cnt_wa(
63		struct dc *dc,
64		struct dc_state *context)
65{
66	int i, display_count;
67	bool tmds_present = false;
68
69	display_count = 0;
70	for (i = 0; i < context->stream_count; i++) {
71		const struct dc_stream_state *stream = context->streams[i];
72
73		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
74				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
75				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
76			tmds_present = true;
77	}
78
79	for (i = 0; i < dc->link_count; i++) {
80		const struct dc_link *link = dc->links[i];
81
82		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
83		if (link->link_enc->funcs->is_dig_enabled &&
84				link->link_enc->funcs->is_dig_enabled(link->link_enc))
85			display_count++;
86	}
87
88	/* WA for hang on HDMI after display off back back on*/
89	if (display_count == 0 && tmds_present)
90		display_count = 1;
91
92	return display_count;
93}
94
95static void vg_update_clocks(struct clk_mgr *clk_mgr_base,
96			     struct dc_state *context,
97			     bool safe_to_lower)
98{
99	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
101	struct dc *dc = clk_mgr_base->ctx->dc;
102	int display_count;
103	bool update_dppclk = false;
104	bool update_dispclk = false;
105	bool dpp_clock_lowered = false;
106
107	if (dc->work_arounds.skip_clock_update)
108		return;
109
110	/*
111	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
112	 * also if safe to lower is false, we just go in the higher state
113	 */
114	if (safe_to_lower) {
115		/* check that we're not already in lower */
116		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
117
118			display_count = vg_get_active_display_cnt_wa(dc, context);
119			/* if we can go lower, go lower */
120			if (display_count == 0) {
121				union display_idle_optimization_u idle_info = { 0 };
122
123				idle_info.idle_info.df_request_disabled = 1;
124				idle_info.idle_info.phy_ref_clk_off = 1;
125
126				dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
127				/* update power state */
128				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
129			}
130		}
131	} else {
132		/* check that we're not already in D0 */
133		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
134			union display_idle_optimization_u idle_info = { 0 };
135
136			dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
137			/* update power state */
138			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
139		}
140	}
141
142	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz) && !dc->debug.disable_min_fclk) {
143		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
144		dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
145	}
146
147	if (should_set_clock(safe_to_lower,
148			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->debug.disable_min_fclk) {
149		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
150		dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
151	}
152
153	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
154	if (new_clocks->dppclk_khz < 100000)
155		new_clocks->dppclk_khz = 100000;
156
157	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
158		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
159			dpp_clock_lowered = true;
160		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
161		update_dppclk = true;
162	}
163
164	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
165		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
166		dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
167
168		update_dispclk = true;
169	}
170
171	if (dpp_clock_lowered) {
172		// increase per DPP DTO before lowering global dppclk
173		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
174		dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
175	} else {
176		// increase global DPPCLK before lowering per DPP DTO
177		if (update_dppclk || update_dispclk)
178			dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
179		// always update dtos unless clock is lowered and not safe to lower
180		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
181	}
182}
183
184
185static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
186{
187	/* get FbMult value */
188	struct fixed31_32 pll_req;
189	unsigned int fbmult_frac_val = 0;
190	unsigned int fbmult_int_val = 0;
191
192
193	/*
194	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
195	 * to leverage the fix point operations available in driver
196	 */
197
198	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
199	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
200
201	pll_req = dc_fixpt_from_int(fbmult_int_val);
202
203	/*
204	 * since fractional part is only 16 bit in register definition but is 32 bit
205	 * in our fix point definiton, need to shift left by 16 to obtain correct value
206	 */
207	pll_req.value |= fbmult_frac_val << 16;
208
209	/* multiply by REFCLK period */
210	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
211
212	/* integer part is now VCO frequency in kHz */
213	return dc_fixpt_floor(pll_req);
214}
215
216static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
217{
218	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
219
220	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
221	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
222
223	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
224	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
225
226	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
227	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
228
229	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
230	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
231
232	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
233	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
234}
235
236/* This function collect raw clk register values */
237static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
238		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
239{
240	struct dcn301_clk_internal internal = {0};
241	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
242	unsigned int chars_printed = 0;
243	unsigned int remaining_buffer = log_info->bufSize;
244
245	vg_dump_clk_registers_internal(&internal, clk_mgr_base);
246
247	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
248	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
249	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
250	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
251	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
252	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
253
254	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
255	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
256		regs_and_bypass->dppclk_bypass = 0;
257	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
258	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
259		regs_and_bypass->dcfclk_bypass = 0;
260	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
261	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
262		regs_and_bypass->dispclk_bypass = 0;
263	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
264	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
265		regs_and_bypass->dprefclk_bypass = 0;
266
267	if (log_info->enabled) {
268		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
269		remaining_buffer -= chars_printed;
270		*log_info->sum_chars_printed += chars_printed;
271		log_info->pBuf += chars_printed;
272
273		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
274			regs_and_bypass->dcfclk,
275			regs_and_bypass->dcf_deep_sleep_divider,
276			regs_and_bypass->dcf_deep_sleep_allow,
277			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
278		remaining_buffer -= chars_printed;
279		*log_info->sum_chars_printed += chars_printed;
280		log_info->pBuf += chars_printed;
281
282		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
283			regs_and_bypass->dprefclk,
284			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
285		remaining_buffer -= chars_printed;
286		*log_info->sum_chars_printed += chars_printed;
287		log_info->pBuf += chars_printed;
288
289		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
290			regs_and_bypass->dispclk,
291			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
292		remaining_buffer -= chars_printed;
293		*log_info->sum_chars_printed += chars_printed;
294		log_info->pBuf += chars_printed;
295
296		//split
297		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
298		remaining_buffer -= chars_printed;
299		*log_info->sum_chars_printed += chars_printed;
300		log_info->pBuf += chars_printed;
301
302		// REGISTER VALUES
303		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
304		remaining_buffer -= chars_printed;
305		*log_info->sum_chars_printed += chars_printed;
306		log_info->pBuf += chars_printed;
307
308		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
309				internal.CLK1_CLK3_CURRENT_CNT);
310		remaining_buffer -= chars_printed;
311		*log_info->sum_chars_printed += chars_printed;
312		log_info->pBuf += chars_printed;
313
314		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
315					internal.CLK1_CLK3_DS_CNTL);
316		remaining_buffer -= chars_printed;
317		*log_info->sum_chars_printed += chars_printed;
318		log_info->pBuf += chars_printed;
319
320		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
321					internal.CLK1_CLK3_ALLOW_DS);
322		remaining_buffer -= chars_printed;
323		*log_info->sum_chars_printed += chars_printed;
324		log_info->pBuf += chars_printed;
325
326		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
327					internal.CLK1_CLK2_CURRENT_CNT);
328		remaining_buffer -= chars_printed;
329		*log_info->sum_chars_printed += chars_printed;
330		log_info->pBuf += chars_printed;
331
332		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
333					internal.CLK1_CLK0_CURRENT_CNT);
334		remaining_buffer -= chars_printed;
335		*log_info->sum_chars_printed += chars_printed;
336		log_info->pBuf += chars_printed;
337
338		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
339					internal.CLK1_CLK1_CURRENT_CNT);
340		remaining_buffer -= chars_printed;
341		*log_info->sum_chars_printed += chars_printed;
342		log_info->pBuf += chars_printed;
343
344		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
345					internal.CLK1_CLK3_BYPASS_CNTL);
346		remaining_buffer -= chars_printed;
347		*log_info->sum_chars_printed += chars_printed;
348		log_info->pBuf += chars_printed;
349
350		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
351					internal.CLK1_CLK2_BYPASS_CNTL);
352		remaining_buffer -= chars_printed;
353		*log_info->sum_chars_printed += chars_printed;
354		log_info->pBuf += chars_printed;
355
356		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
357					internal.CLK1_CLK0_BYPASS_CNTL);
358		remaining_buffer -= chars_printed;
359		*log_info->sum_chars_printed += chars_printed;
360		log_info->pBuf += chars_printed;
361
362		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
363					internal.CLK1_CLK1_BYPASS_CNTL);
364		remaining_buffer -= chars_printed;
365		*log_info->sum_chars_printed += chars_printed;
366		log_info->pBuf += chars_printed;
367	}
368}
369
370static void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
371{
372	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
373
374	dcn301_smu_enable_pme_wa(clk_mgr);
375}
376
377static void vg_init_clocks(struct clk_mgr *clk_mgr)
378{
379	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
380	// Assumption is that boot state always supports pstate
381	clk_mgr->clks.p_state_change_support = true;
382	clk_mgr->clks.prev_p_state_change_support = true;
383	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
384}
385
386static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
387{
388	int i, num_valid_sets;
389
390	num_valid_sets = 0;
391
392	for (i = 0; i < WM_SET_COUNT; i++) {
393		/* skip empty entries, the smu array has no holes*/
394		if (!bw_params->wm_table.entries[i].valid)
395			continue;
396
397		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
398		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
399		/* We will not select WM based on fclk, so leave it as unconstrained */
400		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
401		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
402
403		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
404			if (i == 0)
405				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
406			else {
407				/* add 1 to make it non-overlapping with next lvl */
408				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
409						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
410			}
411			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
412					bw_params->clk_table.entries[i].dcfclk_mhz;
413
414		} else {
415			/* unconstrained for memory retraining */
416			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
417			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
418
419			/* Modify previous watermark range to cover up to max */
420			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
421		}
422		num_valid_sets++;
423	}
424
425	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
426
427	/* modify the min and max to make sure we cover the whole range*/
428	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
429	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
430	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
431	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
432
433	/* This is for writeback only, does not matter currently as no writeback support*/
434	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
435	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
436	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
437	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
438	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
439}
440
441
442static void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
443{
444	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
445	struct clk_mgr_vgh *clk_mgr_vgh = TO_CLK_MGR_VGH(clk_mgr);
446	struct watermarks *table = clk_mgr_vgh->smu_wm_set.wm_set;
447
448	if (!clk_mgr->smu_ver)
449		return;
450
451	if (!table || clk_mgr_vgh->smu_wm_set.mc_address.quad_part == 0)
452		return;
453
454	memset(table, 0, sizeof(*table));
455
456	vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
457
458	dcn301_smu_set_dram_addr_high(clk_mgr,
459			clk_mgr_vgh->smu_wm_set.mc_address.high_part);
460	dcn301_smu_set_dram_addr_low(clk_mgr,
461			clk_mgr_vgh->smu_wm_set.mc_address.low_part);
462	dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
463}
464
465static bool vg_are_clock_states_equal(struct dc_clocks *a,
466		struct dc_clocks *b)
467{
468	if (a->dispclk_khz != b->dispclk_khz)
469		return false;
470	else if (a->dppclk_khz != b->dppclk_khz)
471		return false;
472	else if (a->dcfclk_khz != b->dcfclk_khz)
473		return false;
474	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
475		return false;
476
477	return true;
478}
479
480
481static struct clk_mgr_funcs vg_funcs = {
482	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
483	.update_clocks = vg_update_clocks,
484	.init_clocks = vg_init_clocks,
485	.enable_pme_wa = vg_enable_pme_wa,
486	.are_clock_states_equal = vg_are_clock_states_equal,
487	.notify_wm_ranges = vg_notify_wm_ranges
488};
489
490static struct clk_bw_params vg_bw_params = {
491	.vram_type = Ddr4MemType,
492	.num_channels = 1,
493	.clk_table = {
494		.entries = {
495			{
496				.voltage = 0,
497				.dcfclk_mhz = 400,
498				.fclk_mhz = 400,
499				.memclk_mhz = 800,
500				.socclk_mhz = 0,
501			},
502			{
503				.voltage = 0,
504				.dcfclk_mhz = 483,
505				.fclk_mhz = 800,
506				.memclk_mhz = 1600,
507				.socclk_mhz = 0,
508			},
509			{
510				.voltage = 0,
511				.dcfclk_mhz = 602,
512				.fclk_mhz = 1067,
513				.memclk_mhz = 1067,
514				.socclk_mhz = 0,
515			},
516			{
517				.voltage = 0,
518				.dcfclk_mhz = 738,
519				.fclk_mhz = 1333,
520				.memclk_mhz = 1600,
521				.socclk_mhz = 0,
522			},
523		},
524
525		.num_entries = 4,
526	},
527
528};
529
530static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
531{
532	uint32_t max = 0;
533	int i;
534
535	for (i = 0; i < num_clocks; ++i) {
536		if (clocks[i] > max)
537			max = clocks[i];
538	}
539
540	return max;
541}
542
543static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
544		unsigned int voltage)
545{
546	int i;
547
548	for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
549		if (i >= VG_NUM_DCFCLK_DPM_LEVELS)
550			break;
551		if (clock_table->SocVoltage[i] == voltage)
552			return clock_table->DcfClocks[i];
553	}
554
555	ASSERT(0);
556	return 0;
557}
558
559static void vg_clk_mgr_helper_populate_bw_params(
560		struct clk_mgr_internal *clk_mgr,
561		struct integrated_info *bios_info,
562		const struct vg_dpm_clocks *clock_table)
563{
564	int i, j;
565	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
566
567	j = -1;
568
569	ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
570
571	/* Find lowest DPM, FCLK is filled in reverse order*/
572
573	for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
574		if (clock_table->DfPstateTable[i].fclk != 0) {
575			j = i;
576			break;
577		}
578	}
579
580	if (j == -1) {
581		/* clock table is all 0s, just use our own hardcode */
582		ASSERT(0);
583		return;
584	}
585
586	bw_params->clk_table.num_entries = j + 1;
587
588	for (i = 0; i < bw_params->clk_table.num_entries - 1; i++, j--) {
589		bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
590		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
591		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
592		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
593	}
594	bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
595	bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
596	bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
597	bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clock_table->DcfClocks, VG_NUM_DCFCLK_DPM_LEVELS);
598
599	bw_params->vram_type = bios_info->memory_type;
600	bw_params->num_channels = bios_info->ma_channel_number;
601
602	for (i = 0; i < WM_SET_COUNT; i++) {
603		bw_params->wm_table.entries[i].wm_inst = i;
604
605		if (i >= bw_params->clk_table.num_entries) {
606			bw_params->wm_table.entries[i].valid = false;
607			continue;
608		}
609
610		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
611		bw_params->wm_table.entries[i].valid = true;
612	}
613
614	if (bw_params->vram_type == LpDdr4MemType) {
615		/*
616		 * WM set D will be re-purposed for memory retraining
617		 */
618		DC_FP_START();
619		dcn21_clk_mgr_set_bw_params_wm_table(bw_params);
620		DC_FP_END();
621	}
622
623}
624
625/* Temporary Place holder until we can get them from fuse */
626static struct vg_dpm_clocks dummy_clocks = {
627		.DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
628		.SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
629		.SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
630		.DfPstateTable = {
631				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
632				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
633				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
634				{ .fclk = 400,  .memclk = 400, .voltage = 2800 }
635		}
636};
637
638static struct watermarks dummy_wms = { 0 };
639
640static void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
641		struct smu_dpm_clks *smu_dpm_clks)
642{
643	struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
644
645	if (!clk_mgr->smu_ver)
646		return;
647
648	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
649		return;
650
651	memset(table, 0, sizeof(*table));
652
653	dcn301_smu_set_dram_addr_high(clk_mgr,
654			smu_dpm_clks->mc_address.high_part);
655	dcn301_smu_set_dram_addr_low(clk_mgr,
656			smu_dpm_clks->mc_address.low_part);
657	dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
658}
659
660void vg_clk_mgr_construct(
661		struct dc_context *ctx,
662		struct clk_mgr_vgh *clk_mgr,
663		struct pp_smu_funcs *pp_smu,
664		struct dccg *dccg)
665{
666	struct smu_dpm_clks smu_dpm_clks = { 0 };
667	struct clk_log_info log_info = {0};
668
669	clk_mgr->base.base.ctx = ctx;
670	clk_mgr->base.base.funcs = &vg_funcs;
671
672	clk_mgr->base.pp_smu = pp_smu;
673
674	clk_mgr->base.dccg = dccg;
675	clk_mgr->base.dfs_bypass_disp_clk = 0;
676
677	clk_mgr->base.dprefclk_ss_percentage = 0;
678	clk_mgr->base.dprefclk_ss_divider = 1000;
679	clk_mgr->base.ss_on_dprefclk = false;
680	clk_mgr->base.dfs_ref_freq_khz = 48000;
681
682	clk_mgr->smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
683				clk_mgr->base.base.ctx,
684				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
685				sizeof(struct watermarks),
686				&clk_mgr->smu_wm_set.mc_address.quad_part);
687
688	if (!clk_mgr->smu_wm_set.wm_set) {
689		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
690		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
691	}
692	ASSERT(clk_mgr->smu_wm_set.wm_set);
693
694	smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
695				clk_mgr->base.base.ctx,
696				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
697				sizeof(struct vg_dpm_clocks),
698				&smu_dpm_clks.mc_address.quad_part);
699
700	if (smu_dpm_clks.dpm_clks == NULL) {
701		smu_dpm_clks.dpm_clks = &dummy_clocks;
702		smu_dpm_clks.mc_address.quad_part = 0;
703	}
704
705	ASSERT(smu_dpm_clks.dpm_clks);
706
707	clk_mgr->base.smu_ver = dcn301_smu_get_smu_version(&clk_mgr->base);
708
709	if (clk_mgr->base.smu_ver)
710		clk_mgr->base.smu_present = true;
711
712	/* TODO: Check we get what we expect during bringup */
713	clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
714
715	/* in case we don't get a value from the register, use default */
716	if (clk_mgr->base.base.dentist_vco_freq_khz == 0)
717		clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
718
719	if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
720		vg_bw_params.wm_table = lpddr5_wm_table;
721	} else {
722		vg_bw_params.wm_table = ddr4_wm_table;
723	}
724	/* Saved clocks configured at boot for debug purposes */
725	vg_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info);
726
727	clk_mgr->base.base.dprefclk_khz = 600000;
728	dce_clock_read_ss_info(&clk_mgr->base);
729
730	clk_mgr->base.base.bw_params = &vg_bw_params;
731
732	vg_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
733	if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
734		vg_clk_mgr_helper_populate_bw_params(
735				&clk_mgr->base,
736				ctx->dc_bios->integrated_info,
737				smu_dpm_clks.dpm_clks);
738	}
739
740	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
741		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
742				smu_dpm_clks.dpm_clks);
743}
744
745void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
746{
747	struct clk_mgr_vgh *clk_mgr = TO_CLK_MGR_VGH(clk_mgr_int);
748
749	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
750		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
751				clk_mgr->smu_wm_set.wm_set);
752}
753